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Abstract

Deep neural networks (DNNs) have became one of
the most high performing tools in a broad range of
machine learning areas. However, the multi-layer
non-linearity of the network architectures prevent
us from gaining a better understanding of the mod-
els’ predictions. Gradient based attribution meth-
ods (e.g., Integrated Gradient (IG)) that decipher
input features’ contribution to the prediction task
have been shown to be highly effective yet requir-
ing a reference input as the anchor for explaining
model’s output. The performance of DNN model
interpretation can be quite inconsistent with regard
to the choice of references. Here we propose an
Adversarial Gradient Integration (AGI) method that
integrates the gradients from adversarial examples
to the target example along the curve of steepest
ascent to calculate the resulting contributions from
all input features. Our method doesn’t rely on the
choice of references, hence can avoid the ambigu-
ity and inconsistency sourced from the reference
selection. We demonstrate the performance of our
AGI method and compare with competing methods
in explaining image classification results. Code is
available from https://github.com/pd90506/AGI.

1 Introduction

Recently, deep neural networks (DNNs) has attracted much
attention in machine learning community due to its state-of-
the-art performance on various tasks such as image classi-
fication [Li et al., 2020], sentiment analysis [Qiang et al.,
2020] and item recommendation [Pan et al., 2020]. Despite
the successes, interpreting a complex DNN still remains an
open problem, hindering its wide deployment in safety and
security-critical domains. A trustworthy DNN model should
not only demonstrates a high performance in its detection and
prediction, but also needs to explainable [Adadi and Berrada,
2018]. DNNs are complex nonlinear functions parameterized
by model weights; understanding how the information flows
from input to output remains a major challenge in Explain-
able Artificial Intelligence (XAI) research.
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In general there are two directions towards interpreting
DNNs, i.e., gradient based methods, and local approxima-
tion methods. Some gradient based methods calculate in-
put feature importance by exploiting its gradient with re-
spect to the model inputs. For example, Saliency Map
(SM) [Simonyan et al., 2013] uses gradient directly, Guided
Backpropagation [Springenberg et al., 2014] only propagates
non-negative gradients, and Integraded Gradients (IG) [Sun-
dararajan et al., 2017] integrates gradients from a reference
to input. Class Activation Mapping (CAM) based meth-
ods [Zhou et al., 2016; Selvaraju et al., 2017; Chattopad-
hay et al., 2018] capture the gradient with respect to inter-
mediate layers of convolutional feature maps. As for the
local approximation methods, extensive research have been
done to explain the local neighborhood behaviors of a com-
plex model by approximating it with a simple yet inter-
pretable model [Ribeiro et al., 2016; Shrikumar et al., 2017;
Lundberg and Lee, 2017], such as linear model and deci-
sion tree. Other methods such as [Fong and Vedaldi, 2017;
Datta et al., 2016; Li et al., 2016] attempt to perturb the in-
puts to identify the part of inputs that are most responsible for
a prediction in the neighborhood.

Within gradient models, although CAM based methods
give promising results in various applications, a major lim-
itation is that it applies only to Convolutional Neural Net-
work (CNN) architectures. SM works on non-CNN models,
however, it only captures the local gradient information at the
inputs, which can be misleading due to the high non-linearity
of DNNs. To overcome these limitations, methods such as IG
[Sundararajan et al., 2017] are proposed to not only consider
the gradients at the input, but also the cumulative gradients
along the path from a reference to the input example.

One key issue of IG (as well as other methods such as
DeepLIFT [Shrikumar et al., 2017]) is that it explicitly re-
quires a reference (or baseline) to make interpretation. This
could result in inconsistent interpretations with regard to dif-
ferent references. Although finding a reasonable reference is
not infeasible for easier tasks (e.g. MNIST classification),
it could become problematic when the underlying tasks are
complicated. As described by the authors of IG paper : “a
reference should convey a complete absence of signal”. If
both white noise image and black image convey no signal,
why prefer the latter to the former in simpler tasks? Does it
hold true for more complex tasks? In the DeepLIFT paper, a



Figure 1: Gradients alone may cause misleading interpretation.

blurred version of the original input is used as the reference
as opposed to a black image for CIFAR-10 data. As such,
the choice of reference can be ad hoc and lack of rigorous
justification.

