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Existence and uniqueness results for solutions of stochastic differ-
ential equations (SDEs) under exceptionally weak conditions are
well known in the case where the diffusion coefficient is nondegener-
ate. Here, existence and uniqueness of strong solutions is obtained
in the case of degenerate SDEs in a class that is motivated by
diffusion representations for solutions of Schrödinger initial value
problems. In such examples, the dimension of the range of the dif-
fusion coefficient is exactly half that of the state. In addition to
this degeneracy, two types of discontinuities and singularities in
the drift are allowed, where these are motivated by the structure
of the Coulomb potential. The first type consists of discontinu-
ities that may occur on a possibly high-dimensional manifold. The
second consists of singularities that may occur on a smoothly pa-
rameterized curve.

1. Introduction

Existence and uniqueness results for solutions of stochastic differential equa-
tions (SDEs) typically have weaker assumptions on the smoothness of the
drift than those which are required in the case of the corresponding ordinary
differential equations. The results with the weakest conditions on the drift
have been those where the diffusion coefficient is assumed to be nondegen-
erate, cf. [1, 15, 28, 30].

In recent efforts on diffusion representations for solutions of Schrödinger
initial value problems (IVPs) [3, 5, 18, 19, 20], the representation dynamics
take the form of complex-valued SDEs. In particular, the SDEs are given as

dξt = f(ξt) dt+
1+i√

2
σ dBt,
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where Bt ∈ Rm, σ ∈ R, f : Cm → Cm, i denotes the imaginary unit, and
C denotes the complex field. Breaking out the real and imaginary parts,
one obtains an SDE with a 2m–dimensional state and a 2m×m degenerate
diffusion coefficient. Hence, we have an iconic application class for which
there were previously no solution existence and uniqueness results. This
class motivates the effort here, and particular examples appear in Section 3.
Further, this 2m–dimensional real-valued class of interest allows for two
types of nonsmoothness in the drift. The first consists of discontinuities that
may occur on a possibly high-dimensional manifold. In the example class
considered below, these occur on a manifold of dimension m. The second
consists of singularities that may occur on a one-dimensional manifold.

We briefly indicate other recent results on existence and uniqueness for
degenerate SDEs, so as to situate the result herein. Kumar [14] considers
degenerate SDEs with non-Lipschitz coefficients and states taking values in
the positive orthant, where in the particular case where the coefficients are
Lipschitz, both existence and uniqueness of a strong solution is obtained.
Figalli [7] employs known results for associated partial differential equations
(PDEs), including the Fokker–Planck equation, as an aid in developing re-
sults on existence and uniqueness for degenerate SDEs. Chaudru de Raynal
[26] also employs known results on associated PDEs to obtain pathwise
uniqueness for degenerate SDEs with Hölder drift with exponents greater
than 2/3.

In Section 2, the assumptions defining the class of SDEs will be pre-
sented. Then, in Section 3, an iconic problem that motivates those assump-
tions will be described. The main result is obtained in two steps. The first
step, discussed in Section 4, is to obtain the existence and uniqueness for
a system where the discontinuities and singularities have been smoothed.
Finally, in Section 5, a limit is taken, which yields the asserted existence
and uniqueness for the original, desired class of SDEs.

2. The class of SDEs

We consider SDEs on [0, T ] of the form

dηt = F (ηt, ζt) dt+ dBt, η0 = y0 ∈ R
m,(1)

dζt = G(ηt, ζt) dt, ζ0 = z0 ∈ R
m,(2)

and we let l
.
= 2m. In order to describe the problem structure and assump-

tions, we make some additional definitions. These are largely described in
the material leading up to, and including, Assumption (A.3). Although these
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may appear odd at first, the motivation for this selection will become appar-

ent in Section 3. For each z ∈ Rm, let H̃0(z) ⊂ Rm be such that its Lebesgue

measure is zero, i.e., μ(H̃0(z)) = 0, and let

H0
.
= {(y, z) ∈ R

l | y ∈ H̃0(z)}.

Note that H0 will be a set along which the drift may have discontinuities.

There will also be a set G0 ⊂ Rl along which the drift may have singular-

ities as well as discontinuities. For each z ∈ Rm, we let G̃0(z) ⊂ Rm, and

define G0
.
= {(y, z) ∈ Rl | y ∈ G̃0(z)}, where a more complete specification

of G̃0 is given below in Assumption (A.3). For δ > 0, let G̃δ(z)
.
= {y ∈

Rm | d(y, G̃0(z)) ≤ δ|z|} and Gδ
.
= {(y, z) ∈ Rl | y ∈ G̃δ(z)}. We assume the

following.

F,G ∈ C1([G0 ∪ H0]
c). For each δ > 0, F and G are bounded

on Gc
δ . For each δ > 0, ∇(y,z)F and ∇(y,z)G are bounded on

[Gδ ∪H0]
c. Initial conditions (y0, z0) �∈ G0 ∪H0, and z0 �= 0.

