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Abstract—We consider the problem of joint heterogeneous
feature selection and classification when multiple feature sets
are present. Specifically, we want to identify which feature sets
and features per set to review, and perform classification using
this information. To this end, we formulate an optimization
problem that considers the cost of reviewing individual features,
the switching cost between feature sets, and the associated
classification decision cost. The objective is to minimize the
expected total cost of reviewing feature sets and associated
features and the misclassification cost. We derive the optimum
classification decision rule, and show that it minimizes the aver-
age misclassification cost. Additionally, we derive the optimum
feature review rule, which determines both the feature sets and
features per set to be reviewed. We illustrate the performance of
the proposed methodology on the application of the automatic
classification of civil issues reported on crowdsourcing platforms.
We observe that an accurate classification decision can be reached
by examining ∼ 2.6 features on average.

I. INTRODUCTION

In recent years, multi–view data has become increasingly

available in the majority of real–world applications, where

instances are described by multiple different sources (e.g.,

text, audio, image) and/or different feature subsets. Generally,

such data tends to provide a complementary and more holistic

understanding of the phenomenon of interest and can lead to

more accurate prediction models [1], [2]. In fact, since the

performance of machine learning algorithms heavily depends

on the available data, integrating information from multiple

views/modalities with the goal of predicting an outcome can

improve the robustness of the prediction task, and even handle

missing information [1], [2].

Integrating information from multiple independent feature

sets has been studied within the context of various text classifi-

cation applications. In [3]–[6], a final classification decision is

determined by combining individual–level decisions generated

from multiple feature selection algorithms. In contrast, [7], [8]

focus on the design of different classifiers that use different

feature set types. In all these cases, all features from the

selected feature sets are used for classification. Finally, existing

multi–view and multi–modal learning methods (see [1], [2],

[9] and references therein) either seek for representations that

maximize the mutual agreement between the distinct views of

the data or combine outcomes in ad–hoc manner to improve

learning performance.

This material is based upon work supported by the National Science
Foundation under Grants ECCS–1737443 & CNS–1942330.

In this work, we propose an alternative methodology for

handling multi–view/modal data in prediction tasks that guar-

antees accurate classification using the least amount of avail-

able information. The proposed methodology has also the

potential to improve the interpretability of the classification

decision. Specifically, we define the problem of joint heteroge-

neous feature selection and classification with multiple feature

sets. Our goal is to identify which feature sets and features per

set to review, and perform classification using this information.

To this end, we formulate an optimization problem that consid-

ers the cost of reviewing individual features, the switching cost

between feature sets, and the associated classification decision

cost. We derive both the optimum classification decision rule,

which assigns an instance to the class with the minimum

average misclassification cost, and the optimum feature review

rule, which decides the feature sets and associated features per

set to be reviewed. We evaluate the proposed methodology

on the problem of automatically classifying civil issue reports

on crowdsourcing platforms, and show its ability to achieve

up to 94.1% classification accuracy using on average ∼ 2.6

features. The current work extends our prior work [10]–[13]

to the multi–view/modal data setting, while also dynamically

deciding on the feature sets to be reviewed [14].

II. PROBLEM FORMULATION

A. Setting

We consider a set I of data instances, where each data

instance i ∈ I is described by a vector f ≜ [f1, f2, . . . , fQ]⊺

of heterogeneous features. Vector fq ≜ [fq,1, fq,2, . . . , fq,Nq
]⊺

denotes the qth feature set, where fq,n represents the nth

feature of the qth feature set, and Nq is the total number of

features in the qth feature set. We assume that there are in total

N = ∑Q
i=1Nq features available distributed across Q feature

sets. Each data instance i may belong to one out of L possible

classes with associated prior probability pl ≜ P (C = Cl) for

each assignment Cl, l = 1,2, . . . , L, of the class variable C.

