
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

IISE Transactions

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

Optimal burn-in policies for multiple dependent
degradation processes

Yue Shi, Yisha Xiang, Ying Liao, Zhicheng Zhu & Yili Hong

To cite this article: Yue Shi, Yisha Xiang, Ying Liao, Zhicheng Zhu & Yili Hong (2020):
Optimal burn-in policies for multiple dependent degradation processes, IISE Transactions, DOI:
10.1080/24725854.2020.1841344

To link to this article:  https://doi.org/10.1080/24725854.2020.1841344

Published online: 09 Dec 2020.

Submit your article to this journal 

Article views: 116

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2020.1841344
https://doi.org/10.1080/24725854.2020.1841344
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2020.1841344
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2020.1841344
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2020.1841344&domain=pdf&date_stamp=2020-12-09
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2020.1841344&domain=pdf&date_stamp=2020-12-09


Optimal burn-in policies for multiple dependent degradation processes

Yue Shia, Yisha Xianga, Ying Liaoa, Zhicheng Zhua, and Yili Hongb

aTexas Tech University, Lubbock, TX, USA; bVirginia Tech, Blacksburg, VA, USA

ABSTRACT
Many complex engineering devices experience multiple dependent degradation processes. For
each degradation process, there may exist substantial unit-to-unit heterogeneity. In this article, we
describe the dependence structure among multiple dependent degradation processes using copu-
las and model unit-level heterogeneity as random effects. A two-stage estimation method is devel-
oped for statistical inference of multiple dependent degradation processes with random effects.
To reduce the heterogeneity, we propose two degradation-based burn-in models, one with a sin-
gle screening point and the other with multiple screening points. At each screening point, a unit
is scrapped if one or more degradation levels pass their respective burn-in thresholds. Efficient
algorithms are devised to find optimal burn-in decisions. We illustrate the proposed models using
experimental data from light-emitting diode lamps. Impacts of parameter uncertainties on optimal
burn-in decisions are investigated. Our results show that ignoring multiple dependent degradation
processes can cause inferior system performance, such as increased total costs. Moreover, a higher
level of dependence among multiple degradation processes often leads to longer burn-in time
and higher burn-in thresholds for the two burn-in models. For the multiple-screening-point model,
a higher level of dependence can also result in fewer screening points. Our results also show that
burn-in with multiple screening points can lead to potential cost savings.
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1. Introduction

The failure of many engineering devices is often the result of
gradual and irreversible degradation (Elwany et al., 2011).
Complex devices often experience multiple degradation proc-
esses, which are naturally dependent due to their structures and
shared operational environments, e.g., multiple crack growth on
a metal surface of a critical device. Multiple degradation proc-
esses are typically competing risks for failure (Wang and Pham,
2012). A device subject to multiple dependent degradation proc-
esses is considered to have failed when any degradation level
first passes its respective failure threshold. In addition, many
complex devices with cutting-edge technologies such as elec-
tronic devices have substantial unit-to-unit heterogeneity (Ye
et al., 2012). Degradation-based burn-in is an effective approach
to reducing the unit-level heterogeneity. However, existing deg-
radation-based burn-in models mainly consider a single degrad-
ation process (Tseng and Tang, 2001; Tseng and Peng, 2004;
Tsai et al., 2011; Zhang et al., 2015). Burn-in models for mul-
tiple dependent degradation processes are rather limited.

In this article, we develop two degradation-based burn-in
models for multiple dependent degradation processes with
unit-level heterogeneity. We describe the dependence structure
among multiple degradation processes using a copula function
and model the unit-level heterogeneity as random effects. A
two-stage estimation method is developed for statistical infer-
ence of multiple dependent degradation processes with random
effects. The first burn-in model considers a single screening

point and the other considers multiple equi-spaced screening
points. Instead of pooling all failure processes together and
modeling the overall failure rate, we use different burn-in
thresholds for different degradation processes. At each screen-
ing point, a device is scrapped if any degradation level exceeds
its respective burn-in threshold. A device that survives the
burn-in test is released for field use with a warranty period.
The objective is to minimize the total expected cost per unit
including the expected burn-in cost and the expected oper-
ational cost in field use. Note that we use device and unit
interchangeably throughout this article. The two main contri-
butions of this article can be summarized as follows:

1. We describe the dependence structure among multiple
degradation processes using copulas and model unit-level
heterogeneity as random effects. A two-stage estimation
method is developed for statistical inference of multiple
dependent degradation processes with random effects.

2. We develop two degradation-based burn-in models for
multiple dependent degradation processes with unit-
level heterogeneity and design efficient algorithms to
find optimal burn-in decisions. Our numerical results
show that ignoring multiple dependent degradation
processes renders the burn-in planning inefficient. In
addition, a higher level of dependence among multiple
degradation processes often results in a longer burn-in
time and higher burn-in thresholds for the two burn-in
models. For the multiple-screening-point model, a
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higher level of dependence can also lead to fewer
screening points. Our results also show that burn-in
with multiple screening points outperforms burn-in
with a single screening point in terms of the total
expected cost in all test cases considered.

The remainder of this article is organized as follows. Section
2 reviews the relevant literature on multiple dependent degrad-
ation processes and degradation-based burn-in models. In
Section 3, we model multiple dependent degradation processes
with unit-level heterogeneity using the copula method and
develop a two-stage estimation approach for statistical inference.
In Section 4, we develop two degradation-based burn-in opti-
mization models and design efficient algorithms to find optimal
burn-in decisions. A case study of a bivariate degradation model
based on experimental degradation data from Light-Emitting
Diode (LED) lamps is presented in Section 5. In Section 6, we
conduct a sensitivity analysis to examine the necessity of consid-
ering multiple dependent degradation processes in burn-in, the
impacts of different levels of dependence on optimal burn-in
decisions, and the potential cost savings of performing multiple
screening points during burn-in. Concluding remarks and future
extensions are outlined in Section 7.

2. Literature review

In this section, we review two relevant streams of literature
on multiple dependent degradation processes and degrad-
ation-based burn-in models.

2.1. Multiple dependent degradation processes

Literature on multiple dependent degradation models (Sari
et al., 2009; Zhou et al., 2010; Pan and Balakrishnan, 2011;
Wang and Pham, 2012; Pan et al., 2013; Pan and Sun, 2014;
Hao et al., 2015; Peng et al., 2016; Fang et al., 2018, 2020) is
extensive. Some researchers (Pan and Balakrishnan, 2011; Pan
and Sun, 2014) model the joint probability using traditional
multivariate distributions. For example, Pan and Balakrishnan
(2011) consider two dependent degradation processes, and
describe the marginal degradation process by a Gamma pro-
cess. They approximate the system reliability using a bivariate
Birnbaum–Saunders distribution. However, traditional multi-
variate distributions can only describe linear dependence and
require the same form of margins. The copula method has
emerged as a flexible and powerful technique to construct
complicated dependence structures and allow different forms
of margins. Sari et al. (2009) develop a bivariate degradation
model for LED lighting systems using the Frank copula, and
describe the marginal degradation process by a generalized lin-
ear model. Zhou et al. (2010) describe two degradation proc-
esses by using Gamma processes, and model their dependence
using the Frank copula. Other papers that examine bivariate
degradation models using copulas are Pan et al. (2013) and
Peng et al. (2016), which describe marginal degradation proc-
esses by using Wiener processes and inverse Gaussian proc-
esses, respectively.

