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Abstract

Diagnostic classification models (DCMs) are restricted latent class models with a set of
cross-class equality constraints and additional monotonicity constraints on their item
parameters, both of which are needed to ensure the meaning of classes and model
parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian
Markov chain Monte Carlo estimation method for general DCMs with monotonicity
constraints. A simulation study was conducted to evaluate parameter recovery of the
algorithm which showed accurate estimation of model parameters. Moreover, the pro-
posed algorithm was compared to a previously developed Gibbs sampling algorithm
which imposed constraints on only the main effect item parameters of the log-linear
cognitive diagnosis model. The newly proposed algorithm showed less bias and faster
convergence. An analysis of the 2000 Programme for International Student Assessment
reading assessment data using this algorithm was also conducted.

Keywords Diagnostic classification models - Markov chain Monte Carlo methods - Gibbs
sampling - Bayesian inference

1 Introduction

Diagnostic classification models (DCMs; e.g., Rupp et al., 2010), also referred to as cognitive
diagnosis models (CDMs; e.g., Leighton & Gierl, 2007), are latent variable models used to
estimate the multidimensional knowledge state of examinees, which can be used to provide
effective remedial instruction (e.g., Tatsuoka & Tatsuoka, 1997). DCMs differ from item
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response theory models (e.g., Embretson & Reise, 2000) in that the latent traits in DCMs, often
called attributes, are ordinal categorical variables which are often binary-valued. Therefore,
DCMs are versions of restricted latent class models (Rupp & Templin, 2008). The focus of this
study is to develop an efficient Bayesian estimation method satisfying a set of monotonicity
constraints on a wide class of DCMs.

Although numerous DCMs have been developed, for example the deterministic input noisy
“and”- gate model (DINA; e.g., Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton,
1977), the deterministic noisy input “or”-gate model (DINO; Templin & Henson, 2006), or the
reduced reparameterized unified model (RRUM; Hartz & Roussos, 2008), general DCMs
allow for the most flexible modeling options as they subsume the most frequently used latent
class-based sub-models. General DCMs include the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009), general diagnostic model (GDM; von Davier, 2008, 2014),
and generalized deterministic input noisy “and” gate model (G-DINA; de la Torre, 2011). The
equivalency of the three models is provided by de la Torre (2011) and von Davier (2014). If all
possible parameters are included in these models, they are also called saturated DCMs (Li,
Hunter, & Lei, 2016; Yamaguchi & Okada, 2018), although this term has also been used to
describe the DCM structural model (e.g., the model specifying the distributional parameters of
the attributes, see Templin & Bradshaw, 2014, or Hu & Templin, 2019).

In the LCDM framework, for a binary item response Xj; of an individual i (i=1, ..., ) for
item j, the item response function of i-th individual for item ; is defined as:

1
P(le: I‘Ajﬁo,hj, cxizocc,q/-) = s (1)
R COREVIEw))
where the kernel function AjA(cx. , ¢;) is represented as
. A A1 A
}\jh (“c? ‘Ij) = Zl Aj.,l,(a) o‘caqja + Zl Z 7\j,2,(a,a,) o‘caoccu’qjaqja’ + o (2)
a= a=lg >a

The q;=(q;1, ..., ;)" is the j-th row vector of the Q-matrix (e.g., Tatsuoka, 1983), a matrix
with binary indicators of whether an item j measures an attribute (¢ =1, ..., A). From a latent
class model perspective, each class represents a specific attribute mastery pattern. The vector
o, = (K1, ..., X4)T contains the attribute mastery pattern corresponding to the c-th latent class.
Each attribute mastery status indicator o, is binary valued with zero representing non-masters
and one representing masters. Under a general DCM, the total number of latent classes is C=
24 with each being a specific attribute profile—a permutation of the A binary attributes. A
saturated general DCM, thus, has 22«4« parameters for each item.

In a general latent class model, each item has one parameter which is the probability of a correct
response for a person from that class. The Q-matrix, through the helper function i(ex., g) in (1),
specifies a set of equality constraints for the item response probability for each class. These
constraints enable classes with the same Q-matrix-indicated attributes to have the same item response
probability. However, there is another difference between general DCMs and general latent class
models: DCM item parameter monotonicity constraints. Henson et al. (2009) provided constraints for
two reasons: to identify LCDM parameters and to ensure the meaning of the latent classes.
Monotonicity constraints are “defined as the property such that for any examinee that masters
additional skills his or her probability of a correct response must be equal to or greater than the
probability of a correct response prior to learning the additional skills” (Henson et al., 2009, p. 198).
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Moreover, monotonicity constraints are strongly related to issues of identification in DCMs.
Liu et al. (2013) studied identifiability conditions of the DINA model under known parame-
ters. Xu and Zhang (2016) established conditions for the identifiability of the DINA model and
Gu and Xu (2019) extended the result and established a set of sufficient and necessary
conditions. Fang et al. (2019) established identifiability conditions for a more general class
of DCMs. Xu (2017) and Xu and Shang (2018) treated DCMs as restricted latent class models
and provided identifiability conditions with monotonicity constraints. Gu and Xu (2020)
loosened identifiability conditions for DCMs previously proposed by Xu and Shang (2018).
In addition, Chen et al. (2020) proposed generic identifiability conditions for DCMs.

Selecting an appropriate identification rule is important not only to identify the model
parameters but also to prevent the latent class model label switching problem (e.g., Stephens,
2000). In DCMs, if class labels are permuted, not only does the meaning of the class change,
but also as models are predicated on classes being specific attribute profiles, the values of the
model parameters are meaningless. Monotonicity constraints are an essential part of
identification and can avoid the incidence of label switching if the identification conditions
in Xu and Shang (2018) are satisfied.

To estimate parameters with monotonicity constraints, maximum likelihood (ML)-based algo-
rithms used to estimate DCMs have frequently been employed. Rupp et al. (2010) and Templin and
Hoffman (2013) showed parameter estimation procedures under marginal maximum likelihood
using Mplus (Muthén & Muthén, 1998-2017). In addition, Hong et al. (2016) proposed ordered
restricted maximum likelihood estimation methods for the G-DINA model. However, ML-based
algorithms have difficulties in estimating DCMs with monotonicity constraints. First, ML-based
algorithms can converge at local maxima. Therefore, even if we employ a multiple starting value
strategy to assess the optimality of parameter estimates, it is difficult to judge whether the parameter
estimates are from a global maximum. Second, estimation of variability (i.e., standard errors) of
parameter estimates relies on asymptotic theory in ML and the asymptotic distribution with
parameter constraints may not be accurate in cases where small sample sizes are present.