(A.1)

H0 ⊂ Ĥ0
.
= {(y, z) ∈ Rl | h0(y) = h1(z)}, for some h0 ∈

C2(Rm;R) and h1 ∈ C1(Rm;R) satisfying ∇h0(y) �= 0, ∀y �= 0. (A.2)

Let L̄ denote the space of nonsingular m ×m matrices, and let Im×m ∈ L̄
denote the identity matrix.

Let I .
= [0, 1], and let p ∈ C1(Io;Rm) ∩ C(I;Rm) be such that

there exists Mp < ∞ such that | dpdλ(λ)| ∈ [1/Mp,Mp] for all
λ ∈ Io. Let ē ∈ Rm \ {0}. Let DJ

.
= Rm \ {k1ē | k1 ∈ R} and J ∈

C2(DJ ; L̄) be given by J(z) = (1/|z|)Γ(z) where Γ : Rm \{0} →
L̄ is such that Γ(z) is orthonormal for all z ∈ Rm \{0}, and such
that J(z)z = ē for all z ∈ Rm \ {0}, [J(ē)]−1 = Im×m, and for
each δ > 0, dJ

dz is bounded on Rm\{z ∈ Rm | |z−(z·ē/|ē|2)ē| < δ}.
Finally, suppose G̃0(z) is specifically given by G̃0(z)

.
= { y ∈

Rm | ∃λ ∈ I s.t. y = [J(z)]−1p(λ) } for all z ∈ Rm.

(A.3)

Remark 1. The above structures for G0 and H0, which may at first seem

unusual, were chosen for the case where the discontinuity and singular sets

are defined in terms of ηt relative to ζt. A motivational example where these

assumptions are satisfied is given in Section 3. In that example, the space

dimension is m = 3, while H0 = {(y, z) ∈ Rl | |y|2 − |z|2 = 0, yT z > 0}
and G0 = {(y, z) ∈ Rl | |y|2 − |z|2 = 0 and yT z = 0}. Further, in that case,

one may take ē to be (1, 0, 0)T and p(·) to be a parameterization of the unit

circle in the plane perpendicular to ē.
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Remark 2. The assumptions may be weakened to allow for a finite number
of both discontinuity and singularity manifolds, with no fundamental change
in the proofs. For clarity of exposition, we do not include the details.

An additional assumption will appear in Section 4, and it will be the
final assumption. That assumption is more easily indicated there, after some
additional definitions.

3. Motivation

One motivation for consideration of this large class of SDE problems is the
staticization based diffusion representation for the solution of Schrödinger
initial value problems (IVPs) [17, 18, 19, 20]. The case of the Coulomb
potential was discussed in [17]. For x ∈ C \ {0}, define the single-valued
logarithm and square-root operations

logq(x)
.
= log(r) + iθ,

√
x

.
= exp

[
1
2 logq(x)

]
,

where r ∈ (0,∞) and θ ∈ (−π, π] are such that x = reiθ. We specifically look
at the Maslov dequantization (cf. [16]) of the solution of a Schrödinger IVP
associated to the lowest energy “electron shell” of the Bohr model, cf. [10],
which may be extended to complex-valued states as S0 : [0,∞) × C3 → C

given by

S0(t, x) = −c21
2m t+ ic1

√
xTx,

where T denotes transpose (without conjugation), c1 = 2mC
(m−1)� = mC

�
,

m denotes mass, space dimension m = 3, � denotes Planck’s constant,
C

.
= q0q1/(4πε̄0), q0 denotes the central (nucleus) charge, q1 denotes the

electron charge and ε̄0 denotes the vacuum permittivity. One may check

that S0
t (r, x) = −c21

2m and S0
x(r, x) = ic1x/

√
xTx, ΔS0(r, x) = 2ic1/

√
xTx,

and further, that S0 satisfies the dequantized, time-reversed form of the
Schrödinger equation, given by

0 = St(r, x) +
i�
2mΔS(r, x)− 1

2m(Sx(r, x))
TSx(r, x)− V (x),

where V (x) = −C/
√
xTx.

The dynamics of the diffusion process generating the solution as the
associated stationary value function are given by [17, 20]

dξr = (−1/m)S0
x(r, ξr) dr +

√
�/m1+i√

2
dBr,
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with ξ0 = x. One may separate the three-dimensional complex state, ξr, into
its real and imaginary parts as ξr = η̂r + iζ̂r. Similarly, letting S0(r, x) =
R0(r, ŷ, ẑ)+iT 0(r, ŷ, ẑ) with x = ŷ+iẑ, and employing the Cauchy-Riemann
equations, the SDE system becomes

dη̂r = (−1/m)R0
y(r, η̂r, ζ̂r) dr +

√
�

2m dBr, η̂0 = ŷ,

dζ̂r = (1/m)R0
z(r, η̂r, ζ̂r) dr +

√
�

2m dBr, ζ̂0 = ẑ.