Parameters to be estimated in multivariate degradation
models include both univariate degradation parameters and

dependence parameters, making statistical inference computa-
tionally challenging. Some studies (Zhou et al., 2010; Pan
et al., 2011; Pan et al., 2013; Hao et al., 2015) use a Bayesian
Markov Chain Monte Carlo (MCMC) method for parameter
estimation. Several other studies (Sari et al., 2009; Peng et al.,
2016; Fang et al., 2018, 2020) use a two-stage likelihood esti-
mation approach based on the Inference Function for Margins
(IFM) method. The IFM method estimates univariate parame-
ters from separate univariate likelihoods, and then estimates
dependence parameters from separate bivariate likelihoods or
from a multivariate likelihood (Joe and Xu, 1996). For
example, Fang et al. (2018) develop a two-stage method for the
inference of a copula-based multivariate distribution. They esti-
mate univariate parameters for each marginal degradation pro-
cess using the Maximum Likelihood Estimation (MLE)
approch in stage 1 and then infer the copula parameter using
the MLE in stage 2.

2.2. Degradation-based burn-in

Degradation-based burn-in has received considerable attention
recently. An early degradation-based burn-in model is pro-
posed by Tseng and Tang (2001) using the mixed Wiener pro-
cess. The model in Tseng and Tang (2001) assumes that a unit
is classified as a weak one if its degradation level is below a
prespecified burn-in threshold. The optimal burn-in threshold
given the burn-in time is determined by minimizing the total
misclassification cost including the costs of the type-I and
type-II errors of misclassification. Similar degradation-based
burn-in policies have also been considered for the mixed inte-
grated Wiener process (Tseng and Peng, 2004), the mixed
Gamma process (Tsai et al., 2011), and the mixed inverse
Gaussian process (Zhang et al., 2015).

Most degradation-based burn-in models consider a single
failure process. Burn-in for multiple failure processes is lim-
ited. Ye et al. (2012) develop a burn-in planning framework
for systems subject to two independent failure processes, a
stochastic degradation process and a catastrophic failure
process. The catastrophic failure considered in their paper is
assumed to cause instant system failure. Hence, only a single
degradation process is taken into account for the burn-in
planning in their proposed models.

There is a large body of literature on degradation-based
burn-in with a single screening point. Only a few studies
consider burn-in with multiple screening points. Tseng et al.
(2003) develop a sequentially inspected burn-in model using
a mixed Wiener process, which can eliminate units from a
weak subpopulation at early screening times. Cha and
Pulcini (2016) propose a new elimination criterion for burn-
in with multiple equi-spaced screening points. They consider
an elimination level to assess whether an unfailed unit at the
end of burn-in belongs to a strong subpopulation given its
observed degradation history during the burn-in test.

To the best of our knowledge, multiple dependent deg-
radation processes with unit-to-unit heterogeneity have not
been sufficiently considered in the literature, and conse-
quently there is a lack of effective methods for its statistical
inference. Degradation-based burn-in models for multiple
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dependent degradation processes to reduce the heterogeneity
also remain limited.

3. Multiple dependent degradation processes with
unit-level heterogeneity

Notation
m: number of multiple dependent degradation processes
x0: vector of all initial degradation levels, i.e., x0 ¼ ðx01, :::, x0mÞ
n: vector of all failure thresholds, i.e., n ¼ ðn1, :::, nmÞ
XðtÞ: vector of all degradation levels in time [0, t], i.e.,

XðtÞ ¼ ðX1ðtÞ, :::,XmðtÞÞ
Fiðxi; x0i , 0, tÞ: marginal Cumulative Distribution Function (CDF)

of XiðtÞ given x0i , i 2 f1, :::,mg
fiðxi; x0i , 0, tÞ: marginal Probability Density Function (PDF)

of XiðtÞ given x0i , i 2 f1, :::,mg
hi: parameter vector of the ith marginal degradation process,

i 2 f1, :::,mg
k: copula parameter(s)
s: Kendall’s tau
tb: burn-in time for the burn-in model with a single screen-

ing point ðM1Þ
c: burn-in threshold vector for M1, c ¼ ðc1, :::, cmÞ
q: number of screening points for the burn-in model with

multiple screening points ðM2Þ, q ¼ 2, 3:::
l: time interval between two consecutive screening points

for M2

ck: burn-in threshold vector at the kth screening point
for M2, ck ¼ ðck1, :::, ckmÞ, k 2 f1, :::, qg

tw: warranty period
c0: inspection cost
cb: burn-in cost per unit time
cd: disposal cost
cf : loss of failure in field use during warranty period
rw: reward of survival in field use during warranty period
EC1: total expected cost for M1

EC2: total expected cost for M2

3.1. Model development

Consider a device that is subject to multiple dependent deg-
radation processes. Each degradation process can be
described by a continuous stochastic process. We extend the
multiple dependent degradation model in Li and Hao (2016)
and Fang et al. (2018) by considering unit-to-unit hetero-
geneity in each marginal degradation process and modeling
unit-level heterogeneity as random effects. In this study, it is
assumed that a device subject to multiple dependent degrad-
ation processes fails when any degradation level first passes
its respective failure threshold. Denote the number of the
dependent degradation processes by m. Let XðtÞ represent
the vector of all degradation levels in time ½0, t�,XðtÞ ¼
ðX1ðtÞ, :::,XmðtÞÞ, where XiðtÞ denotes the degradation level
of the ith degradation process. Let x0 represent the vector of
all initial degradation levels, x0 ¼ ðx01, :::, x0mÞ, and let n rep-
resent the vector of all failure thresholds, n ¼ n1, :::, nmð Þ:
We denote the marginal survival probability by Fiðni; x0i ,

0, tÞ, i ¼ 1, :::,m: The joint probability of a device function-
ing properly at time t, Hðn; x0, 0, tÞ, is given by

H n; x0, 0, t
� �

¼ PrfXðtÞ � ng
¼ Pr X1ðtÞ � n1, :::,XmðtÞ � nm

� �
:

As the degradation processes are dependent, the joint
survival probability is not a simple product of all marginal
survival probabilities. In this article, we use the copula
method to model the dependent relationship among mul-
tiple degradation processes. According to Sklar’s Theorem in
m-dimensions (Nelsen, 2007), the joint survival probability
(Hð�Þ) can be represented by an m-copula C, which joints
all margins Fiðni; x0i , 0, tÞ, i ¼ 1, :::,m, and is given by

H n; x0, 0, t
� �

¼ C F1 n1; x
0
1, 0, t

� �
, :::, Fm nm; x

0
m, 0, t

� �� �
: (1)

Copula functions are generally categorized into two classes:
Elliptical copulas and Archimedean copulas (Embrechts
et al., 2001). Elliptical copulas, such as the Gaussian copula
and Student’s t-copula, can capture full pairwise dependence
of all marginal distributions and are restricted to have a
radial symmetry (Yang et al., 2017). Archimedean copulas,
e.g., Frank copula, Clayton copula, and Gumbel copula, only
describe the overall dependence among all margins and
allow for a great variety of different dependence structures
(Yang et al., 2017). For example, the Clayton copula can
capture lower tail dependence whereas the Gumbel copula
can model upper tail dependence.