Bayesian estimation methods are frequently employed to avoid the difficulties of ML-based
algorithms. In Bayesian estimation, sampling methods are used to approximate the posterior
distributions of parameters. Historically, Bayesian estimation procedures, especially, Markov
chain Monte Carlo (MCMC; e.g., Brooks et al., 2011), have played a central role in the
estimation of many DCMs. For example, Henson et al. (2009) used a Metropolis-Hastings
(MH) MCMC algorithm to estimate LCDM parameters. Culpepper (2015) developed a Gibbs
sampling algorithm for the DINA model. de la Torre and Douglas (2004) developed a MH
algorithm for the higher order DINA model. Li, Cohen, et al. (2016) used the JAGS program
(Plummer, 2003) to estimate a longitudinal DCM. DeCarlo (2012) used the BUGS language
(Lunn et al., 2000) for estimating reparametrized DINA model parameters. Hartz and Roussos
(2008) demonstrated the hierarchical Bayesian formulation of the Fusion Model using MH.
Zhan et al. (2019) provided JAGS code for various types of DCMs. Jiang and Carter (2018)
used Stan and Hamiltonian Monte Carlo (Carpenter et al., 2017) for the LCDM. Finally, Chen
et al. (2018), Culpepper (2019), Culpepper and Hudson (2018), and Chung (2019) developed a
Gibbs sampling algorithm for Q-matrix estimation.

Many previous studies using MCMC for DCM parameter estimation, however, did not
consider general monotonicity constraints. For example, the Gibbs sampling algorithm in
Culpepper (2015) used a constraint where the sum of slipping and guessing parameters was
limited to the interval from 0 to 1, but the algorithm was limited to the DINA model. Other
MCMC procedures were also limited to the DINA or DINO models (e.g., DeCarlo, 2012;
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Zhan et al., 2019) or constraints for general DCMs such as the LCDM were only posed on the
intercept and main effects (Zhan et al., 2019).

In general DCMs, if monotonicity constraints are incomplete or missing, there is a risk of
label switching of attribute profiles within MCMC chains. If label switching occurs, posterior
distributions become skewed and item parameter estimates are meaningless. Previous label
switching studies (e.g., Papastamoulis, 2016) have provided ad-hoc procedures permuting
MCMC samples. However, these methods are computationally intensive. This computational
burden is crucial in DCMs because the number of attribute mastery profiles tends to be large.
Therefore, ad-hoc label switching remedies may not be useful with DCMs. To gain reasonable
parameter estimates with MCMC, monotonicity constraints are essential in practice.

The MCMC procedure in Henson et al. (2009) built the constraint for their example, but it
was not general to all Q-matrices and used an inefficient MH rejection sampling algorithm.
Further, the Henson et al. (2009) study used a limited-information structural model rather than
a general structural model. These features meant the MCMC method employed in Henson
et al. (2009) was limited and was not an effective method for general applications.

Summarizing our previous discussion, DCM monotonicity constraints are important to
avoid the label switching problem in Bayesian estimation methods with MCMC, but efficient
Gibbs sampling algorithms incorporating these constraints for general models have not been
well-developed. More precisely, no MCMC methods with efficient algorithms for estimating
general DCMs with saturated item and structural model parameters using full monotonicity
constraints have been developed. The contribution of this paper is the development of a new
algorithm that is an efficient Gibbs sampling algorithm for the estimation of saturated item and
structural model parameters of general DCMs under item parameter monotonicity constraints.
To achieve this objective, we use a reparameterization of general DCMs as latent class models,
employed by Yamaguchi and Okada (2021), when estimated with saturated item parameters.
We note that Liu and Johnson (2019) used a similar formulation and constraint approach, but
they did not assess parameter recovery, convergence of MCMC samples, nor effectiveness of
their method thoroughly using a simulation study. In this study, we assess not only parameter
recovery but also effectiveness of convergence in a simulation study and compare our method
to previous no- or partially constrained versions of MCMC DCM algorithms.

In the next section, we describe the mixture parameterization of general DCMs along with the
fully Bayesian formulation used in our algorithm. In Section 3, we develop a Gibbs sampling
algorithm with monotonicity constraints. Then, in Section 4, we show the results of a simulation
study that was conducted to evaluate the parameter recovery efficacy of our new Gibbs sampling
algorithm with monotonicity constraints. In Section 5, we compare our method to another MCMC
methods employed in a previous study (Zhan et al., 2019) where non-constrained and partially
constrained (i.e., positive main effects of the LCDM) were used. In this study, we name our
constraints as “complete monotonicity constraints.” The results of an empirical data analysis are
shown in Section 6. We conclude our paper with a discussion of our algorithm performance.

2 A Fully Bayesian Parameterization of General DCMs as Mixture Models
2.1 Item Response Function and Complete Data Likelihood

To treat DCMs as latent class (mixture) models where each class has a restricted item response
probability, we introduce a latent indicator function. In a general latent class model with C =24
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latent classes, each item j has 24 item response parameters. In a general DCM with saturated
item parameters, however, this number is reduced to 2<%, where Yaqja<A. To demonstrate,
consider a test with three attributes (A = 3). Further, consider an item j that measures attributes
one and three, yielding a Q-matrix vector of ¢;=[1,0, 1]". As Zaqja = 2, the item has 22=4
different correct item response parameters: one for each permutation of the measured attributes
(attributes one and three). To notate these parameters, we use the index / (h =1,..., 224‘1/”).

Latent Class (Attribute Profile) a,

%n O T[o00] [001] [010] [011] [100] [101] [110] [111]

[0*0] 8 1 0 1 0 0 0 0 0 3)
[0%1] 8 0 1 0 1 0 0 0 0

[1%0] o, 0 0 0 0 1 0 1 0

[1*1] 8 0 0 0 0 0 1 0 1

J )

Equation (3) lists the four permutations of the measured attributes of item j and denotes these
as a; (with a script letter “a” and vector-valued elements a;;,) where, in the table, an asterisk is
used to indicate an attribute that is not measured by the item and is not a part of this

-
permutation. We use the vector 0; = [9 iy -..n 0 jzzuq,ﬂ] with elements 0, for corresponding
LCDM-based item response probabilities. With three attributes, there are a total of 23=8
classes, which are listed across the columns of (3). The elements of the table in (3) are formed
as indicators of a;, = .. We use Iverson notation / [a,—h = cxc] for shorthand to notate these

elemental indicators. The values of the item response probabilities are given by the LCDM
item response function given in (1) and (2), which, for this example, gives:

_exp(ho)

911 — 1 + exp(?\jo) I (4)
. exp(Njo +Aj13) (5)

s exp(Njo +Aji)
L exp(Mjo + A1) (6)

J 1 +exp<7\jo+7\j,1.(l)) ’

Ly _ A,
04 CXP(AJO T AL FALE) 1’2’(]‘3)) (7)

S Lexp(No + A F e FA203)

As there is a one-to-one mapping between the LCDM parameterization and the latent class
parameterization, the parameters can be transformed into the other parameterization without
loss of information.