Performing the change of coordinates given by ηr = (1/
√
2)[η̂r + ζ̂r], ζr =

(1/
√
2)[−η̂r + ζ̂r] yields

dηr = (1/
√
2m)[−R0

y +R0
z](r,

ηr−ζr
2 , ηr+ζr

2 ) dr +
√

�

m dBr,

dζr = (1/
√
2m)[R0

y +R0
z](r,

ηr−ζr
2 , ηr+ζr

2 ) dr,

with η0 = y0
.
= (1/

√
2)[ŷ + ẑ] and ζ0 = z0

.
= (1/

√
2)[−ŷ + ẑ]. Using the

specific form of S0 in this example, this reduces to

dηr = F (ηr, ζr) dr + σ dBr(3)

.
=

c1

m
√

R̃r

[sin(θ̃r)ηr − cos(θ̃r)ζr] dr +
√

�

m dBr,

dζr = G(ηr, ζr) dr
.
=

−c1

m
√

R̃r

[cos(θ̃r)ηr + sin(θ̃r)ζr] dr,(4)

where R̃r
.
= R̄(ηr, ζr)

.
=
[
(−2ηTr ζr)

2 + (|ηr|2 − |ζr|2)2
]1/2

, cos(2θ̃r) =
−2ηT

r ζr
R̃r

and sin(2θ̃r) =
|ηr|2−|ζr|2

R̃r

with θ̃r ∈ (−π/2, π/2].

In this case, H0 corresponds to the branch cut induced by
√
xTx, which

is taken at |ŷ|2−|ẑ|2 < 0, ŷT ẑ = 0, or equivalently, at yT z > 0, |y|2−|z|2 = 0.
That is, H0 = {(y, z) ∈ Rl | |y| = |z|, yT z > 0 } (i.e., y ∈ H̃0(z) iff |y| = |z|
and yTx > 0). For Ĥ0 in (A.2), one can take h0(y) = |y|2 and h1(z) = |z|2.
From this, one may easily verify Assumption (A.2). Also, we see that the
singularities occur on

G0 = {(y, z) ∈ R
l | R̄(y, z) = 0 } = {(y, z) ∈ R

l | yT z = 0 and |y| = |z| }.

One easily finds that Assumption (A.1) is satisfied. To see that Assumption
(A.3) is satisfied, one may take G̃0(z)

.
= { y ∈ Rm | yT z = 0 and |y| = |z| }.

Note that if z = (0, 0, 1)T , then G̃0(z) is the unit circle in the (z2, z3)–plane.
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Hence, one may take p(λ)
.
= (cos(2πλ), sin(2πλ), 0) and ē = (0, 0, 1)T . Then,

for z ∈ Rm \ {0}, one may then let

Γ(z)
.
=

⎡
⎣uTvT
wT

⎤
⎦ , where u

.
=

z

|z| ,

v̂
.
=

⎧⎪⎨
⎪⎩
u× ē if u �= λē for some λ ∈ R,

(1, 0, 0)T if u = λē for some λ ∈ (0,∞),

(−1, 0, 0)T if u = λē for some λ ∈ (−∞, 0),

v =
v̂

|v̂| , w
.
=

u× v

|u× v| .

One may easily verify Assumption (A.3) for this Γ.

4. The δ > 0 prelimit

We smooth the dynamics as follows. For δ > 0, we let gδ ∈ C∞(R) and
g̃δ/4,δ(·; ē) ∈ C∞(Rm) be given by

gδ(ρ)
.
=

{
1− exp

{
1
δ2 + 1

ρ2−δ2

}
if |ρ| ∈ [0, δ),

1 if |ρ| ≥ δ,

(5)

g̃δ/4,δ(z; ē)
.
=

{
0 if |z − (z · ē/|ē|2)ē| ∈ [0, δ/4],

g3δ/4(|z − (z · ē/|ē|2)ē| − δ/4) if |z − (z · ē/|ē|2)ē| > δ/4.

(6)

We also let

Ĝδ
.
= Gδ ∪ [Rm × C̃(δ; ē)],

where C̃(δ; ē) .
= {z ∈ Rm | |z − (z · ē/|ē|2)ē| ≤ δ/4}. Next, defining R̂(y, z)

.
=

d
(
y, G̃0(z)

)
/|z| for |z| > 0, we let

F δ(y, z)
.
= gδ(R̂(y, z))F (y, z),(7)

Gδ(y, z)
.
= g̃δ/4,δ(z; ē)gδ(R̂(y, z))G(y, z)(8)

for all (y, z) ∈ Rm × (Rm \ {0}). Note that

(9) F δ = F and Gδ = G on (Ĝδ)
c.
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Our final assumption is that for each δ > 0,

F δ, Gδ ∈ C1
(
Hc

0 ∩ [Rm × Rm \ {0}]
)
, F δ and Gδ are bounded

on [Rm × (Bδ/4(0))
c], and ∇(y,z)F

δ,∇(y,z)G
δ are bounded on

Hc
0 ∩ [Rm × (Bδ/4(0))

c].
(A.4)

Note that (A.4) holds for the example given in Section 3, and that it will
hold more generally when the dynamics are bounded by the multiplicative
inverse of appropriate polynomial forms.

