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Stellar-mass binary black holes will sweep through the frequency band of the Laser Interferometer Space
Antenna (LISA) for months to years before appearing in the audio-band of ground-based gravitational-
wave detectors. One can expect several tens of these events up to a distance of 500 Mpc each year. The
LISA signal-to-noise ratio for such sources even at these close distances will be too small for a blind search
to confidently detect them. However, next generation ground-based gravitational-wave detectors, expected
to be operational at the time of LISA, will observe them with signal-to-noise ratios of several thousands and
measure their parameters very accurately. We show that such high fidelity observations of these sources by
ground-based detectors help in archival searches to dig tens of signals out of LISA data each year.
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I. INTRODUCTION AND BACKGROUND

The discovery of GW150914 [1] by the Advanced Laser
Interferometer Gravitational-wave Observatory (LIGO) [2]
and the continued detections of stellar mass binary black
holes [3-5] by Advanced LIGO and Virgo [6] set the
stage for observing such systems with the Laser
Interferometer Space Antenna (LISA) [7] when it comes
online. GW150914 is the result of the merger of a pair of
3673 Mgy and 3173 Mg black holes at a distance of
440ﬂ§8 Mpc [4]. The companion masses are larger than
what was initially thought possible from stellar evolution
[8] (see, however, [9]). It therefore earned the adjective
heavy for black holes in the mass range ~[20 Mg, 100 M|
now routinely observed by LIGO and Virgo [4,5,10-13].
Such heavy binary black holes (ABBHs) within ~1 Gpc
could also be visible in the LISA band [7] at an earlier stage
in their evolution, albeit with a signal-to-noise ratio (SNR)
of a few.

The search for stellar-mass binary black holes in LISA
data could take formidable number of templates ~1030-40
templates (faster chirping binaries requiring greater number
of templates) and the associated computational resources
[14]. The false alarm rate due to the large number of
templates [15] would mean that only a handful of nearby
sources with SNRs greater than ~15 might be detected for a
p-value of 1073, Note, however, that third generation (3G)
ground-based observatories, such as the Einstein Telescope
[16,17] and the Cosmic Explorer [18], operating at the
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same time as LISA would observe these sources some
months to years after the signal passes the LISA band, with
far greater SNRs compared to those in LISA and determine
the source parameters to a good accuracy. Narrowing down
the source parameters by ground-based detectors should
then help in archival searches for such systems in LISA data
by reducing the parameter space and, hence, the number of
templates to ~10'? while also decreasing the associated false
alarm rates and computational costs. Current estimates still
require an SNR threshold of ~8 [19] to ~14 [14].

Multiband observations of ZBBH systems in LISA and
ground-based detectors would greatly benefit the science
return of these observatories [20-30]. This is because the
parameter degeneracies that are present in the later part of
the system’s evolution in ground-based detectors could be
resolved by observing the earlier part of the system’s
evolution in LISA. Several authors [21-25,31] have dem-
onstrated that this can principally yield tests of general
relativity orders of magnitude better than what would be
possible with either detector or detector-network by itself.
What is critical to making that science possible is to
unambiguously detect the signals in the LISA band.

In this paper we will show that 3G observatories will pin
down the parameters of ABBH systems well enough to
reduce the number of templates required for matched-filter
searches to detect such systems in LISA data to a mere
few x 10* as opposed to previous estimates of ~10'2. This
means that it will be possible to identify ABBH signals in
LISA data with an SNR of 4 or more with a p-value of 107>
or better. This will increase the number of sources that will
be available for joint observation by both space-borne and
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ground-based observatories and hence enhance the science
return of multiband observations.

The rest of the paper is organized as follows: In Sec. II,
we will compute for the joint ZBBH population expected
to be observed the visibility and measurement capabilities
of 3G observatories. We will discuss, in particular, the
uncertainties in the sky localizations, masses, and spins of
the companion black holes—parameters that would need to
be searched for in LISA data. In Sec. III, we show how the
problem of assessing LISA’s performance in observing
binary black holes can be mapped to the audio-frequency
band. This is possible since there is no mass scale in general
relativity: waveforms from binary black holes of different
total mass will all look exactly the same as long as all other
parameters remain the same except for a rescaling of time.
This helps in using tools that have been developed for the
analysis of ground-based detectors such as the LSC
Algorithm Library [32]. In Sec. IV, we will estimate the
number of templates required to search for ABBH systems
in LISA data using the knowledge of parameter accuracies
from 3G observatories. We will use two complementary
methods to compute the number of templates. The first
method works out the invariant volume of the signal
manifold over the relevant range of parameters and then
divides it by the fraction of volume covered by each
template. This gives the minimal number of templates
required for archival searches. In a realist data analysis
pipeline, however, one needs to make a choice of templates
based on a template placement algorithm [33]. We will use
one such algorithm [34] to get a more realistic estimate of
the number of templates. In Sec. IV D, we characterize the
efficiency of the template bank by computing the overlap of
hBBH waveforms with random parameters maximized
over the set of templates in the template bank. We will
also discuss in Sec. V the distribution of the SNRs of the
subpopulation of sources that will be observed by both
LISA and 3G observatories. We conclude in Sec. VI with a
summary of the results and future plans.