Additionally, the relationship between feature fq,n and class

Cl is captured by P (fq,n∣Cl), which denotes the conditional

probability of the nth feature in the qth feature set under

class Cl. We also denote by cq,n > 0, n ∈ {1,2, . . . ,Nq}, q ∈
{1,2, . . . ,Q} the effort required to extract and evaluate feature

fq,n. Since there are Q available features sets, we consider

switching costs sq,q′ > 0, q, q′ ∈ {1,2, . . . ,Q}, to describe

the cost of moving between the qth and the q′th feature set.
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Finally, we define the misclassification cost Mml ⩾ 0,m, l ∈

{1,2, . . . , L}, to represent the cost of assigning a particular

data instance to class Cl, when the true class is Cm,m ≠ l.

In order to get an accurate classification decision for each

data instance i, we propose the following adaptive sequential

review process. At each step, the decision maker selects

between continuing to review features or not by considering

the so far accumulated information, and the cost of reviewing

additional features. Reviewing more features entails either

staying in the current feature set, or moving to the next one.

Thus, the cost of reviewing additional features includes either

cq,n or sq,q′ . The decision maker can stop the review process

at any time without considering all available feature sets, at

which point a classification decision is reached.

B. Problem Statement

Consider a collection (Γ,R1, . . . ,RΓ,D(Γ,R1,...,RΓ)) of ran-

dom variables. Random variable Γ ∈ {1,2, . . . ,Q} denotes the

last feature set reviewed before the decision maker reaches a

classification decision. Random variable Rq, q ∈ {1,2, . . . ,Γ},
indicates the last feature the decision maker reviews before

either moving to the next feature set or reaching a classification

decision. Finally, D(Γ,R1,...,RΓ) represents the classification

decision of the decision maker after the end of the review

process. Our goal is to jointly select the stopping feature set

Γ, stopping features R1, . . . ,RΓ, and classification decision

D(Γ,R1,...,RΓ) to accurately classify each data instance i,

while minimizing the cost incurred from reviewing individual

features and switching between feature sets. The associated

optimization problem is described as follows:

min
Γ,R1,...,RΓ,D(Γ,R1,...,RΓ)

J(Γ,R1, . . . ,RΓ,D(Γ,R1,...,RΓ)) (1)

where

J(Γ,R1, . . . ,RΓ,D(Γ,R1,...,RΓ)) ≜ E
⎧⎪⎪
⎨
⎪⎪⎩

Γ

∑
q=1

Rq

∑
n=1

cq,n

+
Γ−1

∑
q=1

sq,q+1 +
L

∑
l=1

L

∑
m=1

MmlP (D(Γ,R1,...,RΓ) = l,Cm)
⎫⎪⎪
⎬
⎪⎪⎭
. (2)

The first term in Eq. (1) represents the expected total cost

of reviewing features belonging to different feature sets. The

second term denotes the expected cost of switching between

different feature sets. The last term expresses the expected cost

of the classification decision reached by the decision maker

at the end of the review process. Table I outlines some of

the most commonly used notation in this paper, while Fig. 1

graphically illustrates the proposed adaptive sequential review

process.

The above problem statement requires the following as-

sumptions on the ordering of features, feature sets, and the

switching process between the feature sets.

(A1) The ordering of the feature sets is fixed and given. For

simplicity, we begin our review process from the first

available feature set, which corresponds to f1 without

loss of generality. Additionally, during switching between

TABLE I: Notation overview.

Symbol Explanation Symbol Explanation

Q #feature sets P (fq,n∣Cl) probability of
fq,n given Cl

fq,n nth feature in
qth feature set

cq,n cost of review-
ing fq,n

Nq #features in qth
feature set

sq,q′ switching cost
for qth and q′th
feature sets

fq qth feature set Mml misclassification
cost for Cm

and Cl

N total #features Γ stopping
feature set

Cl class l Rq stopping
feature at qth
feature set

Pl probability of
class l

D(Γ,R1,...,RΓ) classification
decision

different feature sets, the given ordering of feature sets is

respected, i.e., f1 → f2 → . . . fQ.

(A2) Features within a specific feature set q can be reviewed

with respect to any ordering, resulting in Nq! possible

orderings (see Section IV for an efficient heuristic or-

dering). Determining the optimum feature ordering is out

of the scope of the current work and part of our future

research directions.

