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ABSTRACT

We introduce a supervised machine learning framework to
perform joint feature selection and classification individually
for each data instance during testing. In contrast to our prior
work, we decide both the order and the number of features
for each data instance. Specifically, our proposed solution
dynamically selects the feature to review at each stage based
on the already observed features and stops the selection pro-
cess to make a prediction once it determines no classification
improvement can be achieved. To gain insights, we analyze
the properties of the proposed solution. Based on these prop-
erties, we propose a fast algorithm and demonstrate its ef-
fectiveness compared to the state—of—the—art using 4 publicly
available datasets.

Index Terms— instance—wise feature selection, feature
ordering, classification, dynamic programming

1. INTRODUCTION

In many real world applications (e.g., medical diagnosis, dis-
aster prediction), features are not freely available to acquire,
while accurate, time—sensitive and interpretable decisions are
needed. For instance, consider the case where a doctor aims to
diagnose a patient (classification decision) as quickly as pos-
sible by conducting the minimum number of tests (features)
due to both the cost of the tests and the time sensitivity of the
decision. Note that a different set of tests may be appropri-
ate for each individual patient (data instance). For example,
relevant features for predicting heart failure may differ across
patient subgroups [1]. At the same time, the order by which
test are conducted for each patient does not only affect the
cost, but also the classification decision [2].

In our prior work [3, 4], we studied the problem of
instance—wise dynamic feature selection and classification
for independent/correlated features. The goal was to deter-
mine the number of features needed to classify an instance
and the classification strategy when the order by which the
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features are reviewed is fixed and common for all instances.
Herein, we remove this restrictive assumption and consider
the more general problem of determining also the order by
which features must be reviewed. Thus, we derive the opti-
mum feature ordering, the number of features and the clas-
sification strategy that needs to be adopted for each data
instance individually when features sequentially arrive one at
a time during testing. We also analyze the theoretical prop-
erties of this optimum solution. Specifically, we show that
the corresponding functions are continuous, concave, and
piece—wise linear on the domain of a sufficient statistic, and
use these properties to derive an efficient implementation. In
our experiments, we observe that both the order by which
our framework reviews features and the number of features
used for each test instance are varying. In addition, less num-
ber of features on average is needed to achieve comparable
performance with the state—of—the-art.

Next, we briefly summarize the most relevant work. Tra-
ditional feature selection methods [5, 6] assume all features
are available during training, while streaming feature selec-
tion methods [7-9] are designed to handle features arriv-
ing sequentially during model training. Both such methods
suffer from a key limitation; the features discovered dur-
ing model training and used during testing are the same
for all test instances. Instance—wise feature selection meth-
ods [10-12], instead, identify a subset of relevant features
that explains/predicts the output of a machine learning model
individually for each test instance, but, must first reveal all
feature assignments and do not scale for large feature spaces.
Similar to our method, classification with costly features
methods [13, 14] reveal features one at a time and make a
prediction based only on the observed features for each test
instance. However, these methods define the problem glob-
ally to limit the number of features used on average for all
data instances (i.e., do not optimize instance—wise), and do
not scale for large feature spaces.

2. PROBLEM DESCRIPTION

We consider a standard supervised machine learning setting,
where a data instance s € S is represented using the realiza-
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tion f of a set F' of K features, i.e, {F = f} £ {F, =
fi,..., Fx = fx}. Each data instance s belongs to one of L
classes with associated prior probability P(C = ¢;) = p;
for each assignment ¢;,i € {1,...,L}, of the class vari-
able C. Furthermore, the cost of acquiring feature Fj, is de-
noted by e(Fy) > 0,k € {1,..., K}, while Q;; > 0 rep-
resents the cost of selecting class ¢; when the true class is
¢i, 4,7 € {1,..., L}. Based on the above, our goal is to as-
sign each data instance s to one out of L possible classes.
At the same time, we wish to select the most informative
features to use to reach such a classification decision, un-
der the constraint that features arrive sequentially one at a
time during testing. In this context, at each time, we have
to decide between: i) stopping and optimally classifying the
current data instance based on the reviewed features, or ii)
continue and selecting the next feature from the remaining
set of available features. Next, we introduce three random
variables, 0, 0(R), Dy (g) that will help us describe our pro-
posed approach. Specifically, variables o and o (R) represent
the feature selection strategy, since they denote the order by
which features are selected and the feature at which the se-
quential selection process stops, respectively. For instance,
if K = 3, then 0 = (F3, F, F») denotes a valid feature or-
dering, while o(R = 2) = F} indicates that our framework
stops after acquiring the second feature F} in the ordering
o. On the other hand, variable D, gy represents the classi-
fication strategy, which depends both on ¢ and o(R). For
instance, if K = 3,L = 2 and ¢ = (F3, F, F»), then the
event { Dy (r—g) = 1} represents deciding in favor of class ¢,
based on the feature assignments { f3, f1}.

