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Abstract
Purpose of Review: Optimization-based methods for the food-energy-water nexus can assist decision-making on critical
infrastructure but are limited in scope and applicability. We provide an overview of optimization-based systems modeling
techniques for operations researchers and systems modelers studying the nexus.

Recent Findings: We find that the literature has contributed to the understanding of nexus interdependencies and has
provided a framework for sustainability studies. We observe that the majority of the papers expand bottom-up models for one
or two nexus components into the three, which may lead to asymmetric representation of the three sectors. Socioeconomic
and political economy drivers are often exogenous to the models.

Summary: The vast majority of papers can be further enhanced to account for local priorities, and the underlying decision-
making process of stakeholders across the supply chains and at the interdependencies. Greater regional downscaling and
technological detail along with more robust data could also enhance nexus systems modeling.

Keywords Optimization · Food-energy-water nexus · Systems · Economic modeling

Introduction

Motivation

Reaping the benefits of scarce natural resources intensifies
the competition between groups with conflicting interests,
e.g., households and national policy-makers [1] or between
countries at the international level [2]. Hoff [3] stresses the
trade-off between scarcity of the food, energy, and water
(FEW) resources and ensuring access to water and food
for everyone. Food and energy security can be addressed
through regional infrastructure investment coordination,
when neighboring countries have different FEW resources
in abundance [4]. Moreover, the energy and agriculture,
forestry, and other land use sectors are responsible for 59%
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of global greenhouse gas emissions in 2018 [5]. Designing
and operating the resource sectors more efficiently can
alleviate the pressure to physical infrastructures but can
also impact local livelihoods [6]. Although mathemati-
cal modeling—specifically optimization techniques—can
address efficiency related questions, they need to be
enhanced to account for the political and social factors
affecting infrastructure development, including local priori-
ties, entitlements, and power relationships between different
groups. Among the resource sectors, FEW infrastructures
are not only critical for human livelihood, but also strongly
interconnected [7]. For example, water is the major produc-
tion factor of hydropower plants and is used for irrigation
in crop production (geographical interdependency, detailed
in [8]). For that, the availability of water infrastructure can
impact the development of energy infrastructure and agricultural
land. Biofuels are used in both electricity production
and for gasoline blending (physical interdependency,
detailed in [9–11]), with water and other energy-intensive
inputs consumed in crop production and in processing.
Natural gas is purchased by gas-fired power plants (logi-
cal/economic interdependency) and is used as feedstock for
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Fig. 1 Major interdependencies between the food, energy, and water supply chains

petrochemicals production. Petrochemicals and food pro-
duction generate wastewater that pollutes the existing water
resources. We summarize major FEWs interdependencies
in Fig. 1.

The goal of the nexus is to minimize conflicts between
and enhance synergies among the three sectors in order
to improve system efficiency [6]. Beyond the physical
interdependencies of the three resource sectors, Bazilian et
al. [12] argue that FEW sectors are tightly connected and
are similar in many aspects, including international trade,
heterogeneous supply and demand, and high regulation.
Thus, the three sectors need to be treated collectively. The
authors also identify climate change and access to FEW
services as major challenges that call for more efficient use
of resources. However, optimizing technological efficiency
often conceals the social and political ramifications of
policy interventions [13], and can instead aggravate the
vulnerability of particular groups [1]. Moreover, the
development of regional water infrastructure can be affected
by economic and political drivers. In the case of Sub-
Saharan Africa, the lack of human, institutional, and
financial capital restrains the development of irrigation
infrastructure for domestic agricultural production, which
impacts the dietary intake of domestic population and
aggravates domestic poverty [14]. Matthews et al. [15]

argue that China’s investments on energy infrastructure
of the Association of Southeast Asian Nations may not
always be economically profitable, but serve international
relationships or affect other macroeconomic goals that are
prioritized by China’s policymakers.

Therefore, for the nexus to be a helpful tool in achieving
the Sustainable Development Goals (SDGs), it needs to
acknowledge the limitations of optimization frameworks
and account for individual livelihoods, the environment [2],
and other macroeconomic and political drivers [15]. The
fact that there does not exist a single definition of the FEW-
nexus1 reflects the debate regarding the nature and goal
of the nexus. In this paper we treat the FEW-nexus as an
integrated framework that accounts for all three sectors and
their interdependencies.

