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Abstract— A new optimal control based representation for
stationary action trajectories is constructed by exploiting con-
nections between semiconvexity, semiconcavity, and stationarity.
This new representation is used to verify a known two-point
boundary value problem characterization of stationary action.

I. INTRODUCTION

The principle of stationary action, or action principle, is a

fundamental variational postulate that underpins conservation

laws in modern physics [7], [8], [10], [11]. A corollary of

this principle states that any trajectory of a conservative

system must render the corresponding action stationary in

the calculus of variation sense, in which the action is the

time integral of the corresponding Lagrangian.

When dynamical evolution is restricted to sufficiently short

time horizons, the action involved is typically a convex

function of the generalized velocity trajectory, at least where

the generalized position space is finite dimensional, see

for example [11], [6]. Consequently, on such short time

horizons, stationary action is achieved as least action, and

the trajectories involved can be characterized using tools

from classical optimal control. In particular, for a specific

conservation law, an optimal control problem can be for-

mulated with respect to a cost function defined as the sum

of the integrated Lagrangian and an artificial terminal cost,

with the latter is used to capture terminal data. Dynamic

programming may then be applied to characterize optimal

trajectories, which necessarily correspond to trajectories of

the underlying conservative system, subject to the imposed

boundary conditions.

Recent efforts by the authors have successfully exploited

this connection between least action and optimal control on

short time horizons to develop a variety of fundamental solu-

tions for conservative systems, including for the gravitational

N -body problem [11]. However, on longer time horizons, or

for systems evolving in infinite dimensions, this connection

breaks down, typically due to a loss of convexity of the

action. Indeed, the value functions associated with optimal

control problems posed on these longer time horizons are

typically afflicted by finite escape phenomena. As a mini-

mum cannot be achieved in these cases, stationarity must

explicitly be considered [6], [5].
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In this paper, connections between stationarity and sta-

tionary control [11], [4], [6], [5], [12], [13] are summa-

rized and further explored, with a view to expanding the

applicability of generalized optimal control tools to the

evolution of conservative systems over longer time horizons.

In Section II, the aforementioned connections between least

action and optimal control are reviewed and formalized,

and the indicated short horizon constraint elucidated. Sub-

sequently, Section III briefly summarizes the relaxation of

optimal control to stationary control that is required to

deal with longer horizons, and provides the expected two-

point boundary value problem (TPBVP) characterization

of the stationary trajectory (i.e. along which the action is

stationary). Finally, Section IV exploits connections between

semiconvexity, semiconcavity, and stationarity in order to

formulate two auxiliary optimal control problems that can be

used to characterize the staticizing velocity input that yields

upon integration the aforementioned stationary trajectory.

The obtained characterization is used to verify the expected

TPBVP formulation of Section III.

Throughout, R, Z, N denote the real, integer, and natural

numbers respectively, with extended reals defined as R
.

“
R Y t˘8u. The space of continuous mappings between

Banach spaces X and Y is denoted by CpX ;Y q. The

set of bounded linear operators between the same spaces

is denoted by LpX ;Y q, or LpX q if X and Y coin-

cide. A function f P CpX ;Y q is Fréchet differentiable

at x P X , with derivative Dfpxq P LpX ;Y q, if 0 “
lim}h}X Ñ0 }dfxphq}Y , with dfx : X Ñ X defined by

dfxphq
.

“

#
0, }h}X “ 0,

fpx`hq´fpxq´Dfpxqh
}h}X

, }h}X ą 0.

By definition, the map h ÞÑ dfxphq is continuous at 0.

II. LEAST ACTION AND OPTIMAL CONTROL

For a conservative system with generalized position evolv-

ing in a real Hilbert space X , the action is formalized as a

function defined with respect to a coercive inertia operator

M P LpX q, a potential field V : X Ñ R, and an artificial

convex terminal cost Ψ : X Ñ R that is included to

encode terminal data [11], [6]. Given t, T P R, t ă T ,

and U rt, T s
.

“ L2prt, T s;X q, it is explicitly defined by

JtrΨs : X ˆ U rt, T s Ñ R, with

JtrΨspx, uq
.

“

ż T

t

1

2
xus,M usy ´ V pξsq ds ` ΨpξT q, (1)
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for all x P X , u P U rt, T s, in which s ÞÑ ξs is the

generalized position trajectory

ξs
.

“ x`

ż s

t

uσ dσ, s P rt, T s, (2)

defined with respect to a corresponding generalized velocity

trajectory s ÞÑ us for s P rt, T s. For convenience, in

addition to coercivity of M, it is assumed throughout that

V , Ψ are three times continuously Fréchet differentiable with

uniformly bounded Hessian as per [4], i.e.

V,Ψ P C3pX ;Rq,

m
.

“ inf
hPX

 
xh, M hy{}h}2

(
ą 0, (3)

κ
.
“ 2 sup

hPX

max
 

}∇2V }LpX q, }∇2Ψpxq}LpX q

(
ă 8.

For sufficiently short time horizons T ´ t ą 0, and in the

company of (3), the action JtrΨspx, ¨q : U rt, T s Ñ R, x P
X , can be shown to be strictly convex and coercive for

finite dimensional X [11], [6], see Theorem 2.1 below. In

that case, an optimal control problem can be formulated to

describe stationary action as least action. The value function

involved is defined by W t : X Ñ R, with

W tpxq
.
“ inf

uPU rt,T s
JtrΨspx, uq (4)

for all x P X . The Hamiltonian H : X ˆ X Ñ R involved

is subsequently defined by

Hpx, pq
.

“ 1

2
xp, M´1 py ` V pxq (5)

“ sup
uPX

t´xp, uy ´ 1

2
xu, M uyu ` V pxq

for all x, p P X , in which the second equality follows by

completion of squares.