II. STELLAR MASS BINARY BLACK HOLES
IN 3G OBSERVATORIES

3G detectors like Cosmic Explorer (CE) and the Einstein
Telescope (ET) will observe stellar-mass binary black holes
all the way up to redshifts of ~10-50 [35-37], depending
on the intrinsic parameters of the source such as its masses
and spins, as well as extrinsic parameters such as the
position of the source on the sky and the orientation of the
binary’s orbit relative to the observer’s line of sight. LISA
could observe a small fraction of such systems if they are
within ~1 Gpc [7], but digging them out of the background
noise in a blind search will take formidably large computa-
tional resources due to the large number of matched filters
needed to cover the full parameter space of masses, spins,
and sky position [14]. CE and ET will observe binary black
holes that are this close with SNRs of several hundreds to

several thousands and determine their parameters with
extremely good precision. Such high-fidelity observations
will narrow down the search space in the LISA frequency
band, which greatly reduces both the computational
resources required but also the background noise from
the large number of templates needed in a blind search.

In this section we will begin with the visibility of stellar-
mass binary black holes in ground-based detectors and then
go on to describe the precision with which the parameters
can be measured. We shall show that all of the parameters
but the chirp mass will be measured by a network of 3G
observatories with an accuracy better than LISA which
implies that it will only be necessary to construct templates
in chirp mass for LISA.

A. Visibility

In order to assess what systems will be observable by
both LISA and a network of 3G detectors, we simulated a
population of 5 x 10> hBBHs which are uniformly dis-
tributed in comoving volume up to a redshift of z = 10. The
companion masses are chosen to follow a power law [38]
for the larger companion m; € [5 My, 100 M), p(m;)
m7“ with exponent o = 1.6, and a uniform distribution in
[5 Mg, m,] for the lighter companion m, [39]. The
companion spins are assumed to be aligned or antialigned
with the orbital angular momentum, and are drawn from a
Gaussian distribution with 0 mean and a standard deviation
of 0.1. Our choice of spin distribution is motivated by the
source parameters of the 10 gravitational-wave detections
of binary black holes reported in GWTC-1 [4]. The root
mean square y.g of these 10 events is 0.13, or excluding the
high spin event GW170729, only 0.08.

We calculated the SNR, p; 154, in LISA with the estimated
power spectral density (PSD) provided in Ref. [40] and by
marginalizing over the angular dependencies of the signal.
We found 181 of the simulated signals to be visible in LISA
with pyga > 4 and used these systems as candidates for our
3G-assisted archival search study for LISA data [24]. We
will justify this choice of SNR in Sec. V. Our choice for a 3G
network consists of one ET and two CEs located at fiducial
sites in Cascina (Italy), Idaho (USA), and New South Wales
(Australia), respectively. The detector sensitivities are set to
ET-D for the ET detector and CE1 (40 km, compact-binary
optimized) for the two CEs [41].

The left panel of Fig. 1 shows the distribution of the 3G
network SNR psg and p; 154 against the companion masses
of the binaries for the 181 systems. All signals will be
detected with SNRs of order ~1000 in 3G, a few reaching
values almost 10 times as large. The left panel also
confirms the expectation that loud #ZBBH events in the
LISA band produce loud signals in CE and ET detectors.
The right panel presents in a similar fashion the distribution
of the luminosity distance, D;, and effective spin param-
eter, yeir = (myy1 + moyr)/M [42,43], indicating that
most of the systems are found at luminosity distances
<1 Gpc.
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We draw attention, in particular, to the visibility of
hBBH in LISA. The rate for ABBH systems is constrained
by the rate of BBH mergers whose up-to-date value is R =
23.874% Gpc3 yr~! [5,44]. Thus, if we take into account
that only a fraction f of the binaries contain at least one
heavy black hole (>20 M), where

7 19/100M°d lﬁ/mld ! 032
~1. mym7; " m, —— ~ (.32,
20 M 1 5 Mg 2ml—SMo
(1)

and 1.9 is the normalization factor, we obtain a median rate
Rgpn=/fR=7.6Gpc™3 yr~! for ABBH mergers. Although
heavier binaries can be seen to a greater distance their
relatively lower prevalence means that it is more likely that
we will observe lighter binaries in LISA more frequently.
The detection of lighter binaries in LISA is also aided by
the large SNRs and high fidelity measurements of the 3G
network. We also note that the ABBH systems are likely to
have larger mass ratios, which is due to the power-law
distribution of the primary companion and flat-distribution
of the secondary. The large mass ratio is also responsible
for low effective spins of ZBBH systems as seen in the right
panel of Fig. 1.

B. Measurability

Next, we want to assess the quality of the parameter
estimation that a 3G network can achieve. This crucial
information allows us to perform the archival search more
efficiently by decreasing the dimension and volume of the
parameter space for a template search.

We perform this assessment with gwbench [41], a
PYTHON package that implements the well-known Fisher
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information [45-47] formalism, and estimate the lo-error
bounds for each of the 181 systems. The formalism provides
an analytical approximation of the Gaussian noise likelihood
around its maximum and thus allows us to estimate the
measurement errors ¢, = \/Z;; on a set of parameters A from
the covariance matrix X in the likelihood:

1

P(A) ~ e 25 Ah8% (2)
Given a model for the detector response A(f;A), we can

calculate the covariance matrix as the inverse of the Fisher
information matrix I

S5 =Ty = (0,h(f:4). 0, h(f:2)). (3)

The scalar product between two waveforms 71( f341) and
9(f;4,) is defined as

(a0, 9002)) =2 [ MEAT U d) Feey,

0 Su(f)

where §* denotes the complex conjugate of §. Note that
although the limits in the integral range from 0 to co, in reality
the detector noise power spectral density S,(f) outweighs
the signal power outside a finite frequency range [f, f»] and
often the waveform itself will have no support above a
frequency f., = f(4) determined by its intrinsic parameters.
Thus, the integral gets most of its support over a finite range
of frequency [f1, f2]-

The error bounds that a network of several detectors can
achieve are readily computed via the network Fisher matrix

Dot = Zrds (5)
d
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The plot shows the distribution of the 181 #BBHs with a LISA SNR pygp > 4, the two axes show the masses of the

companions in both panels. In the left plot, color bar is the 3G SNR p;5 and the size of circles depict the LISA SNR py1g,; in the right
plot, color bar is the luminosity distance D; and the size of the circles represent the effective spin parameter yg.
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which is the sum of the Fisher matrices I'; for all the
detectors in the network. Hence, given a detector response
model, we calculate all the detector Fisher matrices and
invert their sum to obtain the network covariance matrix
from which we extract the desired error bounds.