To tackle this major issue, we attempt to eliminate the re-
quirement of reference by utilizing the false class gradients
to find adversarial examples for the DNN classifier. A sim-
ple intuition is that adversarial examples are well-defined and
easy to find given the input and the DNN model. In contrast,
the choice of a reference can be more subjective and ad hoc.
We derive our formulation based on the observation that sum
of gradients from all classes equal to 0, as such, the false class
gradients are equivalent to the gradient of the true class.

We summarize our main contributions as follows: 1)
we propose a novel Adversarial Gradient Integration (AGI)
method for a more consistent DNN model interpretation elim-
inating the need for a reference; 2) we establish the connec-
tion between the true class’ and the false classes’ gradients;
and 3) we explain a DNN model’s prediction via discrimi-
nating against the false classes, instead of focusing only on
correct classification of the true class.

2 Preliminaries

To describe our approach, we first review gradient-based SM
[Simonyan et al., 2013] and IG [Sundararajan et al., 2017]

methods, and show their limitations such as gradient vanish-
ing issue (Figure 1) and ad hoc choice of reference issue. In
section 3 and 4, we derive our AGI method and show that it
has various attractive properties that can overcome the limi-
tation of the previous methods.

2.1 Saliency Map

Saliency Map [Simonyan et al., 2013] is a pioneering visual-
ization method for model interpretation, which simply calcu-
lates the gradient of classification output with respect to the
input images. Formally, MSaliency = ∇xf

t(x), where t rep-
resents the true label, and f t(x) represents the output value
corresponding to the true class label. This method captures
the local gradient information at the input, however, it can
result in misleading interpretations since local gradient infor-
mation may not faithfully represent the global attribution. For
example, in Figure 1, the gradient at x = 2 is 0, however, we
could not say that the contribution from x is none. Moreover,
when x = 1, the gradient may be inconsistent, i.e., 1 or 0, de-
pending on how we define the gradient. These critical issues
need to be addressed.

2.2 Integrated Gradients

Different remedial methods have been developed to address
the inconsistency among the local gradients shown in Fig-
ure 1. For example, DeepLIFT [Shrikumar et al., 2017] cal-
culates the difference between x = 0 and x = 2 rather than
using the gradient at one point. Another method to mitigate
the drawbacks of SM is to integrate the gradient from x = 0
to x = 2 to average the effects. This strategy not only avoids
the gradient vanishing issue, but also prevents the obstruction
of some singular points (i.e., where gradient is not continu-
ous), as long as the model is integrable within the range. In
fact, this is similar to the idea of IG proposed by [Sundarara-
jan et al., 2017]. The formulation of IG is

IGj(x) ::=
(

xj − x′
j

)

×

∫ 1

α=0

∂f (x′ + α× (x− x′))

∂xj

dα,

(1)

where j denotes the index of jth input feature, x′
j represents

a reference. Although IG successfully addresses the issues
of SM method, we point out the following two limitations:
1) a predefined path is needed to integrate from a reference
to the original input. IG takes a straight line specified by
γ(α) = x′ + α × (x− x′) in the input space as the inte-
grating path; and 2) a manually selected reference is required
because integration must have a starting point.

3 Problem Formulation

Looking into IG’s first limitation: the predefined integrating
path, one motivation of picking the straight line from a refer-
ence to the input is because it is the shortest path in the input
space. Intuitively, to effectively discriminate the input from a
reference point, an integration method should indeed pick the
shortest path (if there are any detour, it may then contain in-
formation that discriminates from other examples). However,
the problem is what we are interested is the learned feature
space from the penultimate layer of DNNs, instead of the in-
put space. Hence the shortest path needs to be the one in
the learned feature space. As the mapping from input space
to feature space is highly non-linear and complex, the corre-
sponding curve, i.e., shortest curve, in the input space is most
likely not a straight line.