Consider the system with modified dynamics given in integral form as

ηδt = y0 +

∫ t

0
F δ(ηδr , ζ

δ
r ) dr +Bt,(10)

ζδt = z0 +

∫ t

0
Gδ(ηδr , ζ

δ
r ) dr,(11)

for t ∈ [0, T ]. We demonstrate existence and uniqueness of a strong solution
via application of the Girsanov transform approach to first obtain existence
of a weak solution, followed by a demonstration of pathwise uniqueness to
then obtain the strong-solution assertion.

Lemma 3. Suppose ηδ is an m-dimensional {Ft}-Brownian motion on prob-
ability space (Ω,F , P ) where Ω, F and P denote a sample space, σ-algebra
and probability measure, respectively, and with filtration denoted by F =
{Ft}. Let ζδ be an {Ft}-adapted Rm-valued continuous process on [0, T ] with
bounded variation. Then, for a.e. ω ∈ Ω, μ({t ∈ [0, T ] | (ηδt , ζδt ) ∈ H0}) = 0,
where μ denotes Lebesgue measure on R.

Proof. Since H0 ⊂ Ĥ0 by (A.2), it suffices to show that for a.e. ω ∈ Ω,
μ({t ∈ [0, T ] | (ηδt , ζδt ) ∈ Ĥ0}) = 0. Let Xt

.
= h0(η

δ
t )− h1(ζ

δ
t ). We note that

{t ∈ [0, T ] | (ηδt , ζδt ) ∈ Ĥ0} = {t ∈ [0, T ] |Xt = 0}.

Using the Itô formula, we have the following semi-martingale decomposition:

Xt = X0 +

∫ t

0
∇h0(η

δ
s) · dηδs +

∫ t

0

1

2
Δh0(η

δ
s)ds−

∫ t

0
∇h1(ζ

δ
s ) · dζδs .

Let La
t (X) be a local time of the continuous semi-martingale X = {Xt}. By

the occupation time formula for continuous semi-martingales (cf. [27, (1.6)
Corollary of Chap.VI]), we have for a.e. ω ∈ Ω,

∫ T

0
1{0}(Xt)|∇h0(η

δ
t )|2dt =

∫ ∞

−∞
1{0}(a)L

a
T (X)da = 0,
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which implies that there exists N1 ⊂ [0, T ] with μ(N1) = 0 such that

(12) 1{0}(Xt)|∇h0(η
δ
t )|2 = 0, ∀t ∈ [0, T ]\N1.

Let ηδ,it be the ith component of ηδt = (ηδ,1t , . . . , ηδ,mt ) and La
t (η

δ,i) be a local

time of one-dimensional Brownian motion ηδ,i = {ηδ,it }. By the occupation
time formula for one-dimensional Brownian motion, we have for a.e. ω ∈ Ω,

μ({t ∈ [0, T ] | ηδ,it = 0}) =
∫ T

0
1{0}(η

δ,i
t )dt =

∫ ∞

−∞
1{0}(a)L

a
T (η

δ,i)da = 0.

Thus, for a.e. ω ∈ Ω, there exists N2 ⊂ [0, T ] with μ(N2) = 0 such that

ηt �= 0, ∀t ∈ [0, T ]\N2,

which implies by (A.2)

(13) ∇h0(η
δ
t ) �= 0, ∀t ∈ [0, T ]\N2.

Let N = N1 ∪ N2. By (12) and (13), we see that for a.e. ω ∈ Ω, μ(N) = 0
and

1{0}(Xt) = 0, ∀t ∈ [0, T ]\N.

Hence we can obtain Ω0 ⊂ Ω with P (Ω0) = 1 such that

μ({t ∈ [0, T ] |Xt = 0}) =
∫ T

0
1{0}(Xt)dt =

∫
[0,T ]\N

1{0}(Xt)dt = 0

for all ω ∈ Ω0.

Lemma 4. For a.e. ω ∈ Ω, There exists absolutely continuous, unique ζδ· (ω)
satisfying (11).

Proof. The proof follows the standard successive approximations approach.
We indicate the main steps. By Assumption (A.4), there exists L < ∞ such
that |∇(y,z)G

δ(y, z)| ≤ L for all (y, z) ∈ Hc
0. Let 0 = t0 < t1 < . . . tJ = T

where tj+1− tj ∈ (0, 1/(2L)) for all j. Fix ω ∈ Ω0, where Ω0 is defined in the
proof of Lemma 3. Suppose we have a unique, absolutely continuous solution,
ζδ· (ω), up to tj (where j may be zero), and let zj = ζδtj (ω). We extend the

solution to [tj , tj+1]. Let ζ̃
δ,0 be absolutely continuous (and hence of bounded

variation) on [tj , tj+1], with ζ̃δ,0(tj) = zj . For k ≥ 0, let

ζ̃δ,k+1
t

.
= zj +

∫ t

tj

Gδ(ηδr(ω), ζ̃
δ,k
r ) dr ∀ t ∈ [tj , tj+1].
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Noting Assumption (A.4), we find that ζ̃δ,k is absolutely continuous for

all k ≥ 0. Letting Ak(ω)
.
= {t ∈ [tj , tj+1] | (ηδt (ω), ζ̃

δ,k
t ) ∈ H0}, we see by

Lemma 3 that μ(Ak(ω)) = 0 for all k. Then, ‖ζδ,k+1 − ζδ,k‖L∞(tj ,tj+1) ≤
1
2 . Application of the Banach Fixed Point Theorem then yields a unique,
absolutely continuous extension of the solution, ζδ· (ω), to [0, tj+1].