3.2. Estimation of unknown parameters

Let hi represent the parameter vector of the ith marginal
degradation process, i ¼ 1, :::,m: For a given copula func-
tion C with the copula parameter(s) k, the parameters to be
estimated are represented by the tuple ðh1, :::, hm, kÞ:
Suppose that n units are subject to inspection. Let XiðtjkÞ
represent the degradation level of the ith degradation pro-
cess of unit j at the kth inspection, i ¼ 1, :::,m, j ¼ 1, :::, n,
and k ¼ 1, :::, fj: We denote the vector of the fj’s degrad-
ation increments of the ith degradation process of unit j by
DXij ¼ ðDXij, 1, :::,DXijfjÞ, where DXijk ¼ XiðtjkÞ � Xiðtj, k�1Þ:
The joint CDF and the PDF of DXij are denoted by
FDXijðDxijÞ and fDXijðDxijÞ, respectively. The complete log-
likelihood function lðh1, :::, hm, kÞ is given by

l h1, :::, hm, kð Þ ¼
Xn
j¼1

ln c FDX1, j Dx1, j; h1
� �

, :::, FDXmj Dxmj; hm
� �

; k
� �

þ
Xn
j¼1

Xm
i¼1

ln fDXij Dxij; hi
� �

,

(2)

where cð�Þ is the copula density function.
Due to the complexity of the complete log-likelihood

function in Equation (2), it is difficult to estimate all param-
eters simultaneously by directly using the MLE. To address
the computational challenge, MCMC methods have been
used in the literature (Zhou et al., 2010; Pan et al., 2011;
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Pan et al., 2013; Hao et al. 2015) for parameter estimation
and work well for many problems. On the other hand, the
use of a copula function in the multivariate degradation
model makes marginal densities and copula density separable
in the log-likelihood function, which suggests that we can
first estimate marginal degradation parameters and then infer
copula parameters, leading to a two-stage method (Fang
et al., 2020). The two-stage method is easy to implement and
has been shown to be an effcient estimation approach for
multivariate copula-based models (Andersen, 2005; Joe, 2005;
Fang et al., 2018; 2020). Therefore, we use a two-stage esti-
mation method for multiple dependent degradation processes
with random effects in this study. Specifically, in Stage 1, we
first use the semiparametric inference method (Wang, 2010;
Wang and Xu, 2010; Ye et al., 2014) to estimate parameters
of each marginal degradation process with random effects,
which does not require prior knowledge about functional
forms of some unknown prameters. The expectation-maxi-
mization (EM) algorithm is used to obtain parameter esti-
mates, which has been shown to be an efficient method for
random-effects models (Wang, 2010; Wang and Xu, 2010; Ye
et al., 2014). Based on the nonparametric estimates of some
parameters, we have a better understanding of their functional
forms and obtain them by regression. In Stage 2, given a copula
function, the copula parameters are then computed using the
MLE based on the estimates obtained in Stage 1. The detailed
estimation procedure is summarized in Algorithm 1. Note that
Equations (3) and (4) are the generic forms in the EM algo-
rithm and their exact forms will be determined when marginal
degradation processes are known or determined. We compare
the goodness-of-fit of candidate copula functions using Akaike
Information Criterion (AIC) (Sakamoto et al., 1986).

Algorithm 1. Determine the unknown parameters ðĥ1, :::, ĥm, k̂Þ

Input: Dobs,Dmiss, D

Output: ðĥ1, :::, ĥm, k̂Þ
Stage 1. Determine ðĥ1, :::, ĥmÞ

1: Initialize �, ðh01, :::, h0mÞ, v 0
2: for i ¼ 1 : m do
3: repeat
4: E-step: compute the Q-function

Qðhijhvi Þ ¼ E½lðhi;DÞjDobs, h
v
i � (3)

5: M-step: update hvþ1i

hvþ1i ¼ argmax
hi

Qðhijhvi Þ (4)

6: until jlðhvþ1i ;DobsÞ−lðhvi ;DobsÞj < �

7: ĥi  hvþ1i

8: end for

Stage 2. Determine k̂

9: Compute k̂ by

k̂ ¼ argmax
k

Xn
j¼1

ln c FDX1, j Dx1, j; ĥ1
� �

, :::, FDXmj Dxmj; ĥm
� �

; k
� �

(5)

4. Optimal burn-in policies for multiple dependent
degradation processes

In this section, we develop two degradation-based burn-in
models for multiple dependent degradation processes, one
with a single screening point and the other with multiple
screening points. Burn-in with a single screening point elim-
inates weak units based on degradation information
obtained at the end of a burn-in test. Burn-in with multiple
screening points can eliminate weak units at early screening
points to potentially reduce burn-in costs. We use different
burn-in thresholds for different degradation processes. At
each screening point, a device is eliminated if any degrad-
ation level passes its respective burn-in threshold.

The burn-in cost includes costs of inspection, burn-in
and disposal. Let c0, cb, and cd denote the inspection cost,
the burn-in cost per unit time, and the disposal cost,
respectively. If a device does not survive the burn-in test, it
is scrapped and a disposal cost is incurred. Otherwise, it will
be released for field use with a warranty period. Let tw, cf ,
and rw represent the warranty period, the loss, and the
reward in field use, respectively. If the device fails during
the warranty period, the loss is incurred. Otherwise, the
reward is gained. We assume that the loss is no less than
the disposal cost, i.e., cf � cd: Otherwise, burn-in would not
be necessary. It is also assumed that the reward is no less
than the negative disposal cost, i.e., rw � �cd: Otherwise, it
would be optimal to eliminate all devices in the burn-in test.
The objective of the burn-in procedures is to minimize the
total expected cost including the expected burn-in cost and
the expected operational cost in field use.

4.1. Burn-in with a single screening point

4.1.1. Model development
We first develop the burn-in model with a single screening
point. In this model, we consider a burn-in time tb and a
burn-in threshold vector c, c ¼ ðc1, :::, cmÞ, where ci repre-
sents the burn-in threshold of the ith degradation process.
The decisions are the burn-in time tb and the burn-in
thresholds c: The objective is to minimize the total expected
cost EC1ðtb, cÞ including the expected burn-in cost ECb

1ðtb, cÞ
and the expected field operational cost ECo

1ðtb, cÞ: The burn-
in optimization model with a single screening point ðM1Þ is
given by

min EC1ðtb, cÞ ¼ ECb
1ðtb, cÞ þ ECo

1ðtb, cÞ
s:t: tb > 0, x0 � c � n:

(6)

The expected burn-in cost ECb
1ðtb, cÞ includes the inspec-

tion cost, the total burn-in cost, and the expected disposal
cost, which is given by

ECb
1ðtb, cÞ ¼c0 þ cbtb þ cd 1� PrfXðtbÞ � cgð Þ

¼c0 þ cbtb þ cd 1�Hðc; x0, 0, tbÞ
� �

:
(7)

The expected field operational cost ECo
1ðtb, cÞ is the differ-

ence between the expected loss and the expected reward in
field use. If a device fails during the warranty period, the
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field operational cost is the loss. If a device survives the war-
ranty period, the field operational cost is the reward. We
have ECo

1ðtb, cÞ as follows
ECo

1ðtb, cÞ
¼cfPrfXðtbÞ � cg 1� PrfXðtb þ twÞ � njXðtbÞ � cgð Þ:
� rwPrfXðtbÞ � cgPrfXðtb þ twÞ � njXðtbÞ � cgÞ
¼cfH c; x0, 0, tb

� �
� ðcf þ rwÞ

�
ð

u2A
H n; u, tb, tb þ twð Þh u; x0, 0, tb

� �Ym
i¼1

fi ui; x
0
i , 0, tb

� �
du,

(8)

where u ¼ ðu1, :::, umÞ,A ¼ ½x01, c1� � � � � � ½x0m, cm�, and
fið�Þ is the PDF derived from the marginal CDF Fið�Þ:

We first examine the property of the optimal burn-in
thresholds given the burn-in time. For a given burn-in
time, the optimal burn-in thresholds can be determined
using the first-order partial derivatives of the objective
function (Equation (6)). Given the other decision varia-
bles ðtb, c1, :::, ci�1, ciþ1, :::, cmÞ, the first-order partial
derivative over ci is

@

@ci
EC1ðtb, cÞ

¼ðcf � cdÞC0i F1 c1; x
0
1, 0, tb

� �
, :::, Fm cm; x

0
m, 0, tb

� �� �
fi ci; x

0
i , 0, tb

� �� ðcf þ rwÞ
� fi ci; x

0
i , 0, tb

� � ð
u02A0

H n; u00, tb, tb þ twð Þh u00; x0, 0, tb
� �

Y
j 6¼i

fj uj; x
0
j , 0, tb

� �
du0,

(9)

where

C0i �, :::, �ð Þ ¼
@C F1 c1; x

0
1, 0, tb

� �
, :::, Fm cm; x

0
m, 0, tb

� �� �
@Fi ci; x

0
i , 0, tb

� � ,

u0 ¼ðu1, :::, ui�1, uiþ1, :::, umÞ,A0 ¼ ½x01, c1�� � � � � ½x0i�1, ci�1��
½x0iþ1,ciþ1������½x0m,cm�, and u00 ¼ðu1,:::,ui�1, ci,uiþ1:::, umÞ:

As the objective function (Equation (6)) is continuous
and differentiable over ci 2 ðx0i , niÞ, the optimal burn-in
threshold c�i is obtained at either the boundary points (i.e.,
x0i and ni) or the points in the set Bi that make Equation
(9) equal to zero, where

Bi ¼ ci : q ¼
Ð
u02A0 H n;u00, tb, tb þ twð Þh u00; x0, 0, tbð ÞQj6¼i fj uj; x0j , 0, tb

� �
du0

C0i F1 c1; x
0
1, 0, tb

� �
, :::, Fm cm; x0m, 0, tb

� �� �
8><
>:

9>=
>;,

(10)

and q ¼ ðcf � cdÞ=ðcf þ rwÞ:
Proposition 1 summarizes how to determine the optimal

burn-in threshold c�i given the other decisions ðtb, c1, :::,
ci�1, ciþ1, :::, cmÞ:
Proposition 1. Consider a device subject to m dependent deg-
radation processes. Given the decisions of the burn-in time

and the burn-in thresholds of all degradation processes except
the ith degradation process ðtb, c1, :::, ci�1, ciþ1, :::, cmÞ, where
cj > x0j ,8j 2 f1, :::, i� 1, iþ 1, :::,mg, the optimal burn-in

threshold c�i of the ith degradation process in M1 is deter-
mined by

c�i ¼ argmin
ci2 x0i , nif g[Bi

EC1ðtb, cÞ: (11)

Given the burn-in time, we have m decision variables
with respect to the burn-in thresholds, which can be itera-
tively optimized based on Proposition 1 until all decision
variables converge or the maximum number of iterations
prespecified is reached. In the numerical search proced-
ure, a good starting point is critical to find a high-quality
solution. We use the optimal burn-in threshold of each
degradation process given the burn-in time as the starting
point to search the optimal burn-in thresholds for M1:
Next, we show how to obtain the optimal burn-in thresh-
old given the burn-in time for the burn-in model that
considers a single degradation process in Proposition 2.
Note that a single degradation process is a special case of
multiple degradation processes when m¼ 1, and
Fðx; xu, u, tÞ is the CDF of X(t) given the degradation level
XðuÞ ¼ xu, t � u: The proof of Proposition 2 is provided
in Appendix A.

Proposition 2. Consider a device subject to a single degrad-
ation process. Given the burn-in time tb, the optimal burn-in
threshold c� is determined by q ¼ Fðn; c�, tb, tb þ twÞ:

4.1.2. Solution algorithm
We now develop an efficient algorithm to solve the pro-
posed optimization problem with a single screening point
(M1). The optimization procedure first performs a line
search (e.g., Golden Section Search) to find candidate burn-
in times. Given the burn-in time, we use the burn-in thresh-
old provided by Proposition 2 for each degradation process
as the starting point, and iteratively optimize the burn-in
thresholds one by one based on Proposition 1. The iterative
procedure terminates when the convergence criterion
regarding all burn-in thresholds is met or the maximum
number of iterations is reached. Algorithm 2 summarizes
the search procedure to find the optimal burn-in decision
ðt�b, c�Þ for M1:

Algorithm 2. Determine the optimal burn-in decision ðt�b, c�Þ
for M1

Input: Inspection cost c0, burn-in cost cb, disposal cost cd,
failure cost cf , reward rw, and warranty period tw;

degradation parameters (ĥ1, :::, ĥm, k̂), initial degrad-
ation levels x0, and failure thresholds n;

Output: Optimal burn-in decision ðt�b, c�Þ
1: Initialize � and maxIter
2: Generate candidate burn-in times T ¼ tj; j ¼ 1, :::, Jf g

using a line search
3: for j ¼ 1 : J do
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//Find the optimal burn-in threshold of each degradation
process given the burn-in time and use it as the starting
point to search the optimal burn-in thresholds for M1

4: Compute ~c�i ðtjÞ, i ¼ 1, :::,m, using Proposition 2;
5: Initialize v 0, c0i ðtjÞ  ~c�i ðtjÞ, i ¼ 1, :::,m;

6: while stopping criteria not satisfied do
7: for i ¼ 1 : m do
8: Compute cvþ1i ðtjÞ given ðtj, cvþ11 ðtjÞ, :::, cvþ1i�1 ðtjÞ,

cviþ1 ðtjÞ, :::, cvmðtjÞÞ using Proposition 1;
9: end for
10: if cvþ1i ðtjÞ � cvi ðtjÞ

�� ��< �, 8i 2f1, :::,mg or
v � maxIter then

11: break;
12: end if
13: v vþ 1
14: end while
15: c�i tjð Þ  cvþ1i tjð Þ, i ¼ 1, :::,m, c� tjð Þ ¼ c�1 tjð Þ, :::, c�m tjð Þ

� �
;

16: Compute EC1ðtj, c�ðtjÞÞ based on Equation (6);
17: end for
18: Obtain ðt�bÞ ¼ argmintj2T EC1ðtj, c�ðtjÞÞ, c� ¼ c�¼ðt�bÞ

4.2. Burn-in with multiple screening points

4.2.1. Model development
We next develop the degradation-based burn-in model with
multiple screening points. Denote the number of screening
points by q, q 2 f2, 3, :::g: Devices that survive the qth
screening point will be released for field use. We consider
equi-spaced screening points with a time interval l, and the
kth screening point thus occurs at time kl, k ¼ 1, :::, q:
Note that inspection can also be performed sequentially. Let
ck denote the burn-in threshold vector at the kth screening
point, ck ¼ ðck1, :::, ckmÞ: The decisions are the number of
screening points q, the time interval l, and the burn-in
thresholds at all screening points ðc1, :::, cqÞ: The objective is
to minimize the total expected cost EC2ðq, l, c1, :::, cqÞ
including the expected burn-in cost ECb

2ðq, l, c1, :::, cqÞ and
the expected field operational cost ECo

2ðq, l, c1, :::, cqÞ: The
burn-in optimization model with multiple screening points
ðM2Þ is given by

min EC2ðq,l, c1, :::, cqÞ ¼ ECb
2 q, l, c1, :::, cq
� �

þ ECo
2 q, l, c1, :::, cq
� �

s:t: q 2 f2, 3, :::g, l > 0,

x0 � c1, :::, cq � n:

(12)

The expected burn-in cost ECb
2ðq,l, c1, :::, cqÞ is given by

ECb
2 q, l, c1, :::, cq
� �

¼
Xq
k¼1
ðkc0 þ klcb þ cdÞG k, l, c1, :::, ck

� �
,

(13)

where Gðk,l, c1, :::, ckÞ represents the probability that a
device does not survive the kth screening point. We first
derive the probability that a device survives the kth screen-
ing point, denoted by Pðk,l, c1, :::, ckÞ, as follows:

P k,l, c1, :::, ck
� �

¼

H c1; x0, 0, l
� �

, if k ¼ 1Ð
u12A1 � � � Ð uk�12Ak�1 H ck; uk�1, ðk� 1Þl, kl

� �
Yk�2
j¼1

h ujþ1; uj, jl, ðjþ 1Þl
� �Ym

i¼1
fi ujþ1i ; uji, jl, ðjþ 1Þl
� �

h u1; x0, 0, l
� �Ym

i¼1
fi u

1
i ; x

0
i , 0, l

� �
duk�1 � � � du1, if 2 � k � q,

8>>>>>>>>>><
>>>>>>>>>>:

(14)

where uj ¼ ðuj1, :::, ujmÞ for 1 � j � k� 1, and A1 ¼ x01,
	

c11�� � � � � x0m, c
1
m

	 

and Aj ¼ uj�11 , cj1

h i
� � � � � uj�1m , cjm

	 

for 2 � j � k� 1: Based on Equation (14), we then obtain
the probability that a device does not survive the kth screen-
ing point Gðk, l, c1, :::, ckÞ :

G k, l, c1, :::, ck
� �

¼ 1� P 1,l, c1
� �

, if k ¼ 1

P k� 1, l, c1, :::, ck�1
� �

� P k, l, c1, :::, ck
� �

, if 2 � k � q:

(

(15)

Similarly, the expected field operational cost ECo
2ðq, l,

c1, :::, cqÞ is given by

ECo
2 q, l, c1, :::, cq
� �
¼cf P q, l, c1, :::, cq

� �
� P q,l, tw, c

1, :::, cq, n
� �� �

� rwP q,l, tw, c
1, :::, cq, n

� �
,

(16)

where Pðq, l, tw, c1, :::, cq, nÞ represents the probability that a
device survives the warranty period and is given by

P q, l, tw, c
1, :::, cq, n

� �
¼

ð
u12A1

� � �
ð

uq2Aq

H n; uq, ql, qlþ twð Þ
Yq�1
j¼1

h ujþ1; uj, jl, ðjþ 1Þl
� �

�
Ym
i¼1

fi ujþ1i ; uji, jl, ðjþ 1Þl
� �

h u1; x0, 0,l
� �

Ym
i¼1

fi u
1
i ; x

0
i , 0, l

� �
duq � � � du1:

(17)

Computing the total expected cost (Equation (12)) is
computationally burdensome because it requires multi-
dimensional integration. The maximum number of integra-
tions in Equation (12) is qm. Numerical integration is a
common approach to solving multi-dimensional integration
problems of an order less than eight (Cools, 2002). When
the numbers of degradation processes or screening points
become large, simulation approaches (e.g., Monte Carlo
simulation) can be used to approximate the total
expected cost.

4.2.2. Solution algorithm
An efficient algorithm is designed to solve the multiple-
screening-point problem (M2). We do not expect too many
screening points during burn-in and assume that the max-
imum number of screening points is qmax: We use an
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enumeration approach to determine the optimal number of
screening points. For each q, a line search is performed to
find the time interval (l) between two consecutive screening
points. Given q and l, we optimize the burn-in thresholds

of all degradation processes at all screening points sequen-
tially. We first consider each screening point as the only
screening point (as described in M1) and find the optimal
burn-in thresholds using Algorithm 2. These burn-in thresh-
olds are used as the starting points to search the optimal
burn-in thresholds for M2: At each iteration, we perform a
numerical search to improve the burn-in thresholds at each
screening point from the first screening point to the last
one. At each screening point in any iteration, to accelerate
the search process, we use the incumbent burn-in thresholds
of each degradation process at the previous screening point
(if exists) and the immediate following one (if exists), as the
lower and upper bounds, respectively, to search for the
burn-in threshold at the current screening point. Such
bounds are appropriate because degradation is irreversible.
This iterative procedure terminates when the convergence
criterion of all burn-in thresholds is met or the maximum
number of iterations is reached. Algorithm 3 summarizes
the search procedure for M2:

Algorithm 3. Determine the optimal burn-in decision ðq�, l�, c1�, :::, cq�Þ for M2

Input: Inspection cost c0, burn-in cost cb, disposal cost cd, failure cost cf , reward rw, and warranty period tw; degradation

parameters (ĥ1, :::, ĥm, k̂), and failure thresholds n;
Output: Optimal burn-in decision ðq�, l�, c1�, :::, cq�Þ
1: Initialize �, maxIter, and qmax

2: for q ¼ 2 : qmax do

3: Generate candidate intervals Tq ¼ ljq; j ¼ 1, :::, J
n o

using a line search

4: for j ¼ 1 : J do
//Find the optimal burn-in thresholds at each screening point for M1 and use them as the starting points to search the
optimal burn-in thresholds for M2

5: Compute ĉ�ðkljqÞ based on Steps 4-15 in Algorithm 2, k ¼ 1, :::, q;

6: Initialize v 0, ck, 0  ĉ�ðkljqÞ, k ¼ 1, :::, q;
7: while stopping criteria not satisfied do
8: for k ¼ 1 : q do
9: ck, vþ1 ¼ argmin

y2 ck�1, vþ1, ckþ1, v½ �
EC2ðq, ljq, c1, vþ1, :::, ck�1, vþ1, y, ckþ1, v, :::, cq, vÞ via a numerical search, where c0, vþ1 ¼ x0

and cqþ1, v ¼ n:
10: end for
11: if jck, vþ1i � ck, vi j < �, 8i ¼ 1, :::,m, k ¼ 1, :::, q or v � maxIter then
12: break;
13: end if
14: v vþ 1
15: end while

16: ck� kljq
� �

 ck, vþ1, k ¼ 1, :::, q;

17: Compute EC2ðq,ljq, c1�ðljqÞ, :::, cq�ðqljqÞÞ based on Equation (12);
18: end for
19: end for

20: Obtain ðq�, l�Þ ¼ argmin
q2f2, :::, qmaxg, ljq2Tq

EC2ðq,ljq, c1�ðljqÞ, :::, cq�ðqljqÞÞ, ck*¼ ck*(kl�), k¼ 1, … , q�

Table 1. Light intensity degradation data of 12 LED lamps.

Inspection time (hr)

Unit 0 50 100 150 200 250

Degradation process 1
1 100 86.6 78.7 76.0 71.6 68.0
2 100 82.1 71.4 65.4 61.7 58.0
3 100 82.7 70.3 64.0 61.3 59.3
4 100 79.8 68.3 62.3 60.0 59.0
5 100 75.1 66.7 62.8 59.0 54.0
6 100 83.7 74.0 67.4 63.0 61.3

Degradation process 2
1 100 73.0 65.0 60.7 58.3 58.0
2 100 86.2 67.6 62.7 60.0 59.7
3 100 81.2 65.0 60.6 59.3 57.3
4 100 66.8 63.3 59.3 57.3 56.5
5 100 66.1 64.2 59.4 58.0 55.3
6 100 76.5 61.7 61.3 59.7 56.0
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5. Case study

In this section, we provide a case study using LED lamp
data to demonstrate a bivariate degradation model and
determine optimal burn-in decisions for the two burn-in
models. The degradation dataset is from Chaluvadi (2008),
where the light intensities of 12 LED lamps are measured
every 50 hours up to 250 hours under a current of 40mA.
The degradation data of the 12 LED lamps are shown in
Table 1. To demonstrate a bivariate degradation process,
several studies in the existing literature (Hao et al., 2015;
Fang et al., 2018, 2020) artificially split this dataset by treat-
ing it as if the first half represents the first Performance
Characteristic (PC) and the other half represents the second
PC, and show that there exists a dependence between these
two splits. Such a dependence is likely introduced due to the
fact that these LED lamps are tested in one chamber with
the same operational conditions (e.g., temperature) at the
same time. In this article, we use the same approach that
artificially splits the dataset in Chaluvadi (2008) into two
groups, and consider the first half of it from one degrad-
ation process and the other half from another degradation
process. Figure 1 shows the degradation paths of the LED
lamps with two degradation processes. It is assumed that an
LED lamp fails if any degradation level is first below 50
(Chaluvadi, 2008; Hao et al., 2015), i.e., n ¼ ð50, 50Þ:

5.1. Bivariate degradation model

We assume that each degradation process is governed by a
Gamma process with a random effect. For notational con-
venience, the subscript i for the index of the degradation
process is omitted in the following analysis. Consider a
Gamma process fXðtÞ, t � 0g with a time-varying shape
parameter aðtÞ and a rate parameter b, i.e., GammaðaðtÞ, bÞ:
The random effect is represented by the rate parameter,
which follows a Gamma distribution with a shape parameter
j and a rate parameter d for mathematical tractability
(Lawless and Crowder, 2004), i.e., b 	 Gammaðj, dÞ: Thus,
the unconditional distribution of DXðtÞ ¼ Xðt þ uÞ � XðtÞ is
given by

j Xðt þ uÞ � XðtÞð Þ
d aðt þ uÞ � aðtÞð Þ 	 F2 aðtþuÞ�aðtÞð Þ, 2j,

where Fa, b is the F-distribution with degrees of freedom
(a, b).