The problem to solve becomes how can we find such a
curve in the input space that may correspond to the shortest
path in the feature space? Since operations from the penul-
timate layer to the output layer is usually linear, the shortest
curve from the input point to a reference should correspond to
a straight line in the feature space (Figure 2). Thanks to back-
propagation method, as long as we find the gradient along the
direction of the straight line in feature space, we are guar-
anteed to obtain the corresponding path in the input space.
Assuming the last layer has parameter set W and the penul-
timate layer’s output is φ(x), the output of the last layer is
then y = Wφ(x). Taking the derivative with respect to φ(x),
we have y′ = W , which corresponds to a constant gradient
field. The steepest descent algorithm is guaranteed to find
a straight line in a constant gradient field. Using chain rule
in backpropagation, we obtain the gradient field in the input
space, and hence the corresponding curve.



Figure 2: The input space and feature space correspond to the input
layer and penultimate layer, respectively. Black solid arrows rep-
resent the gradient directions in the corresponding spaces. The red
dashed curve represents the steepest ascent/descent path. A straight
line in feature space corresponds to a curve in the input space.

With respect to the second limitation: the choice of refer-
ence, from the above discussion, we actually have already ob-
served the redundancy of the reference: although there should
be a destination at the end of the straight line, we don’t have
to pre-define it. In such a case, the steepest descent algorithm
can not only lead us to a candidate reference point, but also
help us finding the shortest path. Hence both reference and
integration path can be obtained with the model and inputs
provided, and is input specific. Figure 2 illustrates the short-
est paths in the feature space (right upper panel) and the input
space (right lower panel). Note that the assumption of lin-
earity from penultimate layer to output layer is not required
since we can use steepest descent algorithm regardless.

The property of steepest descent appears to be flawless,
however, the caveat arises from the inconsistency. i.e., ide-
ally, just like the choice of the reference, the descent should
lead us to a point where all class outputs being equal. Un-
fortunately, this usually isn’t possible. The reason is that al-
though we can control the descent of the true class, we have
no control of which false class will ascend along the path.
In fact, descending from the true class could very likely re-
sult in ascending to one of the false class instead of evenly
distributed to all false class [Goodfellow et al., 2014].

4 Adversarial Gradient Integration

Here we formally describe the proposed AGI method to over-
come the aforementioned limitations, i.e., the inconsistency
in automatically finding the reference.

4.1 Perspective: Discrimination v.s. Classification

The discussion we have thus far motivates us to define a more
consistent and systematic concept than the reference for IG
based model explanation. Here we propose using adversarial

example in lieu of reference. Unlike the latter whose defini-
tion can be vague thus ad hoc, a targeted adversarial example
is clearly defined as the closest perturbed example to the orig-
inal input such that it changes prediction of the true class to
the targeted class(es).

To understand the rationale behind our choice, let’s imag-
ine in a classification task, instead of considering a predic-
tion as classifying the input as the true class, why not view
it as discriminating the input to all the false classes? There-
fore, rather than interpreting what makes the model to classify
the true class, we may equivalently interpret what makes the
model to discriminate the true class from the false classes.

With the perspective of discrimination in mind, how could
we leverage adversarial examples to reinforce the role that
a reference plays? Recall in the discussion of gradient SM
method, we have the property that all class probabilities are
summed to 1, and we have the overall zero gradient, leading
us to establish the connection between true class gradient and
adversarial gradients as below:

∇x

∑

i

f i(x) = 0⇐⇒ ∇xf
t(x) = −

∑

i 6=t

∇xf
i(x). (2)

It means that the gradient of the true class t w.r.t the input is
equivalent to the summation of negative gradient of the false
classes w.r.t the input. This inspires us that in the neighbor-
hood of the input, the gradient contribution to the true class
label and the adversarial class labels are equivalent.

Lets focus on one adversarial false class i, whose gradient
we call as an adversarial gradient toward class i. If we follow
the direction of the adversarial gradient, and perturb the input
via ascending the gradient direction (i.e., x← x+ǫ ·∇f i(x),
the steepest ascent), over multiple steps, we may eventually
approach a point where the perturbed input becomes an ad-
versarial example x′

(i), which gives false prediction of class i

instead of t.
In this case, lets assume that there is a path denoted by

γ(α), what we are interested is how the true class prediction
f t(x) changes along the path. And what is its role in making
model interpretation? To understand these, let’s first define
the path gradient integration (PGI):

Definition 1. Assume f denotes the prediction model, f t is
the true class output of the model. Let x be the original input,
and x′ is another point in the input space. If there is a path
γ(α) from x′ to x, with x′ = γ(0) and x = γ(1), the path
gradient integration for the jth input feature is defined by