Lemma 5. Let δ > 0. There exists a weak solution to (10)–(11).

Proof. Let ηδ be a Brownian motion as in Lemma 3, and let ζδ be the
corresponding solution of (11) given by Lemma 4. Let νδt (ω)

.
= F δ(ηδt , ζ

δ
t )

for all ω ∈ Ω0 (indicated in the proof of Lemma 3) and all t ∈ [0, T ]. By
Assumption (A.4), there existsD1 < ∞ such that |νδt (ω)| ≤ D1 for all ω ∈ Ω0

and t ∈ [0, T ]. Let Bδ
t

.
= ηδt −

∫ t
0 ν

δ
r dr for all ω ∈ Ω0 and t ∈ [0, T ]. We note

that the Novikov condition is satisfied, and letting P̂ (C) .
= EP [1CZT (ν

δ)]
for C ∈ FT , with Zt(ν

δ)
.
= 1 +

∑3
j=1

∫ t
0 Zr(ν

δ)[νδr ]j d[ν
δ
r ]j , B

δ is a Brownian

motion on (Ω,FT , P̂ ), with filtration F·. Then (ηδ, ζδ) forms a solution to
(10)–(11) with Brownian motion Bδ and probability space (Ω,FT , P̂ ).

Theorem 6. Let δ > 0. There exists a unique strong solution to (10)–(11).

Proof. The strong solution will follow from a demonstration of pathwise

uniqueness (cf. [11, Cor. 5.3.23]). Let γδt
.
= (ηδt

T
, ζδt

T
)T for all t ∈ [0, T ],

Hδ .
= ([F δ]T , [Gδ]T )T and γ̄0

.
= ([y0]T , [z0]T )T , in which case,

(14) γδt = γ̄0 +

∫ t

0
Hδ

r dr +

[
Im×m

0

]
Bδ

t ∀ t ∈ [0, T ].

Letting γδ and γ̃δ be two solutions of (14), one sees from Assumption (A.4)
that there exists L̄ < ∞ such that

|γδt − γ̃δt | ≤ L̄

∫ t

0
|γδr − γ̃δr | dr ∀ t ∈ [0, T ].

Hence, by the Gronwall inequality, γδ = γ̃δ, and we have pathwise unique-
ness.

5. Taking δ ↓ 0

We obtain the limit result in the case where the dimension satisfies m ≥ 3.
This restriction is related to the form of G̃0, which takes the form of a curve
in Rm. It is expected that in the case where G̃0 is a point, the result would
follow for m ≥ 2.
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Fix a probability space, (Ω, F̄ , P̄ ), and Brownian motion, B·, with fil-
tration F· generated by B·. As by (A.1), (y0, z0) �∈ G0, there exists δ̄ > 0
such that (y0, z0) �∈ Gδ for all δ ∈ [0, δ̄]. Let δn ↓ 0 with δ1 ∈ (0, δ̄). Let the
corresponding strong solutions of (10)–(11) be denoted by (ηn, ζn). Then,
note that Gδn(y, z) = 0 for all z ∈ Bδn/4(0), and hence

(15) |ζnt | ≥ δn/4 ∀ t ∈ [0, T ], ω ∈ Ω, n ∈ N.

For n ∈ N, let

An
.
= {ω ∈ Ω | � ∃t ∈ [0, T ] s.t. (ηnt , ζ

n
t ) ∈ Gδn ∪ [Rm ×Bδn(0)] }.(16)

Recalling that F δ = F on Gc
δ and Gδ = G on Gc

δ ∩Bδ/4(0)
c, we see that

(17) (ηm, ζm) = (ηn, ζn) ∀ω ∈ An and m ≥ n ≥ 1.

Lastly, let

η̃nt = J(ζnt )η
n
t , ζ̃nt = J(ζnt )ζ

n
t = ē,(18)

for all t ∈ [0, T ].

Lemma 7. For each ω∈Ω, (ηnt , ζ
n
t )(ω)∈Gδ if and only if ηnt (ω) ∈ G̃δ(ζ

n
t (ω))

if and only if η̃nt (ω) ∈ G̃|ζn
t (ω)|δ(ζ̃

n
t (ω)) if and only if there exists λn

t (ω) ∈ I
such that |η̃nt (ω)− p(λn

t (ω))| ≤ δ.