Individual models have been developed in the literature
for the three individual resource sectors. Therefore,
developing tools for the nexus overlaps with the literature
on model coupling. More specifically, when interactions
with another sector are critical for the development of a
single sector or system, modelers can opt to expand the

1The nexus is also referred to as food-energy-water (FEW) or energy-
water-food (EWF), see [16–18].
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sectoral detail of existing tools. Along this line, Ringler
et al. [19] and Endo et al. [20], argue that the FEW-nexus
can be viewed as an extension of the Integrated Water
Resource Management (IWRM) framework, introduced in
the 1990s [21]. While IWRM has an explicit focus on water
management, the FEW-nexus aims at understanding all
three sectors in detail, along with their interdependencies.

The alternative to expanding a single model is linking
existing sectoral models. In the case of the FEW-nexus,
coupling bottom-up sectoral models has been employed,
to the extent that hardly any new methodologies were
developed specifically for the FEW-nexus [22]. Finally, the
FEW-nexus has motivated the development of new tools
where all three sectors are represented in a single, integrated
framework.

Objective

In this paper we focus on FEW-nexus optimization-based
methods since they allow for a bottom-up representation
of interactions between FEW systems. We distinguish
between top-down and bottom-up approaches and discuss
applications of bilevel optimization. More specifically, we
aim to provide a literature review of FEW-nexus systems
models and their application, identify significant trends, and
discuss potential enhancements.

For the purpose of this study, we searched in Google
Scholar, between June 20th and June 30th 2020, for
publications in peer-reviewed journals that self-identify as
“FEW-nexus” papers and employ optimization modeling to
answer their research questions. Reports, book chapters, and
other non-peer-reviewed articles were excluded from this
review. We also excluded papers that omitted the decision-
making process of all agents in the FEW-nexus. Given
how broad the definition of the FEW-nexus is, we included
papers that may not self-identify as “nexus” papers, but
account for the interactions between any combination of the
three resource sectors. We distinguish ourselves from other
reviews in that we focus on optimization-based methods,
point out the nuances in modeling implementation, and
provide the main findings of each article. Therefore,
this review aims at providing systems modelers and
the operations research community with an overview of
optimization-based modeling techniques for the FEW-
nexus.2 Our paper should not be treated as a systematic
review of the literature, but a guide for researchers on the
diversity of optimization-based methods that have been used
in the FEW-nexus. Table 1 below provides a full list of
citations, the type of model that was developed, and the
mathematical formulation of the problem.

2Urbinatti et al. [23] report 1455 nexus-related papers.

Overview of Optimization-Based Methods

In an optimization problem we find the minimum of
a function, called the objective function, such that its
argument satisfies a set of conditions known as constraints.
Concisely, an optimization problem can be written as

min
x∈Rn

f (x; θ) subject to x ∈ X (1)

where x corresponds to the decision to be taken, which is
typically in the decision-maker’s control. Such a decision
should belong to a feasible set denoted by X, and θ

correspond to the parameters of the optimization problem,
i.e., everything that is exogenous or external to the
optimization problem. With mild technical assumptions on
f and X we can (i) model a wide variety of problems
that are interesting and useful for real-life decision making,
and (ii) solve them efficiently using modern computational
techniques [24].

Collections of problem (1) can be used to represent
decision-making of individual agents in a non-cooperative
game. More specifically, each agent i solves their own
optimization problem

min
x1∈X1⊆Rn

f1(x1; x−1, θ1),

min
x2∈X2⊆Rn

f1(x2; x−2, θ2),

... min
xk∈Xk⊆Rn

fk(xk; x−k, θk) (2)

where xi is the decision variable of agent i, x−i are the
decision variables of all agents other than i whose decisions
affect the objective of agent i. Similarly, θi correspond
to the parameters of the optimization problem of agent
i. In order to solve (2) we derive the Karush-Kuhn-
Tucker (KKT) conditions of each agent and solve them
simultaneously. The KKT conditions of all agents form
a Mixed Complementarity Problem (MCP). With mild
technical assumptions on fi and Xi, we can compute a Nash
Equilibrium of (2) by solving the MCP [25].

Bottom-up Models

Bottom-up models explicitly represent agent interactions,
supply-chain interactions, and supply chain technological
detail [26]. We characterize a model “bottom-up” when it
incorporates either one or more of the above three features.