We can re-express the item response probability of individual i for item j using the latent
class formulation of the saturated DCM by:

2Zadja

P(Xu:xylej,qj,ai) =11 [ej;;(l—e,,,

) 1—x,,} Hap=a] 7 (8)
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where x;; is a realization of Xj;, 0, is a vector with an element 0, that gives the item response
probability of the item-specific restricted attribute mastery pattern 4 provided by the LCDM
item response function of (1) and (2). The product in (8) is taken over all possible item
parameters for a given item j where the item response function is raised to the power of an
indicator variable—as only one value of this indicator is equal to a value of one per individual
i, this allows the notation to select the correct constrained item response probability.
Assuming local independence given the latent variable «; and exchangeability of individ-

uals, the complete data likelihood function is

2Zadja I[a,y,:a}

I J I J o - ;
P(X|0,Q.a) = IT 1T P(X; =104 00) = TTTT TT [0 (1-0) ™ . (9)
i=1 j=

i=1j=1 h=1
where the /x.J matrix X has elements x;;, the © is a set of all item parameters 0;, Q is a Q-
matrix, and « is the matrix of attributes for all individuals.

2.2 Priors for the Saturated DCM

The priors for the latent variables and latent variable distribution parameters are chosen so that
a Gibbs sampling algorithm—one where we can sample from the complete conditional
distribution—can be derived. In general DCMs, the latent variables «; follow a categorical
distribution (often called Multivariate Bernoulli). In latent class models, the parameters of this
prior distribution are called the mixing proportion parameters reflecting the proportion of
individuals with an attribute mastery pattern. We use 7t = [7ty, ..., i, ..., T, to represent
these parameters such that each 7t. >0 and Zfilm = 1. The probability mass function of this
prior comes from the multinomial/categorical distribution:

2A
P(o;|mr) = [ mllo=ed, (10)
c=1

where [[ox;= «.] is one when «;= . and zero otherwise. Exchangeability of individuals is
also assumed, so the joint distribution of « is

8]
>

mlloi=ed, (11)
1

—_

P(ax) =

i=lc

A conjugate prior for 7t is the Dirichlet distribution with parameters §° = [6(1), 00 6;] T,

<y Yeo
2
P(7[8°%)« 1 et (12)

A prior for the correct response probability parameter 0, is the Beta distribution with
hyperparameters aj‘.)h and bj(?h as the sample space of the Beta distribution is (0,1),

, bY-1
( Jh| Lino bjoh) e,hh (l_ejh) " (13)
The joint probability of 8, with independence of parameters is
J 2Za%a -1 B
P(@‘AO,BO) Hl hH e i (l_ejh) jh , (14)
=1 h=

where the A%and Blare the sets of hyperparameters aj‘.)h and bfh.
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The joint posterior distribution of &, @, and 7t that is calculated from (11) through (14) and
using Bayes theorem is:

P(x,0,7X,A%, B’, §°, Q) «P(X|x,0,Q)P(cx|7)P(7|5")P(O[A’ B°) (15)

A il 1oy ! [an=0x] 2 B » o,
= ( ] Hl i {e/;;(l_ejh) ’] (Hl HI ﬂi[txﬁm]) (I‘[lnf(. 1)
S i=1c= —
J 2%a%a -1 .
(H H eﬂi” (1_6/;,) Jh

J=1 h=1

3 Gibbs Sampling Algorithms for the Saturated DCM
3.1 Unconstrained Gibbs Sampling Algorithm
The unconstrained Gibbs sampling algorithm is as follows. We use superscript (¢) as the

iteration number. The parameter vectors «, ©, and 7t are sampled from conditional distribu-
tions and each step is

Stepl : oc(’>~P(cx|X, O al) A® BO &0, Q) , (16)
Step2 : @~P (X, a7 V,A°, B, 8°, Q). (17)
Step3 : 7t ~P (7r|x, @0 A® B 80 Q). (18)

From the joint posterior (16), the full conditional distribution of «;, P(ax;| x;, ©, 7r, A°, BY, 89,
Q), is independent for all individuals i and it becomes a categorical distribution whose
parameters are is calculated as:

Yadja Xij 1-x; I[ajh:ac]
{H}Izl Py [9_,-11 (1-651) x} }nc

A Yadja Xij 1= I[ajh:D(J
¥, {Hleﬂﬁzl [Q/h(l_efh) ] ]m

P(a; = axcfx;, ©,m,A%, B, 6%, Q) = (19)

The conditional posterior P(65 X, 7t, A%, B, 8°, &, Q) is also independent for all j and /. The
conditional distribution follows a Beta distribution with parameters:

I

Z1 =1

(20)
)

Finally, the conditional posterior P(7| X, ©, A%, B?, 89, «, Q) follows a Dirichlet distribution
with parameters

.
5 =Y I[oy = a] +8°, Ve. (21)
i=1

@ Springer



Journal of Classification

3.2 Gibbs Sampling Algorithm with Monotonicity Constraints

The Gibbs sampling algorithm outlined above does not impose the DCM monotonicity con-
straints which are needed for item parameter identification and latent class meaning. The
monotonicity constraints stipulate a partially ordered relationship among the correct item response
probabilities as additional attributes are mastered. The monotonicity constraints for an example
item measuring three attributes are shown in Table 1. In this item, 0;; corresponds to a person who
is not a master of all attributes, 0, to 84 are correct item response probabilities for attribute
mastery patterns with only one mastered attribute, corresponding to attribute mastery patterns [1,
0,0], [0, 1,0], and [0, 0, 1]. Similarly, 05 to 0;; are correct response probabilities for attribute
mastery patterns with two mastered attributes with patterns [1, 1, 0], [1, 0, 1], and [0, 1, 1].

Finally, 05 is the correct response probability for the attribute mastery pattern where all
attributes are mastered. Under our monotonicity constraints, the parameters have a partially
ordered relationship:

Ogejlﬁmin(ejz,6j3,6j4),
01<0,,<min(0;5,06),
0;1<0,3<min(0;s5,07),
0,1<0j Smingem 6,7),

max 9]3,91‘4 Seﬂfejg,

maxgejz,ejagﬁejsﬁej&
max(9j2,9j4)59j6§9j3,
max(9j579j(,,9j7)59/-g§1.