Running Example: To facilitate the understanding of our

methodology, we introduce the following simple example. Our

goal is to reach a classification decision (i.e., C1 ∶ pothole,

C2 ∶ code violation, C3 ∶ parking enforcement) for a civil issue

report posted on a government 2.0 platform such as SeeClick-

Fix [15] based on Q = 3 feature sets: textual description

features f1, location features f2, and image features f3. There

are various possible paths to reach a classification decision,

e.g., (Γ = 2,R1 = 3,R2 = 4), (Γ = 3,R1 = 1,R2 = 2,R3 = 6).
For Mml = 1,m ≠ l, Mll = 0, cq,n = 1, and sq,q′ = 1, our

proposed adaptive sequential review process sets forth to find

the path that uses the least number of features and feature

sets to reach an accurate classification decision. An interesting

byproduct of the proposed approach is that different civil issue

reports may end up requiring different values of Γ and Rq , thus

improving the interpretability of the classification decision.

C. Reformulation of the Objective Function

Consider the posterior probability vector πππq,n

≜ [π1

q,n, π
2

q,n, . . . , π
L
q,n], where the element πl

q,n ≜

p(Cl∣f1,1, . . . , f1,R1
, f2,1, . . . , fq,n) denotes the posterior

probability of an instance belonging to class Cl

given that the decision maker has reviewed features

f1,1, . . . , f1,R1
, f2,1, . . . , fq,n. The posterior probability vector

πππq,n constitutes a sufficient statistic of the accumulated

information until feature fq,n, and can be recursively

computed as new features are reviewed according to the

following Bayesian update expression:

πππq,n =
πππq,n−1 diag(∆q,n(fq,n))

πππq,n−1∆⊺q,n(fq,n)
. (3)
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a and b. These functions are represented by the following set

of equations:

J̄sc
q,n(πππq,n) = g(πππq,n), (11)

J̄sw
q,n(πππq,n) = sq,q+1 + cq+1,1 + ∑

fq+1,1

J̄q+1,1(πππq+1,1)πππq,n

×∆⊺q+1,1(fq+1,1) (12)

J̄cr
q,n(πππq,n) = cq,n+1 + ∑

fq,n+1

J̄q,n+1(πππq,n+1)πππq,n∆
⊺

q,n+1(fq,n+1),

(13)

J̄q,n(πππq,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minj∈{sc,sw,cr} [J̄j
q,n(πππq,n)] ,

q ∈ [[1,Q − 1]], n ∈ [[0,Nq − 1]],

minj∈{sc,sw} [J̄j
q,n(πππq,n)] ,

q ∈ [[1,Q − 1]], n = Nq,

minj∈{sc,cr} [J̄j
q,n(πππq,n)] ,

q = Q,n ∈ [[0,NQ − 1]],

min [πππq,nM
⊺

l
] , q = Q,n = Nq.

(14)

The optimum feature review rule in Eq. (10) has a very

intuitive structure. Specifically, if the decision maker has not

reached the Qth feature set and there are remaining features

in the current feature set, there are three available options

given posterior probability πππq,n: (i) stop reviewing features

and classify the instance, (ii) switch to the next feature set

and review the first feature, or (iii) review the next feature

of the current feature set. If there are no more features to

be reviewed in the current feature set, the decision maker

must decide between the first two options above. When the

decision maker reaches the Qth feature set, there are only

two available options given posterior probability πππq,n: (i) stop

reviewing features and classify the instance, or (ii) review the

next feature of the Qth feature set. Of course, if all feature

sets and features have been reviewed, the decision maker has

no option but to classify the instance.

Running Example: Applying the preceding result to the run-

ning example introduced in Section II-B, we observe that the

optimum feature review rule selects the least number of feature

sets and features to review to reach an accurate classification

decision.