At the food-water nexus, crop yield models often
incorporate water interactions, e.g., IFPRI’s3 IMPACT-
WATER model [27], which could explain the few mentions
under FEW-nexus. Similarly, Benli and Kodal [28] enhance
a crop production model with water supply constraints for

3International Food Policy Research Institute (IFPRI).
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Table 1 Summary of FEW-nexus systems models. Including food-water (FW), energy-water (EW), food-energy (FE), and FEW publications

Citation Scope Type of model Optimization model

(·) Avraamidou et al. [85] FEW Bottom-up land-use allocation model,
expanded to account for water and energy
interactions

Non-Cooperative game solved as a Bi-
Level Mixed Integer Program

(·) Fan et al. [70] EW Computable General Equilibrium model Equilibrium Model

(·) Memarzadehet al. [87] FEW Integrated water, energy, and food inter-
actions in a single framework

Machine Learning. Dynamic Bayesian
Network

(·) Nie et al. [59] FEW Bottom-Up land-use model, enhanced for
energy and water interaction

Mixed Integer Nonlinear Program

(·) Sankaranarayanan et al. [33] FEW Integrated bottom-up food, energy, and
water systems in a single framework

Mixed Complementarity Problem

(·) Su et al. [73] EW Coupling a Computable General Equilib-
rium model with a bottom-up model of
water infrastructure

Integrated framework, using a different
algorithm for each component

(·) Zhou et al. [71] EW Computable General Equilibrium model Equilibrium Model

(·)Ahmetović et al. [33] FEW Bottom-up model of corn-based ethanol
production, enhanced for water and
energy use

Nonlinear Program

(··) Allam and Eltahir [67] FEW Coupled bottom-up land-use model and
water and energy operations model

Integrated framework, using a different
algorithm for each component

(··) Bellezoni et al. [63] FEW Input-Output model enhanced to account
for the economic interactions

Linear Program

(··) Da Silva et al. [81] FEW Integrated Assessment Model Equilibrium Model

(··) Jalilovet al. [68] FEW Integrated water, energy, food models in a
single framework

Nonlinear Program

(··) Karan et al. [66] FEW Integrated water, energy, food models in a
single framework

Stochastic Program

(··) Karnib [82] FEW Coupled Input-Output model of energy,
water, and food interactions and resources
cost minimization model

Integrated framework, using a different
optimization algorithm for each compo-
nent

(··) Kraucunas et al. [78] FEW Integrated Assessment Model Equilibrium model

(··) Li et al. [61] FEW Coupled bottom-up water, energy, and
food models

Integrated framework, using a different
optimization algorithm for each compo-
nent

(··) Li et al. [62] FEW Integrated water, energy, food models in a
single framework

Multi-stage process involving different
optimization methods in each step

(··) Miralles-Wilhelm and Muñoz-Castillo, [80] FEW Integrated Assessment Model Equilibrium Model

(··) Mouratiadou et al. [57•] FEW Coupled bottom-up models of water,
energy, and land use

Nonlinear Program

(··) Ringleret al. [75] FEW Coupled Computable General Equilib-
rium with a bottom-up agriculture model

Integrated framework, using a different
algorithm for each component

(··) Su et al. [74] FEW Coupled Computable General Equilib-
rium with a bottom-up water management
model

Integrated framework, using a different
algorithm for each component

(··) Tan et al. [90] FEW Integrated water, energy, food submod-
ules in a single framework

Differential Evolution

(··) Tian et al. [65] FEW Coupled ecosystem, economic, and cli-
mate models, with bottom-up representa-
tion of the water, energy, and food sys-
tems

Integrated framework, using a different
optimization algorithm for each compo-
nent

(··) van Vuuren et al. [79••] FEW Integrated Assessment Model Nonlinear Program

(··) Woldesellasse et al. [87] FW Coupled crop water demand model and
water resources allocation model

Integrated framework, using a different
algorithm for each component

(··) Yuan et al. [83] FEW Life Cycle Assessment model Linear Program
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Table 1 (continued)

Citation Scope Type of model Optimization model

(··) Zeng et al. [58] FEW Bottom-Up water reservoir system,
enhanced to account for food, energy, and
climate

Stochastic Program

(··) Zhou et al. [72] FEW Computable General Equilibrium model Mixed Complementarity Problem

(··)Gao et al. [60] FEW Bottom-Up capacity expansion of food
production and coal mining, processing,
and conversion, enhanced for water use

Linear Program

(··) Namanyet al. [64] FEW Integrated bottom-up water, energy, and
food systems in a single framework

Stochastic Linear Program

Bakker et al. [31] FW Bottom-up agricultural model that
accounts for soil moisture and water
retention

Mixed Complementarity Problem

Benli, and Kodal [28] FW Bottom-Up crop production model,
enhanced with water supplies constraints

Nonlinear Program

Bernardi et al. [38] EW Life Cycle Assessment model of biofuel
production, enhanced for its water foot-
print

Mixed Integer Linear Program

Bernardi et al. [35] EW Bottom-Up biofuel supply chain model,
enhanced for water usage.

