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ABSTRACT

We introduce a supervised machine learning framework to

perform joint feature selection and classification individually

for each data instance during testing. In contrast to our prior

work, we decide both the order and the number of features

for each data instance. Specifically, our proposed solution

dynamically selects the feature to review at each stage based

on the already observed features and stops the selection pro-

cess to make a prediction once it determines no classification

improvement can be achieved. To gain insights, we analyze

the properties of the proposed solution. Based on these prop-

erties, we propose a fast algorithm and demonstrate its ef-

fectiveness compared to the state–of–the–art using 4 publicly

available datasets.

Index Terms— instance–wise feature selection, feature

ordering, classification, dynamic programming

1. INTRODUCTION

In many real world applications (e.g., medical diagnosis, dis-

aster prediction), features are not freely available to acquire,

while accurate, time–sensitive and interpretable decisions are

needed. For instance, consider the case where a doctor aims to

diagnose a patient (classification decision) as quickly as pos-

sible by conducting the minimum number of tests (features)

due to both the cost of the tests and the time sensitivity of the

decision. Note that a different set of tests may be appropri-

ate for each individual patient (data instance). For example,

relevant features for predicting heart failure may differ across

patient subgroups [1]. At the same time, the order by which

test are conducted for each patient does not only affect the

cost, but also the classification decision [2].

In our prior work [3, 4], we studied the problem of

instance–wise dynamic feature selection and classification

for independent/correlated features. The goal was to deter-

mine the number of features needed to classify an instance

and the classification strategy when the order by which the
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features are reviewed is fixed and common for all instances.

Herein, we remove this restrictive assumption and consider

the more general problem of determining also the order by

which features must be reviewed. Thus, we derive the opti-

mum feature ordering, the number of features and the clas-

sification strategy that needs to be adopted for each data

instance individually when features sequentially arrive one at

a time during testing. We also analyze the theoretical prop-

erties of this optimum solution. Specifically, we show that

the corresponding functions are continuous, concave, and

piece–wise linear on the domain of a sufficient statistic, and

use these properties to derive an efficient implementation. In

our experiments, we observe that both the order by which

our framework reviews features and the number of features

used for each test instance are varying. In addition, less num-

ber of features on average is needed to achieve comparable

performance with the state–of–the-art.

Next, we briefly summarize the most relevant work. Tra-

ditional feature selection methods [5, 6] assume all features

are available during training, while streaming feature selec-

tion methods [7–9] are designed to handle features arriv-

ing sequentially during model training. Both such methods

suffer from a key limitation; the features discovered dur-

ing model training and used during testing are the same

for all test instances. Instance–wise feature selection meth-

ods [10–12], instead, identify a subset of relevant features

that explains/predicts the output of a machine learning model

individually for each test instance, but, must first reveal all

feature assignments and do not scale for large feature spaces.

Similar to our method, classification with costly features

methods [13, 14] reveal features one at a time and make a

prediction based only on the observed features for each test

instance. However, these methods define the problem glob-

ally to limit the number of features used on average for all

data instances (i.e., do not optimize instance–wise), and do

not scale for large feature spaces.

2. PROBLEM DESCRIPTION

We consider a standard supervised machine learning setting,

where a data instance s ∈ S is represented using the realiza-
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tion f of a set F of K features, i.e., {F = f} , {F1 =
f1, . . . , FK = fK}. Each data instance s belongs to one of L

classes with associated prior probability P (C = ci) = pi
for each assignment ci, i ∈ {1, . . . , L}, of the class vari-

able C. Furthermore, the cost of acquiring feature Fk is de-

noted by e(Fk) > 0, k ∈ {1, . . . ,K}, while Qij > 0 rep-

resents the cost of selecting class cj when the true class is

ci, i, j ∈ {1, . . . , L}. Based on the above, our goal is to as-

sign each data instance s to one out of L possible classes.