PGIj =

∫ 1

α=0

∇γj
f t(γ(α)) ·

∂γj(α)

∂α
dα. (3)

Definition 1 essentially defines a path integration from a
starting point to the input point, following the path γ(α). If
we define the starting point to be the choice of reference x′,
and take a straight line path from reference x′ to the input
x, i.e. γ(α) = x′ + α × (x− x′), Definition 1 becomes an
alternative formulation of IG [Sundararajan et al., 2017]:

IGj =

∫ 1

α=0

∇γj
f t(γ(α)) ·

∂γj(α)

∂α
dα,

where γ(α) = x′ + α× (x− x′) .

(4)



But what if we use an adversarial example x′
i as the starting

point rather than a reference point? Following the interpre-
tation of IG, which states that the result of IG represents the
attribution of the input features to the prediction, similarly,
we can interpret the integration from the adversarial example
as the attribution of the input feature to discriminate the true
class t from a false class i.

4.2 Adversarial Gradient Integration (AGI)

Integrating along a straight line from adversarial example x′
i

to x is not ideal. The shortest path in the input space doesn’t
account for the shortest path in learned feature space (as we
discussed in Section 3). Hence here the steepest ascent path
is chosen as the integration path.

Definition 2. Given all assumptions from Definition 1. Let f i

be a false class output, γ(α) be the path obtained by steepest
ascending f i, and x′

i be the corresponding adversarial exam-
ple at the end of the path, the adversarial gradient integration
of the jth input feature is defined by

AGIj =

∫ 1

α=0

∇γj
f t(γ(α)) ·

∂γj(α)

∂α
dα,

γ(α): a path obtained by the steepest ascent,

x′ = γ(0) and x = γ(1).

(5)

Recall that in [Sundararajan et al., 2017], the authors pro-
pose that an attribution method needs to satisfy three ax-
ioms, i.e., sensitivity, implementation invariance, and com-
pleteness. We argue AGI satisfies all of them due to the na-
ture of path integration. From Definition 2, we can easily find
that IG and AGI differ only in two aspects: 1) AGI integrates
over the curve of steepest ascent whereas IG integrates over a
straight line from the input space; and 2) AGI starts from an
adversarial example, while IG starts from a manually selected
reference point. The differences essentially are summarize to
two benefits of AGI: 1) it gives more intuitive shortest path in
the learned feature space, and 2) no need to manually select
the reference point, preventing the derived inconsistency.

4.3 From IG to AGI

Follow the interpretation by IG: the IG result shows the con-
tribution of individual input features to the true class t. We
interpret AGI similarly as: the AGI result shows the attribu-
tion of individual input feature to discriminate t from a false
class i. Now, what if we sum AGIs from all false classes?
Inspired by Eq. 2, we assume

∑

i

AGIi ∼ −IG, (6)

which essentially says that the attribution to all discrimina-
tions should be equivalent to attribution to classification. The
rationale is that although we usually say that a model clas-
sifies the input as something, another perspective can be, in
contrast, that a model discriminates something from other
things. For example, LeNet discriminates one digit class from
other digit classes in MNIST dataset. Hence we can interpret
a classification by summing over all interpretations of AGIs,
which essentially interprets the discrimination between all ad-
versarial classes and the true class.

Algorithm 1: IndividualAGI(f,x, i, ǫ,m)

Input : Classifier f , input x, adversarial class i
step size ǫ, max number of steps m;

Output: Individual AGI for class i: AGIi;
AGIi ← 0;
j ← 0 ;

while argmaxℓ f
ℓ(x) 6= i and j < m do

d← ǫ · sign(
∇xj

fi(x)

|∇xfi(x)| ) ; // Adv. direction

AGIi ← AGIi −∇xj
f t(x) · d;

x← x+ d ; // ascending

j++;

end

4.4 Finding the Steepest Ascending Path

In order to obtain AGI for one false class i, two gradients need
to be calculated: ∇xf

i(x) and ∇xf
t(x). Note that because

the path is defined by steepest ascent, then in Eq. 5, we have

∂γ(α)

∂α
dα = −

∇xf
i(x)

|∇xf i(x)|
dα, (7)

the minus sign here is because the direction is opposite (we
ascend from x to x′

i, while integration is done from x′
i to x).

