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Abstract—We consider the problem of joint heterogeneous
feature selection and classification when multiple feature sets
are present. Specifically, we want to identify which feature sets
and features per set to review, and perform classification using
this information. To this end, we formulate an optimization
problem that considers the cost of reviewing individual features,
the switching cost between feature sets, and the associated
classification decision cost. The objective is to minimize the
expected total cost of reviewing feature sets and associated
features and the misclassification cost. We derive the optimum
classification decision rule, and show that it minimizes the aver-
age misclassification cost. Additionally, we derive the optimum
feature review rule, which determines both the feature sets and
features per set to be reviewed. We illustrate the performance of
the proposed methodology on the application of the automatic
classification of civil issues reported on crowdsourcing platforms.
We observe that an accurate classification decision can be reached
by examining ~ 2.6 features on average.

I. INTRODUCTION

In recent years, multi—-view data has become increasingly
available in the majority of real-world applications, where
instances are described by multiple different sources (e.g.,
text, audio, image) and/or different feature subsets. Generally,
such data tends to provide a complementary and more holistic
understanding of the phenomenon of interest and can lead to
more accurate prediction models [1], [2]. In fact, since the
performance of machine learning algorithms heavily depends
on the available data, integrating information from multiple
views/modalities with the goal of predicting an outcome can
improve the robustness of the prediction task, and even handle
missing information [1], [2].

Integrating information from multiple independent feature
sets has been studied within the context of various text classifi-
cation applications. In [3]-[6], a final classification decision is
determined by combining individual-level decisions generated
from multiple feature selection algorithms. In contrast, [7], [8]
focus on the design of different classifiers that use different
feature set types. In all these cases, all features from the
selected feature sets are used for classification. Finally, existing
multi-view and multi-modal learning methods (see [1], [2],
[9] and references therein) either seek for representations that
maximize the mutual agreement between the distinct views of
the data or combine outcomes in ad—hoc manner to improve
learning performance.
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In this work, we propose an alternative methodology for
handling multi—view/modal data in prediction tasks that guar-
antees accurate classification using the least amount of avail-
able information. The proposed methodology has also the
potential to improve the interpretability of the classification
decision. Specifically, we define the problem of joint heteroge-
neous feature selection and classification with multiple feature
sets. Our goal is to identify which feature sets and features per
set to review, and perform classification using this information.
To this end, we formulate an optimization problem that consid-
ers the cost of reviewing individual features, the switching cost
between feature sets, and the associated classification decision
cost. We derive both the optimum classification decision rule,
which assigns an instance to the class with the minimum
average misclassification cost, and the optimum feature review
rule, which decides the feature sets and associated features per
set to be reviewed. We evaluate the proposed methodology
on the problem of automatically classifying civil issue reports
on crowdsourcing platforms, and show its ability to achieve
up to 94.1% classification accuracy using on average ~ 2.6
features. The current work extends our prior work [10]-[13]
to the multi—view/modal data setting, while also dynamically
deciding on the feature sets to be reviewed [14].

II. PROBLEM FORMULATION

A. Setting

We consider a set 7 of data instances, where each data
instance ¢ € Z is described by a vector £ = [f,f5,...,f5]"
of heterogeneous features. Vector f, = [fq.1, fg.2,.-, fo.n,]"

denotes the gth feature set, where f,, represents the nth
feature of the gth feature set, and N, is the total number of
features in the qth feature set. We assume that there are in total
N = Zgl N, features available distributed across () feature
sets. Each data instance ¢ may belong to one out of L possible
classes with associated prior probability p; = P(C = C}) for
each assignment Cj,l = 1,2,... L, of the class variable C.
Additionally, the relationship between feature f,, and class
C; is captured by P(f,,»|Ci), which denotes the conditional
probability of the nth feature in the gth feature set under
class C;. We also denote by ¢;,, > 0,n € {1,2,...,N,},q €
{1,2,...,Q} the effort required to extract and evaluate feature
fqn- Since there are () available features sets, we consider
switching costs s > 0,¢,¢" € {1,2,...,Q}, to describe
the cost of moving between the gth and the ¢'th feature set.
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Finally, we define the misclassification cost M,,; > 0,m,l €
{1,2,..., L}, to represent the cost of assigning a particular
data instance to class C;, when the true class is C,,,,m # [.