At the same time, we wish to select the most informative

features to use to reach such a classification decision, un-

der the constraint that features arrive sequentially one at a

time during testing. In this context, at each time, we have

to decide between: i) stopping and optimally classifying the

current data instance based on the reviewed features, or ii)

continue and selecting the next feature from the remaining

set of available features. Next, we introduce three random

variables, σ, σ(R), Dσ(R) that will help us describe our pro-

posed approach. Specifically, variables σ and σ(R) represent

the feature selection strategy, since they denote the order by

which features are selected and the feature at which the se-

quential selection process stops, respectively. For instance,

if K = 3, then σ = (F3, F1, F2) denotes a valid feature or-

dering, while σ(R = 2) = F1 indicates that our framework

stops after acquiring the second feature F1 in the ordering

σ. On the other hand, variable Dσ(R) represents the classi-

fication strategy, which depends both on σ and σ(R). For

instance, if K = 3, L = 2 and σ = (F3, F1, F2), then the

event {Dσ(R=2) = 1} represents deciding in favor of class c1
based on the feature assignments {f3, f1}.

In order to find the optimum ordering σ∗, the optimum

stopping feature σ∗(R∗) and the optimum classification strat-

egy D∗
σ∗(R∗) that can lead to an accurate classification deci-

sion for each data instance s ∈ S , we propose to solve the

following optimization function:

minimize
σ,σ(R),Dσ(R)

J
(
σ, σ(R), Dσ(R)

)
, (1)

where J
(
σ, σ(R), Dσ(R)

)
= E

{∑R
k=1 e

(
Fσ(k)

)}
+

∑L
j=1∑L

i=1 QijP
(
Dσ(R) = j, C = ci

)
. The first term represents

the cost of reviewing features, and the second term penalizes

the misclassification cost of decision Dσ(R).

3. SOLUTION

To solve the optimization problem of Eq. (1), we begin by

simplifying the probability P
(
Dσ(R) = j, Ci

)
. Specifically,

since xR =
∑K

k=0 xk1{R=k} for any sequence of random

variables {xk}, where 1A is the indicator function for event

A, the probability P
(
Dσ(R) = j, C = ci

)
takes the form:

P
(
Dσ(R) = j, C = ci

)
= E

{
πi
σ(R)1{Dσ(R)=j}

}
. (2)

The term πi
σ(k) , P

(
C = ci|Fσ(1), . . . , Fσ(k)

)
denotes the

probability of the data instance under examination belonging
to class ci given the accumulated information until kth feature
for ordering σ. We observe that using Eq. (2), the optimiza-
tion function in Eq. (1) can be rewritten as follows:

J
(
σ, σ(R), Dσ(R)

)
= E

{
R∑

k=1

e
(
Fσ(k)

)

+

L∑

j=1

Q
T
j πσ(R)1{Dσ(R)=j}

}
, (3)

where Qj , [Q1,j , Q2,j , . . . , QL,j ]
T and πσ(k) , [π1

σ(k),

π2
σ(k), . . . , π

L
σ(k)]

T . We can recursively update the posterior

probability vector πσ(k) ∈ [0, 1]L via Bayes’ rule as follows:

πσ(k) =
diag

(
∆
(
Fσ(k)|Fσ(1), . . . , Fσ(k−1), C

))
πσ(k−1)

∆T (Fσ(k)|Fσ(1), . . . , Fσ(k−1), C)πσ(k−1)

, (4)

where ∆
(
Fσ(k)|Fσ(1), . . . , Fσ(k−1), C

)
, [P (Fσ(k)|Fσ(1),

. . . , Fσ(k−1), c1), . . . , P (Fσ(k)|Fσ(1), . . . , Fσ(k−1), cL)]
T ,

diag(A) represents a diagonal matrix with elements of vector

A, and πσ(0) , [p1, p2, . . . , pL]
T .