Theorem 2.1: Given m,κ as per (3) and t0 P RăT

satisfying maxpT ´ t0, 1q pT ´ t0q ă m
κ

, the following

properties concerning the value function (4) hold:

(i) Given any t P rt0, T q, x P X , the action (cost)

JtrΨspx, ¨q : U rt, T s Ñ R is strictly convex and co-

ercive, and there exists an optimal input ū˚ P U rt, T s
such that W tpxq “ Jtpx, ū

˚q P R;

(ii) Given the Hamiltonian H of (5), the function pt, xq ÞÑ
W tpxq is the unique viscosity solution of the HJB PDE

$
&
%
0 “ ´

BWt

Bt
pxq `Hpx,∇xWtpxqq,

WT pxq “ Ψpxq,
(6)

for all t P rt0, T s, x P X ; and

(iii) There exists a classical solution of the two-point bound-

ary value problem (TPBVP)
#

9̄xs “ ´∇pHpx̄s, p̄sq “ ´M
´1 p̄s, x̄t “ x,

9̄ps “ ∇xHpx̄s, p̄sq “ ∇V px̄sq, p̄T “ ∇Ψpx̄T q,

(7)

for all s P rt, T s, in which ∇xH and ∇pH denote

Riesz representations of the Fréchet derivatives of the

Hamiltonian (5), and the optimal input satisfies

ū˚
s “ ´M´1 p̄s, s P rt, T s. (8)

Proof: (i): Fix arbitrary t0 ă T such that maxpT ´
t0, 1q pT ´ t0q ă m

κ
, and fix any t P rt0, T q, x P X , and

u, û, h P U rt, T s. [4, Theorem 3.6, Assertion 2] states that

the Fréchet derivative of the Riesz representation of the first

Fréchet derivative of JtrΨspx, ¨q is given by

rDu∇uJtrΨspx, uqhsr “ M hr

`

ż T

t

«ż T

r_ρ

´∇2V pξσq dσ ` ∇2ψpξT q

ff
hρ dρ, (9)

for all r P rt, T s, in which the trajectory σ ÞÑ ξσ , σ P rt, T s,
is as per (2). Recalling (3), note that

ˇ̌
ˇ̌
ˇ

ż T

t

«ż T

r_ρ

´∇2V pξσq dσ ` ∇2ψpξT q

ff
hρ dρ

ˇ̌
ˇ̌
ˇ

ď

ż T

t

«ż T

t

κ
2
dσ ` κ

2

ff
|hρ| dρ

ď κ maxpT ´ t, 1q

ż T

t

|hρ| dρ. (10)

Hence, applying Cauchy-Schwartz and Hölder on U rt, T s,
along with coercivity of M as per (3), yields

xh, Du∇uJtrΨspx, uqhy

ě xh, M hyU rt,T s ´ κ maxpT ´ t, 1q

«ż T

t

|hr| dr

ff2

ě κ
“
m
κ

´ maxpT ´ t0, 1q pT ´ t0q
‰

}h}2
U rt,T s

“ ǫ }h}2
U rt,T s,

in which ǫ ą 0 by choice of t0. Hence, Du∇uJtrΨspx, uq P
LpU rt, T qq is coercive, so that JtrΨspx, ¨q is strictly convex.

Consequently, there exists a unique optimal control ū˚ P
U rt, T s that is the minimizer of JtrΨspx, ¨q, i.e. W tpxq “
JtrΨspx, ū˚q P R. (ii): Standard dynamic programming argu-

ments yield the viscosity solution assertion, see for example

[2, Theorem 7.4.14, p.223]. (iii): Pontryagin’s minimum

principle [17], [1] and (i) yield existence of a solution to

(7) and the minimum condition (8). The fact that this is

a classical solution follows as a consequence of (3), see

Remark 2.2 below.

Remark 2.2: Classical solutions for the characteristic sys-

tem (7) in the statement of Theorem 2.1 (iii) can be asserted

via a global Lipschitz property. Given f : X 2 ÞÑ X 2,

fpXq
.

“

ˆ
´M´1 p

∇V pxq

˙
, X

.
“

ˆ
x

p

˙
,

note that any mild solution of (7) is also a mild solution

of the corresponding final value problem with compatible

terminal condition, i.e.

9Xs “ fpXsq, XT “

ˆ
y

∇Ψpyq

˙
, (11)

for all s P rt, T s, with y
.

“ x̄T P X . By (3), observe that f
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is continuously differentiable. By the mean value theorem,

|fpX ` hq ´ fpXq| ď

ˇ̌
ˇ̌
ˆż

1

0

DfpX ` η hq dη

˙
phq

ˇ̌
ˇ̌

ď

ż
1

0

}DfpX ` η hq}LpX 2q dη |h| ď α |h|,

for all X,h P X , in which (3) implies that

α
.

“ sup
ζPX

››››
ˆ

0 ´M´1

∇2V pζq 0

˙››››
LpX 2q

ă 8.

That is, f is globally Lipschitz, with Lipschitz constant

α P R. Hence, (11) has a unique classical solution, see

for example [14, Theorem 5.1, p.127]. Consequently, any

mild solution of TPBVP (7) must correspond to the unique

classical solution of (11) defined by the compatible choice

of y P X . ˝

Remark 2.3: As any solution of TPBVP (7) must be a

classical solution by Remark 2.2, the map s ÞÑ p̄s, s P pt, T q,

is differentiable. Hence, the first equation in (7) may be

differentiated, yielding

:̄xs “ ´M´1 9̄ps “ ´M´1 ∇V px̄sq, s P pt, T q,

which is a generalized form of Newton’s second law. More-

over, applying (5), (7), and the chain rule,

d
ds
Hpx̄s, p̄sq “ x∇xHpx̄s, p̄sq, 9̄xsy ` x∇pHpx̄s, p̄sq, 9̄psy

“ x∇V px̄sq,´M´1 p̄sy ` xM´1 p̄s,∇V px̄sqy “ 0,

for all s P pt, T q. Consequently, the Hamiltonian is the

conserved quantity, along the characteristic flow, as expected

by the minimum principle underlying (8). ˝

Theorem 2.1 demonstrates that solutions of the TPBVP (7)

describe those trajectories that render the action stationary in

the statement of the action principle. As expected, it is also

possible to equivalently characterize these trajectories via a

verification theorem for HJB PDE (6).