The probability of a correct response for the class of individuals mastering none of the
attributes, 0;;, should be the smallest of the eight correct item response probabilities as no
attributes are mastered. Similarly, the probability of a correct response for the class of
individuals mastering all attributes, 03 should be highest. The probability of individuals
mastering the first attribute, 0, is greater than individuals mastering no attributes, ;;, but is
less than the probability of individuals mastering the first attribute and one additional attribute
(either attribute two or attribute three), min(0;s, 0;5). There is no ordinal relationship between
[1,0,0] and [0, 1, 0], [0,0, 1], or [0, 1, 1]. Likewise, the probability of individuals mastering
both attributes one and two, 05, should be greater than or equal to that of individuals mastering

Table 1 An example of monotonicity constraints for an item measuring three attributes

Restricted attribute Attribute Correct item

mastery pattern number —_— response probability

h a 6% a3 Minimum value Maximum value
1 0 0 0 9,-1 0 min(912,9j3,6j4)
2 1 0 0 0 0; min(6s, 0)

3 0 1 0 053 min(0;s, 0;7)

4 0 0 1 9j4 min(ejé, 917)

5 1 1 0 0js max(6),0;3) 03

6 1 0 1 0 )j6 max(e )j25 9 /'4)

7 0 1 1 07 max(03,0;4)

8 1 1 1 9/'8 max(eis, 6,6, 9/7) 1

min() is a function to return minimum value of the arguments and max() is a function to return the maximum
value of the arguments
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just one of those attributes, max(6),, 6,3). Similar logic applies to all other parameters for this
item and produces partially ordered relationships among their respective parameters.

To satisfy monotonicity constraints, we modify Step 2 in the unconstrained Gibbs sampling
algorithm to use the sampling schema employed in order-constrained latent class models (e.g.,
Hoijtink, 1998; Laudy et al., 2004). The strategy is to use a truncated Beta distribution with an
inverse probability sampling method. A truncated Beta distribution has a lower bound we
denote as Low and an upper bound we denote as Upp. To sample from this distribution, first,
sample U from a uniform distribution on [0, 1]. Then, calculate the {Low + U x (1 —Upp —
Low)}-th quantile of the Beta distribution with parameters a and b. This quantile value is the
random sample from the truncated Beta distribution.

For our algorithm, let Gy) be the #-th iteration in an MCMC algorithm with of the
probability of a correct response to an item j. Using the example in Table 1, Step 2 is now:

e Step 2.1: Calculate (20) for all parameters in item j,

*  Step 2.2: Sample 9(5,[1) from the truncated Beta distribution with parameters 0‘_;1 and b;h
whose lower bound is 0 and upper bound is min(eﬁgl), 95;1), 95-:”),

* Step 2.3: Sample 6(/'2) to 9_5-2 to from the truncated Beta distribution with parameters oc_;,
and b;7 whose lower bound is eﬁ.’l) and each upper bound is min(eﬁgw, 9576_1)),
min (G;’;l)7 95.?1)) , or min (9_5.[67”, 65-?1)> ,

*  Step 2.4: Sample 95-[5) to 9%) from the truncated Beta distribution with parameters a;‘h and
b;, whose corresponding lower bounds are max (9?2), 65.?), max(eﬁt;, 952), and
max (6_5.[3), 95.2), and upper bound is 6_5.;71),

*  Step 2.5: Sample 65;) from the truncated Beta distribution with parameters a;l and bl‘h

whose lower bounds is max (Gﬁ?, 952, 95?) and upper bound is 1.

This procedure can be easily modified for any number of attributes measured by an item. Steps
1 and 3 are same as the unconstrainted Gibbs sampling algorithm.

More generally, Step 2 can be written for parameters in the item measuring more than two
attributes. For k in 0 to 3,g;,, let a parameter set 6, w=10n|>y @jna =k, where ay,, is an

h, <Z qja

symbol “<” to represent partial order relationship between two attribute mastery patterns: aj,

element of a;, except *}. Note 0, (g and 0 ) are always unitary. We introduce a

<ay if a;huéajhra,‘\fa. Finally, let subscript sets for fixed # be A} = {h’|ajh<ajh/ } and

A, = { h’/|ajh//<ajh } Then, the general description of the Step 2 is the following:

» Step 2.1: Calculate (20) for all parameters in item j,

e Step 2.2: Sample BE,’)@ from the truncated Beta distribution with parameters a;; and b;h

whose lower bound is 0 and upper bound is mm({ Gi’f(ll)) |hleAh+ }),
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e Step 2.3: For k=1, ...,%qju—l, sample each 9;,’1?(k)eei.fzk) from the truncated Beta
distribution with parameters ajh and b;, whose lower bound is max({e}(:? (1) \h//eA;})
i mi (=1) e AT
and upper bound is mm({eh,‘(kﬂ) |heA, }),

* Step 2.4: Sample o from the truncated Beta distribution with parameters a;h and
h, (z q /a>
a

b]; whose corresponding lower bounds is max ol |h/’€A; , and upper
h//v (Z qjai1
a

bound is 1.

4 Simulation Study 1
4.1 Simulation Settings

A simulation study was used to evaluate the ability of our complete monotonicity-constrained
Gibbs sampling algorithm to recover known parameter values. In the simulation study, the sample
sizes were set to 200 and 1000, which we refer to as the small and large sample size conditions.
The Q-matrix used is shown in Table 2 with 19 items and four attributes. Items 1-8 measure only
one attribute, items 9—14 measure two attributes, items 15 to 18 measure three attributes, and item
19 measures four attributes. Three attribute correlation conditions were used where the tetrachoric
correlation between attributes was set to 0, 0.5, and 0.8, representing are zero, moderate, and high
correlations. The attribute mastery patterns were generated using a continuous, underlying
multivariate normal distribution, as assumed by the tetrachoric correlation. First, for each
simulated examinee, a continuous four-dimensional attribute vector &« was generated from a
multivariate normal distribution with a zero mean vector and a covariance matrix with ones for
diagonal elements and 0, 0.5, and 0.8 for the off-diagonal elements. The cut-point for each
underlying variable, which sets the marginal proportion of masters for an attribute, was set to be
increasing across the attributes. That is, if the a-th element of &, denote as &,, was greater than
7 Yal(1 +A)), where ®71(-) is the inverse function of the cumulative standard normal distribution,
then &, becomes 1 otherwise 0. From this procedure, true attribute mastery patterns and mixing
parameters 7t were generated. This procedure was based on Chiu and Douglas (2013).