Linear Program

Cobuloglu and Büyüktahtakın, [50] FE Bottom-up energy and food crop model Mixed Integer Linear Program (MILP)

Cobuloglu and Büyüktahtakın, [51] FE Bottom-up energy and food crop model Stochastic Mixed Integer Nonlinear Pro-
gram (MINLP)

Cuberos Balda et al. [54] FE Bottom up land use model coupled with a
food and fuel demand model

Nonlinear Program

Dhaubanjar et al. [43] EW Bottom-Up optimal power flow model,
enhanced for water interactions

Linear Program

Dubreuil et al. [42] EW Hard-link of an energy system model and
a water system model

Linear Program

Fernández Garcı́a et al. [41]. EW Bottom-up energy production model, cou-
pled with a water and energy use opti-
mization model

Integrated framework, using a different
optimization algorithm for each compo-
nent

Garcia and Yu [36] EW Life Cycle water footprint model,
enhanced with energy interactions

Mixed Integer Nonlinear Program

González-Bravo et al. [46] EW Integrated bottom-up water and power
distribution models in a single framework

Mixed Integer Nonlinear Program

González-Bravo et al. [47] EW Integrated bottom-up water and power
distribution models in a single framework

Mixed Integer Nonlinear Program

Govindan and Al-Ansari, [91] FEW Agents in all sectors are represented in an
integrated framework

Machine Learning. Markov Decision Pro-
cess

Grossman and Martı́n, [34] EW Bottom-Up processes design of a
bioethanol production plant

Integrated framework, using a different
optimization algorithm for each compo-
nent

Guo et al. [52] FE Bottom up biofuel production model
expanded to account for life-cycle carbon
emissions and agents behavior through
agent-based simulations

Integrated framework, using a different
algorithm for each component

Humpenöder et al. [53] FE Bottom-up land-use model, expanded to
account for bioenergy production

Nonlinear Program

(·) Karuppiahet al. [49] FEW Bottom-up model of corn-based ethanol
production, enhanced for water and
energy use

Nonlinear Program

Khan et al. [39] EW Hard-link of a bottom-up energy produc-
tion and capacity expansion model and
a bottom-up water extraction, treatment,
and use model

Linear Program
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Table 1 (continued)

Citation Scope Type of model Optimization model

Lautenbach et al. [89] EF Bottom-Up biodiesel crop production
model, enhanced for water quality

Genetic Algorithm. Non-Dominated Sort-
ing Algorithm (NSGA-II)

López-Dı́az et al. [37] EW Coupled bottom-up watershed and biofuel
refining models

Mixed Integer Linear Program

Martinez and Blanco, [30] FW Bottom-up agricultural model, expanded
to account for water supply

Nonlinear Program

Mekonnen et al. [55] FE Bottom up farm-level agricultural produc-
tion and household biofuel use model

Optimization problem

Mortada et al. [29] FW Bottom-Up crop production and food
consumption model, enhanced to account
for water security

Nonlinear Program

Pereira-Cardenal et al. [40] EW Bottom-Up irrigation agriculture model,
enhanced with an electricity dispatch
model

Stochastic Dual Dynamic Programming

Satti, Zaitchik, and Siddiqui, [44] EW Bottom-up hydro-economic model Nonlinear Program

Tsolas et al. [48] EW Integrated energy and water models in a
single framework

Heuristic method

Wanjiru and Xia, [45] EW Bottom-Up end-user water management
model, enhanced for energy consumption

Linear Program

Weng et al. [76] FE Computable General Equilibrium model,
expanded to account for land allocation

Equilibrium Model

Zhang and Vesselinov, [84] EW Integrated bottom-up water and food
systems in a single framework

Bilevel Program

(·) Burrow et al. [56] FEW Integrated bottom-up water, food, and
electricity supply systems in a single
framework