We use the two-stage estimation method proposed in
Section 3.2 to estimate the parameters of all marginal deg-
radation processes and the copula parameter. Note that in
Stage 1, when using the EM algorithm to estimate parame-
ters of each marginal degradation process, we consider the
realizations of the random effect (b) as missing data, i.e.,
Dmiss ¼ fbj; j ¼ 1, :::, ng: The observed dataset is Dobs ¼
fxðtjkÞ; j ¼ 1, :::, n, k ¼ 1, :::, fg: In this case, n¼ 6, f¼ 5, and
xðtj, 0Þ ¼ 100, 8j 2 f1, :::, 5g: The degradation parameters to

be estimated in Stage 1 are h ¼ ða11, :::, af, ak,j, dÞ, where
ak ¼ aðtkÞ, k ¼ 1, :::, f: Denote Dak ¼ ak � ak�1, where
a0 ¼ 0: The log-likelihood function in Equation (3), up to a
constant, given the complete data D, is shown as (Ye et al.,
2014)

lðh;DÞ ¼ l1ðað�Þ;DÞ þ l2ðj, d;DÞ,
where

l1ðað�Þ;DÞ ¼
Xn
j¼1

Xf

k¼1
Dakð lnDxjk þ lnbjÞ � lnCðDakÞ

� �
, and

l2ðj, d;DÞ ¼
Xn
j¼1

j ln dþ ðj� 1Þ ln bj � lnCðjÞ � dbj
� �

:

At the (vþ 1)th iteration of the EM algorithm, we compute
E½bjjDobs, h

v� and E½lnbjjDobs, h
v� in the E-step as follows:

E bjjDobs, h
v	 
 ¼ afv þ jv

dv þ xðtjfÞ , and
E ln bjjDobs, h

v	 
 ¼ w afv þ jvð Þ � ln dv þ xðtjfÞ
� �

,

where wð�Þ is the digamma function. In the M-step, we
update ðjvþ1, dvþ1Þ and avþ1ð�Þ by maximizing
E l2ðj, d;DÞjDobs, h

v½ � and E l1ðað�Þ;DÞjDobs, h
v½ �, respectively.

Interested readers are referred to Ye et al. (2014) for details
concerning the semiparametric inference of the Gamma-pro-
cess model with random effects using the EM algorithm.

Table 2 summarizes the estimates of the two marginal
degradation models in Stage 1. Based on the nonparametric
estimates of the shape parameter, we assume that the time-
varying shape parameter has a form of a power law, i.e.,
aiðtÞ ¼ aitbi , i¼ 1, 2. By regression, we obtain the shape
parameters of the two degradation processes as â1ðtÞ ¼
6:15t0:46 and â2ðtÞ ¼ 3:65t0:32: Based on the estimated mar-
ginal degradation models, we then estimate the copula par-
ameter using the MLE in Stage 2. In this article, we use
Kendall’s tau (s) to measure the level of dependence
between the two degradation processes, which quantifies the
association between two random variables. Note that the
two degradation processes are independent when s¼ 0. For
the bivariate degradation model, we consider five commonly
used two-dimensional copulas with one parameter: Gaussian
copula, Student’s t-copula, Frank copula, Clayton copula,
and Gumbel copula. Table 3 summarizes the estimates of

Figure 1. Degradation paths of the LED lamps.
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the copula parameter k̂, and the corresponding values of
Kendall’s tau and AIC. From Table 3, we can see that the
Frank copula has the smallest value of AIC and, therefore, is
the most suitable one among the five copulas.

5.2. Optimal burn-in decisions for two
degradation processes

Based on the bivariate degradation model, we determine the
optimal burn-in decisions for the single-screening-point
model (M1) and the multi-screening-point model (M2). We
determine the warranty period based on the mean time to
failure of an LED lamp, i.e., tw ¼ 300: Note that the LED
lamp data used in the case study are obtained under an
accelerated degradation test and we use a predetermined
warranty period that works for the accelerated degradation
processes for demonstration purposes. That is, we treat the
accelerated LED lamp data as it were in-field use data dur-
ing the warranty period, and by setting an in-field use con-
dition to be a current of 40mA (an accelerated condition)
(Chaluvadi, 2008), we obtain a warranty period of 300 hours
for the LED lamp data. In practice, the warranty period
should be designed for degradation processes under normal
operational conditions. The inspection cost is c0 ¼ 1, the
burn-in cost per unit time is cb ¼ 0:1, the disposable cost is
cd ¼ �4, the loss is cf ¼ 100, and the reward is rw ¼ 50:
Table 4 summarizes the optimal burn-in decisions of M1

and M2: From Table 4, we can see that the optimal number
of screening points for M2 is two, and the total expected
cost of M2 is significantly lower than that of M1: This
implies that it may be beneficial to consider multiple screen-
ing points during burn-in. We further conduct sensitivity
analyses and compare the total expected costs of the two
burn-in models under different levels of dependence
between the two degradation processes and different values
of the inspection cost in the next section.

5.3. Optimal burn-in decisions with consideration of
parameter uncertainties

In this case study, the dataset size of the LED lamp example
is small, which may lead to large estimation errors.
Therefore, we further investigate the impacts of parameter
uncertainties on the optimal burn-in decisions. Let H denote

the vector of all parameters to be estimated, H ¼
ðh1, :::, hm, kÞ: We take into account parameter uncertainties

by considering estimated parameters Ĥ as random variables.
The total expected costs from models M1 and M2 are condi-
tional costs given parameter estimates. Denote the condi-

tional costs of M1 and M2 by EC1ðtb, c; ĤÞ and

EC2ðq, l, c1, :::, cq; ĤÞ, respectively. Let f ðĤÞ denote the

PDF of the estimated parameters Ĥ: The unconditional
costs of M1 and M2 are presented in Equations (18) and
(19), respectively.

EC1ðtb, cÞ ¼
ð
EC1 tb, c; Ĥ

� �
f ðĤÞdĤ (18)

EC2 q,l, c1, :::, cq
� � ¼ ð

EC2 q, l, c1, :::, cq; Ĥ
� �

f ðĤÞdĤ
(19)

The form of f ðĤÞ is complicated, and therefore it is very
difficult to derive closed-form expressions of Equations (18)
and (19). We use the method in Ye et al. (2012) to approxi-
mate the unconditional costs. Specifically, we use the boot-
strap to generate 1000 sample estimates by resampling from
the original LED lamp data, and each sample has the same
sample size as the original dataset. Table 5 summarizes the
mean and standard deviation of each parameter. We com-
pute the conditional costs of M1 and M2 for each sample
estimate and approximate the unconditional cost of each
burn-in model as the average of the 1000 conditional costs.
Note that Proposition 1 is no longer applicable for M1 with
the unconditional cost to determine the optimal burn-in
threshold for each degradation process due to the extreme
difficulty in finding optimal decisions using derivative-based
methods. Therefore, we modify Algorithm 2 to obtain opti-
mal burn-in decisions. The optimal burn-in thresholds of all
degradation processes given the burn-in time are optimized
using derivative-free numerical search methods instead of
using Proposition 1. The optimal burn-in decisions of the
two burn-in models considering parameter uncertainties are
shown in Table 6. From Table 6, we observe a similar pat-
tern that the total expected cost of M2 is lower than that of
M1, as shown in Table 4. Moreover, comparing the optimal
burn-in decisions in Table 4 with those in Table 6, we can
see that there is no significant difference of the optimal
burn-in decisions with and without considering parameter
uncertainties. Our analysis shows that the optimal burn-in
decisions in the LED lamp example are not sensitive to the
change in the parameters of degradation distributions.