Item response probability parameters ©; were determined based on guessing and slipping
parameters, denoted g; and s;. Here, guessing was the correct response probability for the
attribute pattern where no attributes from item j were mastered and slipping was the probability
of an incorrect item response for the attribute pattern where all attributes measured by item j
were mastered. We first determined the two true parameters and, if an item measured more

than two attributes, the correct answer probability of 8, was determined as g; + a5, (11 i—g j)

/ 244> Where a;, is the number of attributes mastered in the A-th item-specific attribute mastery
=4

pattern.
For example, assume g;j=s;=0.2, then 0;, =g;=0.2 and 03 =1—s5;=0.8. In addition, 6,
and 03 had only one mastered attribute and, thus, the parameters were 0, =0;3=0.2+ (1 - 0.2

@ Springer



Journal of Classification

Table 2 Q-matrix for simulation study one

Ttem Attribute

1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 0 1
9 1 1 0 0
10 1 0 1 0
11 1 0 0 1
12 0 1 1 0
13 0 1 0 1
14 0 0 1 1
15 1 1 1 0
16 1 1 0 1
17 1 0 1 1
18 0 1 1 1
19 1 1 1 1

—0.2)/2=0.5. Two guessing and slipping parameter conditions were assumed based on the
simulation in Culpepper (2015): g;=5;=0.1 and gj=s;=0.2. The former was considered a
high-quality items condition and the latter was a low-quality items condition. In the simulation
study, there were two sample size conditions, two item quality conditions, and three correlation
conditions, yielding 12 simulation conditions in total. The simulation was repeated 50 times
for each condition.

In the Bayesian estimation procedure, we estimated four separate Markov chains with the
number of iterations set to 10,000 for each chain. The thinning interval was one and the burn-
in period was the first 5000 iterations. We selected random starting values for © that satisfied
our monotonicity constraints. To evaluate chain convergence, we employed the Gelman-Rubin

R index (Brooks & Gelman, 1998) for all parameters. We judged a chain to be converged

when the maximum R < 1.05. In addition, we used the autocorrelation for MCMC samples to
assess the efficiency of the Gibbs sampling algorithm as algorithms resulting in lower
autocorrelations cover more of the posterior distribution for each iteration and thus need fewer
iterations. In our parameter evaluation, we used EAP estimates from the posterior distributions
formed by the MCMC samples. The quality of the parameter estimates was evaluated based on
bias and root mean square error (RMSE). The simulation and real data analysis code were
written in 64-bit R for Windows version 3.6.1 (R core team, 2019) and used the CODA
package (Plummer et al., 2006) for convergence diagnostics.

4.2 Results

Figure 1 shows the multivariate R for each simulation condition with chain lengths from 100 to
10,000 in iteration increments of 100. The panels in the first and third rows of Fig. 1 indicate
the high-quality items conditions under small and large sample size settings. Across all

@ Springer



Journal of Classification

replications, the multivariate version of R was less than 1.05 within 2000 iterations. In

addition, the panels in the second and fourth rows of Fig. 1 were the R in the low-quality
items condition under small and large sample sizes. Across all replications, the multivariate
version of R reached less than 1.05 at between 2000 and 5000 iterations. Therefore, as to be
expected, the high-quality items conditions resulted in faster convergence of the MCMC
algorithm than the low-quality conditions. Moreover, sample size was related to convergence
speed: the small sample size conditions were slower to converge than the large sample size

conditions. The attribute correlation conditions did not affect the reduction of the R.
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Fig. 1 Gelman-Rubin R-hat for all parameters. Each plot contains 50 replications
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Figure 2 shows the average autocorrelation across all item and mixing parameters whose
lags were from 1 to 50 for each simulation condition and each plot contains 50 replications.
The first and third rows of Fig. 2, which were high-quality item conditions, indicated that the
average autocorrelations in ten lags were less than 0.05 and the values quickly decreased to 0
with increases of lagged iterations. In other words, the MCMC samples indicated low
dependencies between concurrent iterations. However, when the quality of items was low,
more iterations were needed to decrease the auto correlation, which is shown in the second
(small sample size condition) and fourth (large sample size condition) rows of Fig. 2. The
correlation among attributes also affected MCMC sample dependency especially in low-
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Fig. 2 Average autocorrelation for all parameters. Each plot contains 50 replications
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quality items conditions: the high correlation conditions helped to decrease the autocorrelation
more than the middle or zero correlation conditions. However, even in the low-quality items
condition, most of the 15-lag autocorrelations were less than 0.1.

Figures 3 and 4 show average bias and RMSE of item parameters for each item under the
small and large sample size conditions. In Figs. 3 and 4, the upper panels were bias and lower
panels were RMSE. In addition, the left column shows the high-quality items conditions and
the right column shows the low-quality items conditions. Under the small sample size
conditions (Fig. 3), there were small bias results (— 0.06 to 0.06) for the first to eighth items.
This indicates that items measuring easily mastered attributes tend to have a slight positive bias
and items measuring relatively difficult attributes were negatively biased. The other items
showed almost no bias. In addition, the RMSEs of item parameters in the lower quality items
were worse than the ones in the high-quality items. However, the largest RMSE was less than
0.10 in the lower quality items.

In contrast, Fig. 4 shows the average bias and RMSE of item parameters for each item
under the large sample size condition. From Fig. 3, the bias of parameter estimates was small
for all conditions. Figure 4 also shows that the RMSE of the first 8 items (which measured only
one attribute) was less than 0.03 in the high-quality items condition and that the low-quality
items condition indicated greater RMSEs than the high-quality items condition. Most of the
RMSEs showed similar values which were between 0.01 and 0.05 among all simulation
conditions. These RMSE results were similar to the results of Culpepper (2015).

Figures 5 and 6 show bias and RMSE values for mixing parameters under the small and
large sample size conditions, indicating small bias in all simulation conditions. In Fig. 5, the
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Fig. 3 Average bias (upper panels) and RMSE (lower panels) of the correct item response probability for each
item for the sample size 200 condition
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Fig. 4 Average bias (upper panels) and RMSE (lower panels) of the correct item response probability for each
item for the sample size 1000 condition

RMSE in the low-quality items condition was at most just above 0.07 and most of the values
were less than 0.06. Figure 6 also showed that the RMSEs in the high-quality items were less
than 0.02 and almost all RMSEs in the low-quality items conditions were less than 0.03. The
small RMSEs were gained with the monotonicity-constrained Gibbs sampling method.

Finally, Table 3 indicates recovery rates of each attribute mastery and whole attribute
mastery patterns in each simulation condition. In the high-quality items condition, a difference
between sample sizes could not be detected, and recovery rates of each attribute were greater
than 0.95. The whole attribute mastery pattern recovery rates were larger than 0.85. In the low-
quality items condition, the large sample size conditions were better than the small sample size
conditions. In addition, recovery rates were not as good as in the high-quality items conditions.
However, recovery rates for each attribute were at least 0.85 even in small sample size settings.
The recovery rates of all mastery patterns were 0.587 to 0.699 in small sample sizes.The values
in the large sample size conditions were slightly better than the small sample size conditions.
In general, the recovery rates of true attribute mastery statuses were adequate for practical use.