Proof. The first assertion is by definition. Noting Assumption (A.3), that
assertion is true if and only if d(ηnt , G̃0(ζ

n
t )) ≤ δ|ζnt |, or equivalently, if and

only if minλ∈I |ηnt −J−1(ζnt )p(λ)| ≤ δ|ζnt |. Using the orthonormality of Γ(ζnt ),
one finds that this is true if and only if minλ∈I |J(ζnt )ηnt − p(λ)| ≤ δ, which
by (18), is equivalently, minλ∈I |η̃nt − p(λ)| ≤ δ, which yields the remaining
two assertions.

Lemma 8. For each n ∈ N, there exists a probability measure, Pn, mutually
absolutely continuous with respect to P̄ , such that ηn is a Brownian motion
with respect to Pn.

Proof. By the boundedness of F δn and (10), one finds that the Novikov
condition is satisfied, and hence the assertion follows from the Girsanov
theorem, cf. [11].

Let

(19) Ân
.
= {ω ∈ Ω | � ∃t ∈ [0, T ] s.t. either η̃nt ∈ G̃δn(ē) or ζnt ∈ Bδn(0) }.



Solution existence and uniqueness 307

Using Lemma 7 and (15), we see that

(20) An = Ân.

Lemma 9. There exists a probability measure, P̆n, mutually absolutely con-

tinuous with respect to Pn, such that

dη̃nt = J(ζnt ) dη̆
n
t ,

where η̆nt is a Brownian motion under P̆n.

Proof. Applying Itô’s rule to η̃n, and noting that one has d〈[ζn]k, [ζn]j〉t ≡ 0

for all k, j ∈ ]1,m[ , one sees that

dη̃nt = F̄n(η̃nt , ζ
n
t ) dt+ J(ζnt ) dη

n
t = J(ζnt )

[
(J(ζnt ))

−1F̄n(η̃nt , ζ
n
t ) dt+ dηnt

]
,

(21)

where, component-wise,

F̄n
k (η̃

n
t , ζ

n
t )

.
=

m∑
j=1

( m∑
l=1

[ ∂J
∂zj

(ζnt )
]
k,l
[η̃nt ]l

)[
Gδn
(
[J(ζnt )]

−1η̃nt , ζ
n
t

)]
j

(22)

for all k ∈ ]1,m[ . We examine F̄n. By Assumption (A.4), there exists M1
n <

∞ such that

(23) |Gδn
(
[J(ζnt )]

−1η̃nt , ζ
n
t

)
| ≤ M1

n ∀ t ∈ [0, T ], ω ∈ Ω.

Also, by (15) and Assumption (A.3), there exists M2
n < ∞ such that

(24) max
{
|J(ζnt )|,

∣∣ ∂J
∂zj

(ζnt )
∣∣} ≤ M2

n ∀ j ∈ ]1,m[ , t ∈ [0, T ], ω ∈ Ω.

Lastly, by (11), (23) and Assumption (A.3) one sees that

(25) |(J(ζnt ))−1| = |ζnt | ≤ |z0|+M1
nT

.
= M3

n < ∞

for all t ∈ [0, T ] and ω ∈ Ω. By (22)–(25), we see that there exists M̄n < ∞
such that

(26) |(J(ζnt ))−1F̄n(η̃nt , ζ
n
t )| ≤ M̄n|η̃nt | ∀ t ∈ [0, T ], ω ∈ Ω.
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For integers 0 ≤ k ≤ K − 1 < ∞, let ΔK
.
= T/K and tk

.
= kΔK . By

(26),

E

{
exp

[
1
2

tk+1

∫
tk

|(J(ζnt ))−1F̄n(η̃nt , ζ
n
t )|2 dt

]}

≤ exp
[
(M̄n)

2/2
]
E

{
exp

[
1
2

tk+ΔK

∫
tk

|η̃nt |2 dt
]}

for all 0 ≤ k ≤ K < ∞ and n ∈ N. However, recalling that η̃n is a Brownian
motion on measure Pn, this is finite for sufficiently large K. Hence, a weak
Novikov condition is satisfied, cf. [11, Cor. 3.5.14], and we may apply a Gir-
sanov transformation, yielding measure P̆n, mutually absolutely continuous
with respect to Pn, given by dP̆n

.
= μ̃n

TdPn, where

μ̃n
T

.
= exp

[
−

T
∫
0
(vnt )

T dηnt − 1
2

T
∫
0
|vnt |2 dt

]
,

with vnt
.
= (J(ζnt ))

−1F̄n(η̃nt , ζ
n
t ), and such that under P̆n, the process η̆nt

.
=∫ t

0 v
n
r dr + ηnt is a Brownian motion. Recalling (21), we have dη̃nt =

J(ζnt ) dη̆
n
t .

We define {βn
t }t≥0 and {αn

s }s≥0 by

βn
t

.
=

∫ t∧T

0

dr

|ζnr |2
, αn

s
.
= inf{t ∈ [0,∞)|βn

t > s},

where the infimum of the empty set is taken to be ∞.