Mixed Integer Linear Program

·Papers that account for interactions between all three resources sectors

··Papers modeling all three resources sectors

Southeast Anatolia. Mortada et al. [29] build a bottom-up
crop production and food consumption model, enhanced
for water security and find that different definitions of
water and food security can lead to different crop switching
strategies. Martinez and Blanco, [30] expand the Common
Agricultural Policy Regionalised Impact (CAPRI) model to
account for changes in water supply. Using CAPRI, they are
able to identify the cost of water and irrigation efficiency as
the main drivers behind agricultural land development in the
case of Andalusia, Spain. Bakker et al. [31] built the Food
Distributed Extendable Complementarity Model (Food-
DECO), an agricultural model for Ethiopia that incorporates
stakeholders’ objectives along the food supply chain and
accounts for water retention and soil moisture. Using Food-
DECO they simulate a crop failure scenario and assert that
expansion of food distribution capacity can result in greater
nutritional disruption in the regions affected the most.
Finally, Sankaranarayanan et al. [32] model competing
stakeholders in the FEW-nexus of Ethiopia and find that the
revenues of food distributors and storage operators increase
more than the revenues of crop producers when international
revenues increase due to teff exports.

Many energy-water papers are centered around biofuel
production. Ahmetović et al. [33] enhance a corn-based
ethanol production model for water and energy use
and conclude that wastewater management in industrial
operations can be reduced. Along the same line, Grossman
et al. [34] and Bernardi et al. [35] find that water
consumption for bioethanol can drop based on the
configuration of the plant model. Garcia and Yu, [36] study
how the energy efficiency of water affects the lifecycle
water footprint of energy-based products. López-Dı́az et
al. [37] expand a biorefineries operation and planning
model to account for land development and the interactions
with the surrounding watershed. They conclude that water
consumption is lower when bio-refiner expected profit
is higher in Mexico. Bernardi et al. [38] use a detailed
Life Cycle Assessment (LCA) model to capture the water
consumption for biorefining. They suggest that stress on
water infrastructure can be high even for an attainable
greenhouse gas target.

For the energy-water interactions, most papers reviewed
here coupled or expanded an energy operations or planning
model to account for water interactions. Khan et al. [39]
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hard-link an energy production and capacity expansion
model and a water extraction, treatment, and use model.
Using a scenario of increased energy and water demand
in Spain, they compare the results of fully integrated and
non-integrated energy-water systems. They conclude that
the solution to the fully integrated case is less costly and
more energy efficient. Pereira-Cardenal et al. [40] conclude
that in the Iberian Peninsula high irrigation marginal
benefits are sub-optimal when irrigation is allocated to
low productivity hydropower plants. They arrive in this
result by coupling a power system operation model with a
hydrological system. Fernández Garcı́a et al. [41] couple
an energy production model with a water and energy use
model for a system in Southern Spain and derive the optimal
operation of the irrigation network. Dubreuil et al. [42]
use an energy system model to compute energy inputs
to a water system model. They report a 60% decrease
in desalinated water production in the Middle East for a
water-saving scenario. For Nepal, Dhaubanjar et al. [43]
find that water deficits vary depending on the season. They
perform a multi-objective analysis using an optimal power
flow model, coupled with a water resources model. Satti
et al. [44] build a bottom-up hydro-economic model for
the Sudanese section of the Blue Nile. Given the available
water resources, their model computes the optimal water
allocation to hydropower production and irrigation.

More nuanced energy-water applications include end-
user water management, modeling of stakeholder incen-
tives, and modeling the FEW-nexus interactions using a
grid. Wanjiru and Sia [45] focus on energy consumption
of end-user water management and find that water from
direct municipal sources can significantly increase water
savings. González-Bravo et al. [46, 47], model the objec-
tives of different FEW-nexus stakeholders. They conclude
that economic and social objectives affect the results more
than environmental objectives of stakeholders in Northwest-
ern Mexico. Tsolas et al. [48] represent energy and water
resources as nodes and energy-water interactions as inter-
connections in a grid. Their model minimizes energy and
water consumption of Spain. They also use their model to
compute the total redundant energy and water in California.