In order to get an accurate classification decision for each
data instance i, we propose the following adaptive sequential
review process. At each step, the decision maker selects
between continuing to review features or not by considering
the so far accumulated information, and the cost of reviewing
additional features. Reviewing more features entails either
staying in the current feature set, or moving to the next one.
Thus, the cost of reviewing additional features includes either
Cq,n OF 8¢ . The decision maker can stop the review process
at any time without considering all available feature sets, at
which point a classification decision is reached.

B. Problem Statement

Consider a collection (I', Ry, ..., Rr, D(r g, ... ry)) of ran-
dom variables. Random variable T € {1,2,...,Q} denotes the
last feature set reviewed before the decision maker reaches a
classification decision. Random variable R,,q € {1,2,...,T},
indicates the last feature the decision maker reviews before
either moving to the next feature set or reaching a classification
decision. Finally, D g, .. rq) represents the classification
decision of the decision maker after the end of the review
process. Our goal is to jointly select the stopping feature set
T, stopping features R;,...,Rr, and classification decision
D(r R,,.. gy to accurately classify each data instance ¢,
while minimizing the cost incurred from reviewing individual
features and switching between feature sets. The associated
optimization problem is described as follows:

F,Rl,-errngg‘,lﬁ ..... Rr) J(F7 Rl, o RF’ D(F’RlﬁmyRF)) (1)
where
I Rq
J(FaRl;“-aRl—VD(F,Rl,..,,RF))EE Z cq,n
g=1n=1
-1 L L
+ Z:l Sq,q+1 + ZZ: zl MmlP(D(F,Rl,...,RF) = Zacm) 2
q= =1m=

The first term in Eq. (1) represents the expected total cost
of reviewing features belonging to different feature sets. The
second term denotes the expected cost of switching between
different feature sets. The last term expresses the expected cost
of the classification decision reached by the decision maker
at the end of the review process. Table I outlines some of
the most commonly used notation in this paper, while Fig. 1
graphically illustrates the proposed adaptive sequential review
process.

The above problem statement requires the following as-
sumptions on the ordering of features, feature sets, and the
switching process between the feature sets.

(A1) The ordering of the feature sets is fixed and given. For
simplicity, we begin our review process from the first
available feature set, which corresponds to f; without
loss of generality. Additionally, during switching between

TABLE I: Notation overview.

Symbol| Explanation Symbol Explanation
Q #feature sets P(fqn]C1) | probability of
fa,n given C
fan nth feature in || cqn cost of review-
qth feature set ing fqn
Ny #features in gth || 54,4 switching cost
feature set for gth and ¢'th
feature sets
f, qth feature set Mo misclassification
cost for Cp,
and C;
N total #features T stopping
feature set
C class [ R, stopping
feature at gth
feature set
P probability of || D(r r,... rp) classification
class ! decision

different feature sets, the given ordering of feature sets is
respected, ie., f; - fo — ... fg.

Features within a specific feature set g can be reviewed
with respect to any ordering, resulting in N,! possible
orderings (see Section IV for an efficient heuristic or-
dering). Determining the optimum feature ordering is out
of the scope of the current work and part of our future
research directions.

(A2)

Running Example: To facilitate the understanding of our
methodology, we introduce the following simple example. Our
goal is to reach a classification decision (i.e., C; : pothole,
Cs : code violation, C's : parking enforcement) for a civil issue
report posted on a government 2.0 platform such as SeeClick-
Fix [15] based on @ = 3 feature sets: textual description
features f;, location features f5, and image features f3. There
are various possible paths to reach a classification decision,
ec.g., (F = 27R1 = 3,R2 = 4), (F = 3,R1 = 1,R2 = 2,R3 = 6)
For My,; =1,m # 1, My =0, ¢gp =1, and s;4 = 1, our
proposed adaptive sequential review process sets forth to find
the path that uses the least number of features and feature
sets to reach an accurate classification decision. An interesting
byproduct of the proposed approach is that different civil issue
reports may end up requiring different values of I" and R, thus
improving the interpretability of the classification decision.