Lemma 10. There exists a Brownian motion {ws}s≥0 on an enlarged proba-
bility space of (Ω, F̄ , P̆n), which we denote by (Ω̃, F̃ , P̃n), such that ws = η̃nαn

s

for 0 ≤ s ≤ βn
T . Moreover there exist 0 ≤ α ≤ ᾱ < ∞ such that αn

s+r −αn
s ∈

[αr, ᾱr ] for all 0 ≤ s, r < ∞.

Proof. The asserted bounds on αn
· follow from Assumption (A.3), (15) and

(25). We extend {η̃nt }0≤t≤T and {Ft}0≤t≤T to [0,∞) by

η̂nt
.
= η̃nt∧T , F̂t

.
= Ft∧T , t ≥ 0.

Noting that {η̂nt }t≥0 is a continuous {F̂t}-martingale and J(ζnt )J
T (ζnt ) =

|ζnt |−2Im×m for all t ∈ [0, T ], ω ∈ Ω, we have

〈η̂n,i, η̂n,j〉t = 〈η̃n,i, η̃n,j〉t∧T = δijβ
n
t .
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Thus, by [27, (1.10) Theorem of Chap.V], there exists a Brownian motion
{ws}s≥0 on an enlarged probability space of (Ω, F̄ , P̆n) satisfying ws = η̃nαn

s

for s ∈ [0, βn
T ]. To clarify the enlargement procedure and the construction

of {ws} in the above theorem, let (Ω′,F ′, P ′) be a probability space with
a filtration {F ′

s} and {bs}s≥0 be an m-dimensional {F ′
s}-Brownian motion

with b0 = 0. Define (Ω̃, F̃ , P̃n) and {F̃s} by

Ω̃
.
= Ω× Ω′, F̃ .

= F̄ ⊗ F ′, P̃n
.
= P̆n ⊗ P ′, F̃s

.
= F̂αn

s
⊗ F ′

s.

Then {ws}s≥0 on (Ω̃, F̃ , P̃n) is given by

ws(ω̃)
.
=

{
η̂nαn

s (ω)
(ω), 0 ≤ s ≤ βn

∞(ω),

η̂n∞(ω) + bs−βn
∞(ω)(ω

′), s > βn
∞(ω),

=

{
η̃nαn

s (ω)
(ω), 0 ≤ s ≤ βn

T (ω),

η̃nT (ω) + bs−βn
T (ω)

(ω′), s > βn
T (ω),

(27)

where we denote ω̃ = (ω, ω′) ∈ Ω̃ = Ω× Ω′.

For ω̃ = (ω, ω′) ∈ Ω̃, we let ζ̆ns (ω̃)
.
= ζns (ω) for all s ∈ [0, T ] and n ∈ N.

By (27), we note that

Ân × Ω′ = {ω̃ ∈ Ω̃ | � ∃s ∈ [0, βn
T (ω)] s.t. either η̃nαn

s (ω)
∈ G̃|ζ̆n

s (ω̃)|δn
(ē)

or ζ̆ns (ω̃) ∈ Bδn(0) }
= {ω̃ ∈ Ω̃ | � ∃s ∈ [0, βn

T (ω)] s.t. either ws(ω̃) ∈ G̃|ζ̆n
s (ω̃)|δn

(ē)

or ζ̆ns (ω̃) ∈ Bδn(0) }
⊇ {ω̃ ∈ Ω̃ | � ∃s ∈ [0,∞) s.t. either ws(ω̃) ∈ G̃|ζ̆n

s (ω̃)|δn
(ē)

or ζ̆ns (ω̃) ∈ Bδn(0) }
.
= Cn ∀n ∈ N.(28)

For n ∈ N, let

τn
.
= inf{s ≥ 0 | (ηns , ζns )(ω) ∈ Gδn ∪ [Rm ×Bδn(0)]},

and let

(η̄s, ζ̄s) = (ηns , ζ
n
s ) ∀ s ≤ τn,

which is
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= (ηks , ζ
k
s ) ∀ k ≥ n, ∀s ≤ τn.(29)

Next, let ˘̄ζs(ω̃)
.
= ζ̄s(ω) for all ω̃ = (ω, ω′) ∈ Ω̃. Then,

Cn ={ω̃ ∈ Ω̃ | � ∃s ∈ [0,∞) s.t. either ws(ω̃) ∈ G̃|ζ̆n
s (ω̃)|δn

(ē)

or ˘̄ζs(ω̃) ∈ Bδn(0) }
={ω̃ ∈ Ω̃ | � ∃s ∈ [0,∞) s.t. either min

λ∈I
|ws(ω̃)− p(λ)| ≤ δ

or ˘̄ζs(ω̃) ∈ Bδn(0) } ∀n ∈ N.

Lastly, define

C̄ .
={ω̃ ∈ Ω̃ | � ∃s ∈ [0,∞) s.t. either ws(ω̃) ∈ G̃0(ē) or ˘̄ζs(ω̃) = 0 }.

Note that Ck ⊂ Cn for k ≤ n. and that
⋃

n∈N Cn = C̄, which implies C̄ =
limn→∞ Cn.

Lemma 11. Let m ≥ 3. Pn(C̄) = 1.