Theorem 2.4: Under the conditions of Theorem 2.1, sup-

pose there exists pt, xq ÞÑ Wtpxq P C1ppt0, T q ˆ X ;Rq
such that (6) holds, with p B

BtWtpxq,∇Wtpxqq P R ˆ X

denoting its Fréchet derivative at pt, xq P pt0, T qˆX . Then,

Wtpxq ď JtrΨspx, uq for all u P U rt, T s. Furthermore,

if there exists a mild solution s ÞÑ x̄˚
s , s P pt, T q, of (2)

satisfying

x̄˚
s “ x`

ż s

t

ū˚
σ dσ, ū˚

σ “ ´M´1∇Wσpx̄˚
σq, (12)

such that x̄˚
s P X for all s P pt, T q, then Wtpxq “

JtrΨspx, ū˚
t q “ W tpxq for all x P X .

Proof: Fix T P R. Suppose the conditions of Theorem

2.1 hold, defining t0 P R, t0 ă T . Suppose pt, xq ÞÑ Wtpxq P
C1ppt0, T qˆX ;Rq is a (classical) solution of HJB PDE (6).

Fix t P pt0, T q, x P X , ū P U rt, T s, and let s ÞÑ x̄s denote

the corresponding mild solution of (2) with x̄t “ x and

u “ ū. Define p̄s
.

“ ∇Wspx̄sq and note that p̄s P X for all

s P pt, T q. Fix s P pt, T q and observe by coercivity of M

and completion of squares as per (5) that

´ xp̄s, ūsy ´ 1

2
xūs, M ūsy

“ 1

2
xp̄s, M

´1 p̄sy ´ 1

2
}M

1

2 pūs ` M
´1 p̄sq}2

ď 1

2
xp̄s, M

´1 p̄sy. (13)

Consequently, by the chain rule, (5), (6), and the definition

of p̄s above,

d
ds
Wspx̄sq “ B

BsWspx̄sq ` x∇Wspx̄sq, ūsy

“ ´r´ B
BsWspx̄sq `Hpx,∇Wspx̄sqqs

`Hpx,∇Wspx̄sqq ` x∇Wspx̄sq, ūsy

“ 1

2
xp̄s, M

´1p̄sy ` V px̄sq ` xp̄s, ūsy

ě ´ 1

2
xūs, M ūsy ` V px̄sq.

Integrating with respect to s P pt, T q, and recalling the

terminal condition in (6),

Ψpx̄T q ´Wtpxq ě ´

ż T

t

1

2
xūs, M ūsy ´ V px̄sq ds

ùñ Wtpxq ď JtrΨspx, ūq. (14)

As x P X and ū P U rt, T s are arbitrary, the first assertion

follows. Moreover, if ū˚ exists as per (12), then (13), (14)

hold with equality, and the second assertion follows.

III. STATIONARY ACTION AND STATIONARY CONTROL

Theorem 2.1 guarantees that stationarity of the action (1)

is achieved at a minimum, provided that the maximal time

horizon T ´ t0 is sufficiently short. For longer horizons,

Theorem 2.1 is no longer applicable, typically due to a loss of

convexity of (1). This is manifested in the optimal control

problem (4) as finite escape phenomena exhibited by the

value function t ÞÑ Wt as T ´ t ą 0 increases.

As the connection between stationary (least) action and

optimal control breaks down for longer time horizons, sta-

tionarity of the action is instead formalized by replacing

the inf operation in (4) with a stat operation [12], [13].

This stat operation, along with the corresponding argstat

operation, can be defined for Fréchet differentiable functions

F P C1pW ;Rq on any real Hilbert space W by

stat
wPW

F pwq
.
“

"
F pwq

ˇ̌
ˇ̌w P arg stat

wPW

F pwq

*
,

arg stat
wPW

F pwq
.

“ tw P W |∇F pwq “ 0u ,
(15)

in which ∇F : W Ñ LpW ;Rq denotes the Riesz representa-

tion of the derivative. As the action JtrΨspx, ¨q : U rt, T s Ñ
R is continuously Fréchet differentiable, see [4, Theorem

3.6], and U rt, T s is a real Hilbert space, it is possible to

select W
.

“ U rt, T s and F
.

“ JtrΨspx, ¨q in (15).

The ensuing stationary control problem is defined for any

time horizon T ´ t ą 0, t, T P R, by a (possibly set-valued)

stat value function ĂWt : X Ñ R, with

ĂWtpxq
.

“ stat
uPU rt,T s

JtrΨspx, uq, (16)
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for all x P X . Given a specific x P X , trajectories that

render the action JtrΨspx, ¨q stationary as per the action

principle can be characterized as follows [4, Theorem 3.9].

Theorem 3.1: Suppose (3) holds. Given t, T P R, t ď T ,

x P X , an input ū P U rt, T s is staticizing, i.e.

ū P arg stat
uPU rt,T s

JtrΨspx, uq (17)

if and only if there exists a classical solution of the TPBVP
#

9̄xs “ ´M´1 p̄s, x̄t “ x,

9̄ps “ ∇V px̄sq, p̄T “ ∇Ψpx̄T q,
(18)

for all s P rt, T s. Furthermore, ū P U rt, T s satisfies

ūs “ ´M
´1 p̄s, s P rt, T s. (19)

Proof: [Sketch] The argument used here is a minor

generalization of [4, Theorem 3.9], involving the replacement

of a scalar inertia with the coercive inertia operator M P
LpX q, and strengthening the TPBVP solutions from mild

to classical as per Remark 2.2.

By inspection, TPBVPs (7), (18) are identical except for

the time horizon on which solutions are sought. For short

time horizons, as required in (4), (7), the input ū P U rt, T s
defined by (8) is a minimizer for the action (1). Theorems

2.1 and 2.4 provide a means for synthesizing this via solution

of HJB PDE (6) and the application of Theorem 2.4.