The majority of the food-energy nexus papers reviewed
here are also centered around biofuel production. Specifi-
cally, Karuppiah et al. [49] use a detailed model of corn-
based ethanol production, enhanced for water and energy
use to provide directives for the reduction of steam con-
sumption. Cobuloglu and Büyüktahtakın [50] build a food
and energy crop production model that decides the opti-
mal allocation of crop yield to food plants or a biorefinery
at Hugoton, Kansas. They find that planting switchgrass is
more profitable than corn in cropland. In their 2017 study,
Cobuloglu and Büyüktahtakın [51] use a stochastic ver-
sion of the food and energy crop production model that

incorporates uncertainty in crop yield and yield prices and
compare economic and environmental benefits between the
stochastic and deterministic formulation for the same case
study. Guo et al. [52] couple a model of biomass cultivation,
and biofuel production and distribution with a LCA model
and an agent-based model. They apply the proposed frame-
work to case studies in the Philippines, South Africa, and
Thailand. The authors identify agricultural waste recovery
and non-food biomass planted on marginal land as sustain-
able actions that contribute to food and energy security of
the three countries. Humpenöder et al. [53] argue that the
tradeoff between bioenergy production and SDGs heavily
depends on future food demand. For their analysis, they
expand the global land-use model MAgPIE4 to account for
bioenergy production. Cuberos Balda et al. [54] couple a
land use model with a food and fuel demand model to study
food and energy security in Miyagi Prefecture, Japan. They
assert that establishing energy self-sufficient farms in aban-
doned land can contribute to increased biofuel production
without compromising food security. Mekonnen et al. [55]
study a representative rural household in Ethiopia that can
allocate their labor to agricultural production or biomass
collection for domestic energy uses. Their analysis shows
that on-farm fuelwood production allows for easier fuel-
wood collection for households and allows households to
invest more labor in crop production instead.

The majority of the bottom-up systems models in this
review that account for all FEW interdependencies focus
on water management and agriculture. Burrow et al. [56],
build a water reservoir operation and expansion model
that accounts for agriculture production, water storage, and
power supply in northeastern Colorado. They find that small
reservoirs can mitigate local agricultural water shortages.
Mouratiadou et al. [57•] couple a global vegetation and
hydrology model with a land use model and a bottom-
up energy model to study water demand for energy and
food. They find that under climate change, irrigation of
bioenergy crops leads to higher water requirements. Zeng et
al. [58] couple a water reservoir system with a soil and water
assessment tool and find that low water flow leads to greater
discrepancies between water, energy, and food supply and
demand in the Jing River basin of China. Nie et al. [59] build
a crop-livestock model and compute the optimal energy,
water, and land resources needed to meet different targets
of total profit, food production, total energy use, total water
use, and total environmental impact in Yucheng, China.
Gao et al. [60] develop a capacity expansion model of food
production and coal mining, processing, and conversion,
enhanced for water use for China. Li et al. [61] and
[62], use stochastic programming and chance-constrained

4Model of Agricultural Production and its Impact on the Environment
(MAgPIE).
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optimization to study FEW interactions in the agricultural
sector in China. They find that crop farming generates
more economic benefit and less pollution than livestock
farming. Bellezoni et al. [63] use Input-Output equations to
grasp FEW interactions in Brazil and derive that sugarcane
expansion in the Goias region would minimally affect water
and land use. Namany et al. [64] compute the minimum
energy and water cost of food production in Qatar using
stochastic programming. They conclude that the additional
investment in renewables and water infrastructure requires
high investment with a short capital recovery time. Tian
et al. [65] couple an agricultural model with a water and
energy allocation model and a regional climate model to
study the impact of nitrogen fertilizer reduction in China.
They find that national soil N2O emissions can be cut
by 50% while crop production shrinks only by 2% for
a 60% decrease in fertilizer use. Karan et al. [66] study
FEW interactions at the household level. In all climate-
related scenarios simulated, the largest portion of household
payments were for energy needs while the second largest
payment was for water needs.

The literature also includes water-centric FEW models
that analyze energy production and agricultural tradeoffs of
hydropower dams, where new dams increase energy supply
for upstream countries but can alter water supply for irriga-
tion in downstream countries. Allam and Eltahir [67] study
the optimal allocation of land and water resources consid-
ering agriculture expansion and hydropower generation in
the upper Blue Nile basin. Jalilov et al. [68] build an oper-
ational model of the Rogan Dam in the Amu Darya River
Basin and focus on the economic and agricultural benefits
of Tajikistan and Uzbekistan.

Top-down Models

Top-down models emphasize the interactions of a system
with the macro-economy. Given our focus on optimization-
based systems models, we only refer to Input-Output (IO)
models and LCA models when they account for inter-
sector economic interactions. We focus on the other two
established top-down methods, namely Computable Gen-
eral Equilibrium (CGE) models and Integrated Assessment
Models (IAMs).