IV. EXPERIMENTS

In order to evaluate the proposed methodology, we consider

the problem of automatically classifying civil issue reports

posted on the SeeClickFix platform. Our dataset consists of

529 civil issue reports collected from SeeClickFix, between

Jan. 5,2010 and Feb. 10,2018 for Albany, New York. In our

experiments, we consider L = 4 hypotheses, i.e., C1 ∶ “Parking

Enforcement”, C2 ∶ “Code Violation”, C3 ∶ “Traffic Signal

Repair”, and C4 ∶ “Signs (Missing, Needed, or Damaged)”.

Each civil issue report is described by two distinct feature

sets, N1 = 99 textual features extracted from the title of the

report (f1) and N2 = 1,507 textual features extracted from

the description of the report (f2). All features in the two

feature sets indicate the number of times a specific word

appears in either the title or the description of the civil issue

report. During feature extraction, sentences were tokenized

into unigrams, and punctuation, stopwords, and digits were

removed. Additionally, each word was stemmed to its root

(e.g., “parking” was replaced with “park”). Last but not least,

words present in ⩾ 95% or ⩽ 2% of the reports, respectively,

were excluded.

We conduct our experiments for varying feature costs

cq,n = c ∈ {10−4,10−2,0.1,0.2,0.3}, and switching cost sq,q′ =

s ∈ [0.1,∞), and misclassification costs Mml = 1,∀m ≠ l

with Mll = 0. The conditional probabilities P (fq,n∣Cl) were

estimated via a smoothed maximum likelihood estimator as

follows:

P̂ (fq,n∣Cl) =
N(fq,n, l) + 1

∑f ′q,n
N(f ′q,n, l) + V

, (15)

where N(fq,n, l) is the number of civil issue reports belonging

to class Cl that yield outcome fq,n after reviewing the nth

feature in the qth feature set, and V is the maximum outcome

among all features. The prior probabilities for each class Cl

are estimated as follows:

P (Cl) =
Nl

∑L
m=1Nm

, l = 1,2, . . . , L. (16)

We numerically compute the values of J̄q,n(πππq,n) in Eq. (14)

by first quantizing the interval [0,1] in increments of 0.1 such

that ∑L
l=1 π

l
n,q = 1 and then proceeding with the evaluation

of the expressions given in Theorem 3. We perform this

computation once offline and store the results in a (Nq+1)×d
matrix for each feature set q, where Nq corresponds to the

number of features in the qth feature set and d is the number

of possible πππn,q vectors. We observe that for each feature

set q, there are Nq! possible orders by which features can

be reviewed. Instead of considering all possible orders, we

propose to sort features in each feature set in increasing order

of the sum of type I and type II errors, scaled by the associated

feature cost. This approach tends to promote features that are

informative and cost–efficient at the same time.

We compare our methodology with the following base-

lines: (i) standard Bayesian detection [17] that uses the top

1,5,10,50, and all available features from all feature sets

ordered using our heuristic ordering approach, (ii) Support

Vector Machine with feature selection (SVM–FS) [18] with

linear (SVM–L) and Gaussian (SVM–G) kernels, and PCA

(SVM–PCA), and (iii) Random Forest (RF) with maximum

tree depths d = 5,10, and XG Boosting (XG–B) [19], [20].

Results are reported with respect to micro–averaged accuracy,

macro–averaged precision, macro–averaged recall, and aver-

age number of features reviewed. For all baselines, we con-

sider the unweighted average of the performance index when

the two feature sets are used independently (“Average”), and

the performance index when the two feature sets are regarded

as a single feature set (“Combined”). Table II summarizes the

results we obtain.
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TABLE II: Performance comparison with baselines.

Parameters Accuracy Precision Recall

Avg. #

feat.