Lastly, we perform two sanity checks to avoid including
faulty numerical data. We first disregard any Fisher matrix
I" whose condition number ¢ = ey,/e,, exceeds a thresh-
old value of 10" to avoid inverting matrices that are ill-
conditioned for this numerical task. e, and e,, are the
maximum and minimum eigenvalues of I'. Further, we
scrutinize all inversions, if any calculated error bound is
smaller than the inversion error € = ||Z - T" — I||,,,x. Here, I
and || - ||max represent the identity and maximum matrix
norm, respectively.

The loudness of the ABBH signals in CE and ET
detectors allows us to make use of waveform models that
include higher-order spherical harmonic modes which
capture more physical information and thus increase the
accuracy of the parameter estimation. For this purpose we
applied the Fisher formalism to the lalsimulation

(AM/M)P% = 9.47e—6

waveform IMRPhenomHM [48] for the full set of 11
parameters: chirp mass M, symmetric mass ratio 7, the
aligned components of the companion spins y; , and y, _,
luminosity distance D;, coalescence time f., phase of
coalescence ¢, inclination angle i, right ascension a,
declination 9, and polarization angle . IMRPhenomHM
is an aligned-spin waveform model that does not include
the spin components perpendicular to the orbital angular
momentum of the binary, thus our Fisher analysis is four
parameters short of the standard 15-parameter analyses.

Since we marginalized over the four angles for the
calculation of the LISA SNRs, we randomly sampled
100 realizations of each angle for each of the 181 systems
and performed the Fisher analysis on these 181 x 100
parameter sets. The resulting error bounds are shown in
Fig. 2, where we show the errors on right ascension and
declination combined in the 90%-credible sky area Qg and
omitted the error for phase of coalescence.

The LISA parameter estimation has been explored with
the Fisher formalism in [7] for signals with py ;5o > 8. The
study reports the following bounds for the majority of its
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FIG. 2. The plot shows the probability and cumulative density functions of the measurement error for the nine parameters of interest
for the 181 binary black hole mergers that can be detected in the archival search of LISA data after they are identified and measured in
the 3G data. We simulated 100 realizations for the sky location and binary orientation angles to show the range of parameter errors to be
expected from 3G networks.
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1000 simulated events: AM/M € [1077,4 x 107°]
peaked at ~107°, An/n € [6 x 10™*,3 x 1072] peaked at
~8 x 1073, Az, € [107",7 x 10'] peaked at ~3 x 10°, and
Qg € [2 x 1072, 4 x 10°] peaked at ~ x 107" In Ref. [49],
the LISA parameter estimation has been explored for
GW150914-like systems, with SNR p; ;54 ~ 10-13. The
study quotes fractional error in M < 107* to below 107°.
For our population of nBBH we find that LISA will
constrain the chirp mass even better than 3G observatories.
We note that if this were not the case, we would only
require a single template to dig out the ZABBH from
LISA data.

Comparing our error bounds to these estimates we can
clearly see that a network of CE and ET observatories will
outperform LISA for the estimation of most parameters:
our 90% values are either well below (¢,.) or of the order of
(€Qqg) the lower bound of the reported ranges. The excep-
tions are the chirp mass and symmetric mass ratio which
benefit from the long, many-cycle signals in the LISA
band: the fractional M errors in the LISA band are better
or the same compared to the 3G bounds and if we scale our
absolute errors in # to relative errors—i.e., multiplication
with factors between 4 to 17 in the case of our binaries with
n € [0.06,0.25]—we obtain roughly the same ranges (the
3G network performs better on the lower end). Thus, LISA
can only improve the chirp mass measurement, without
adding significant information to the estimation of 7.

There are two caveats to this comparison that favor the
3G results even more: The cited study performed the Fisher
analysis only for six parameters which positively biases
their results in comparison to our analysis over 11 param-
eters. Further, their reported errors come from a louder
population with p;iga > 8, whereas most of our signals
have SNRs lower than that. The events considered in their
study would result in even louder 3G events, as seen in
Fig. 1, and thus better error estimates.

In conclusion, our findings show that a 3G network
allows to estimate the parameters of ZBBHs with such high
fidelity that we can assume most parameters to be known
and focus the archival searches on M only.

ITII. MAPPING THE LISA DATA ANALYSIS
PROBLEM TO THE AUDIO BAND

The LSC Algorithm Library (LALSuite) [32] has many
data analysis tools such as compact binary waveform
models, template placement algorithms, filtering routines,
etc., that are extremely useful, sometimes critical, in
evaluating data analysis problems such as the ones explored
in this paper. LALSuite was developed primarily for the
analysis of data from LIGO and Virgo interferometers that
operate in the audio frequency band from 1 Hz to 10 kHz.
Unfortunately, some of the algorithms do not readily work
at frequencies below 1 Hz and the effort required to rewrite
the algorithms for the LISA band, ~100 xHz to 100 mHz,

would be formidable. Luckily, it is possible to scale the
LISA problem into the audio band owing to the fact that the
fundamental quantity of interest, namely the strain mea-
sured by the gravitational-wave detectors which represents
the change in proper length between “free” test masses in
response to a passing gravitational wave, has no physical
dimension.