A CGE model includes all sectors of an economy and
economic transactions between them. Sectoral decisions are
represented by a single agent that decides their output and
inputs of production factors by maximizing their utility
or minimizing their production cost [69]. Fan et al. [70]
find that an increased water fee coupled with an emissions
tax enhances emissions reduction and water conservation.
Zhou et al. [71] and [72], couple a CGE with different
bottom-up water management models of China. They find
that an energy tax contributes to water preservation. Su

et al. [73] and [74], evaluate the impact of CO2 mitigation
strategies on water savings in China, with a focus on
pollutants emission. Ringler et al. [75] couple a CGE with
IFPRI’s IMPACT model, an IAM focused on agricultural
production. They find that food security is minimally
affected by a fossil fuel tax. The impact is further alleviated
if reduced emissions mitigate climate change. Weng et al.
[76] focus on China’s food security. They find that the
projected biofuel expansion is based on energy crops
planted mostly in marginal land and leads to little land
reallocation of rice, forest, and grassland fields to non-grain
feedstock. The study is based on a CGE that is expanded to
incorporate land use management and crop switching.

Although IAMs are not necessarily optimization-based
models, we have included them because they have
traditionally been used along with CGEs in economic
top-down analysis and have a structure that mimics
optimization. IAMs are equilibrium models that are
founded on assumptions that make it easier to account
for interactions with the climate and the environment
compared to GCEs [77]. Kraucunas et al. [78] introduced
the Platform for Regional Integrated Modeling and Analysis
(PRIMA) model, which extends GCAM5 to include more
detailed FEW and land submodules. Van Vuuren et al.
[79••] use IMAGE6 to study how technological change
and human behavior can help in achieving the SDGs.
They find that hunger eradication and energy access do
not intensify climate change significantly; and in scenarios
where sectors transform marginally, the SDGs are not met.
Moreover, meeting the environmental objectives defined in
the SDGs would require substantial improvement of energy
efficiency and agricultural yield. Miralles-Wilhelm and
Muñoz-Castillo [80] use GCAM and find that the primary
conflict upon introducing climate policies according to the
Nationally Determined Contributions in Latin America is
between electricity production and crop production that
compete for water resources. Da Silva et al. [81] use GCAM
and find that bioenergy coupled with Carbon Capture
and Storage allows for greater decarbonization in Latin
America. The approach used in both studies is similar.

Finally, enhanced LCA and IO models have also been
expanded and used for economic system assessment. LCA
models track the environmental impact of a product across
the entire life-cycle of the inputs used for the product,
while IO models account for all sectoral interactions in an
economy. Karnib [82] couples an IO model of energy, water,
and food interactions with a resources cost minimization
model and finds the cost of the additional water and
energy resources used when food production is increased.
Yuan et al. [83] couple a LCA model with a climate

5Global Change Assessment Model (GCAM).
6Integrated Model to Assess the Global Environment (IMAGE).
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simulation model and conclude that for water conservation
purposes, rice cultivation needs to be decreased across
Taiwan; however demand for bioethanol production leads to
an increase of rice and corn cultivation in southern Taiwan.

Bilevel Optimization Applications

Bilevel optimization, which includes leader-follower games,
has also been employed for the study of FEW-nexus prob-
lems. Zhang and Vesselinov [84] form a bilevel problem
that maximizes power generation in the upper level and
minimizes total system cost in the lower level, i.e., the sum
of the costs of water delivery, fuel, electricity production,
and the capital cost of power plants. They find that coal-
fired plants barely expand compared to gas-fired plants
when population increases. Avraamidou et al. [85] develop
a bilevel model where the government minimizes FEW
conflicts as the leader and the follower is a land developer
who seeks to maximize their profit. They compute a 20.4%
improvement of FEW conflict metrics when the government
subsidizes renewables and crop production.

Conclusions

Summary

We find that there does not exist a single established
FEW framework, even for the subset of optimization-based
systems models, in accordance with Albrecht et al. [22].
Moreover, very few of the references categorized as bottom-
up consider decision making at the farm or plant level. Two
out of the three FEW sectors are modeled in 33 references,
which implies that certain critical FEW-nexus interactions
are omitted. The asymmetric representation of the three
sectors in these cases may conceal other critical interactions
that can bias the results.