To obtain the optimum classification strategy D∗
σ(R) for

any stopping feature σ(R) and ordering σ, we search for a

lower bound for the last term in Eq. (3). Specifically, we

note that
∑L

j=1 Q
T
j πσ(R)1{Dσ(R)=j} > g

(
πσ(R)

)
, where

g
(
πσ(R)

)
, min16j6L

[
QT

j πσ(R)

]
for any stopping fea-

ture σ(R) and ordering σ. Thus, the optimum classification

strategy is:

D∗
σ(R) = arg min

16j6L

[
QT

j πσ(R)

]
. (5)

Since J
(
σ, σ(R), Dσ(R)

)
> J

(
σ, σ(R), D∗

σ(R)

)
, where

J
(
σ, σ(R), D∗

σ(R)

)
= minDσ(R)

J
(
σ, σ(R), Dσ(R)

)
, Eq. (3)

can be rewritten to depend only on feature ordering σ and the
stopping feature σ(R) as follows:

J̃
(
σ, σ(R)

)
= E

{
R∑

k=1

e
(
Fσ(k)

)
+ g

(
πσ(R)

)
}
. (6)

Next, we solve the optimization problem minσ,σ(R)

J̃
(
σ, σ(R)

)
to obtain both the optimum ordering σ∗ and

the optimum stopping feature σ∗(R∗) simultaneously. At

stage k, let Nk = {Fγ1 , . . . , Fγk
}, γk ∈ {1, . . . ,K}, ∀k, be

the k features reviewed thus far, and Zk = F −Nk be the re-

maining set of features. Theorem 1 summarizes the optimum

solution found by dynamic programming [15].

Theorem 1. For k = K − 1, . . . , 0, the function Ĵk(πγk
) is

related to Ĵk+1(πγk+1
) through the equation:

Ĵk(πγk
) = min

[
g(πγk

), Âk(πγk
)
]

with

ĴK(πγK
) = g(πγK

),
(7)
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where Âk(πγk
) , minFk+1∈Zk

[
e(Fk+1) +

∑
Fk+1

∆T (Fk+1

|Fγ1 , . . . , Fγk
, C)πγk

Ĵk+1

(
diag

(
∆(Fk+1|Fγ1

,...,Fγk
,C)

)
πγk

∆T (Fk+1|Fγ1
,...,Fγk

,C)πγk

)]
.

Therefore, the optimum feature ordering is σ∗ , (Fγ1
, . . . ,

FγK
), while the optimum stopping feature σ∗(R∗) is equal

to the first k < K feature for which g(πγk
) 6 Âk(πγk

), or

σ∗(R∗ = K) if there are no more features to be reviewed.

Equivalently, we stop the feature review process at stage k,

if the cost of stopping g(πγk
) is no greater than the minimum

expected cost of continuing Âk(πγk
) given all information ac-

cumulated up to stage k. In Theorem 1, the optimum feature

Fγk+1
is obtained from the set Zk of remaining features given

πγk
such that the total cost until termination is minimized.

Hence, the optimum feature ordering σ∗ = (Fγ1
, . . . , FγK

)
derived from Theorem 1 is not a global ordering common for

all data instances, but rather varies based on the assigned fea-

ture values {fγ1 , . . . , fγK
} for each data instance s ∈ S (see

Section 6 for a demonstration).

4. THEORETICAL RESULTS

We discuss some important properties of the optimum solu-

tion in Section 3. Consider a general form of the function

g(πγk
), used to derive the optimum classification strategy in

Eq. (5), given by g($) , min16j6L

[
QT

j $
]
, $ ∈ [0, 1]L,

where $ , [ω1, . . . , ωL]
T , such that ωi ∈ [0, 1],

∑L
i=1 ωi =

1. The domain of g($) is the probability space of $, which is

an L− 1 dimensional unit simplex. Function g($) has some

interesting properties as described in Lemma 1.

Lemma 1. Function g($) is continuous, concave, and piece-

wise linear, and consists of at most L hyperplanes represented

by the set {QT
j }

L
j=1 of L vectors. Each hyperplane denotes a

unique classification decision, while the optimum classifica-

tion strategy D∗($) = argmin16j6L

[
QT

j $
]
.