C. Reformulation of the Objective Function

Consider the posterior probability
(7)o To .- Th,], where the element 7, 2
p(Cilfi1s--5 f1Rys f21,-- -5 fqn) denotes the posterior
probability of an instance belonging to class (]
given that the decision maker has reviewed features
fit,---s f1,R1» f2,1,- -, fq,n- The posterior probability vector
mqn constitutes a sufficient statistic of the accumulated
information until feature f;,, and can be recursively
computed as new features are reviewed according to the
following Bayesian update expression:

e Tgn-1 diag(Aq,n(fq,n))
T mena A (fan)

vector Ty n

3)
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Fig. 1: Proposed adaptive sequential review process.

Note that A, .(fqn) = [P(fenlC1), P(fgnlC2),. ..,
P(fgn|CL)], and diag(v) represents a diagonal matrix of
appropriate dimensions with diagonal elements being the
elements in vector v. Additionally, the posterior probability
vector is initialized as w1 £ [p1,p2,...,pr], and myo =
Tg-1,R4-1 for q € {2, e F}

Next, consider the indicator function 14 for any event A,
where 14 =1 if A occurs and zero, otherwise. Furthermore,
recall that T" e {1,...,Q}, R1 € {0,1,2,..., N1}, ..., Rg ¢
{0,1,2,..., Ng}, all of which correspond to finite sets. Taking
this fact into consideration, we then define:

Ny Ng

TRy . Rr)-Z > Y g ) L=, Ry=ni ..., Ry=ng) -

qg=1n1=0 n4=0

“4)

Exploiting Eq. (4) and the posterior probability vector defini-
tion, the average cost in Eq. (2) can be rewritten in the form
given in Lemma 1.

Lemma 1. The objective function J(I',Ri,...,Rr,
D(r\R,.,...,rr)) can be expressed as follows:
I Rg
J(FaRlv"'7RF7D(F,R1, RF) Z Z
r-1
+ Z Sq,q+1 er RFMl l{D(r Ry,....Rp)=l} [ o)
g=1
where Ml = [M1l7 Mgl, e 7MLl]-

I11.

In this section, we derive the optimum solution of the
optimization problem defined in Eq. (1). In Section III-A,
we derive the optimum classification decision rule, while in
Section III-B, we give the optimum feature review rule.

MAIN RESULTS

A. Optimum Classification Rule

Assume fixed stopping feature set I', and stopping features
Ri,...,Rr. In this case, we observe that the classification
decision rule contributes only to the last term in the expression
of Eq. (5). As shown in Theorem 2, the optimum classification

decision rule assigns each instance ¢ to the class that gives rise
to the smallest misclassification cost. This optimum rule can
be found by deriving a lower bound for the last term in Eq. (5).

Theorem 2. Assuming fixed stopping feature set I, and stop-
ping features Ry, ..., Ry, the optimum classification decision

rule D(F Ry Rr) is:

(6)

min [ﬂ'F’RFMlT] s

D7 =ar
(F,Rl,...,RF) nglﬁL

Since Theorem 2 derives the optimum classification decision
rule, we note that:

J(FaRlv EERN RF7DZF,R1,...,RF))

<J(T, Ry, ... (N

This implies that we can simplify the objective function in
Eq. (5) as follows:

,Br, D(r.R,.....Rr))

r R, r-1
J(L,Ra,...,Re, Dip g, rpy) = E{ DD Cant ) Sqqel
g=1n=1 g=1

®)

where g(7r g, ) 2 miniq<r [ﬂ'F,RFMlT].
Running Example: Applying the preceding result to the run-
ning example introduced in Section II-B, we observe that:

* _ . 1 2 3
D(F,R17-<<7RF) = argmin [1 =T Rps 1- T, Ry 1- WF,RF] .

