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Abstract

We present a randomness efficient version of the linear noise operator 7}, from boolean function

analysis by constructing a sparse linear operator on the space of boolean functions {0,1}" —

{0,1} with similar eigenvalue profile to 7,,. The linear operator we construct is a direct con-

sequence of a generalization of e-biased sets to the product distribution D, on {0,1}" where
11

the marginal of each coordinate is p = 5 — 5p. Such a generalization is a small support

distribution that fools linear tests when the input of the test comes from D, instead of the
uniform distribution. We give an explicit construction of such a distribution that requires
logn 4+ O, (loglogn + log %) bits of uniform randomness to sample from, where the p subscript
hides O(log2 1%) factors. When p and € are constant, this yields a support size nearly linear in n,
whereas previous best known constructions only guarantee a size of poly(n). Furthermore, our
construction implies an explicitly constructible “sparse” noisy hypercube graph that is a small
set expander.

1 Introduction

Most constructions in pseudorandomness aim to simulate the behavior of a class of tests when the
input to the tests are drawn from the uniform distribution on {0,1}". Simulating the uniform
distribution has been the main subject of attention because many algorithmic problems ultimately
boil down to finding a solution to a problem in an input space where a large fraction of inputs
are correct. Thus a uniform sample from the space will find a correct solution with high proba-
bility. However, other distributions have also proved to be incredibly useful in solving important
problems in computer science. One example of such a distribution is the product distribution with
marginals p:

Definition 1 (product distribution with marginals p). Let p € [0,1]. The product distribution
with marginals p is the distribution Dy, on {0,1}" where each bit z; is picked independently with
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Priz; = 1] = p. When the length of the string n is clear from context we simply denote the
distribution as Dp.

Apart from being one of the simplest deviations from the uniform distribution, D, in particular
serves an integral role in the concept of the noise stability boolean functions. Noise stability is a
fundamental concept in boolean function analysis that is pervasive in many branches of mathe-
matics such as social choice theory [O’D14], and has a crucial application in celebrated results in
hardness of approximation [Has96, KKMOO07]. Roughly speaking, the stability of a boolean func-
tion f : {0,1}" — {0,1} is a measure of how likely the output is to change when each input bit
is independently flipped with some small probability p. The bit flipping is generally thought of
as noise, where input x € {0,1}" is perturbed to x + p for p ~ D,,. If we instead draw z ~ Z
and perturb x to x + z for Z that is a randomness efficient approximation of D, (under the right
notion of approximation), we can then define a randomness efficient notion of noise. In addition to
suggesting a randomness efficient noise test, we believe that the existence of such a notion of noise
is of independent interest.

An alternative view of the concept of noise stability relates to the noise operator Tp,1 which is a
linear operator that acts on truth tables of functions f : {—1,1}" — {—1,1}. The matrix corre-
sponding to T}, is simply the 2" x 2" transition matrix of the graph on {0,1}" where a random step
from x moves to x + n for n ~ D,,. Many important properties of the noise operator and noise
stability stem from the eigenvalues of 7,,. Thus we focus on defining a linear noise operator with
similar eigenvalue profile to 7. We show that in order to do so it suffices to study a generalization
of e-biased sets.

Small bias sets are a fundamental object in pseudorandomness, with applications to error-correcting
codes, derandomization, and PCPs [NN93, TS17, BSSVWO03]. An e-biased set is a small subset
S € {0,1}" such that a uniform random sample from S behaves similarly to a uniform random
sample from all of {0, 1}" with respect to linear tests. More formally, S is an e-biased set if for any
nonempty subset of indices I C [n], the bias of I is small: if 2(S) is the uniform distribution on S

then:
PTXNZ/{(S) (@ T, = 0) — PTXNZ/{(S) (@ Xr; = 1>

el 1€l

<e€

In other words, the parity of any subset of indices has almost equal probability of being 0 or 1.
Notice that in the case of a uniform random sample over {0, 1}", the parity of any nonempty subset
is equally likely to be 0 or 1. Hence e-biased sample spaces approximate the uniform distribution
in the sense that parities of subsets of indices behave almost the way they should. Classic results
show that there are e-biased sets that require O(log ) bits of uniform randomness to sample from.
In other words there are explicit constructions where the size of S is polynomial in n, and optimal
constructions even have size linear in n [NN93, TS17]. In addition to having applications in ran-

'Tn mainstream literature, the noise operator that we denote T} is instead denoted as T}, for p = 1 — 2p. We stray
from the standard notation in this paper for convenience with our own notation



domness efficient noise, it is a natural question to ask whether there are small sample spaces that
approximate distributions on {0, 1}" other than the uniform distribution.