In order to find the optimum ordering ¢*, the optimum
stopping feature o*(R*) and the optimum classification strat-
egy D;*( R*) that can lead to an accurate classification deci-
sion for each data instance s € S, we propose to solve the
following optimization function:

minimize J (0, o(R),

Do(ry)s 6]
G'7U(R),D0(R) (R)>

where J (0, 0(R), Dy(r)) = ]E{ 25:1 e(FU(k))} + Zle

Zle Q,;jP(DU(R) =jC = ci). The first term represents
the cost of reviewing features, and the second term penalizes
the misclassification cost of decision Dy (gy).

3. SOLUTION

To solve the optimization problem of Eq. (1), we begin by

simplifying the probability P(DU( R) = Js Cl-). Specifically,
. K

since xg = ) ,_o 2k l{r—r) for any sequence of random

variables {z}, where 14 is the indicator function for event

A, the probability P(D,(gy = j,C = ¢;) takes the form:

P(Dyry=3j,C=¢;)=E {ﬂ—é(R)]l{Da(R):j}} - @
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The term Wi(k) £ P(C = ci|Fy1y,-- -, Fox)) denotes the
probability of the data instance under examination belonging
to class ¢; given the accumulated information until kth feature
for ordering 0. We observe that using Eq. (2), the optimiza-
tion function in Eq. (1) can be rewritten as follows:

R
J(O’,O’(R) o(R) { Ze U(k)
k=1
L
+ > Q) Mo LD, =i} } 3)
j=1

where Q; = [Q15,Q2;,---,Qr]" and mo) = [7) ),
ﬂ'?j( k) ,w(f( k)]T. We can recursively update the posterior
probability vector 7, (k) € [0, 1]% via Bayes’ rule as follows:

diag (A (Fg<k) ‘Fgu), e
AT(Fyey|Foqay, - s

7Fa(k71),C))7Ta(k71)
Fo(k—1),C)Tok—1)

To(k) = )
where A(Fy )| Foq For-1):C) £ [P(Fo)|Fo),
) Ffr(k 1) Cl) P(Fa(k)|Fa(1)7 cee ,Fo(k—l)v CL)] >
diag(A) represents a diagonal matrix with elements of vector

A» and 71-o'(()) = [p17p27 e 7pL]T'
To obtain the optimum classification strategy D:;( R) for

any stopping feature o(R) and ordering o, we search for a
lower bound for the last term in Eq. (3). Specifically, we

L
note that ijl QjTWa(R)IL{DU(R):j} > g(WU(R)), where

A . T .
9(Te(r)) = minigj<r [Q] mo(r)| for any stopping fea-
ture o(R) and ordering . Thus, the optimum classification
strategy is:

DU(R) = arg mm [Q To(R } 5
Since J(0,0(R),Dy(r)) = J(o,0(R), D;(R)), where
J(J,J(R),D;(R)) = minp, J(a, o(R), DU(R)), Eq. 3)
can be rewritten to depend only on feature ordering ¢ and the
stopping feature o (R) as follows:

R

J(0,0(R)) = E{Ze(Fcr(k)) +9(7T0<R))} - ©
k=1
Next, we solve the optimization problem min, ,(g)

J (0,0(R)) to obtain both the optimum ordering o* and
the optimum stopping feature o*(R*) simultaneously. At
stage k, let N, = {F,,,..., F,, },w € {1,...,K},Vk, be
the k features reviewed thus far, and 7, = F' — Ny, be the re-
maining set of features. Theorem 1 summarizes the optimum
solution found by dynamic programming [15].