In parallel to the development of nexus methodologies,
machine learning applications have also been growing in the
last ten years. Interestingly, the framework is not common
for nexus-related questions [86].7

Optimization-based nexus models inherit some of their
shortcomings from existing modeling tools. More specifi-
cally, uncertainties due to socioeconomic changes and cli-
mate change are mostly exogenous [92]. To a greater extent,
nexus governance directives are neglected in the vast major-
ity of papers along with most political economy drivers
[93]. Moreover, consistent with the findings of Hoolohan
et al. [94], the vast majority of papers in this review focus

7FEW-nexus systems applications include neural networks [87],
Dynamic Bayesian Networks [88], genetic algorithms [89], Differen-
tial Evolution [90], and Reinforcement Learning [91].

on the physical interactions between the three sectors with-
out including the competing objectives of the associated
stakeholders.

Recent Developments and Potential for Future
Research

Recent developments in the literature aim at expanding
the detail of existing models. FEW sectors are among the
16 sectors that are identified as critical in the Presidential
Policy Directive 21 [95] for the USA. Although interactions
between some critical infrastructure sectors have been
studied, e.g., between FEW-nexus and Transportation
Systems [96], other interdependencies have not been
incorporated in FEW-nexus systems models, e.g., the FEW-
nexus and Emergency Systems interdependencies. Research
on these other sectors has the potential to elucidate insights
through modeling.

Moreover, meaningful development of nexus methods
needs to take into account that most of the FEW interactions
happen at different points in the supply chains of the
three sectors. In Section “Overview of Optimization-Based
Methods” we detail how researchers choose to model FEW-
nexus interactions at different geographical scales, from the
farm level to the country level. Moreover, the representation
of technological detail of the FEW-nexus supply chains
varies between studies, with some studies choosing an
aggregate representation of each sector [63] and others
including certain features of each process [57•].

Apart from operating the FEW-nexus in a way that
accounts for the FEW-nexus interdependencies, the avail-
ability of resources in one FEW sector can either limit
or enable infrastructure investment on another FEW sec-
tor [14]. FEW-nexus systems models provide a framework
that can be used to investigate expansion planning decisions,
where interdependencies between FEW-nexus infrastruc-
tures are also considered [64]. Nevertheless, all approaches
depend on data availability on all three sectors and data con-
sistency at their interdependencies. Compiling such datasets
remains a challenge [2, 97] and limits the applicability of the
nexus to real-world problems. Greater regional downscaling
and enhanced technological detail calls for the collection of
detailed data and the development of robust data generation
techniques.

The challenge of integrating the FEW-nexus sectors can
be physical, economic, and political. Studying all three
sectors in a single framework provides the opportunity to
study the interactions between agents of all three sectors.
However, the asymmetric sectoral detail in a model can
lead to misrepresentation of the objectives of individual
agents of the FEW-nexus. Moreover, FEW-nexus sectors
are considered critical infrastructures, which implies that
agents in the FEW-nexus may also consider the geopolitical
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ramifications of FEW-nexus investments [15]. Nonetheless,
the consideration of all interacting FEW-nexus stakeholders
and a more precise representation of their objectives can
provide further insight on the benefits, economic or other,
accrued by each stakeholder in each sector. Studying the
decisions of each individual agent in each sector allows us to
devise strategies that can overcome economic and political
challenges of sector integration.

Finally, the potential for synergies does not immediately
imply incentive-compatibility of individual agents across all
sectors. Apart from the economic incentives, Leck et al. [93]
highlight the importance of political economy drivers, e.g.,
the role of power relationships, poverty, and entitlements.
Ensuring incentive compatibility along all these dimensions
in the three systems can facilitate translating nexus-
oriented results into governance propositions and evoke
public engagement toward achieving these goals [23]. Local
governance, where nexus conflicts are resolved in practice
beyond optimization models, are a valuable resource when
it comes to understanding inter-sectoral coordination [93].
We find examples of studies that apply optimization-based
tools to FEW-nexus analysis in a manner that explicitly
accounts for limitations in efficiency-oriented analysis
or for the needs of particularly vulnerable groups, e.g.,
[31, 44]. Optimization-based models would benefit by
incorporating power dynamics and local priorities in FEW-
nexus analysis. We argue that a FEW-nexus framework
that accounts for political trade-offs and incorporates non-
economic incentives into the underlying decision-making
process of individual agents could also affect the results.
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