For longer horizons, as allowed in (16), (18), the input

ū P U rt, T s defined by (17) need only render the action

(1) stationary. As Theorems 2.1 and 2.4 are unavailable on

these longer horizons, it is not possible to construct ū via

HJB PDE (6). However, verification of the stationary control

is possible using an alternative approach that again appeals

to a pair of optimal control and corresponding HJB PDEs,

via semiconvex and semiconcave duality.

IV. VERIFICATION OF THE STATICIZING CONTROL

The aim is to develop a verification argument for the stati-

cizing input (17), applicable to longer time horizons. Crucial

to this development is a new characterization of the argstat

operation (15) using semiconvex and semiconcave duality.

This characterization is applicable for any real Hilbert space

W , although its application here will be restricted to the

case W
.

“ U rt, T s, given t, T P R, t ă T . Unlike [12],

this development will make use of a pair of optimal control

problems, rather than a single stationary control problem.

A. Duality based characterization of argstat

Some preliminary definitions are required. A function ψ :

W Ñ R is convex if its epigraph tpw,αq P W ˆR |ψpwq ď
αu is convex [15]. It is lower closed if ψ “ cl´ ψ, in which

cl´ ψ is the lower closure of ψ, defined with respect to the

corresponding lower semicontinuous envelope lscψ by

cl´ψpwq
.
“

#
lscψpwq, lscψpwq ą ´8 @ w P W ,

´8 otherwise,

for all w P W . A function ψ is concave if ´ψ is convex,

and upper closed if ´ψ is lower closed, see [15, pp.15-17].

Recall that a proper lsc function is convex if and only if it is

the pointwise supremum of its affine support functions, see

for example [16, Theorem 8.13, p.309].

Semiconvexity and semiconcavity, and subsequent relaxed

notions of duality, are defined with respect to a bivariate

quadratic support or basis function ϕ : W ˆ W Ñ R that

has a fixed coercive Hessian C P LpW q. Explicitly,

ϕpv, wq
.

“ ´ 1

2
xv ´ w, C pv ´ wqy (20)

for all v, w P W . Using (20), the spaces S
`
ϕ and S

´
ϕ

of (uniformly) semiconvex and semiconcave functions are

defined respectively by

S
`
ϕ

.
“

"
ψ : W Ñ R

ˇ̌
ˇ̌ v ÞÑ ψpvq ´ ϕpv, 0q

convex, lower closed

*
,

S
´
ϕ

.
“

 
φ : W Ñ R

ˇ̌
´φ P S `

ϕ

(
. (21)

These spaces are in duality, via either the semiconvex trans-

form D`
ϕ , see for example [9], [3], or the analogously defined

semiconcave transform D´
ϕ , i.e.

S
`
ϕ

D
`

ϕ
” rD´

ϕ
s´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ
D

´
ϕ ” rD`

ϕ s´1

S
´
ϕ

The semiconvex transform and its inverse are given by

pD`
ϕ ψqpwq

.
“ ´ sup

vPW

tϕpv, wq ´ ψpvqu, ψ P S
`
ϕ ,

prD`
ϕ s´1 φqpvq “ sup

wPW

tϕpv, wq ` φpwqu, φ P S
´
ϕ ,

(22)

for all v, w P W , while for the semiconcave transform,

D´
ϕ φ

.
“ ´D`

ϕ r´φs “ rD`
ϕ s´1φ, φ P S

´
ϕ ,

rD´
ϕ s´1 ψ “ ´rD`

ϕ s´1 r´ψs “ D
`
ϕ ψ, ψ P S

`
ϕ ,

(23)

in which the symmetry of ϕ with respect to its arguments is

used to obtain the right-hand equivalences in (23).

Remark 4.1: Given any ψ P S `
ϕ , by inspection of (22),

the semiconvex transform provides a supremum of quadratics

representation for ψ using ϕ, i.e.

ψpvq “ prD`
ϕ s´1D`

ϕ ψqpvq “ sup
wPW

tϕpv, wq ` pD`
ϕ ψqpwqu

for all v P W . Similarly, given any φ P S ´
ϕ , by inspection

of (23), the semiconcave transform provides an infimum of

quadratics representation for φ using ´ϕ, i.e.

φpwq “ prD´
ϕ s´1D´

ϕ φqpwq “ inf
vPW

t´ϕpw, vq ` pD´
ϕ ψqpvqu

for all w P W , noting again the symmetry of ϕ. ˝

A new characterization of the argstat operation (15), using

the spaces of semiconvex and semiconcave functions (21)

and their respective transforms (22), (23), is as follows.

Theorem 4.2: Suppose F P S
`
ϕ X S

´
ϕ . Then,

pD`
ϕF qpwq ď F pwq ď pD´

ϕF qpwq (24)

for all w P W , and

w P arg stat
wPW

F pwq ðñ pD`
ϕF qpwq “ pD´

ϕF qpwq. (25)
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Proof: Fix F P S `
ϕ X S ´

ϕ . With w P W , recalling

(22), (23), and noting the symmetry of ϕ of (20), define

apwq
.
“ pD`

ϕF qpwq “ inf
vPW

tF pvq ´ ϕpv, wqu,

bpwq
.
“ pD´

ϕF qpwq “ sup
vPW

tF pvq ` ϕpv, wqu.
(26)

As w P W is suboptimal in both right-hand sides in (26),

and ϕpw,wq “ 0, by inspection,

apwq ď F pwq ď bpwq. (27)

That is, (24) holds.

[Necessity]. Suppose the right-hand statement in (25)

holds. That is, recalling (26), there exists w P W such that

apwq “ bpwq. (28)

Together, (27), (28), yield

apwq “ F pwq “ bpwq. (29)

Fix any h P W . As w ` h P W is also suboptimal in the

definitions of a and b, (26), (29) imply that

F pwq “ apwq ď F pw ` hq ´ ϕpw ` h,wq,

F pwq “ bpwq ě F pw ` hq ` ϕpw ` h,wq.