To illustrate the required scaling, let us consider gravi-
tational waves emitted by an inspiraling binary system
composed of a pair of black holes, but the argument would
work no matter what type of source we consider.
Furthermore, for the sake of clarity, we will consider the
lowest order post-Newtonian (PN) waveform [50,51] (often
referred to as the “Newtonian” waveform) from a binary
system composed of non-spinning black holes. However,
the arguments follow through irrespective of the PN order.
At the Newtonian order, the strain response of an inter-
ferometer to gravitational waves from a binary system
composed of black holes of masses (m;,m,) at a lumi-
nosity distance D; is given by

n(s) = 2™ <”GMf (’)>2/3 cos (:: / ' f(r)dt) (©)

2D, fo

where M = (m; + mj) is the total mass of the system, 7 =
mymy/M? is the symmetric mass ratio, and f(t) is the
instantaneous gravitational-wave frequency:

o =n(1-52)" )

Here ¢, is a fiducial time when the frequency of the
gravitational wave is f and 7, called the chirp time, is
the duration of the signal from a time when its frequency
was f, until the frequency (in this approximation) diverges'
and the two black holes merge:

5 GM [ ¢ \*3
256n ¢ \zGMf,

The chirp time of a binary of total mass 100 M, equal
component masses (so that # = 1/4), and starting fre-
quency of 12 mHz would be 5 years. Chirp time is a sharp
function of the total mass as well as the starting frequency.
A signal starting from a frequency that is a factor 2
(10) smaller would last a factor ~6.3 (respectively, 464)
longer.

From Eq. (8), we can compute the duration At spent by
the binary starting at frequency f; at time ¢; and reaching
frequency f, at time ¢5:

'In reality, the merger occurs when the horizons of the two
black holes merge which happens at a finite frequency but this is
not relevant to our discussion.
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5 GM 3 8/3 1) 873 Our goal is to scale up the frequency from LISA’s
256 3 (nGM f1> [ ( ) ] ' observing band to the audio band of ground-based detec-
tors. Scaling up frequencies by a factor of & = 10* would
©) bring the lowest starting frequencies up to 50 Hz and the
largest starting frequencies up to 450 Hz. This is the scaling
we will use in this paper. An integration time of Afjga =
5 yr in the LISA band would correspond to an integration
time of Atygio = Atisa/a~1.58 x 10* s
3 g We can see from Eq. (6) that gravitational-wave strain
5 GM c /3 . . .
At~ — ( ) ) (10) would remain unchanged if we simultaneously scale up the
256n c* \zGMf, frequency by factor of a and scale down the chirp time, the
total mass, and the luminosity distance by the same factor.
Therefore, the signal would now last for a much shorter
period of A¢/a with exactly the same amplitude as before
but at a higher frequency. The SNR of the scaled up signal,
but with a scaled up LISA noise spectral density SLISA(f),
will also be the same as before. To see this, recall that the
expectation value of the SNR of a signal is given by:

2

If f, > f4, the second term in the equation above will be
negligible, and Ar will essentially be the same as the chirp
time starting at frequency f:

We choose the starting frequency f; for the stellar mass
binary black holes in the mass range observed by LISA,
such that the signal lasts for a fixed duration in the LISA
band. For a given At, the starting frequency f; depends on
the total mass and mass ratio of the binary:

3 5 GM13/8
M,n) = 11
S M) = e [256:1 c3AJ (1
2 |h(f
The left half of Fig. 3 shows the starting frequency f; as a P2(f1.f2) = 4R / |ng A)l df, (12)
function of total mass and mass ratio g = m;/m, for n S )

my > my; f1 is greatest for systems with small total mass

but large mass ratio and smallest for systems with large

total mass, but small mass ratio. Over the total mass range ~ Where h(f = [, h(t) exp(2zift)dt is the Fourier trans-
of [30, 130] M, the lower frequency cutoff is never smaller form of the grav1tat10na1 wave strain. Changing the variable
than 5 mHz and can be as large as 45 mHz at the lowerend ./ = v = af would scale down the Fourier mode strain by a
of the mass range and upper range of the mass ratio. The  factor of a, A(f) — h(af)/a, and similarly the LISA noise
upper frequency cutoff for integration is chosen to be ~ PSD SHSA(f) - SLSA(gf)/a = S2dio(qf)/a. Thus the

f>»=1Hz SNR remains unchanged:
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FIG. 3. Left: contour plot of the starting frequency for stellar mass binary black holes that last 5 years in the LISA band. The starting
frequency scales with the mass ratio of each system and inversely with the total mass, as indicated by the colored contours, where the
values of starting frequencies are shown in Hz. The grey dots mark the positions of the 181 ABBHs for which we performed Fisher
analysis in a 3G network to obtain parameter error estimates. The size of the dots represents the corresponding LISA SNR, p; 15a. Right:
LISA’s amplitude noise spectral density (ASD) 1/S,,(f) is plotted before (red solid line) and after (red dashed line) applying frequency
scaling with @ = 10*. Also shown are the amplitude spectra /f|%(f)| for GW150914-like (in orange) and GW190521-like (yellow)
systems at a distance of 500 Mpc with signal-to-noise ratio of 4.8 and 16, respectively. The integration time is assumed to be 5 years in
the LISA band which translates to 1.54 x 10° s in the audio band.
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P2 (V1. 1a) = 40 / )P /e e g3

w Spe(af)/a

The scaled version of the LISA noise PSD S%4° (1) /a is
shown in the right hand panel of Fig. 3.
In summary, the required scaling transformations are to:
(1) Scale up the frequency: f — af.
(2) Scale down the time duration, total mass and
distance: 7 — 7/a, M - M/a, and D; — D, /a.
(3) Transform the LISA power-spectral density into the
audio band, i.e., S3(f) = 1SM5A(f /a).