Proof. By (15),

(30) Pn({ω ∈ Ω | ∃s ∈ [0,∞) s.t. ˘̄ζs = 0 }) = 0.

We next employ classical potential theory and its relationship to Brow-
nian motion hitting-time problems (cf. [4, 22, 25]). As we were unable to
find an already-existing proof of assertion (33) below, a reasonably detailed
proof follows. Fix ȳ ∈ Rm, and for y �= ȳ, let v(y; ȳ)

.
= 1

|y−ȳ| . One may easily

verify that for m ≥ 3,

(31) Δv(y; ȳ) ≤ 0 ∀ y ∈ R
m \ {ȳ},

(i.e., v(·; ȳ) is superharmonic), and that v(y; ȳ) → +∞ as y → ȳ.

Fix z ∈ Rm \ {0}. Let V (y)
.
=
∫ 1
0 v(y; [J(z)]−1p(λ)) dλ for all y ∈ Rm \

G̃0(z). Consider y ∈ Rm \ G̃0(z). By repeated application of the Dominated
Convergence Theorem, and (31), one obtains

(32) ΔyV (y) =

∫ 1

0
Δyv(y; [J(z)]

−1p(λ)) dλ ≤ 0 ∀ y ∈ R
m \ G̃0(z).

Let yn → G̃0(z) as n → ∞ be such that V (yn) �→ +∞. By compactness,
there exists ȳ = p(λ̄) ∈ G̃0(z) and subsequence {ynk

} such that ynk
→ ȳ.
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Without loss of generality, suppose there exists δ > 0 such that [λ̄, λ̄+δ] ⊂ I.
Letting ŷnk

.
= J(z)ynk

for all k,

V (ynk
) ≥

∫ λ̄+δ

λ̄
|ynk

− [J(z)]−1p(λ)|−1 dλ = |z|
∫ λ̄+δ

λ̄
|ŷnk

− p(λ)|−1 dλ

≥ |z|
∫ λ̄+δ

λ̄

(
|ŷnk

− p(λ̄)|+Mp(λ− λ̄)
)−1

dλ

=
|z|
Mp

log(1 +Mpδ/|ŷnk
− p(λ̄)|) → +∞ as k → ∞.

By contradiction, we find that V (y) → +∞ as y → G̃0(z) Combining this

with (32), we see that G̃0(z) is polar [4, Th. 1.V.4]. Hence, by [4, Th. 2.IX.5],

(33) P̃n({ω ∈ Ω | ∃s ∈ [0,∞) s.t. ws ∈ G̃0(z) }) = 0.

By (30), (33) and the mutual absolute continuity of Pn with respect to P̃n,

one obtains the result.

Note that Âk = Ak ⊂ An = Ân for all k ≤ n, and let Ā .
=
⋃

n∈N An.

Lemma 12. Let m ≥ 3. P̄ (Ā) = limn→∞ P̄ (An) = 1.

Proof. Recall from (28), that Ân×Ω′ ⊇ Cn. One then finds that
⋃

n∈N[Ân×
Ω′] ⊇

⋃
n∈N Cn = C̄. By Lemma 11, this yields Pn(

⋃
n∈N[Ân × Ω′]) = 1,

or equivalently, P̆n(
⋃

n∈N Ân) = 1. Then, as P̆n is mutually absolutely con-

tinuous with respect to Pn, Pn(Ā) = Pn(
⋃

n∈N Ân) = 1. Further, as Pn is

mutually absolutely continuous with respect to P̄ , we have P̄ (Ā) = 1.

Theorem 13. Let m ≥ 3. (η̄, ζ̄) is a unique strong solution of (1)–(2).

Proof. We first address existence. Note that τn = T for all ω ∈ An ⊂ Ak

for all k ≥ n ≥ 1. By (9) and (29), (η̄, ζ̄) satisfies (1)–(2) on [0, T ] for a.e.

ω ∈ An. Then, by the definition of Ā and Lemma 12, (η̄, ζ̄) satisfies (1)–(2)

on [0, T ] a.s., where we note that (η̄, ζ̄) is Ft-adapted by construction, hence

yielding existence.

Fix (Ω, F̄ , P̄ ). Suppose (η̄, ζ̄) and (η̄′, ζ̄ ′) are two strong solutions of (1)–

(2) on [0, T ]. Let n ∈ N. Then, (η̄, ζ̄) and (η̄′, ζ̄ ′) satisfy (10), (11), (2) on

[0, τn] a.s. Then, by Theorem 6, (η̄t, ζ̄t) = (η̄′t, ζ̄
′
t) on [0, τn]. As this is true

for all n ∈ N, we have uniqueness on [0, T ].
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erties for distorted Brownian motion and applications to finite particle
systems with singular interactions”, Contemp. Math., Vol. 317, Am.
Math. Soc. (2003). MR1966885

[2] M. Akian and E. Fodjo, “A probabilistic max-plus numerical method
for solving stochastic control problems”, Proc. 55th IEEE CDC (2016),
7392–7397.

[3] R. Azencott and H. Doss, “L’équation de Schrödinger quand � tend
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