These inequalities and (20) together yield

|F pw ` hq ´ F pwq| ď ´ϕpw ` h, hq “ 1

2
xh, C hy

ď }C}LpW q |h|2.

As h P W is arbitrary, it follows that F is Fréchet differen-

tiable at w, with derivative and its Riesz representation given

by DF pwq “ 0 P LpW q and ∇F pwq “ 0 P W respectively.

Hence, recalling (15), w P arg statwPW F pwq, as required.

[Sufficiency]. Suppose the left-hand statement in (25)

holds, i.e. there exists a w P arg statwPW F pwq. By

definition (15), ∇F pwq “ 0. Note further by (20) that

∇vϕpv, wq|v“w “ 0, so that

∇vrF pvq ´ ϕpv, wqs|v“w “ 0. (30)

Recall that v ÞÑ F pvq ´ ϕpv, 0q is convex, as F P S `
ϕ ,

and ϕpv, 0q´ϕpv, wq is affine. Hence, the map v ÞÑ F pvq´
ϕpv, wq must also be convex, while simultaneously satisfying

(30). Hence, it has a global minimum at v “ w, so that

apwq “ inf
vPW

tF pvq ´ ϕpv, wqu “ F pwq ´ ϕpw,wq “ F pwq,

by (26). Similarly, as F P S ´
ϕ , the map v ÞÑ F pvq`ϕpv, wq

is concave, simultaneously satisfying (30). Hence, it has a

global maximum at v “ w, so that

bpwq “ sup
vPW

tF pvq ` ϕpv, wqu “ F pwq ` ϕpw,wq “ F pwq,

by (26). Hence, combining these two conclusions yields

pD`
ϕF qpwq “ apwq “ F pwq “ bpwq “ pD´

ϕF qpwq,

which completes the proof.

The following lemma is useful in the subsequent applica-

tion of Theorem 4.2.

Lemma 4.3: With F P C2pW ;Rq, suppose that the first

Fréchet derivative of the Riesz representation of its first

Fréchet derivative D∇F : W Ñ LpW q is uniformly

bounded, i.e. c̄
.

“ supwPW }D∇F pwq}LpW q ă 8. Then, for

any C P LpW q, ǫ ě 0, satisfying xh, C hy ě pc̄ ` ǫq |h|2 for

all h P W , the support ϕ defined by (20) is such that (i) w ÞÑ
F pwq´ϕpw, 0q is (strictly) convex and w ÞÑ F pwq`ϕpw, 0q
is (strictly) concave for (ǫ ą 0) ǫ ě 0; and (ii) for any ǫ ě 0,

F P S
`
ϕ X S

´
ϕ . (31)

Proof: Fix F P C2pW ;Rq and c̄ ă 8 as per the lemma

statement. Fix ǫ P Rě0. Select any coercive C P LpW q such

that xh, C hy ě pc̄ ` ǫq |h|2 for all h P W , e,g, C
.

“ c I,

c ě c̄` ǫ. Using this C, define ϕ as per (20).

(i) Fix any w, h P W . As F P C2pW ;Rq, its first Fréchet

derivative at w satisfies DF pwqh “ x∇F pwq, hy, in which

∇F pwq P W is the corresponding Riesz representation.

Moreover,

D∇F pwq P LpW q, D2F pwqhh “ xh, D∇F pwqhy,

see for example [4, Appendix]. Hence, for µ
.
“ ˘1,

D2rµF pwq ´ ϕpw, 0qs hh “ µ xh, D∇F pwqhy ` xh, C hy

ě ´c̄ |h|2 ` xh, C hy ě ǫ |h|2.

As w, h P W are arbitrary, it follows that w ÞÑ ˘F pwq ´
ϕpw, 0q is (strictly) convex, as (ǫ ą 0) ǫ ě 0.

(ii) The maps w ÞÑ ˘F pwq ´ ϕpw, 0q are continuous by

definition, and hence lower closed. Hence, applying (i) and

(21), F P S `
ϕ X S ´

ϕ .

B. Application to stationary control

Given fixed t0, T P R with t0 ă T via (3), the intention

is to apply Theorem 4.2 to the stationary control problem

(16), (17) for any t P rt0, T q, with W
.

“ U rt, T s and F
.

“
JtrΨspx, ¨q. In order to explicitly define the quadratic support

function ϕ : U rt, T s ˆ U rt, T s Ñ R as per (20), let

C
.
“ c I P

ď

tPrt0,T q

LpU rt, T sq, c P R, c ě ct0 , (32)

ct0
.
“ 1 ` }M}LpX q ` κ maxpT ´ t0, 1q pT ´ t0q ă 8.

Lemma 4.4: Suppose (3) holds. Given any t P rt0, T q, x P
X , and support ϕ as per (20), (32), the following properties

concerning the action (1) hold: (i) u ÞÑ JtrΨspx, uq´ϕpu, 0q
is strictly convex and u ÞÑ JtrΨspx, uq ` ϕpu, 0q is strictly

concave; and (ii) JtrΨspx, ¨q is simultaneously semiconvex

and semiconcave, i.e.

JtrΨspx, ¨q P S
`
ϕ X S

´
ϕ . (33)

Proof: Fix any t P rt0, T q, x P X , and u, h, h̃ P
U rt, T s. Recall by [4, Theorem 3.6] that the action (1)

is three times Fréchet differentiable, i.e. JtrΨspx, ¨q P
C3pU rt, T s;Rq. (i) Recalling (9), (10), and applying

Cauchy-Schwartz and Hölder on U rt, T s, the Fréchet deriva-

tive of the Riesz representation of the first Fréchet derivative
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of JtrΨspx, ¨q, i.e. Du∇uJtrΨspx, uq P LpU rt, T sq, satisfies

xh̃, Du∇uJtrΨspx, uqhy ď }M}LpX q |h̃| |h|

` κ maxpT ´ t, 1q

ż T

t

|h̃r| dr

ż T

t

|hρ| dρ

ď
“
}M}LpX q ` κ maxpT ´ t, 1q pT ´ tq

‰
|h̃| |h|.