6. Sensitivity analyses

In this section, we first examine whether it is necessary to
consider multiple dependent degradation processes in burn-
in, and then investigate the impacts of different levels of

Table 3. Estimates of copula parameters and AIC values.

k̂ s AIC Ranking

Gaussian copula 0.73 0.52 –18.73 3
Student’s t-copula 0.63 0.43 –15.67 5
Frank copula 20.51 0.82 –21.01 1
Clayton copula 0.64 0.24 –16.36 4
Gumbel copula 2.91 0.66 –18.83 2

Table 2. Estimates of two degradation models.

Parameters

(â1, â2, â3, â4, â5) ĵ d̂

Degradation process 1 (33.52, 52.31, 61.99, 68.82, 73.84) 47.17 25.57
Degradation process 2 (11.93, 16.18, 18.09, 19.42, 20.36) 36.05 74.62

Table 4. Optimal burn-in decisions for M1 and M2:

Model q� t�b or l� c� or c1� c2� EC�1 or EC�2
M1 – 14.12 (10.94,15.94) – –9.55
M2 2 12.65 (13.38,15.38) (14.19,19.38) –11.68
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dependence among degradation processes on optimal burn-
in decisions. We also compare the total expected costs of
the two burn-in models under different levels of dependence
and different values of the inspection cost. In the sensitivity
analysis, we use the same two dependent degradation proc-
esses used in the case study in Section 5, which are obtained
from splitting the LED lamp dataset into two datasets. The
Gumbel copula is used to model the dependence between
the two degradation processes. The relationship between the
copula parameter (k) and Kendall’s tau (s) for the Gumbel
copula is s ¼ 1� 1=k: We use the same value of the war-
ranty period and the same values of the cost parameters
except for the inspection cost as presented in Section 5.2.
Different levels of dependence between the two degradation
processes and different values of the inspection cost are con-
sidered to investigate their impacts on optimal burn-
in decisions.

6.1. Necessities of considering multiple dependent
degradation processes in burn-in

We first examine whether it is worth considering multiple
dependent degradation processes in burn-in. Ten different
levels of dependence are considered, i.e., s ¼ 0, 0:1, :::, 0:9:
We compare the total expected costs of the burn-in models
with and without consideration of multiple dependent deg-
radation processes under different levels of dependence (s).
For each value of s, we first obtain the optimal total
expected cost of M1 (EC�1), which considers the two

degradation processes during burn-in. We then find the
optimal burn-in decision for the burn-in model considering
only one degradation process. The costs resulted from the
two burn-in decisions for degradation processes 1 and 2 are
represented by EC1

1 and EC2
1, respectively. Figure 2 illus-

trates the three total expected costs under different levels of
dependence. From Figure 2, we observe that the costs of the
burn-in model with consideration of the two degradation
processes are significantly lower than the costs of the burn-
in model considering only one degradation process in all the
scenarios. This result clearly shows that it is necessary to
consider multiple dependent degradation processes in the
burn-in planning for reduced costs. We also observe that
the difference between EC1

1 and EC�1 and the difference
between EC2

1 and EC�1 decrease as the level of dependence
increases. This is because the joint survival probability con-
verges to the marginal survival probability of one of the two
degradation processes as s approaches a value of one, lead-
ing to a smaller difference between the burn-in decisions
with and without considering multiple degrad-
ation processes.

6.2. Impacts of the dependence level on optimal burn-
in decisions

We now investigate the impacts of the dependence level on
optimal burn-in decisions. Before analyzing such impacts,
we first examine how the copula function changes as the
level of dependence increases. This will help to understand
the patterns of the optimal burn-in decisions under different
levels of dependence. The relationship between Kendall’s tau
and copula function for the two-dimensional Gumbel copula
is presented in Theorem 1.

Theorem 1. Consider two bivariate Gumbel copula functions
C1 and C2. C1 has the association parameter k1 (k1 � 1) and
Kendall’s tau s1. C2 has the association parameter k2
(k2 � 1) and Kendall’s tau s2. If k1 � k2 (i.e., s1 � s2), we
have C1ðu, vÞ � C2ðu, vÞ,8 0 � u, v � 1:

The proof of Theorem 1 makes use of two types of
dependence orderings: the Positive Quadrant Dependence
(PQD) ordering (Tchen 1980) and the Kendall stochastic
ordering (Cap�eraa et al., 1997). See detailed proof in
Appendix B. Theorem 1 proves the nondecreasing pattern of
a bivariate Gumbel copula function in Kendall’s tau. It
implies that the joint survival probability increases as the
level of dependence increases. The same nondecreasing pat-
tern can be found for the other four copulas mentioned in
Section 5.1 numerically.

Table 7 presents the optimal burn-in decisions for the
single-screening-point model (M1) under different levels of
dependence. It can be seen that the optimal burn-in time t�b
and the optimal burn-in thresholds c� increase as the level
of dependence increases. This is because the survival prob-
ability of burn-in, i.e., CðF1ðc1; x01, tbÞ, F2ðc2; x02, tbÞÞ, is non-
decreasing in the level of dependence by Theorem 1. It
indicates that burn-in for devices with a higher dependence
level among degradation processes may require more time

Table 5. The mean and standard deviation of parameters.

Parameters â1 b̂1 ĵ1 d̂1 â2 b̂2 ĵ2 d̂2 k̂

Mean 9.96 0.45 52.14 18.43 5.44 0.31 40.35 64.30 23.42
Standard deviation 3.23 0.02 9.18 4.40 3.42 0.05 6.03 13.15 13.84

Table 6. Optimal burn-in decisions for M1 and M2 considering parameter
uncertainties.

Model q� t�b or l� c� or c1� c2� EC�1 or EC�2
M1 – 14.52 (11.37, 18.62) – –11.04
M2 2 11.55 (12.24, 20.28) (13.97, 21.56) –11.89

Figure 2. Three total expected costs under different levels of dependence.
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to identify weak units, and longer burn-in time consequently
leads to higher burn-in thresholds.

The optimal burn-in decisions under different levels of
dependence for the multi-screening-point model (M2) are
summarized in Table 8. From Table 8, we observe a similar
pattern that the optimal time interval between two consecu-
tive screening points increases in most cases as the depend-
ence level increases. We also observe that the optimal
number of screening points reduces from three to two when
the dependence level becomes higher. Moreover, comparing
the costs in Table 7 with those in Table 8, we can see that
the multi-screening-point model outperforms the single-
screening-point model in terms of the total expected cost
under all levels of dependence considered. Therefore, burn-
in with multiple screening points can be more
cost beneficial.

6.3. Impacts of the inspection cost on optimal total
expected costs

We further compare the optimal total expected costs of the
single-screening-point model (M1) with those of the multi-
screening-point model (M2) under different values of the
inspection cost. Ten different values of the inspection cost
are considered, i.e., c0 ¼ 0:5, 1, :::, 5: Figure 3 shows the opti-
mal total expected costs of M1 and M2 (i.e., EC�1 and EC�2)
in the 10 scenarios considered. It can be seen that the total
expected costs of burn-in with multiple screening points are
lower than the costs of burn-in with a single screening point
under all values of the inspection cost considered. In add-
ition, the cost difference between the two models becomes
larger as the inspection cost increases. This is because burn-
in with multiple screening points can potentially save more
burn-in cost by eliminating weak units at earlier screening
points when the inspection cost is higher.