The formulation then becomes

AGIj =

∫

til adv

−∇xj
f t(x) ·

∇xj
f i(x)

|∇xf i(x)|
dα, (8)

which integrates along the path until argmaxℓ f
ℓ(x) = i

Here we may face the issue that gradient ascending may en-
counter local maxima that prevents it from ascending further.
We adopt the approach proposed by [Madry et al., 2017] that
uses the signed gradient instead of the original gradient to
make sure it is easier to surpass the decision boundary. In ad-
dition, we set a maximum step size m to prevent the path from
infinite looping when trapped in local maxima. The algorithm
for computing individual AGI is given by Algorithm 1 (the
subscript j is omitted for conciseness).

4.5 Individual AGI Aggregation

As for aggregating all individual AGIs, when the number of
classes are small, we can simply sum up all AGIs. How-
ever, when there are a large amount of classes, such as 1000
classes in ImageNet dataset, calculating all AGIs for 999 false
classes become computational prohibitive. In order to allevi-
ate the excessive computational burden, we randomly select a
reasonable amount of false classes by sampling from all can-
didate classes. Although this sampling procedure may lose
information from the unselected classes, the resulting AGI
can still capture the essential information because the dis-
criminating tasks actually share a fair amount of semantic in-
formation. For example, the information for discriminating
Labrador from Cat may be similar to discriminating Shep-
herd from Cat. Hence we argue that sampling a subset of
classes is adequate to obtain a satisfying model interpretation
and we also provide experimental justifications in Section 5.3
and Section 5.4. The algorithm for calculating AGI is given
by Algorithm 2.



Figure 3: Examples of heatmap interpretations of predictions on Inception V3 using AGI (ours), IG, and Gradient SM. Each method presents
both the output heatmap as well as heatmap×Input. Unlike IG and SM whose output heatmaps are usually sparse, AGI’s heatmaps are more
focused on the target area. This property enables more confident interpretations compared to other methods.

Algorithm 2: AGI(f,x, ǫ, k,m)

Input : Classifier f , input x, step size ǫ, subsampling
size k, max number of steps m;

Output: AGI;
AGI ← 0;
S ← Sampling k false classes ;
for i in S do

AGI ← AGI + IndividualAGI(f, x, i, ǫ,m)
end

5 Experiments

In this section, we perform experiments attempting to an-
swer the following questions: 1) does AGI output meaningful
interpretations for classifying the true class? 2) does class
subsampling compromise the performance? 3) does individ-
ual AGI give reasonable interpretation for discriminating the
true class against a false class? and 4) does AGI pass sanity
checks?

5.1 Experimental Setup

The model to be interpreted includes InceptionV3 [Szegedy
et al., 2015], ResNet152 [He et al., 2015] and VGG19 [Si-
monyan and Zisserman, 2014]. All experiments are con-
ducted using ImageNet dataset.

In terms of baseline DNN interpretation methods, we use
SM [Simonyan et al., 2013] and IG[Sundararajan et al., 2017]

as baselines for qualitative and quantitative comparisons of
interpretation quality. Additionally, Guided-Backpropagation
[Springenberg et al., 2014] is selected for comparison with
AGI in the sanity check experiments. Regarding parameter

Figure 4: Comparison of heatmap sparsity. Here AGI w/ straight
path represents that we replace the integration path of AGI by a
straight line in the input space. The results show that inappropri-
ate integration path may result in sparsity.

settings, we set the step size ǫ = 0.05, and the class subsam-
pling size for ImageNet to 20. As for the reference for IG
method, we use the default choice in the original paper (i.e.,
black image).

Additional data processing to optimize the heatmap visu-
alization have also been used. We reassign all heatmap attri-
butions less than q = Percentile(80%) to be q (lower bound),
and all values larger than u = Percentile(99%) to be u (upper
bound), then normalize them within [0, 1]. The lower bound
is set because that we only want to focus on the area with rel-
atively high attributions, a low attribution is likely caused by



Figure 5: An example of insertion game and deletion game. The
insertion (deletion) score is obtained by calculating the area under
the curve of the insertion (deletion) game.