As h, h̃ P U rt, T s are arbitrary, it follows immediately by

definition (32) of ct0 that ct0 ě c̄t0 ` ǫ, with ǫ
.

“ 1 and

c̄t0
.

“ }Du∇uJtrΨspx, uq}LpU rt,T sq.

Hence, by definitions (20), (32) of ϕ, C, Lemma 4.3 (i)

implies that assertion (i) holds. Assertion (ii), i.e. (33), is

subsequently immediate by Lemma 4.3 (ii)

Lemma 4.5: Suppose (3) holds. Given any t P rt0, T q,

x P X , and u P U rt, T s,

pD`
ϕ JtrΨspx, ¨qqpuq ď pD´

ϕ JtrΨspx, ¨qqpuq. (34)

Moreover, the argstat condition (17) holds, i.e. ū P
arg statuPU rt,T s JtrΨspx, uq, if and only if

pD`
ϕ JtrΨspx, ¨qqpūq “ pD´

ϕ JtrΨspx, ¨qqpūq, (35)

in which D˘
ϕ and ϕ are as per (23) and (20), (32).

Proof: Fix any t P rt0, T q, x P X , and u P U rt, T s.
Observe by Lemma 4.4 that (33) holds. Hence, applying

Theorem 4.2 with W
.
“ U rt, T s, F

.
“ JtrΨspx, ¨q, and ϕ

defined via (20), (32), yields inequality (34) via (24), and

the stated equivalence between (17) and (35) via (25).

C. Auxiliary optimal control problems

In order to apply (35), it is useful to first rewrite both sides

in a more familiar form. In particular, given t P rt0, T q and

x P X , and recalling the definitions (23) and (1) of D˘
ϕ and

JtrΨspx, ¨q, observe that

pD`
ϕ JtrΨspx, ¨qqpūq “ inf

uPU rt,T s
tJtrΨspx, uq ´ ϕpu, ūqu,

pD´
ϕ JtrΨspx, ¨qqpūq “ sup

uPU rt,T s

tJtrΨspx, uq ` ϕpu, ūqu.
(36)

That is, the two sides of (35) define a pair of auxiliary

optimal control problems, parameterized by ū P U rt, T s.
In view of (36), given any v P U rt0, T s, explicitly define

the auxiliary cost functions

Jv
t rΨs, pJv

t rΨs : X ˆ U rt, T s Ñ R

via (1) and (20), (32) by

Jv
t rΨspx, uq

.
“ JtrΨspx, uq ´ ϕpu, vq

“

ż T

t

1

2
xus, E usy ´ xus, C vsy ` 1

2
xvs, C vsy ´ V pξsq ds

` ΨpξT q, (37)

pJv
t rΨspx, uq

.
“ JtrΨspx, uq ` ϕpu, vq

“

ż T

t

´ 1

2
xus, pE usy ` xus, C vsy ´ 1

2
xvs, C vsy ´ V pξsq ds

` ΨpξT q, (38)

for all t P rt0, T s, x P X , and u P U rt, T s, in which

E , pE P LpX q, E
.
“ C ` M, pE .

“ C ´ M, (39)

are coercive by (32). The aforementioned auxiliary optimal

control problems are defined via their respective value func-

tions W v
t ,

xW v
t : X ˆ U rt, T s Ñ R, with

W v
t pxq

.
“ inf

uPU rt,T s
Jv
t rΨspx, uq, (40)

xW v
t pxq

.
“ sup

uPU rt,T s

pJv
t rΨspx, uq, (41)

for all x P X , v P U rt, T s. Analogously to the short horizon

case of (4), (6), and Theorem 2.1, the relevant Hamiltonians

are defined with respect to (5) by

Hvpt, x, pq
.

“ Hpx, pq ´ 1

2
xp` M vt, Gpp ` M vtqy, (42)

pHvpt, x, pq
.

“ Hpx, pq ´ 1

2
xp` M vt, pGpp` M vtqy, (43)

for all v P U rt, T s, t P rt0, T s, x, p P X , in which

G, pG P LpX q, G
.
“ M´1 ´ E´1, pG .

“ M´1 ` pE´1, (44)

are coercive, by coercivity of E , pE of (39). By (5), (44), the

maps p ÞÑ Hvpt, x, pq and p ÞÑ pHvpt, x, pq are respectively

convex and concave. Properties of these auxiliary optimal

control problems follow analogously to Theorem 2.1, while

being applicable to longer time horizons.

Theorem 4.6: Suppose (3) holds. Given arbitrary v P
Cprt0, T s;X q, the following properties of (40) hold:

(i) Given t P rt0, T s, x P X , there exists an optimal input

u˚
v P U rt, T s such that W v

t pxq “ Jv
t rΨspx, u˚

v q P R;

(ii) Given Hamiltonian Hv of (42), the function pt, xq ÞÑ
W v

t pxq is the unique viscosity solution of the HJB PDE
$
&
%
0 “ ´

BWt

Bt
pxq `Hvpt, x,∇xWtpxqq,

WT pxq “ Ψpxq,
(45)

for all t P rt0, T s, x P X ; and

(iii) There exists a classical solution of the TPBVP
#

9xs “ vs ´ E´1pM vs ` psq, xt “ x,

9ps “ ∇V pxsq, pT “ ∇ΨpxT q
(46)

for all s P rt, T s, and the optimal input satisfies

ru˚
v ss “ vs ´ E

´1pM vs ` psq, s P rt, T s. (47)

Proof: (i): Fix t0, T P R with t0 ă T via (3), and let

C P LpX q be as per (32). Fix t P rt0, T s. Observe by Lemma

4.4 that Jv
t rΨspx, ¨q : U rt, T s Ñ R is strictly convex and

coercive. Hence, there exists a unique optimal control u˚
v P

U rt, T s that is the minimizer of Jv
t rΨspx, ¨q, i.e. W v

t pxq “
Jv
t rΨspx, u˚

v q P R. (ii): Standard dynamic programming

arguments yield the viscosity solution assertion, see for

example [2, Theorem 7.4.14, p.223]. (iii): The characteristic

system (46) follows by inspection of (43). Existence of a

solution to (46) follows by Pontryagin’s minimum principle

and (i). Letting

fvpXq
.