IV. TEMPLATE BANKS FOR
ARCHIVAL SEARCHES

In this section we present the number of templates
required to detect ABBH in the LISA band by matched
filtering. We use accuracies on the masses obtained from
parameter estimation in 3G detectors. We use two inde-
pendent methods to calculate template bank numbers. The
first method assumes the metric in order to place templates,
which would provide a minimum on the number of
templates required. As a check on this method, we also
calculate the number of templates using a stochastic
placement algorithm, which overestimates the required
number of templates.

A. Metric method

1. Metric on the signal manifold

The number of templates required for a search can be
found using the geometric formulation of signal analysis
[33,47,52]. The scalar product (4) can be used to define
waveforms or signals of unit norm. A signal is said to be of
unit norm if its scalar product with itself is unity and will be
denoted by a:(a,a) = 1.

In the geometric formalism, the overlap O or match
between two “nearby” normalized signals /i(A) and
h(A + AA) with slightly different parameters A and A + AA
is given by:

O(A, AX) = (h(A), h(A + M) % 1 = g,pda®d??,  (14)
where g, is the metric on the signal manifold [47,52]:

15°0(A. AA) R
=222 Gk, by

oh
—_—. 1
B (15)

When signals are nearby, in the sense that their overlap is
close to unity, Eq. (14) is a good approximation for the
overlap and the quantity d¢* = g,5dA*dA’—the proper
distance between them—obeys dZ < 1. Thus, two normal-
ized signals at a proper distance of dZ from each other have
an overlap of 1 —dZ2.

2. Minimal match and lower limit on the number
of search templates

To filter signals out of data we must choose a bank of
templates in the parameter space of interest such that any
signal buried in the data within this parameter space has its
overlap larger than a certain value called the minimal match
M with at least one template in the bank. Of course, this
requirement can be met by populating the parameter space
with a dense set of templates but a higher density of
templates would demand a greater computational cost.
Thus, the density of templates must be chosen so that it is as
sparse as possible while assuring minimal match with every
signal in the parameter space of interest.

If A, k=1,...N, denotes the parameters of the tem-
plates in the bank then for a signal with arbitrary parameters
A the template bank must satisfy the following condition:

mflx(fl(/l), h(A)) = M, (16)

the equality in the above equation giving the optimal
number of templates. So we must choose the proper
distance such that

de? = g pd2odP = (1 = M). (17)

Given that the optimum matched filter signal-to-noise ratio
that one can hope to achieve for a signal is p3, = (h, h),
the above condition assures that the fractional drop in the
signal-to-noise ratio between an arbitrary signal and the
closest template in the bank is no more than e=1-M
called the maximum mismatch, i.e., p > €pyp.

Given the minimal match M how many templates are
needed to cover the parameters with the smallest number of
templates? This is the problem of template placement and
to some extent the answer depends on what type of lattice is
used to place the templates on the signal manifold. We will
discuss a specific template placement algorithm used in this
work in the next section. We can get a lower limit on the
number of templates needed by computing the total proper
volume of the signal space divided by the fraction of
volume covered by each template. Assuming that each
template covers a proper volume dV = dZV = (1 — M)N/?,
where N is the dimension of the parameter space, the
smallest number of templates N; needed is

V 1 'lmax

Nzizi
TTav o (1-Mm)N2

Jod¥i,  (18)

‘min

where g = det [g,4|. The above estimate assumes that the
templates are placed on a square lattice. The number of
templates can be smaller with a more efficient lattice, e.g., a
hexagonal lattice in two-dimensions, but this is unimpor-
tant for our considerations.
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3. Newtonian approximation to number of templates

The orbital velocity of a stellar mass binary black hole of
total mass M and gravitational-wave frequency fgw 1s very
small in the LISA frequency band compared to the speed of
light (for clarity we include factors of G and ¢ in the
equation below):

M\ 1/3 M 1/3 1/3
L T Y] Jow )
c o 10 M 10 mHz

(19)

For such a non-relativistic orbit the PN expansion param-
eter defined by x = v?/c* ~6.2 x 107*, meaning stellar-
mass binary black holes in the LISA frequency band are in
the adiabatic regime. The dynamics of such a system is
essentially described by the Newtonian approximation (or O
PN) given in Egs. (7) and (8). In the stationary phase
approximation the Fourier transform of the waveform in
Eq. (6) is given by [53]:

hm:%ﬂ%mmm—m+mm,@m

where 7 is a fiducial time giving the time of arrival of the
signal at the detector (the epoch at which the GW frequency
reaches a predefined value), ¢ is a constant phase of the
signal, and y/(f) is the PN approximation to the signal’s
phase evolution given at the leading “Newtonian order” by:

3

w(f) = 128(eMp) (21)

At the leading order the phase depends only on the chirp
mass M and not the mass ratio. It is useful to define a new
parameter &= (3/128)(zM)™/3, so that the phase is
linear in this new parameter: y(f) = &f /3. The parameter
space of the signal consists of A = (¢, ¢¢, £). It turns out
that the overlap O can be analytically maximized over the
phase ¢ by using two quadrature filters, leaving just two
parameters. Because of the analytic maximization over
phase, the expression for the metric in the two-dimensional
space of A = (1¢, &) takes the form [33,52]:

4oy = 5 (Thvaw] = TwdTlwy). (22)

where y, = Oy(f)/0A%, and J is a functional of its
argument defined for any function a(f) by

1
2

(f77.a(f)) (23)
P

JTla(f)] =

As is well known, maximizing the overlap O over the
parameter 7. is easily accomplished in the Fourier domain
[54] and one needs a discrete lattice of templates only

for the remaining one parameter £ The metric in
the &-dimension is quite simply: Gor = gy — g%l /911
Substituting for the various elements of the metric g4
and simplifying one finds:

1 (‘]9_‘]4‘]12)2

Gy == |J17 =3 — 24
n=5 Y17/ I =7 (24)

where for any k, the moment J, is given by J, = (f7%/3,1).
In this notation the SNR is p? = J;. G, is demonstrably
constant (in any case all one-dimensional spaces are flat)
and ¢ is already a Cartesian coordinate. The spacing
between templates is constant in £ and from Eq. (17) we
have

1—-MM

22

d? = Gpd® =1 -M = dé = (25)

Finally, the number of templates can be found using
Eq. (18):

G22
(1-M)

Nr= (émax - fmin)' (26)

In the next section we will compute the number of
templates found using a template placement algorithm
and compare it with the one found in this section.

B. Stochastic template placement algorithm

When the metric on the waveform manifold is not known
exactly and cannot be approximated, we use a brute force
approach [55,56] to construct the template bank. In this
method, the template bank is built by proposing templates
in the desired parameter space until sufficient coverage is
reached. For each proposed template, A,,,, the fitting
factor (which is the maximum match of the proposed
template with the templates in the bank) is calculated. If the
fitting factor is greater than the minimal match required, we
reject the proposed template and continue with a new
proposal; if it is less than the required minimal match, we
add the proposed template to our bank.

This method can get computationally expensive, but
there are tricks we can employ to be able to use it in
practice. One such trick is to define the “neighborhood” of
the proposed templates. It can be defined in terms of a
parameter chosen by the user, we used the chirp time for
our purposes. When used, the fitting factor is calculated
only for the templates in the neighborhood (set in form of
units of the neighborhood parameter by the user), 4;, where
i:1— N for N templates near the proposal.

Another technique we use is to iteratively lower the
frequency step in the calculation of the match [57]. The
value of frequency spacing used in the match integral
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[Eq. (4)] is usually chosen to be 1/L, where L is the closest
power-of-2 greater than the length of the waveforms. This
is required to measure the overlap between two waveforms
in a time window of L s. But for the bank generation, we are
interested in the maximum overlap between waveforms,
which occurs near the time point corresponding to 0
displacement for two waveforms aligned at their peak
amplitude. Therefore, we can increase the value of fre-
quency spacing, df, which greatly reduces the cost of
calculating the match. We can check if our chosen value for
df is good enough by iteratively calculating matches by
reducing df by half. If the last two overlaps agree to within
1%, we use that value or if (1 — (match)) is large, we
continue to the next template. For our banks, we first
calculate the matches with df = 2.0. If the mismatch is
large, i.e.,

(1 — match) > 0.05 + (1 — M), (27)
where M = 0.98 is the minimum required match for
template placement, then we move on to the next neighbor-
ing template A; ;. Otherwise, we decrease the value of
df — df/2 and calculate the match again. We continue
iteratively decreasing df until the last two matches con-
verge,

|match,; — match,; | < 0.001 x match,,.  (28)
Once convergence is reached, if the match < M we add the
proposal 4,,,, to the template bank.

C. Number of templates

Using the stochastic placement algorithm, we calculate
a template bank for each of the 181 ZBBH sources, with

+1.6935x 10!
0.0035 — | . injections templates [,
0.0030 —
. 0.0025 —
s
— 0.0020 —
o
0.0015 —
0.0010 — °
0.0005 — = :
0.001 0.002 0.003 0.004 0.005
1
mi (M(D) +2.2846x10

component mass ranges constrained by 3G capabilities.
These template banks use 3.5 PN TaylorF2 [53,58-63]
waveforms. The lower frequency cutoff for the signals
ranges from 14.2-30.5 mHz with an upper frequency cutoff
of 150 mHz. Scaling this to the audio band, we produce
template banks with frequencies in the range of 142-
1500 Hz. We use a minimal match of M = 0.98 for the
template placement algorithm.

The left panel of Fig. 4 shows an example template bank
in (m;,m,) space for a source of m; =22.85 M,
my = 16.94 My, and f),, = 305.44 Hz, after scaling to
the audio band. Figure 5 shows the relationship between the
source signal-to-noise ratio and the number of templates in
the bank. The plot shows that the sources which require the
largest number of templates are those for which both the
LISA and CE signal-to-noise ratio is small.

The cumulative distribution of stochastic placement
template bank sizes for all 181 sources is shown in the
top left panel of Fig. 7. The 50th percentile and 90th
percentile bank sizes are 3.4 x 10° and 1.95 x 10* tem-
plates, respectively. The mean bank size, Ny = 8.02 x 103
with a standard deviation of 9.70 x 10?>. The smallest
bank has only 218 templates while the largest bank has
9.88 x 10* templates. These bank sizes demonstrate a
significant improvement from previous estimates of
0(10'?) templates.