Theorem 1. For k = K — 1,...,0, the function jk(m,k) is
related to Jy1(m, ) through the equation:

jk(ka) = min [g(w%LA\k(ww)] with

~ (7N
JK(W’YK) = g(ﬂ—vx)v

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 18,2021 at 21:24:39 UTC from IEEE Xplore. Restrictions apply.



where “zl\k(ﬂ’wc) = mian+1€Zk, |:6(Fk+1) + ZFk+1 AT(Fk+1

-~ diag (A(Fhy1]Fyy ey €))7y
|F.Yl,...,F%,C)7rWJk+1( ( k k .

AT (Fq1|Fyy ey Fryy, C) 7y

Therefore, the optimum feature ordering is o* = (F,,, ...,
F, ), while the optimum stopping feature o*(R*) is equal
to the first k& < K feature for which g(m,, ) < A (7, )s OF
o*(R* = K) if there are no more features to be reviewed.
Equivalently, we stop the feature review process at stage k,
if the cost of stopping g(7., ) is no greater than the minimum
expected cost of continuing Ay, (7., ) given all information ac-
cumulated up to stage k. In Theorem 1, the optimum feature
F,, ., is obtained from the set Zj, of remaining features given
7., such that the total cost until termination is minimized.
Hence, the optimum feature ordering o* = (F,, ..., F,.)
derived from Theorem 1 is not a global ordering common for
all data instances, but rather varies based on the assigned fea-
ture values {f,,,..., fy, } for each data instance s € S (see

Section 6 for a demonstration).

4. THEORETICAL RESULTS

We discuss some important properties of the optimum solu-
tion in Section 3. Consider a general form of the function
g(my, ), used to derive the optimum classification strategy in
Eq (5), given by g(w) e minlgng [Q;‘FWLZU S [07 1]L,
where @ £ [wy, ..., wz]T, such that w; € [0, 1], ZiL:1 w; =
1. The domain of g(w) is the probability space of w, which is
an L — 1 dimensional unit simplex. Function g(w) has some
interesting properties as described in Lemma 1.

Lemma 1. Function g(w) is continuous, concave, and piece-
wise linear, and consists of at most L hyperplanes represented
by the set {Q? jL:1 of L vectors. Each hyperplane denotes a
unique classification decision, while the optimum classifica-
tion strategy D*(w) = arg mini < <z, [Q]Tw]

Next, we consider the general form of the function
ﬁk(mk) in Eq. (7) given by:

-~ o . T
Ay (w) = Frph ez, I:e(Fk-H) +§1A (Fr1lFry s oo By, €)
~  (diag (A(Fys1|Fyy, ..., Fy . C
~ ka+1< lag£ ( k+1| Y1 Yk ))w):| . (8)
A (Fk+1|F’Yl’“'>F’Y}g7C)w

Lemma 2 summarizes the key properties of this function.

Lemma 2. The functions Ay(w),k = 0,...,K — 1, are
continuous, concave, and piecewise linear. In particular, we

L~ . Fy
can write Agx(w) 2 ming, , ez, [ﬁk’”“w], where F.

Yk+1
. Flq1 Flt1 1xL
argming, ez, [ﬁk w |, and B3, e R,

The properties of functions g(zw) and A (w) stated in
Lemmas 1 and 2, respectively, allow for a parsimonious rep-
resentation of the function related to the optimum feature se-
lection strategy in Eq. (7), as shown in Theorem 2.

Theorem 2. At every stage k € {0,..., K}, there exists a
finite set {ai}, af € RYE, of vectors such that Jy,(w) =

min; [} @], where {al} £ {{55%“} U {QJT JL:1}J€ €
{0,..., K — 1} with {a } £ {QT}E_ .

Note that each vector i defines a region in the proba-
bility space of @ for which this vector maximizes the func-
tion J(w). These regions form a partition of the probability
space induced by the piecewise linearity of jk(w) Hence,
the finite set {a} } can be used as a compact representation
of Jy (w), instead of computing Ji (w) at every realization of
w in the probability space. This property can be used to de-
rive an efficient algorithmic implementation of the optimum
solution as described in Section 5.

5. IFCO ALGORITHM

Lemma 1 and Theorem 2 allow for an efficient implementa-
tion of the optimum solution described by Egs. (5) and (7).
Specifically, the decision to stop or continue the feature re-
view process depends only on o, = argmin,; [} @], such

that if o, € {Q] }

j=1, We stop the feature review process,

, F, . :
else if o} € {ﬁk R } we continue with feature F,, .

This is based on the fact that Jj, (o) = min [g(w), Ay (w)].