Figure 6: By increasing the number of classes in subsampling, the
quality of explanation improves markedly up to n = 10 then stabi-
lizes afterwards.

background. The upper bound is set to avoid extremely high
values that can potentially undermine the visualization (This
procedure is applied to all methods).

Our implementation for generating the steepest ascent
curve is inspired from the PGD attack algorithm [Madry et
al., 2017]. For InceptionV3, setting the max ascending step
= 20, and sample size = 20, it will cost ≈ 15 seconds to in-
terpret a single 224 × 224 color image on a computer with
Nvidia GTX 1080 GPU. However, the path-finding procedure
for sampled negative classes can be paralleled to speed up the
running time, making the overall process less than 1 second.

5.2 Qualitative Evaluation

Figure 3 shows examples of different interpretation methods
explaining predictions made by InceptionV3 (Additional ex-
amples and experiments on Resnet152 and VGG19 can be
found in the supplementary materials). A key observation
from the experiments is that IG’s output heatmap is far more
sparse than AGI’s (by sparse, we mean high attribution val-
ues are sparsely distributed in the map instead of concentrat-
ing on the target objects). We argue that this phenomenon is
sourced from two aspects: First, IG uses a black image as the

Figure 7: An example on choice of discriminating class on interpre-
tation. Only Koala itself is highlighted when discriminating against
Toilet Tissue whereas part of the tree trunk is also highlighted to-
gether with Koala when discriminating against Polecat.

Figure 8: An example on sanity checks. The upper panel shows
the original heatmap, heatmap with randomized model, and heatmap
with randomized data label of the AGI, respectively. The lower panel
shows the counterparts obtained by guided backpropagation method.

default reference whereas AGI doesn’t. Black reference im-
age may be good for those cases where objects are light col-
ored, but can fail when the target object is dark. For example,
the heatmap of Indian Elephant generated by IG (Figure 3)
doesn’t highlight the body of the elephant which is in fact
under the shadow whereas that generated by our AGI has no
such issue. Second, IG uses shortest integration path (straight
line) in input space whereas AGI uses shortest path in the
learned feature space. To demonstrate the relationship be-
tween the straightline integration and sparsity, we replace our
AGI’s integration path with the straight line, i.e., instead of in-
tegrating over the curve of steepest ascent, we integrate from
adversarial examples to the input example over a straight line
like IG. The results in Figure 4 show that an inappropriate
integration path may cause heatmap sparsity.

5.3 Quantitative Evaluation

In addition to the qualitative examples presented above, we
also conduct quantitative experiments to validate our method
using insertion scores and deletion scores [Petsiuk et al.,
2018]. Starting from a blank image, the insertion game
successively inserts pixels from highest to lowest attribution
scores and makes predictions. We draw a curve that repre-
sents the prediction values, the area under the curve (AUC)
is then defined as the insertion score. The higher the in-
sertion score, the better the quality of interpretation. Simi-
larly, starting from the original image, the deletion score is
obtained by successively deleting the pixels from the high-



Metrics Deletion Score Insertion Score

Methods IG SM AGI-1 AGI-5 AGI-10 AGI-20 IG SM AGI-1 AGI-5 AGI-10 AGI-20

InceptionV3 0.032 0.036 0.043 0.043 0.046 0.048 0.294 0.537 0.408 0.503 0.532 0.561

ResNet152 0.030 0.056 0.044 0.052 0.056 0.060 0.262 0.407 0.405 0.475 0.489 0.503

Table 1: Deletion score: the lower the better; Insertion score: the higher the better. Here AGI-n represents the corresponding AGI method
with n subsampled false classes. The benefit of increasing the size of class subsampling becomes diminishing.

est to lowest attribution scores. The lower the deletion score,
the better the quality of interpretation. An example of such
process is shown in Figure 5. Table 1 shows the average
scores over 1000 test examples in ImageNet by InceptionV3
and ResNet152.