“

ˆ
´E´1 p

∇V pxq

˙
`

ˆ
I ´ E´1 M

0

˙
v, X

.
“

ˆ
x

p

˙
,

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 260 submitted to 2020 American Control Conference.
Received September 22, 2019.



note as per Remark 2.2 that fv is globally Lipschitz. Conse-

quently, any mild solution of TPBVP (46) must correspond to

the unique classical solution of the corresponding final (or

initial) value problem, see for example [14, Theorem 5.1,

p.127].

Theorem 4.7: Suppose (3) holds. Given arbitrary v P
Cprt0, T s;X q, the following properties concerning the value

function (41) hold:

(i) Given t P rt0, T s, x P X , there exists an optimal input

û˚
v P U rt, T s such that xW v

t pxq “ pJv
t rΨspx, û˚

v q P R;

(ii) Given Hamiltonian pHv of (43), the function pt, xq ÞÑ
xW v

t pxq is the unique viscosity solution of the HJB PDE

$
&
%
0 “ ´

BWt

Bt
pxq ` pHvpt, x,∇xWtpxqq,

WT pxq “ Ψpxq,
(48)

for all t P rt0, T s, x P X ; and

(iii) There exists a classical solution of the TPBVP

#
9̂xs “ vs ` pE´1pM vs ` p̂sq, x̂t “ x,

9̂ps “ ∇V px̂sq, p̂T “ ∇Ψpx̂T q
(49)

for all s P rt, T s, and the optimal input satisfies

rû˚
v ss “ vs ` pE´1pM vs ` p̂sq, s P rt, T s. (50)

Proof: (i): Fix t0, T P R with t0 ă T via (3), and

let C P LpX q be as per (32). Fix t P rt0, T s. Observe by

Lemma 4.4 that ´ pJv
t rΨspx, ¨q : U rt, T s Ñ R is strictly

convex and coercive. Hence, there exists a unique optimal

control û˚
v P U rt, T s that is the maximizer of pJv

t rΨspx, ¨q,

i.e. xW v
t pxq “ Jv

t rΨspx, û˚
v q P R. The remaining assertions

(ii) and (iii) follow analogously as per Theorem 4.6.

Verification theorems analogous to Theorem 2.4 likewise

follow.

Theorem 4.8: Under the conditions of Theorem 4.6, with

v P Cprt, T s;X q fixed, suppose there exists pt, xq ÞÑ
Wtpxq P C1ppt0, T q ˆ X ;Rq such that (45) holds, with

p B
BtWtpxq,∇Wtpxqq P R ˆ X denoting the Fréchet deriva-

tive at pt, xq P pt0, T qˆX . Then, W v
t pxq ď Jv

t rΨspx, uq for

all u P U rt, T s. Furthermore, if there exists a mild solution

s ÞÑ px˚
v qs, s P pt, T q of (2) satisfying

rx˚
v ss “ x`

ż s

t

ru˚
v sσ dσ,

ru˚
v sσ “ vσ ´ E´1pM vσ ` ∇W v

t prx˚
v sσq,

(51)

such that rx˚
v ss P X for all s P pt, T q, then W v

t pxq “
Jv
t rΨspx, u˚

v q for all x P X .

Proof: The proof follows that of Theorem 2.4. Under

the conditions of Theorem 4.6, with v P Cprt, T s;X q fixed,

let pt, xq ÞÑ Wtpxq P C1ppt0, T q ˆ X ;Rq be such that (45)

holds. Fix t P pt0, T q, x P X , ū P U rt, T s, and let s ÞÑ x̄s
denote the corresponding mild solution of (2) with x̄t “ x

and u “ ū. Define p̄s
.

“ ∇Wspx̄sq and note that p̄s P X for

all s P pt, T q. Fix s P pt, T q and observe by coercivity of E

of (39) and completion of squares that

1

2
xp̄s, E

´1 p̄sy ` xp̄s, ūs ´ GM vsy

“ 1

2
}E

1

2 pE´1 p̄s ` ūs ´ GM vsq}2 ´ 1

2
}E

1

2 pūs ´ GM vsq}2

ě ´ 1

2
}E

1

2 pūs ´ GM vsq}2, (52)

which holds with equality when

ūs “ GM vs ´ E´1 p̄s “ vs ´ E´1pM vs ` p̄sq. (53)

Consequently, by the chain rule, (5), (39), (42), (44), (45),

and the definition of p̄s above,

d
ds
Wspx̄sq “ ´r´ B

BsWspx̄sq `Hvps, x̄s,∇W
v
s px̄sqs

`Hvps, x̄s,∇Wspx̄sqq ` x∇Wspx̄sq, ūsy

“ Hpx̄s, p̄sq ´ 1

2
xp̄s ` M vs, G pp̄s ` M vsqy ` xp̄s, ūsy

“ 1

2
xp̄s, E

´1 p̄sy ` xp̄s, ūs ´ GM vsy

´ 1

2
xvs, MGM vsy ` V px̄sq

ě ´ 1

2
}E

1

2 pūs ´ GM vsq}2 ´ 1

2
xvs, MGM vsy ` V px̄sq

“ ´ 1

2
xūs, E ūsy ` xūs, E GM vsy

´ 1

2
xvs M pG E G ` GqM vsy ` V px̄sq

“ ´ 1

2
xūs, E ūsy ` xūs, C vsy ´ 1

2
xvs C vsy ` V px̄sq. (54)

Integrating with respect to s P rt, T s, and recalling the

terminal condition in (45),

Ψpx̄T q ´Wtpxq

ě ´

ż T

t

1

2
xūs, E ūsy ´ xūs, C vsy ` 1

2
xvs C vsy ´ V px̄sq ds

ùñ Wtpxq ď Jv
t rΨspx, ūq. (55)

As x P X and ū P U rt, T s are arbitrary, the first assertion

follows. Moreover, if u˚
v exists as per (51), (53), then (54),

(57) hold with equality, and the second assertion follows.