Using the metric placement method, we again calculate
template banks for each of the same 181 ZBBH sources.
The upper and lower frequency cut-offs are the same for
these banks as for the template banks generated with the
stochastic placement algorithm. We again require a min-
imal match, M = 0.98. The right panel of Fig. 4 shows the
Newtonian template bank for the same source as shown
on the left. This figure demonstrates that the Newtonian

+1.6935%x 10!

| - injections templates |- 7

0.0010 —

0.0005 —{

0.001 0.002 0.003

my (Mg)

0.004 0.005

+2.2846x 10"

FIG. 4. Left: for a hBBH source with component masses constrained by 3G to m; = 22.84892 and m, = 16.93702 M, the template
(green) and injection (blue) component masses are shown for a 3.5 PN template bank. Chirp mass contours are indicated by the black
lines. Right: for the same source, the injection component masses are shown with the one-dimensional Newtonian template component

masses.
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FIG.5. The number of templates from the stochastic placement
algorithm is plotted against the LISA SNR, pj 154 for each source.
The color bar indicates the CE SNR, pcg.

template banks are truly one-dimensional, where each
template in (m,, m,) space is projected onto a line para-
metrized by the chirp mass, M. The figure shows chirp
mass contours indicated by the black lines. Using the one
dimensional template bank it is clear that while component
masses may not necessarily be tightly constrained by LISA,
the chirp mass will be recovered very well. For this source,
the two-dimensional bank had 2.3 x 10° templates and the
one-dimensional bank had 1.4 x 10 templates. Therefore,
the line in Fig. 4 is very densely packed.

The cumulative distribution of Newtonian template bank
sizes is shown in the bottom left panel of Fig. 7. Here,
the mean bank size is 6.2 x 10? templates. The 50th and
90th percentile bank sizes are 2.5 x 10® and 1.5 x 10*
respectively.

A comparison of stochastic placement and metric method
template bank sizes is given in Fig. 6. We find that
Nrop =13 x Nrjp. The two-dimensional PN template
banks are about 1.3 times the size of the one-dimensional
Newtonian template banks made using the metric method.
Therefore, by using Newtonian template banks we can
achieve an even further decrease in the computational cost
required to dig signals out of the LISA data.

D. Efficiency of the template bank

To determine the bank efficiencies, we filter 1000 3.5 PN
waveform injections against each bank to find the
best matching templates. For each of the two-dimensional
banks, we calculate the efficiency twice—first, using the
3.5 PN approximation in the match calculation and again
using only the Newtonian approximation. A summary of
all the bank efficiency calculations performed is given in
Table I. The top right panel of Fig. 7 shows the cumulative
distribution of matches for each of the two-dimensional

5

) ] f
5 ] 280
% N 260
ERUE=
& 3 240
=~ —
‘§ n 220
<

200
2 10°—
w0 -
.. —] 1
g 3 ' 80
< Je 160

10° T TTTTT T TTTT T TTTTm
102 10° 10* 10°

Nr : Newtonian metric placement

FIG. 6. For 181 hnBBH sources we plot the number of templates
required for the minimal match condition, M = 0.98 calculated
using the metric approach for one-dimensional Newtonian tem-
plate banks (horizontal axis) and the number of 3.5 PN templates
found using the stochastic placement algorithm (vertical axis).
The color bar indicates the lower frequency cutoff, after scaling to
the audio band. For a linear fit, N7 gochasic = 7 X N7 metric» W€
find m = 1.30.

template banks, where green lines show matches calculated
with the Newtonian template approximation and blue lines
show matches calculated with the 3.5 PN template approxi-
mation. The mean 10th percentile match for both sets are
indicated by the vertical lines. These results demonstrate
that using the Newtonian approximation in the match
calculation is sufficient for our purposes.

This result is further proven by the one-dimensional
Newtonian template bank efficiencies, shown in the bottom
right panel of Fig. 7. As indicated by Table I, for this set of
bank efficiency calculations we use the Newtonian approxi-
mation both in the template waveforms and in the match
calculation. Each of the three sets of bank efficiency
calculations performed over the 181 hBBH systems had
mean 10th-percentile matches M > 0.98, so we conclude
that these template banks will be effective in recovering
hBBH signals from LISA data.

V. VISIBILITY OF STELLAR-MASS BBH IN LISA

We now calculate, for template banks of O(10?) —
O(10°) templates, the minimal signal-to-noise ratio required
to claim a detection in a matched filter search. We first
assume that we have a segment of data consisting only of
noise, d(t) = n(t). If we filter this data with one template,
the SNR would be a random value which, for a Gaussian
background, follows the Rayleigh distribution [14]:

p(p) =pexp (_7[12> : (29)
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FIG. 7. Top left: the plot shows the cumulative distribution of the 3.5 PN template bank sizes. The vertical lines indicate, from left to
right, the 50th percentile, mean, and 90th percentile bank sizes. The bins are evenly spaced in log. Bottom left: the cumulative
distribution of one-dimensional Newtonian template bank sizes. Top right: the plot shows the cumulative distribution of mismatches of
1000 injections with each 3.5 PN template bank. In the match calculation, we use the Newtonian approximation (green) and the 3.5 PN
approximation (blue). The vertical lines indicate the mean 10th percentile match for both sets of template banks. The position of the
mean 10th percentile match value for 3.5 PN approximation has been artificially shifted to the left by 0.0005 so that the two lines are
distinguishable. Bottom right: the cumulative distribution of mismatches for one-dimensional Newtonian template banks.