7. Conclusion

In this article, we consider the problem of designing optimal
burn-in policies for devices subject to multiple dependent
degradation processes with unit-to-unit heterogeneity. We
use the copula method to analyze the dependent structure
among multiple degradation processes and model the unit-
level heterogeneity as random effects. A two-stage estimation
method is developed to estimate univariate parameters for
each marginal degradation process and copula parameter(s)
effectively. To reduce the heterogeneity, we propose two
degradation-based burn-in models, one with a single screen-
ing point and the other with multiple equi-spaced screening
points. Efficient algorithms are designed to find optimal
burn-in decisions. Experimental data from LED lamps is
used to demonstrate a bivariate degradation model. Impacts
of parameter uncertainties on optimal burn-in decisions are
investigated. We further conduct sensitivity analyses using
the two dependent degradation processes in the LED lamp
example. Our results show that it is necessary to consider
multiple dependent degradation processes in burn-in.
Additionally, a higher level of dependence between the two
degradation processes often results in longer burn-in time
and higher burn-in thresholds for the two burn-in models.
For the multiple-screening-point model, a higher level of
dependence can also lead to fewer screening points. The
results also show that substantial cost savings can be
achieved by performing multiple screening points during
burn-in.

In this article, we treat the accelerated LED lamp data as
it were in-field use data during the warranty period. The
future work will consider optimal burn-in for multiple
dependent degradation processes using data obtained from
accelerated degradation tests and with extrapolation to a
normal use condition. It is also worth considering sequential
inspection instead of periodic inspection as considered in
this article for the burn-in model with multiple screening
points. In addition, to explore whether the dependence
among different failure processes varies in time, it is inter-
esting to extend constant copulas to time-varying copulas.

Table 7. Optimal burn-in decisions of M1 under different levels of dependence.

s t�b c� EC�1
0 8.13 (7.56, 11.38) –3.23
0.1 9.76 (8.50, 12.63) –3.72
0.2 11.07 (9.25, 13.50) –4.36
0.3 12.02 (9.75, 14.25) –5.11
0.4 12.42 (10.03, 14.63) –5.95
0.5 12.88 (10.31, 15.03) –6.86
0.6 13.00 (10.44, 15.25) –7.82
0.7 13.53 (10.72, 15.63) –8.81
0.8 13.77 (10.88, 15.88) –9.80
0.9 14.28 (50.00, 16.06) –10.76

Table 8. Optimal burn-in decisions of M2 under different levels of dependence.

s q l� c1� c2� c3� EC�2
0 3 5.41 (7.06, 12.25) (9.81, 14.88) (10.81, 16.25) –3.81
0.1 3 5.70 (7.38, 11.88) (10.19, 14.50) (11.25, 16.75) –4.49
0.2 3 6.32 (7.88, 13.75) (11.88, 15.25) (11.97, 17.63) –5.23
0.3 3 7.30 (9.63, 13.63) (11.69, 17.38) (13.94, 17.75) –6.14
0.4 3 7.88 (9.06, 15.25) (12.25, 18.94) (14.50, 19.50) –7.15
0.5 3 6.71 (8.50, 13.75) (12.50, 16.25) (12.66, 19.63) –8.11
0.6 3 8.43 (10.5, 17.03) (13.75, 18.75) (14.09, 20.19) –9.04
0.7 3 7.60 (12.19, 15.69) (12.31, 18.25) (13.56, 19.63) –10.23
0.8 2 13.30 (13.75, 17.63) (14.56, 21.75) – –11.86
0.9 2 13.55 (13.88, 17.91) (14.75, 19.97) – –12.03

Figure 3. Optimal total costs under different values of the inspection cost.
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Appendices

A. Proof of Proposition 2

Proof. The total expected cost EC1ðtb, cÞ of the burn-in model with
consideration of a single degradation process is given by

EC1ðtb, cÞ ¼c0 þ cbt þ cd þ ðcf � cdÞF c; x0, 0, tb
� �

� ðcf þ rwÞ
ðc
0
Fðn; u, tb, tb þ twÞf u; x0, 0, tb

� �
du:

(20)

Taking the derivative of Equation (20) in terms of c and setting it to
zero, we obtain

@

@c
EC1jc¼c� ¼ f c; x0, 0, tb

� �
ðcf � cdÞ � ðcf þ rwÞFðn; c, tb, tb þ twÞ½ � ¼ 0:

Since the first term on the right-hand side is always positive, we deter-
mine the sign of the second-order derivative as

@2

@c2
EC1jc¼c� ¼ ðcf þ rwÞf c; x0, 0, tb

� �
f ðn; c, tb, tb þ twÞ > 0:

Therefore, the minimum of EC1 is achieved when @EC1=@c equals
zero. Because it is assumed that cd � cf and �cd � rw, we have 0 �
q � 1, where q ¼ ðcf � cdÞ=ðcf þ rwÞ: Therefore, the optimal burn-in
threshold is determined by q ¼ Fðn; c�, tb, tb þ twÞ: w

B. Proof of Theorem 1

Proof. To prove Theorem 1, we first introduce the definitions of two
types of dependence orderings: the PQD ordering (Tchen, 1980) and
the Kendall stochastic ordering (Cap�eraa et al., 1997), which are given
as follows:

C1
PQD C2 () C1ðu, vÞ � C2ðu, vÞ, 8u, v 2 0, 1½ �, (21)

C1
K C2 () K2ðtÞ � K1ðtÞ, 8t 2 0, 1½ �, (22)

where 
PQD and 
K represent the PQD ordering and the Kendall sto-
chastic ordering, respectively. Note that KiðtÞ denotes the Kendall dis-
tribution function of Ci, i.e., KiðtÞ ¼ PrfCiðu, vÞ � tg, t 2 ½0, 1�, i¼ 1,
2. Moreover, the Kendall distribution function of the Archimedean
copula with a generator function / : ð0, 1� ! ½0,1Þ is given by
(Genest and Rivest, 1993)

K/ðtÞ ¼ t � /ðtÞ
/0ðtÞ , 0 < t � 1: (23)

Given two bivariate Archimedean copulas C1 and C2, it has been
proved by Genest and MacKay (1986) that Equation (22) is the suffi-
cient condition of Equation (21). The implication is given as follows:

C1
KC2 ) C1
PQDC2: (24)

Based on the previous analysis of the two dependence orderings, we
then begin the proof of Theorem 1. The Kendall’s tau of Gumbel cop-
ula is s ¼ 1� 1=k, which increases as k increases. The generator func-
tion of the Gumbel copula is /ðtÞ ¼ ð� log tÞk, where 0 < t � 1: We
then show that the Kendall distribution function of the Gumbel copula
is strictly decreasing in k. The corresponding Kendall distribution func-
tion is given as follows:

KkðtÞ ¼ t � t log t
k

, (25)

which is decreasing in k. Thus, by Equations (21), (22), and (24), the
proof is summarized as follows

k1 � k2 ) s1 � s2 ) Kk2 � Kk1

() C1
K C2 ) C1
PQD C2 () C1 � C2:
(26)

w

IISE TRANSACTIONS 13


	Abstract
	Introduction
	Literature review
	Multiple dependent degradation processes
	Degradation-based burn-in

	Multiple dependent degradation processes with unit-level heterogeneity
	Model development
	Estimation of unknown parameters

	Optimal burn-in policies for multiple dependent degradation processes
	Burn-in with a single screening point
	Model development
	Solution algorithm

	Burn-in with multiple screening points
	Model development
	Solution algorithm


	Case study
	Bivariate degradation model
	Optimal burn-in decisions for two degradation processes
	Optimal burn-in decisions with consideration of parameter uncertainties

	Sensitivity analyses
	Necessities of considering multiple dependent degradation processes in burn-in
	Impacts of the dependence level on optimal burn-in decisions
	Impacts of the inspection cost on optimal total expected costs

	Conclusion
	Funding
	References