While IG, SM and AGI all have sufficiently small deletion
scores (Note that deletion score become less indicative when
getting extremely small due to the existence of adversarial ef-
fects in DNNs [Petsiuk et al., 2018]). AGI has much larger
insertion scores than the competitors (Table 1). Since the lat-
ter is an indicator of the ability to detect the target object, we
conclude that AGI outperforms IG and SM in terms of detect-
ing the meaningful objects. Observing the trend from AGI-1
to AGI-20, the insertion score converges when the subset of
selected false classes become sufficiently large. In the case of
InceptionV3, from AGI-1 to AGI-10, the insertion score gain
per additional class is∼ 0.014 whereas the score gain per ad-
ditional class become ∼ 0.003 from AGI-10 to AGI-20. This
demonstrates that a relatively small subset of false classes is
sufficient to obtain a good interpretation.

5.4 Class Subsampling

A major computational burden of our AGI method is to calcu-
late individual AGI for all false classes. As we argued before,
random subsampling doesn’t affect the results as long as the
sample size is sufficiently large. Although individual AGIs
may be different for different false classes, the aggregated
AGI converges when sample size increases. As such, the in-
formation from the sampled AGIs is sufficient to generalize to
all other classes. Figure 6 substantiates our claim: the results
indeed become more clear when sample size increases from 1
to 10 but doesn’t change too much afterwards. This observa-
tion indicates that different discriminating tasks may share a
fair amount of input attributions, hence a small subset can be
sufficiently representative for the overall interpretation. Note
that it is possible to utilize the semantic information to help
selecting the subset of classes, which could render better re-
sults. We didn’t utilize it for subsampling in this paper mainly
because that the random selection method can already output
promising results. However, we do point out that utilizing se-
mantic information for subsampling process may potentially
reduce the sampling size.

5.5 Discrimination from Other Classes

One of our main contributions is that we decompose the inter-
pretation of classifying the true label into the sum of interpre-
tation of discriminating against false labels. To demonstrate
our claim, we conduct experiments to interpret model dis-
crimination using individual AGIs (Algorithm 1). The indi-
vidual AGI should represent the attributions that discriminate
true class from the specific false class.

Figure 7 shows an example from ImageNet dataset. To
discriminate Koala from Toilet Tissue, we can observe that
only the body of Koala from the image is highlighted in the
heatmap. However, when attempting to discriminate it from
a Polecat, the attribution from the trunk become more promi-
nent, which means the latter is used to reinforce explanation.
The underlying reason behind it could be that Polecats don’t
live on trees, while Koala do.

5.6 Sanity Checks for Image Interpretation

As pointed out by [Adebayo et al., 2018], visual interpre-
tation could be misleading, as some previous interpretation
methods are just edge detection instead of genuine interpreta-
tion. In case when an interpretation method is independent of
either the prediction model or of the data generating process,
a sanity check is required for validating its correctness.

Here we perform two tests for the sanity check, 1) a
model parameter randomization test: the interpretation of
model with learned parameters should be substantially differ-
ent from the model with random parameters; and 2) a data
randomization test: the same input with different labeling
should result in different interpretations. Figure 8 shows that
our AGI method passes both tests (first row) since after both
model randomization and data randomization, the outputs are
significantly different from the original ones. While Guided-
Backpropagate [Springenberg et al., 2014] (second row), on
the other hand, doesn’t pass the data randomization test, as
randomizing data label should has significant heatmap differ-
ences from the correct label (the heatmap corresponding to
‘original’ and ‘random’ labels).

6 Conclusion

In this paper, motivated by the limitations of two well-
established DNN interpretation methods, SM and IG, we pro-
pose a novel attribution method, i.e., AGI, which doesn’t re-
quire a manually selected reference, nor a predefined inte-
gration path. As such it can be applied to automatically and
consistently explain DNNs’ predictions. Through extensive
experiments, our AGI method significantly outperforms the
competing methods in both qualitative and quantitative exper-
iments. Our AGI method can be broadly applied to explain a
wide range of DNN models’ predictions.

Acknowledgements

This work is supported by the National Science Foundation
under grants CNS-2043611 and IIS-1724227.

Ethical Impact

DNN models have been increasingly deployed in many se-
curity and safety-critic real world settings. Despite the im-



pressive performance, they are mostly black-box models that
usually fail to give insight on why and how they make pre-
dictions. As trustworthiness and transparency become more
salient issues, interpretable DNN methods are highly desir-
able and their wide adoption is expected to accelerate our
current pace of leveraging AI for social good.
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