Next, we consider the general form of the function

Âk(πγk
) in Eq. (7) given by:

Âk($) = min
Fk+1∈Zk

[
e(Fk+1) +

∑

Fk+1

∆T (Fk+1|Fγ1 , . . . , Fγk
, C)

×$Ĵk+1

(
diag

(
∆(Fk+1|Fγ1 , . . . , Fγk

, C)
)
$

∆T (Fk+1|Fγ1 , . . . , Fγk
, C)$

)]
. (8)

Lemma 2 summarizes the key properties of this function.

Lemma 2. The functions Âk($), k = 0, . . . ,K − 1, are
continuous, concave, and piecewise linear. In particular, we

can write Âk($) , minFk+1∈Zk

[
β
Fk+1

k $
]
, where Fγk+1 ,

argminFk+1∈Zk

[
β
Fk+1

k $
]
, and β

Fk+1

k ∈ R
1×L.

The properties of functions g($) and Âk($) stated in

Lemmas 1 and 2, respectively, allow for a parsimonious rep-

resentation of the function related to the optimum feature se-

lection strategy in Eq. (7), as shown in Theorem 2.

Theorem 2. At every stage k ∈ {0, . . . ,K}, there exists a

finite set {αi
k}, α

i
k ∈ R

1×L, of vectors such that Ĵk($) =

mini[α
i
k$], where {αi

k} ,
{{

β
Fγk+1

k

}
∪ {QT

j }
L
j=1

}
, k ∈

{0, . . . ,K − 1} with {αi
K} , {QT

j }
L
j=1.

Note that each vector αi
k defines a region in the proba-

bility space of $ for which this vector maximizes the func-

tion Ĵk($). These regions form a partition of the probability

space induced by the piecewise linearity of Ĵk($). Hence,

the finite set {αi
k} can be used as a compact representation

of Ĵk($), instead of computing Ĵk($) at every realization of

$ in the probability space. This property can be used to de-

rive an efficient algorithmic implementation of the optimum

solution as described in Section 5.

5. IFCO ALGORITHM

Lemma 1 and Theorem 2 allow for an efficient implementa-

tion of the optimum solution described by Eqs. (5) and (7).

Specifically, the decision to stop or continue the feature re-

view process depends only on α∗
k = argminαi

k
[αi

k$], such

that if α∗
k ∈ {QT

j }
L
j=1, we stop the feature review process,

else if α∗
k ∈

{
β
Fγk+1

k

}
, we continue with feature Fγk+1

.

This is based on the fact that Ĵk($) = min
[
g($), Âk($)

]
.

Namely, if α∗
k ∈ {QT

j }
L
j=1, Lemma 1 implies that g($) 6

Âk($). On the other hand, if α∗
k ∈

{
β
Fγk+1

k

}
, Lemma 2

implies that g($) > Âk($). Based on the above, we present

IFCO, an algorithm for Instance–wise Feature selection and

Classification with optimum feature Ordering. Initially, $

is set to π0, and α∗
0 = argminαi

0
[αi

0$] is computed. If

α∗
0 ∈ {QT

j }
L
j=1, IFCO classifies the instance under examina-

tion, else if α∗
0 ∈

{
β
Fγ1

k

}
, feature Fγ1 is reviewed. IFCO re-

peats these steps until either it decides to classify the instance

using < K features, or exhausts all features. The input vec-

tor sets {αi
k} can be computed using a standard point–based

value iteration algorithm [16] during training. For simplicity,

we opted for the Perseus algorithm [17], among the several

point–based value iteration algorithms in the literature [18].

Specifically, we fed a fixed number ζ (e.g., ∼1000 [17]) of

reachable $ vectors from each stage, conditional probability

distributions P (Fk|Ci), misclassification costs Qij and fea-

ture review costs e(Fk) into the Perseus algorithm to obtain

{αi
k}, k ∈ {0, . . . ,K − 1}.

6. EXPERIMENTS

In this section, we assess the performance of IFCO on 3
DNA microarray datasets [19], MLL (72 instances / 5, 848
features / 3 classes), Lung2 (203 instances / 3, 312 features /

2 classes), Car (174 instances / 9, 182 features / 11 classes),

3372
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