TABLEI A summary of the bank efficiency calculations done.
The first column indicates the PN order of the template wave-
forms, and in parenthesis the dimensionality of the template
banks. The second column similarly shows the PN order of the
injected waveforms, highlighting that we have always used 3.5
PN injection waveforms. The third column shows the PN order
used in the calculation of the match between template and
injected waveforms. The last column shows the mean 10%
percentile match across all 181 ABBH sources. The one standard
deviation error is quoted.

lT A"'”j MatCh approx. M(PIO)

35PN (2D) 3.5PN 3.5 PN 0.989 +7.6 x 1074
35PN 2D) 3.5PN 0 PN 0.989 +8.7 x 10
0 PN (1D) 3.5 PN 0 PN 0.9854+1.5x 1073

The probability of obtaining a value of p greater than some
threshold py,, can be computed by integrating the distribu-
tion above the threshold,

o —p? _P2h
plp > pur) = / pexp (7> dp = exp (Tt> (30)
Pror

We would like to find the value of p,,. above which we can
confidently claim a detection. The false alarm probability
(FAP) is then the chance of finding p > py,. in the noise
hypothesis. We can choose an acceptable value of FAP, say
1072 and use Eq. (30) to solve for py,:

puw = V—21InFAP. 31)
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Therefore, with FAP = 1072 the threshold is py, = 3.0.
However, the above discussion assumes that we filter the
data with only one template. With N templates, the FAP is
the probability that at least one template has p > py,.. First,
consider the probability that none of the N7 templates have
P > pus thatis (1 — p(p > py,))V7. The FAP is the compli-
ment of this, or

FAP = 1— (1= p)Mr. (32)

For very small p, we can approximate this as FAPx
1—(1=p-Ng)=plp > pur) - Ny. We see that the num-
ber of templates becomes a trials factor on the false alarm
probability. We must then scale down our required FAP by
the number of templates in Eq. (31),

/ FAP
Pir = [ —21In N_T (33)

Finally, using FAP = 1072 and N; = 10?>-10°, we find a
threshold SNR of py, = 4.3-5.7. This is a significant
improvement over the previously quoted pg, = 14 [14]
or py,, = 8 quoted in Ref. [19]. The lower threshold further
improves the feasibility of archival matched-filter searches
in LISA, increasing the number of detectable stellar mass
binary black holes in LISA by a factor of ~6.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The simultaneous operation of third generation
ground-based gravitational-wave observatories, such as
the Einstein Telescope and Cosmic Explorer, and a
space-based detector, LISA, provides a unique oppor-
tunity for multiband observations of stellar-mass and
intermediate-mass binary black hole inspirals and merg-
ers. Such multiband observations greatly improve the
bounds one can place on general relativity and alter-
native theories of gravity [21,23-25]. However, the
computational cost required to dig the signals out of
LISA data in a blind search would be formidable,
requiring signal-to-noise ratios greater than 14 to make
confident detections.

We have shown that 3G observatories would constrain
most of the signal parameters—the component masses,
spins, sky position, and time of coalescence—so tightly
that it would be possible to carry out the search for
these signals over a vastly reduced parameter space in
LISA data. Indeed, high fidelity measurements enabled
by the 3G observatories considered in this paper imply
that archival searches in LISA data require only a one-
dimensional template bank over the binary’s chirp
mass—the only parameter that is measured better by
LISA than 3G observatories. Thus, the volume of
parameter space necessary to search over is greatly

reduced. With template banks containing only 10> — 103
templates, archival searches in LISA are feasible for
signals of SNR as low as ~4-6. This would allow for
the possibility of O(100) multiband gravitational-wave
detections per year, a number that can vastly improve
the quality of tests of general relativity that can be
performed by 3G observatories or LISA by themselves
[24,25].

We have made several implicit approximations in this
study that would need to be reexamined to ascertain that
the principal conclusions of this paper remain valid. First,
we have assumed that the observed binaries would have
negligible residual eccentricity when their signals enter
the LISA sensitivity band. This is true for most binaries
that spend millions of years to slowly spiral-in and merge
during which radiation reaction tends to circularize the
orbits. However, black hole binaries that form in rich
clusters could have non-negligible eccentricities when
LISA observes them. 3G observatories should be able to
constrain residual eccentricities to a pretty good accuracy
which could then be used to reduce the search space.
Even if the eccentricity in the audio band of 3G
observatories is vanishingly small it will be possible to
evolve the orbits back and limit the search parameter
space in the LISA band. Eccentricity will likely be a
parameter that would not be measured very well by 3G
observatories (as any residual eccentricity would have
largely decayed) and LISA will likely constrain it better.

Secondly, we have assumed that companion black hole
spins are aligned with the orbital angular momentum of the
system. Spin-orbit and spin-spin couplings will significantly
alter the orbital evolution only when spins are large and
misaligned with the orbit. This will be a relatively small part
of the parameter space. Moreover, spin effects occur at higher
PN orders and are measured better by 3G observatories than
LISA. It is, however, important to confirm that precessional
effects are negligible in archival searches especially since
they are cumulative effects and the signals spend many more
cycles in the LISA band than they do in the audio band.

Finally, if the binaries live in a gas-rich environment then
the inertial drag could accelerate the rate at which the
companions spiral in. Such drags might not be relevant
when the binaries enter the audio band of 3G detectors and
hence it would not be possible to correct for the presence of
environment. In the same spirit, we have not included any
ultralight boson clouds or other fields that might surround
the companion black holes in the low-frequency phase of
the evolution. This could alter the orbital evolution but
would not be relevant at later stages [64,65].

While not all of these effects are equally important, it is
necessary to investigate the cost of including them in an
archival search as they could potentially reveal important
mechanisms in play in the formation, evolution, and
environments of stellar-mass and intermediate-mass black
hole binaries.
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