1.1 Our Contribution

We generalize e-biased sets for the distribution D, on {0,1}". The sample space Z we construct
approximates Dj, in the sense that if z ~ Z then for every I C [n] the parity of z; has approximately
the same distribution as when z is drawn from D,

Theorem (Main Result). Let p be a power of 2. There exists a distribution Z on {0,1}" such that
for every I C [n] we have:

Pr,.z (@ z; = 1) — Preap, ., (EB i = 1)

el iel

<e

Z requires log n+O(log ;1) log log n+log? %—Hog % log %) bits of uniform randomness to sample from.
Moreover, the support of Z (along with the corresponding probability of each point) can be explicitly
constructed in time n - poly(logn, %) for constant p.

The main takeaway from our result is that there is a simple explicit construction of a distribution
that approximates D, ,, with support size nearly linear in n when p and € are constant. This roughly
matches the size of an optimal e-biased set, although the size blows up for nonconstant p.

1.2 Application to Randomness Efficient Noise

The main application of our generalization of e-biased sets is in the definition of a “randomness
efficient” version of noise stability. The stability of the function f is defined as:

Stabl_zp(f) = <f,Tpf>

Our construction of e-biased sets for Dj,, naturally suggests a new noise operator Ty that is
the transition matrix of the graph where a random step from x moves to x + z for z a sample from
our constructed distribution Z. We can then define a new notion of stability:

Stabi? “(f) = (f, T,7*"*f)

Through analysis of the eigenvalues of T, and Tp%" °°, we can show that our new notion of stability
is the same as the original up to an additive error of 2e:

Theorem (Randomness Efficient Approximate Noise Stability). Let f : {—1,1}" — [0,1]. Let
Stabi—o,(£) = (£, Tpf) be the stability of f under the noise operator T,. Let Stabi”, (f) =
(£, T,2"°F) be the stability of £ under the noise operator Tpe" ¢ defined by our e-biased set for
D,. Then:

|Staby—op(f) — Stab‘i{age(fﬂ < 2e



An immediate consequence of the above theorem is that the majority is stablest theorem, which is
a crucial ingredient in hardness of approximation results, is also true for our randomness efficient
noise operator up to an additive error of 2e. We state the original majority is stablest theorem
below:

Theorem (Majority Is Stablest [MOOO05]). Let f : {—1,1}" — [0,1] be a function with E[f] = p.
Suppose Inj?lmog(l/ﬂ(f) <7 for alli € [n]. Then:

10loglog(1/7)

(£.18) < Tuy() + -t

where I'1_o), is the Gaussian noise stability curve.

Our result shows that the stability of a function under our randomness efficient noise operator,
(£, T,2*""°f) also obeys the same upper bound, with an extra additive error of 2e.

As a secondary application, our construction also implies an explicitly constructible small set ex-
pander with large eigenvalues. We say that a graph G = (V, E) is a small set expander if for
sufficiently small constant J and all subsets of vertices of size §|V|, the probability of leaving the
set in one step of a random walk is at least some constant (say .9). Finding an efficient algorithm
for deciding whether a graph is a small set expander remains an open problem. Arora, Barak,
and Steurer [ABS15] observed that there is an algorithm that can solve the small set expansion
problem in time exponential in the number of eigenvectors of G' that have eigenvalue greater than
1 — & Thus a natural question is how many such eigenvectors could a small set expander have?
The noisy hypercube is one of the few “counterexamples” to the efficiency of the above mentioned
algorithm, as it is an N-vertex graph that can have polylog(V) such eigenvectors. Our construction
implies the existence of a “sparse” noisy hypercube with similar spectrum and small set expansion
properties.