In summary, with respect to the complete monotonicity-constrained algorithm, the MCMC
chains showed relatively fast convergence and the parameters were recovered well, even in the
small sample size conditions. Moreover, parameter biases were reduced in the large sample
size conditions. In addition, the RMSE values were small across simulation conditions.
Furthermore, the attribute mastery patterns were also recovered well, even under small sample
size conditions.
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Fig. 5 Average bias (upper panels) and RMSE (lower panels) of the mixing parameter for each attribute mastery
pattern for the sample size 200 condition

5 Simulation Study 2
5.1 Simulation Settings

The purpose of simulation study two was to compare our proposed Gibbs sampling algorithm
and previous non- and partially constrained (main effects only) MCMC algorithms for the
LCDM using JAGS. We evaluated estimation time, convergence ratio of parameters, estima-
tion bias, and RMSE. Note that the JAGS automatically selects the appropriate sampler from
model description and sometimes employed MH sapling method. However, all samplers
employed in this simulation were Gibbs sampling-based ones. Detailed description of selection
of the sampler was shown the user manual of the JAGS program (Plummer, 2017).

The basic simulation settings, data generating process, and convergence criteria were left
unchanged from simulation study one, but we changed some specifics. The number of
attributes in simulation study two was six with a Q-matrix shown in Table 4. We made this
change to assess comparative algorithm performance across a more difficult estimation task.
The Q-matrix was set to satisfy identifiability conditions and had 30 items: items one through
twelve measured only one attribute, items 13 to 22 measured two attributes, items 23 to 26
measured three attributes, and items 29 and 30 items measured four attributes.

Due to the size of the number of attributes for this Q-matrix, we expected a long estimation
time duration. Therefore, the number of manipulated conditions was reduced. Two guessing
and slipping parameter conditions were assumed again: g;=s;,=0.1 and g;=5;=0.2. In
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Fig. 6 Average bias (upper panels) and RMSE (lower panels) of the mixing parameter for each attribute mastery
pattern for sample size 1000 condition

addition, attribute correlations were set to 0 or 0.8 as the three conditions from simulation
study one had only a small difference in results. We examined 2 x 2 =4 simulation conditions.
Sample size was fixed to 500. The number of iterations were 10,000 of which the first 5000
iterations were discarded as a burn-in period. Three MCMC chains were estimated. Thirty
replications were performed for each condition. The JAGS code for comparative methods was

Table 3 Recovery rate of each attribute mastery and whole mastery pattern in 12 simulation conditions in
simulation one

Sample size  Item parameter conditions  Attribute correlations  Attribute All
1 2 3 4
200 High-quality 0 .966 955 958 962 .852
5 966 960 962 969  .864
8 974 971 971 976 896
Low-quality 0 .887 .867 .865 .879 587
5 906  .838  .891 906  .651
.8 920 907 912 914 699
1000 High- quality 0 969 960 961 968  .867
5 974 966 966 974 885
8 981 976 976 981 916
Low-quality 0 906 877 877 907  .635
5 921 898 897 924 684
.8 936 919 922 936 743
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Table 4 Q-matrix for simulation study two

Ttem Attribute

1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 1 0 0 0 0 0
8 0 1 0 0 0 0
9 0 0 1 0 0 0
10 0 0 0 1 0 0
11 0 0 0 0 1 0
12 0 0 0 0 0 1
13 1 1 0 0 0 0
14 0 0 1 1 0 0
15 0 0 0 0 1 1
16 1 0 1 0 0 0
17 0 1 0 1 0 0
18 0 0 1 0 1 0
19 0 0 0 1 0 1
20 1 0 0 1 0 0
21 0 1 0 0 1 0
22 0 0 1 0 0 1
23 1 1 1 0 0 0
24 0 1 1 1 0 0
25 0 0 1 1 1 0
26 0 0 0 1 1 1
27 1 0 1 0 1 0
28 0 1 0 1 0 1
29 1 1 1 1 0 0
30 0 0 1 1 1 1

based on Zhan et al. (2019) leaving the settings for prior distributions unchanged from their
study. Our proposed Gibbs sampling algorithm and the other twvo MCMC methods were
applied for the same data to compare estimation time, convergence rates, and parameter
recovery. The University of Iowa’s Argon High Performance Computing system was used
for this simulation.

5.2 Results

Table 5 shows the average estimation time of the three algorithms for each simulation
condition. The estimation times for the complete monotonicity constraints ranged from
422.626 to 498.836 s—about five times faster than the other constraint types (we note these
differences were likely due to the use of R for the complete monotonicity constraints algorithm
as compared to JAGS for the other two). Figures 7 and 8 show a boxplot for the ratio of correct
item response/mixing parameters satisfying our convergence criteria over 30 replications. The
complete monotonicity constraint algorithm employed in the proposed Gibbs sampling algo-
rithm (condition “C” in the figures) always converged for all conditions. For all conditions, the
median ratio of the no-constraint Gibbs sampling (represented as “N” in the figures) was less
than 20%. Therefore, we omit the results of the no-constraint method. The main effects
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Table 5 Estimation time of three estimation algorithms in simulation study two

Item parameters Attribute Constraints type

conditions correlations

No-constraints

Main effects Complete

Mean

(SD)

Mean (SD) Mean (SD)

High-quality

Low-quality

0 3195.508 (1634.273)
8 3446.409 (986.397)

0 2960.413 (1178.284)
8

2704.048 (336.428)

3062.796 (837.152) 422.626 (111.064)
2860.615 (724.028) 454.784 (112.190)
3015.640 (760.136) 498.836 (167.962)
2601.063 (513.711) 495.695 (168.905)

Constraints type represents constraints of estimation method: “No-constraints” did not have any constraints on
LCDM parameters, “Main effects” meant positivity constraints on main effects in LCDM parameters, and
“Complete” was the full monotonicity constraint employed in the proposed method
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Fig. 7 Box plots for the ratio of satisfied convergence criteria (R < 1.05) correct item response probability
parameters over 30 replications. The constraint types are no-constraints (marked “N”), main effects only

monotonicity (“M”), and complete monotonicity (“C”)
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Fig. 8 Box plots for the ratio of satisfied convergence criteria (IA? < 1.05) mixing parameters over 30 replica-
tions. The constraint types are no-constraints (marked “N”’), main effects only monotonicity (“M”), and complete
monotonicity (“C”)

constraints (indicated “M” in the figures) showed much better convergence than the no-
constraints method with converged ratios that were very close to one. However, it did not
always satisfy convergence criteria. From these results, we show the set of complete mono-
tonicity constraints is important to improve convergence of MCMC algorithms, showing that
our proposed algorithm is computationally effective.