©))
B. Optimum Feature Review Rule

Determining the optimum feature review rule involves min-
imizing the expression in Eq. (8) with respect to both I'" and
Ri,...,Rr. The structure of the problem enables us to use
dynamic programming [16] to find such a rule, as summarized
in Theorem 3.

Theorem 3. The optimum feature review rule is:

arg minje{sc,sw,cr} [ q, n(ﬂ.q n)]

e[[1,@-1]],n e [[0,Ng - 1]],

argmlnje{ac sw} [ q, n(ﬂ-q n)] ’

€[[1,@-1]],n = Ng,

(P*?Ria"'aR;‘*) =

arg minje{sc,cr} [ q, n("rq,n)]
q= Q,n € [[OaNQ - 1]]’

M;]7q: Q,TL:NQ,
(10)

arg min [ﬂ‘qm

where J oe (Tqn) represents the optimum average cost of
stopping the Jfeature review process at the nth feature of the qth
feature set, and reaching a classification decision, J S (Tgn)
denotes the optimum average cost of switching from the qth to
the q+1th feature set, J:;Tn (mq,n) is the optimum average cost
of continuing the feature review process in the same feature
set, and [[a,b]] represents the interval of all integers between
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a and b. These functions are represented by the following set
of equations:

j;,cn(ﬂ'q,n) =9(mgn), (11)
o (Tgn) = Sq,qe1 + Cqa11 + fZ Jg+1,1(Tg41,1)Tg,n
q+1,1
X A;rl,l(fq+1,1) (12)

j(irn(wq,n) = Cq,n+1 + Z jq,n+1(7rq,n+1)7rq,nA1q—,n,+l(fq,n+1)

gq,n+1

(13)
minje{sc,sw,m‘} [jg:”(ﬂ-q’n)] ’
qe[[1,Q-1]],n € [[0,N, - 1]],
minje{scysw} [jg,n(ﬂ-‘b”)] ’

jq,n(ﬂ‘qm) = q¢ [[17Q—1]],H=Nq, (14)

minje{sc,cr} [jé,n (7rq=n)] ’
0= G Tl Ny 1)

min [quanT] ,q=Q,n=Ny.

The optimum feature review rule in Eq. (10) has a very

intuitive structure. Specifically, if the decision maker has not
reached the Qth feature set and there are remaining features
in the current feature set, there are three available options
given posterior probability m,,: (i) stop reviewing features
and classify the instance, (ii) switch to the next feature set
and review the first feature, or (iii) review the next feature
of the current feature set. If there are no more features to
be reviewed in the current feature set, the decision maker
must decide between the first two options above. When the
decision maker reaches the Qth feature set, there are only
two available options given posterior probability 7 ,,: (i) stop
reviewing features and classify the instance, or (ii) review the
next feature of the Qth feature set. Of course, if all feature
sets and features have been reviewed, the decision maker has
no option but to classify the instance.
Running Example: Applying the preceding result to the run-
ning example introduced in Section II-B, we observe that the
optimum feature review rule selects the least number of feature
sets and features to review to reach an accurate classification
decision.

IV. EXPERIMENTS

In order to evaluate the proposed methodology, we consider
the problem of automatically classifying civil issue reports
posted on the SeeClickFix platform. Our dataset consists of
529 civil issue reports collected from SeeClickFix, between
Jan. 5,2010 and Feb. 10,2018 for Albany, New York. In our
experiments, we consider L = 4 hypotheses, i.e., C; : “Parking
Enforcement”, Cy : “Code Violation”, C3 : “Traffic Signal
Repair”, and Cy : “Signs (Missing, Needed, or Damaged)”.
Each civil issue report is described by two distinct feature
sets, N1 = 99 textual features extracted from the title of the
report (f;) and Ny, = 1,507 textual features extracted from
the description of the report (f2). All features in the two

I

feature sets indicate the number of times a specific word
appears in either the title or the description of the civil issue
report. During feature extraction, sentences were tokenized
into unigrams, and punctuation, stopwords, and digits were
removed. Additionally, each word was stemmed to its root
(e.g., “parking” was replaced with “park”). Last but not least,
words present in > 95% or < 2% of the reports, respectively,
were excluded.