Set 1 Set 2

P
ro

p
o
se

d
M

et
h

o
d

o
lo

g
y

s = 0.1, c = 10
−2 0.9205 0.9230 0.9244 3.9314 3.7735e-03

s = 0.1, c = 0.1 0.9263 0.9271 0.9294 2.7910 0

s = 0.1, c = 0.2 0.9413 0.9352 0.9415 2.6344 0

s = 0.1, c = 0.3 0.3362 0.2209 0.3914 0.4585 0

s ∈ [0.2,0.5], c = 10
−4 0.9205 0.9230 0.9244 4.0484 0

s ∈ [0.2,0.5], c = 0.01 0.9205 0.9230 0.9244 3.9314 0

s ∈ [0.2,0.5], c = 0.1 0.9263 0.9271 0.9294 2.7910 0

s ∈ [0.2,0.5], c = 0.2 0.9413 0.9352 0.9415 2.6344 0

s ∈ [0.2,0.5], c = 0.3 0.3362 0.2209 0.3914 0.4585 0

s ∈ [0.6,∞), c = 0.01 0.9205 0.9230 0.9244 3.9314 0

s ∈ [0.6,∞), c = 0.1 0.9263 0.9271 0.9294 2.7910 0

s ∈ [0.6,∞), c = 0.2 0.9413 0.9352 0.9415 2.6344 0

s ∈ [0.6,∞), c = 0.3 0.3362 0.2209 0.3914 0.4585 0

B
a
y
es

ia
n

D
et

ec
ti

o
n

All (Average) 0.9205 0.9230 0.9243 99 1507

All (Combined) 0.9205 0.9230 0.9243 1606

Top 50 (Average) 0.9205 0.9230 0.9243 50 50

Top 50 (Combined) 0.9205 0.9230 0.9243 50

Top 10 (Average) 0.9205 0.9230 0.9243 10 10

Top 10 (Combined) 0.9205 0.9230 0.9243 10

Top 5 (Average) 0.9318 0.9260 0.9313 5 5

Top 5 (Combined) 0.9111 0.9177 0.9143 5

Top 1 (Average) 0.6181 0.5049 0.5782 1 1

Top 1 (Combined) 0.4539 0.3230 0.4757 1

S
V

M

SVM-L (Average) 0.8875 0.8730 0.8837 99 1507

SVM-L (Combined) 0.9697 0.9612 0.9663 1606

SVM-G (Average) 0.8487 0.8631 0.8503 99 1507

SVM-G (Combined) 0.9678 0.9639 0.9688 1606

SVM-FS (Average) 0.6637 0.7334 0.6987 24 10

SVM-Fs (Combined) 0.9470 0.9496 0.9467 6

SVM-PCA (Average) 0.8478 0.8633 0.8493 11 190

SVM-PCA (Combined) 0.96 0.95 0.96 1606

R
F

d=5 (Average) 0.8497 0.8567 0.8530 99 1507

d=5 (Combined) 0.9583 0.9452 0.9617 1606

d=10 (Average) 0.8771 0.8618 0.8710 99 1507

d=10 (Combined) 0.9696 0.9627 0.9708 1606

X
G

-B

All (Average) 0.8789 0.8653 0.8726 99 1507

All (Combined) 0.96 0.96 0.96 1606

Among all baselines, SVM–L (Combined) and SVM–G

(Combined) achieve the highest accuracy and recall, respec-

tively, using all 1,606 features, but requiring ∼ 609 times

as many features as our proposed methodology for a mere

2.84% and 1.97% improvement, respectively. Similar is the

case for RF (Combined) for d = 10, which achieves the

highest recall. Our proposed methodology, on the other hand,

achieves accurate classification by just examining on average

⪅ 5 features from feature set f1. Additionally, it does not

require reviewing any features from feature set f2.

V. CONCLUSIONS

We formulated the problem of joint heterogeneous feature

selection and classification, in which a decision maker sequen-

tially reviews features belonging to multiple feature sets until

a classification decision is reached. We derived the optimum

classification decision rule, which minimizes the average mis-

classification cost. We also derived the optimum feature review

rule, which selects both the feature sets and features per set to

be reviewed to achieve an accurate classification decision. We

demonstrated the performance of the proposed methodology

on the problem of civil issue reports classification using real–

world SeeClickFix data, and showed that we can perform

accurate classification by just reviewing ∼ 2.6 features on

average.

Extensions of the current work involve analyzing the struc-

ture of the optimum solution as in [21], theoretically deriving

the average number and associated standard deviation of

feature sets and features per set needed to reach an accurate

classification decision, and identifying the optimum ordering

of reviewing feature sets and associated features.
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