Table 6 showed average biases and RMSEs which are shown in units multiplied by 1000
for item parameters. The columns “# attributes measured per item” represent the mean of bias
and RMSE for items that measure only one to four attributes in both constraint conditions. The
high-quality items conditions showed smaller bias values than the low-quality items condi-
tions. In addition, higher attribute correlations conditions tended to have smaller bias values
than the no correlation conditions. The absolute bias of items that were measuring only one or
four attributes tended to be small. Importantly, the absolute bias values of the complete
monotonicity constraints were almost always smaller than the ones of partial (main effects)
constraints, especially for items measuring two or three attributes. Even in conditions in which
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Fig. 9 Average bias (upper panels) and RMSE (lower panels) of the mixing parameter for 0 attribute correlations
condition. “Main effects” represented the positivity constraint on the LCDM parameter and “Complete”
represented complete monotonicity constraints

the bias values of partial (main effects) constraints were slightly smaller than the complete
monotonicity constraints method, the values were reasonably small.

For RMSE, item quality and attribute correlations conditions showed similar results to
that for bias. The RMSEs of the complete monotonicity constraint algorithm showed
smaller values than the partial (main effects) constraints in the low-quality items condi-
tions. However, the difference between the two constraints was small in the high-quality
items conditions.

Moreover, the biases and RMSEs of mixing parameters shown in the Figs. 9 and 10 were
not different between the two constraints. However, the bias and RMSE in the high-quality
items conditions were reasonably small. Some bias and RMSE values in the low-quality items
conditions were close to — 0.05 or 0.075 but others were very small. Finally, Table 7 shows the
results of correct attribute recovery rate. The values were very similar between the two types of
constraints in high-quality items conditions. In the low-quality items conditions, the correct
recovery rates in the complete monotonicity constraints algorithms were slightly better than the
partial (main effects) constraints algorithm.
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Fig. 10 Average bias (upper panels) and RMSE (lower panels) of the mixing parameter for 0.8 attribute
correlations condition. “Main effects” represented the positivity constraint on the LCDM parameter and
“Complete” represented complete monotonicity constraints

Table 7 Average attribute mastery recovery rate for each condition in simulation study two

Constraints Item parameters Attribute Attribute All
type conditions correlations

1 2 3 4 5 6

Main effects  High-quality 0 964 960 967 965 961 965 .804
8 979 976 979 978 978 977 875

Low-quality 0 729 863 876 886 874 812 350

8 855 915 927 928 926 .896 .567

Complete High-quality 0 967 961 967 965 961 .964 807
8 980 977 980 978 978 .979 879

Low-quality 0 805 .877 884 889 874 .813 .399

8 885 923 928 .929 925 .902 .593

Constraints type represents constraints of estimation method: “Main effects” meant positivity constraints on main
effects in LCDM parameters and “Complete” was the fully monotonicity constraint employed in proposed
method
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Table 8 Q-matrix employed in Chen and de la Torre (2014)

Item Attribute
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RO40Q3B
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R04Q06
R077Q02
RO77Q03
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R077Q05
R077Q06
R088Q01
RO88Q03
RO88QO4T
RO88QOST
RO88Q07
R11Q01
R11Q04
R110Q05
R110Q06
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Fig. 11 Gelman-Rubin multivariate scale reduction factor, R(left panel), and average autocorrelation (right panel)
of all item and mixing parameters in the Programme for International Student Assessment (PISA) 2000 reading
assessment data. The multivariate version of potential scale reduction factor was calculated based on four
independent chains of length from 100 to 20,000 with iterations of 100 and lags of average autocorrelation from
1 to 50. The solid line represents the complete monotonicity constraints algorithm and dashed line represents the
positivity constraint on the LCDM parameters
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6 Application to Empirical Data
6.1 Analysis of Programme for International Student Assessment Data

To evaluate the performance of our algorithm on empirical data, we used the Programme for
International Student Assessment (PISA) 2000 reading assessment data employed Chen and
de la Torre (2014), as retrieved from the CDM package in R (George et al., 2016). The data
consists of a sample of 1095 individuals from the UK with no missing responses to 26 items
from PISA booklets 8 and 9. Items were multiple choice scored as binary indicators of correct
responses.

The Q-matrix is shown in Table 8 and has six attributes. The attributes were «;: Locating
information, «,: Forming a broad general understanding, «3: Developing a logical interpreta-
tion, oy: Evaluating number-rich text with number sense, «s: Evaluating the quality or
appropriateness of text, and o: test speediness. The definition of first 5 attributes were shown
Table 7 in Chen and de la Torre (2014). The sixth attribute was that an individual can
completely consider all items within the test time if he or she masters the attribute.

In addition to the proposed Gibbs sampling with complete monotonicity constraints, the no-
constraint and partial (main effects only) constraint MCMC methods were estimated with
JAGS. To compare the three algorithms, we employed posterior predictive p-value (e.g.,
Gelman et al., 1996; Meng, 1994) as a model-data fit index. The calculation procedure of
posterior predictive p-value in DCMs was shown in Zhan et al. (2019). This value indicates
better model-data fit as the p-value approaches 0.5. In this analysis, we used four chains with
the number of iterations set to 20,000 of which the first 10,000 iterations were discarded as the
burn-in period. The algorithm was considered converged when parameters had R < 1.05.
Data analysis syntax is available in Open Science Framework page: https:/osf.io/h9fm4/. The
analysis was conducted on the University of Iowa’s Argon High Performance Computing
system.

Table 10 Mixing parameter estimates of the Programme for International Student Assessment 2000 data

Attribute Estimates Attribute Estimates Attribute Estimates Attribute Estimates

mastery (SD) mastery (SD) mastery (SD) mastery (SD)
pattern pattern pattern pattern

000000 .145 (.017) 000010 .006 (.005) 000001 .010 (.007) 000011 .004 (.004)
100000 .003 (.003) 100010 .014 (.007) 100001 .003 (.003) 100011 .008 (.006)
010000 .003 (.003) 010010 .002 (.002) 010001 .004 (.003) 010011 .002 (.002)
110000 .005 (.004) 110010 .002 (.002) 110001 .014 (.009) 110011 .017 (.011)
001000 .007 (.005) 001010 .007 (.005) 001001 .001 (.001) 001011 .002 (.002)
101000 .002 (.002) 101010 .003 (.003) 101001 .001 (.001) 101011 .003 (.002)
011000 .008 (.006) 011010 .005 (.004) 011001 .003 (.003) 011011 .004 (.003)
111000 .024 (.011) 111010 .010 (.009) 111001 .005 (.005) 111011 .019 (.009)
000100 .063 (.015) 000110 .003 (.003) 000101 .048 (.015) 000111 .015 (.010)
100100 .003 (.003) 100110 .022 (.008) 100101 .004 (.004) 100111 051 (.018)
010100 .003 (.003) 010110 .002 (.002) 010101 .004 (.004) 010111 .002 (.002)
110100 .004 (.004) 110110 .003 (.003) 110101 .017 (.010) 110111 .026 (.015)
001100 .004 (.004) 001110 .006 (.004) 001101 .002 (.002) 001111 .006 (.005)
101100 .002 (.002) 101110 .006 (.005) 101101 .003 (.002) 101111 .006 (.005)
011100 .005 (.005) 011110 .003 (.003) 011101 .003 (.003) 011111 .004 (.003)
111100 .014 (.010) 111110 .037 (.018) 111101 .005 (.005) 111111 280 (.024)