Namely, if af € {QJT}jLzl, Lemma 1 implies that g(w) <

~ F
Ap(w). On the other hand, if of € {5,;’““ } , Lemma 2

implies that g(z) > Ay (). Based on the above, we present
IFCO, an algorithm for Instance—wise Feature selection and
Classification with optimum feature Ordering. Initially, w
is set to mo, and o = argmin,;|ogw] is computed. If
o € {QF }E_ . IFCO classifies the instance under examina-

. . F. . .
tion, else if o) € {5 . } feature F’,, is reviewed. IFCO re-

peats these steps until either it decides to classify the instance
using < K features, or exhausts all features. The input vec-
tor sets {a} } can be computed using a standard point-based
value iteration algorithm [16] during training. For simplicity,
we opted for the Perseus algorithm [17], among the several
point—based value iteration algorithms in the literature [18].
Specifically, we fed a fixed number ¢ (e.g., ~1000 [17]) of
reachable o vectors from each stage, conditional probability
distributions P(F}|C;), misclassification costs );; and fea-
ture review costs e(F};) into the Perseus algorithm to obtain
{at}, k€{0,...,K —1}.

6. EXPERIMENTS

In this section, we assess the performance of IFCO on 3
DNA microarray datasets [19], MLL (72 instances / 5, 848
features / 3 classes), Lung2 (203 instances / 3, 312 features /
2 classes), Car (174 instances / 9, 182 features / 11 classes),

3372
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Table 1. Performance comparison with baselines. “Acc”, and
“Feat” stands for accuracy, and the average number of fea-
tures per data instance, respectively. “All” represents using
all features.

MLL Spambase Lung2 Car

Method Acc | Feat | Acc | Feat | Acc | Feat | Acc Feat
IFCO 1.00 | 3.20 | 0.813 | 3.01 | 0.887 | 3.94 | 0.857 | 8.64

MB [4] 1.00 | 4.88 | 0.741 | 3.08 | 0.842 | 3.96 | 0.539 | 5.63
ASSESS [3] 1.00 | 5.07 | 0.847 | 7.47 | 0.882 | 15.6 | 0.810 | 12.91
OFS-Density [7] | 0.960 | 11.0 | 0.787 | 7.60 | 0.912 | 16.2 | 0.597 | 6.80
SAOLA [8] 0.867 | 28.0 | 0.824 | 24.6 | 0.882 | 28.2 | 0.798 | 41.4
OSEFS [9] 0.800 | 3.00 | 0.801 | 33.8 | 0.847 | 5.80 | 0.556 | 5.20
FAST-OSFS [9] | 0.800 | 5.00 | 0.801 | 33.8 | 0.842 | 9.40 | 0.608 | 8.40
Lasso 1.00 | 4.00 | 0.902 | 29.6 | 0.685 | 9.40 | 0.551 | 28.8
Tree [5] 0.933 | 100 | 0.947 | 18.2 | 0.897 | 207 | 0.752 | 429
PCA 0.667 | 36.0 | 0.693 | 1.00 | 0.897 | 88.4 | 0.391 | 91.0
SVM-G 1.00 | All | 0.834 | Al | 0.788 | All | 0.563 | All
R-Forest 1.00 | All | 0.940 | Al | 0.911 | All | 0.758 | All
XG-Boosting 0.733 | All | 0955 | All | 0.906 | All | 0.844 | All

and an email dataset [20], Spambase (4,601 instances / 57
features / 2 classes). For MLL, we use the originally provided
training and validation sets, while for Spambase, Lung2, and
Car, we report five—fold cross validated results.

We use a smoothed maximum likelihood estimator to
estimate p(F|C;),k = 1,...,K,i = 1,..., N, after quan-
tizing the feature space. Specifically, p(Fy|C;) = ‘Z’z;‘r/l
where Sy ; denotes the number of instances that satisfy
Fyr, = fi and belong to class C;, S; denotes the total num-
ber of instances belonging to class C;, and V' is the num-
ber of bins considered. We estimate the prior probabilities
as P(C;) = Z’GST’Z = 1,...,N. In our experiments,
Qij = 1,¥i # §,Qu = 0,i,j € {1,...,L}, V = 4, and
feature cost e(F)) = 0.01, Vk.