Theorem 4.9: Under the conditions of Theorem 4.7, with

v P Cprt, T s;X q fixed, suppose there exists pt, xq ÞÑ
Wtpxq P C1ppt0, T q ˆ X ;Rq such that (48) holds, with

p B
BtWtpxq,∇Wtpxqq P R ˆ X denoting the Fréchet deriva-

tive at pt, xq P pt0, T qˆX . Then, W v
t pxq ě pJv

t rΨspx, uq for

all u P U rt, T s. Furthermore, if there exists a mild solution

s ÞÑ px˚
v qs, s P pt, T q of (2) satisfying

rx̂˚
v ss “ x`

ż s

t

rû˚
v sσ dσ,

rû˚
v sσ “ vσ ` pE´1pM vσ ` ∇W v

t prx̂˚
v sσq,

(56)

such that rx̂˚
v ss P X for all s P pt, T q, then W v

t pxq “
pJv
t rΨspx, û˚

v q for all x P X .

Proof: Following the proof of Theorem 4.8, the key

steps are completion of squares and application of the chain

rule. In particular, using the analogous notation, observe by

coercivity of pE of (39) and completion of squares that

´ 1

2
xp̄s, pE´1 p̄sy ` xp̄s, ūs ´ pGM vsy

“ ´ 1

2
}pE 1

2 ppE´1 p̄s ´ pūs ´ pGM vsqq}2

` 1

2
}pE 1

2 pūs ´ pGM vsq}2

ď 1

2
}pE 1

2 pūs ´ pGM vsq}2,
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which holds with equality when

ūs “ pGM vs ` pE´1 p̄s “ vs ` pE´1pM vs ` p̄sq.

Consequently, by the chain rule, (5), (39), (43), (44), (48),

d
ds
Wspx̄sq “ ´r´ B

BsWspx̄sq ` pHvps, x̄s,∇Wspx̄sqqs

` pHvps, x̄s, p̄sq ` x∇Wspx̄sq, ūsy

“ Hpx̄s, p̄sq ´ 1

2
xp̄s ` M vs, pG pp̄s ` M vsqy ` xp̄s, ūsy

“ ´ 1

2
xp̄s, pE´1 p̄sy ` xp̄s, ūs ´ pGM vsy

´ 1

2
xvs, M pGM vsy ` V px̄sq

ď 1

2
}pE 1

2 pūs ´ pGM vsq}2 ´ 1

2
xvs, M pGM vsy ` V px̄sq

“ 1

2
xūs, pE ūsy ´ xūs, pE pGM vsy

` 1

2
xvs M ppG pE pG ´ pGqM vsy ` V px̄sq

“ 1

2
xūs, pE ūsy ´ xūs, C vsy ` 1

2
xvs C vsy ` V px̄sq.

Integrating with respect to s P rt, T s, and recalling the

terminal condition in (48),

Ψpx̄T q ´Wtpxq

ď

ż T

t

1

2
xūs, pE ūsy ´ xūs, C vsy ` 1

2
xvs C vsy ´ V px̄sq ds

ùñ Wtpxq ě pJv
t rΨspx, ūq, (57)

and the remainder of the proof proceeds analogously with

that of Theorem 4.8.

Theorem 4.10: Suppose (3) holds. Given any t P rt0, T q,

x P X , v P U rt, T s,

W v
t pxq ď xW v

t pxq. (58)

Moreover, the argstat condition (17) holds, i.e. ū P
arg statuPU rt,T s JtrΨspx, uq, if and only if

W ū
t pxq “ xW ū

t pxq. (59)

Proof: The hypothesis is a restatement of Lemma 4.5,

via (36), (37), (38), (40), (41). The proof is immediate.

D. Verification of Theorem 3.1 via optimal control

Theorems 4.6, 4.7, and 4.10 may be applied to directly ver-

ify the long time horizon arg stat characterization provided

by Theorem 3.1. In particular, by application of Theorems

4.6 and 4.7, assertions (i) and (iii), it is evident that given

t P rt0, T s, x P X , and v P U rt, T s defined via the TPBVP

#
9xs “ vs

.
“ ´M´1 ps, xt “ x,

9ps “ ∇V pxsq, pT “ ∇ΨpxT q

for s P rt, T s, that

Jv
t rΨspx, u˚

v q “ W v
t pxq “ xW v

t pxq “ pJv
t px, û˚

v q,

and u˚
v “ v “ û˚

v . Hence, Theorem 4.10 immediately yields

that v P arg statuPU rt,T s JtrΨspx, uq, as per Theorem 3.1.

V. CONCLUSIONS

The stationary action principle is a fundamental physical

postulate that underpins the temporal evolution of dynamical

systems that obey conservation laws. Where this evolution

involves a finite dimensional generalized position space, and

is over a sufficiently short time horizon, this action principle

can be encapsulated within an optimal control problem,

and tools from classical optimal control can be brought to

bear in the computation of system trajectories. However, on

longer time horizons, this encapsulation is known to break

down, typically due to a loss of convexity of the integrated

Lagrangian. In this paper, a new characterization of the

stationary action principle is developed that exploits connec-

tions between stationarity, semiconvexity, semiconcavity, and

optimal control. In particular, it is shown that the stationary

action principle can be characterized by a pair of related

optimal control problems that are well-defined on arbitrarily

long finite horizons.
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