Large values are in bold
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6.2 Parameter Estimation Result of PISA Data Analysis

The estimation times of the no-constraints, main effects constraints, and complete constraints
were 11,954.670 s, 12,395.330 s, and 1510.836 s, respectively. The proposed algorithm was
the fastest, which likely reflects the use of custom R-syntax rather than the general estimation

of JAGS. The Rs of the proposed Gibbs sampling algorithm were all less than 1.05, and most
of the partial (main effect) constraint algorithm were less than 1.05 except for two parameters
(A12,0=1.059, A15, 1,1 = 1.053). Most parameters of the no-constraints algorithm did not satisfy
this criterion. As such, all results for the no-constraints algorithm have been omitted.

We calculated the multivariate version of R with chain lengths from 100 to 20,000 in
iterations of 100 (left panel of Fig. 11) and the average autocorrelation of the chain over all
parameters with lags from 1 to 50 (right panel of Fig. 11) for the complete and partial (main
effects) monotonicity constraints algorithms. The multivariate R for the complete
monotonicity-constrained algorithm was less than 1.05 near iteration 9000 but the value of
the partial (main effects) constraints algorithm decreased relatively slowly. This result indi-
cated the relative efficiency of the complete constraint Gibbs sampling algorithm when
compared to the algorithm with partial (main effects) constraints.

Moreover, the average autocorrelation of the complete monotonicity-constrained algorithm
dropped to less than 0.1 by 15 lags. On the other hand, the average autocorrelation of the partial
(main effects) constraints was larger than 0.3 until lag 50. This value indicated the MCMC
samples of the complete monotonicity-constrained algorithm were not as strongly correlated,
yielding a more efficient sample from posterior distribution parameter space than the partial
(main effects) constraint algorithm. The posterior predictive p-values of the complete monoto-
nicity and partial (main effects) constraints were 0.412 and 0.346, respectively with the
complete monotonicity constraints algorithm result being closer to the ideal value of 0.5.

Tables 9 and 10 show parameter estimates of @ and 7t for the complete monotonicity-constrained
Gibbs sampling algorithm. The estimates satisfied monotonicity constraints (e.g., ittm R216Q06).
For attribute patterns where all Q-matrix indicated attributes were mastered, many correct item
response probabilities were greater than 0.7 (e.g., item R040Q02 or R0O40Q03A). However, some
items, such as R236Q02, had correct item response probabilities less than 0.5. This means that some
items might be difficult even for examinees mastering all attributes measured by the item which can
indicate a lack of model fit or other Q-matrix misspecification. For attribute patterns where no Q-
matrix indicated attributes were mastered, the correct item response probabilities were generally less
than 0.4. The correct item response probabilities of R110Q01, R110Q04, and R110Q06 were greater
than 0.45. Therefore, these items were easily answered without mastering any attributes.

The mixing parameters indicated that the attribute patterns where all attributes were mastered and
where all attributes were not mastered had the most examinees, with more than 40% of examinees
belonging to one of the two attribute mastery patterns. About 6% of examinees mastered the fourth
attribute and 5.1% of examinees were estimated to have mastered the first, fourth, fifth, and sixth
attributes. Many attribute mastery pattern probabilities were less than 0.01.

7 Conclusion and Discussion

In this study, we showed our Gibbs sampling algorithm with monotonicity constraints for
general DCMs with saturated item parameters could recover true parameter values. Simulation
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studies one and two showed the proposed complete monotonicity-constrained Gibbs sampling
algorithm could recover true parameters in fewer iterations and faster estimation times than
previously developed no-constraint or partial (main effects) constraints algorithms. The em-
pirical data example indicated reasonable estimates and it showed the efficiency of our
proposed algorithm when compared to the other two constraints algorithms. Our algorithm
is unique in that it (1) uses an effective Gibbs sampler, (2) is built for general DCMs with
saturated item structural model parameters, and (3) satisfies the monotonicity constraints for all
item parameters across all MCMC iterations. The use of Bayesian methods allows for the
estimation of such DCMs in a direct manner. In comparison, general marginal maximum
likelihood algorithms sometimes lead to inappropriate estimates because the parameter esti-
mates are gained from solutions of complex constraint optimization problem. Therefore,
Bayesian algorithms may be more reliable to use, when compared with marginal maximum
likelihood methods.

The monotonicity constraints in DCMs are important but have been difficult to
employ in general MCMC sampling languages such as JAGS or Stan. In addition, a
DCM MCMC method uses Metropolis Hastings-type MCMC algorithms with rejection
sampling to satisfy parameter constraints. This study proposed a Gibbs sampling
algorithm and simulation study showed the algorithm could recover true parameter
values, and the parameter autocorrelations of the complete monotonicity-constrained
algorithm decreased within a few iterations. Moreover, the complete monotonicity-
constrained algorithm converged well with a reasonable number of iterations, likely
because it prevented label switching in MCMC iterations.

One drawback of our algorithm is that the parameters, after MCMC sampling,
would have to be converted to LCDM or G-DINA parameters. In addition, to get
MCMC samples of sub-models of the general DCMs, Eq. (3) would need to be
changed for each type of model. Finally, our R code was fully written in R language.
This means that the computational speed is not as fast as other computer languages
such as C++.

In addition, when the number of attributes measured by an item is increased and the number
of parameters is increased, the MCMC sampler may have difficulty moving across the
posterior distributions of the parameters. We note that this weakness is not limited to our
algorithm but also is true in some general MCMC procedures.

Another limitation of our framework is that the current model formulation is not directly
applicable for additive-DCMs or the R-RUM because the parameters in such main effects type
DCMs are not represented in equivalent constraint in our frameworks. Expanded applicability
of'this framework is a consideration for future studies. However, the model parameterization in
this study can represent various sub-models of DCMs such as the DINA, DINO, or many other
equality constrained DCMs.

However, the proposed algorithm is flexible to apply to another sub-models of the
saturated DCM and extended DCMs such as longitudinal type DCMs (e.g., Madison
& Bradshaw, 2018) or DCMs with covariates (e.g., Park & Lee, 2014). The Gibbs
sampling algorithm with monotonicity constraints will extend to more complex
models. The longitudinal type DCMs are special cases of hidden Markov models
and they are singular models (e.g., Watanabe, 2018). This means that the maximum
likelihood estimates are sometimes unstable and usual regular asymptotic theory does
not hold. In such situations, the Bayesian methods are more appropriate than the
maximum likelihood methods.
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