We conduct our experiments for varying feature costs
cgn =c€{107,1072,0.1,0.2,0.3}, and switching cost s, , =
s € [0.1,00), and misclassification costs M,,; = 1,Ym # I
with M = 0. The conditional probabilities P( f, ,|C;) were
estimated via a smoothed maximum likelihood estimator as
follows:

N(fgn,1) +1
ch’lm N(fé,'rwl) + V7

P(fynlCh) = (15)

where N (fy.n,1) is the number of civil issue reports belonging
to class C that yield outcome f, , after reviewing the nth
feature in the gth feature set, and V' is the maximum outcome
among all features. The prior probabilities for each class Cj
are estimated as follows:

N,
L )
Yom=1Nm

We numerically compute the values of J, ,,(m,.) in Eq. (14)
by first quantizing the interval [0, 1] in increments of 0.1 such
that Zlel wfw = 1 and then proceeding with the evaluation
of the expressions given in Theorem 3. We perform this
computation once offline and store the results in a (N,+1) xd
matrix for each feature set ¢, where N, corresponds to the
number of features in the gth feature set and d is the number
of possible , , vectors. We observe that for each feature
set ¢, there are IV,! possible orders by which features can
be reviewed. Instead of considering all possible orders, we
propose to sort features in each feature set in increasing order
of the sum of type I and type II errors, scaled by the associated
feature cost. This approach tends to promote features that are
informative and cost—efficient at the same time.

We compare our methodology with the following base-
lines: (i) standard Bayesian detection [17] that uses the top
1,5,10,50, and all available features from all feature sets
ordered using our heuristic ordering approach, (ii) Support
Vector Machine with feature selection (SVM-FS) [18] with
linear (SVM-L) and Gaussian (SVM-G) kernels, and PCA
(SVM-PCA), and (iii) Random Forest (RF) with maximum
tree depths d = 5,10, and XG Boosting (XG-B) [19], [20].
Results are reported with respect to micro—averaged accuracy,
macro—averaged precision, macro—averaged recall, and aver-
age number of features reviewed. For all baselines, we con-
sider the unweighted average of the performance index when
the two feature sets are used independently (“Average”), and
the performance index when the two feature sets are regarded
as a single feature set (“Combined”). Table II summarizes the
results we obtain.

P(C) = 1=1,2,..., (16)

1230

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 18,2021 at 21:09:50 UTC from IEEE Xplore. Restrictions apply.



TABLE II: Performance comparison with baselines.

Extensions of the current work involve analyzing the struc-
ture of the optimum solution as in [21], theoretically deriving

average number and associated standard deviation of

feature sets and features per set needed to reach an accurate
classification decision, and identifying the optimum ordering
of reviewing feature sets and associated features.