We compare the performance of IFCO to (i) 4 online
feature selection methods: OFS-Density [7], SAOLA [8],
OSEFS [9], FAST-OSFS [9], (ii) 2 instance—wise joint feature
selection and classification methods: ASSESS [3], MB [4],
(iii) 3 offline feature selection and dimentionality reduc-
tion methods: Ll-norm based feature selection (Lasso),
Tree—based feature selection (Tree) [5], Principal Component

Analysis with SVM classifier (PCA), and (iv) 3 state—of—the—
art classifiers: Support Vector Machines with Gaussian kernel
(SVM-G), Random Forest (R-Forest), XG Boosting (XG-
Boosting). We summarize the results in Table 1 next. IFCO
achieves 100% accuracy using just 3.2 features on average
on MLL dataset. MB, ASSESS, Lasso, SVM-G and R-
Forest achieve the same accuracy, but use between 25% and
1.8 x 10°% more features compared to IFCO. For Spambase,
XG-Boosting achieves the highest accuracy with 19 times
more features compared to IFCO for a difference of 14%
in accuracy. For Lung2, OFS-Density achieves the highest
accuracy (i.e., 2.8% better than IFCO), but requires 4 times
more features. Finally, in the Car dataset, IFCO achieves
the highest accuracy using 8.6 features on average. This is
an improvement of 1.3% in accuracy with ~ 1000 times
less features compared to XG—Boosting, which achieves the
highest accuracy among the baselines.

In Table 2, we demonstrate IFCO using 4 examples from
the IMDB movie reviews dataset (50, 000 instances / 89, 523
features / 2 classes) [21]. We use the original provided train-
ing and validation sets with bag—of—words features. Note that
IFCO selects different features (order, number) for different
data instances in a dynamic setting and predicts the class la-
bel based on the observed features.

7. CONCLUSION

We presented an instance—wise dynamic joint feature selec-
tion and classification framework that selects both the order
and the number of features for each data instance individually.
We showed that the functions related to the optimum solution
are continuous, concave and piece—wise linear on the domain
of a sufficient statistic. Using these properties, we proposed
IFCO, and validated its effectiveness compared to prior work
using real-world datasets. In our future work, we plan to ex-
tend this work to regression settings.

Table 2. Words (features) picked by IFCO are highlighted in yellow. The true/predicted label is given at the end of each review.
The second column reports features selected in ascending order (Y—axis) versus feature value (X—axis).

IMDB Review Text (True Label, Predicted Label)

T'had read up on the film ... I wasn’t expecting anything great, figured it would be mostly fluff but hopefully not a totally bad experience.
I have to admit I was pleasantly surprised. The dialogue was pitch perfect, most of the actors were exceptionally good and it flowed
nicely. Ash Christian was perfect, ... Ashley Fink is gem, a great young character actress that hopefully will get more work. There are
moments in the film that could have used some work, but all in all not a bad time at the cinema. . .. (positive, positive)

‘poorly’
‘awful’
‘perfect’
‘best’
‘great
‘bad’

This movie is the worst thing ever created by humans. You think manos is the worst movie ever? It doesn’t even come close to this
garbage. I dont even know where to begin. The “russian” commander and the rebel chic are the worst “actors” ever to appear in a
movie. ...the goofiest rape scene ever filmed, and the worst acting ever put on film. This movie deserves to be more well known
among bad movie fans. Definitely the worst movie ever made. (negative, negative)

‘great’
‘worst’
‘bad’

0 1 2
01 5

Do-It-Yourself indie horror auteur Todd Sheets . ..and a trio of hottie sisters all have to do their best to survive this harrowing ordeal.
... Let’s not forget the ridiculous ending in which several of our survivors stumble across a few vials of flesh-eating bacteria to use on
the shambling undead hordes. Sure, this flick is pure dreck, but it has a certain endearingly abominable quality to it that in turn makes
it a great deal of so-awful-it’s-awesome Grade Z fun for hardcore aficionados of bad fright fare. (positive, negative)

‘ridiculous’

‘stupid’

‘awful’

no’

‘best

‘worst
‘bad’

0 1

Tommy Lee Jones was the best Woodroe and no one can play Woodroe F. Call better than he. Not only was he the first and best, he
was the only person that could portray his grief and confusion. It was a bad let-down and I'm surprised I even made myself watch it.
... The first movie was the best and the only ... (negative, positive)

‘poorly’
‘horrible’
‘best’
‘worst’
‘bad’

1 3
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