Avg. #
.. feat.
Parameters Accuracy | Precision | Recall th
Set 1 Set 2 €
s=0.1,c=102 0.9205 | 09230 | 0.9244 |3.9314|3.7735¢-03
5=01c=01 09263 | 09271 | 0.9294 [2.7910 0
% 5=01,¢=02 0.9413 | 0.9352 | 0.9415 |2.6344 0
< 5=01,c=03 03362 | 02200 | 0.3914 04585 0
B [5€[02,05],c=10 7| 09205 | 09230 | 0.9244 |4.0484 0
£ [5€[0.2,05], c=0.01 | 09205 | 09230 | 09244 |39314 0
S [5¢[0.2,05],c=0.1 | 09263 | 09271 | 09294 [2.7910 0
5 [5€[0.2,05],c=0.2 | 09413 | 09352 | 0.9415 |2.6344 0 [1]
2 5€[0.2,05].c=03 | 03362 | 02209 | 03914 |0.4585 0
2 5€[0.6,00).c=0.01 | 00205 | 09230 | 0.9244 |3.9314 0 2]
£ [ 5€[0.6,00),c=0.1 | 09263 | 09271 | 09294 [2.7910 0
5€[0.6,00), c=0. 09413 | 0.9352 | 0.9415 |2.6344 0
5€[0.6,00), c=0.3 | 03362 | 02200 | 03914 [04585 0
All (Average) 0.0205 | 0.9230 | 0.9243 | 99 1507 B3]
= ATl (Combined) 0.9205 | 0.9230 | 0.9243 1606
£ Top 50 (Average) 0.9205 | 0.9230 [ 0.9243 [ 50 [ 50 [4]
8 [ Top 50 (Combined) 0.9205 | 0.9230 | 0.9243 50
2 Top 10 (Average) 0.9205 | 0.9230 [0.9243 | 10 | 10
g [ Top 10 (Combined) 0.9205 | 0.9230 | 0.9243 10 5]
'z Top 5 (Average) 0.9318 0.9260 | 0.9313 5 [ 5
= Top 5 (Combined) 0.9111 0.9177 | 0.9143 5
® Top 1 (Average) 06181 | 05049 [0.5782| 1 [ 1
Top T (Combined) 0.4539 | 0.3230 |0.4757 T [6]
SVM-L (Average) 0.8875 | 0.8730 [ 0.8837 | 99 | 1507
SVM-L (Combined) | 0.9697 | 0.0612 | 0.9663 1606
SVM-G (Average) 0.8487 | 0.8631 [0.8503 | 99 | 1507
5 [ SVM-G (Combined) | 0.9678 | 0.9639 | 0.0688 1606 [7]
2 [ SVMTFS (Average) 0.6637 | 0.7334 [0.6987 | 24 | 10
SVM-Fs (Combined) | 0.9470 | 0.9496 | 0.9467 6
SVM-PCA (Average) | 0.8478 | 0.8633 | 0.8493 | 11 190 (8]
SVM-PCA (Combined) | 0.96 0.95 0.96 1606
d=5 (Average) 0.8497 | 0.8567 [ 0.8530 | 99 | 1507
= d=5 (Combined) 0.0583 | 0.9452 | 0.9617 1606
~ d=10 (Average) 0.8771 | 0.8618 [0.8710 | 99 | 1507
d=10 (Combined) 0.0696 | 0.0627 |0.9708 1606 [91
= Al (Average) 0.8789 | 0.8653 | 0.8726 | 99 | 1507
c All (Combined) 0.96 0.96 0.96 1606 (10]
Among all baselines, SVM-L (Combined) and SVM-G
. . . [11]
(Combined) achieve the highest accuracy and recall, respec-
tively, using all 1,606 features, but requiring ~ 609 times
as many features as our proposed methodology for a mere [12]
2.84% and 1.97% improvement, respectively. Similar is the
case for RF (Combined) for d = 10, which achieves the
highest recall. Our proposed methodology, on the other hand, 03]
achieves accurate classification by just examining on average
S 5 features from feature set f;. Additionally, it does not
require reviewing any features from feature set f5. [14]
V. CONCLUSIONS
. [15]
We formulated the problem of joint heterogeneous feature
selection and classification, in which a decision maker sequen-  [16]
tially reviews features belonging to multiple feature sets until [17]
a classification decision is reached. We derived the optimum
classification decision rule, which minimizes the average mis- 8
classification cost. We also derived the optimum feature review [18]
rule, which selects both the feature sets and features per set to
be reviewed to achieve an accurate classification decision. We ~ [19]
demonstrated the performance of the proposed methodology [20]
on the problem of civil issue reports classification using real—
world SeeClickFix data, and showed that we can perform .
accurate classification by just reviewing ~ 2.6 features on [21]
average.
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