Theorem. For every & > 0, there is an explicit N-vertex small set expander with polylog(N)
etgenvectors with eigenvalue 1 — £. Moreover the graph contains

1 log%
O | NlogN - poly <£ loglogN>

The main interest in small set expansion is the relationship between the number of vertices and
the number of large eigenvalues. Our construction does not improve on any lower bounds on the
number of such eigenvalues a small set expander could have. However, we do note that our graph
is sparse in the number of edges, containing about N log N edges as opposed to the O(N?) needed
for the original noisy hypercube.

edges.



1.3 Background and Related Work

The idea of approximating nonuniform distributions such as D), is not entirely new in pseudoran-
domness. In fact, the linear tests on D, that we aim to fool are a special case of combinatorial
shapes. An (m,n) combinatorial shape is a function f : [m]™ — {0,1} that can be expressed as

f(acl,...,xn) :h(lAl,...,lAn)

for some symmetric function h : {0,1}" — {0,1} and subsets Ay,...,A, C [m]. By setting
m = 1/p and h as the parity of all its inputs, we can express the parity of any I C [n] if we set
A; ={1}if i € T and A; = () otherwise. Gopalan, Meka, Reingold, and Zuckerman [GMRZ13] give
a PRG that fools all (m, n)-combinatorial shapes using seed length O(logm + logn 4 log?(1/¢)) =
O(log 1/p + logn + log?(1/¢)). The main drawback of [GMRZ13] that we improve on is that the
seed length is only guaranteed to be O(logn), which implies only a polynomial sized construction.
On the other hand, when p is a power of 2, our construction guarantees a nearly linear sized con-
struction, with a slightly worse dependence on p, and a slightly better dependence on e.

In a previous work, Even, Goldreich, Luby, Nisan, and Veli¢kovi¢ [EGLT92] study the approxima-
tion of distributions on [m]™ where each coordinate is an independent (and not necessarily identical)
distribution. For any distribution D = D; X - - - x D,, where each D; is independent, their construc-
tions give sample spaces that have size (n/€)!°2(1/€) and (n/€)°8™ such that for any I C [n], the
marginal distribution of the sample space restricted to I is e-close to the marginal distribution of
D in max-norm.

We mention that Meka, Reingold, and Tal [MRT18] define a notion of “-biased distributions with
marginals p.” However, their definition of approximation is ad hoc for their main goal of construct-
ing PRGs for width-3 branching programs.

Our application of sparsifying the noisy hypercube is related to the classic result of Spielman and
Teng in the edge sparsification of graphs [ST11]. Indeed, their sparsification algorithm, when run
on the noisy hypercube, should produce a sparsified graph with the properties we aim to preserve.
However, the main drawback to this approach is that the sparsification algorithm runs in time
mpolylog(m) where m is the number of edges. In the case of the noisy hypercube, which is a dense
graph defined on {0,1}", this algorithm is much less efficient than the explicit construction we
provide.

Barak et al. previously explored the idea of reducing the size of the noisy hypercube, which has
close ties to hardness of approximation [BGH11]. Their work presents a “derandomized noisy
hypercube” along with the appropriate analogues of small set expansion and the majority is stablest
theorem. As their interest was in the relationship between the number of vertices and the number
of large eigenvalues of a small set expander, their constructed graph contains a reduced number
of vertices. On the other hand, our construction keeps the same 2" vertices of the original noisy
hypercube and reduces the number of edges.



1.4 Overview of Techniques

The construction of the randomness efficient noise operator and small set expanders are essentially
direct applications of our construction of generalized small bias sets. Thus here we focus on the
intuition behind our construction. It’s easy to see that the bitwise product of logy(1/p) independent
uniform samples from {0,1}" is exactly equivalent to D, for p a power of 2. Thus intuitively, if
e-biased sets approximate the uniform distribution on {0, 1}", then the bitwise product of logs(1/p)
random draws from an e-biased set should approximate D,. Our main construction formalizes this
intuition by showing via a hybrid argument that such a bitwise product indeed fools linear tests
when the input is drawn from D). This simple idea is not sufficient however, as the final seed length
will be roughly log,(1/p)logn which implies at least a polynomial sized support for small p.

To improve the dependence on n, we observe that the parities of sufficiently large I C [n] will be
close to uniform on {0, 1}. More specifically, the probability that the parity of a subset of indices I
under the distribution D, is 1 is 3 —3(1— 2p)l!l. Thus for |I| > % In(1) the probability of the parity
being 1 is €/2 close to 1/2. This means that we only need to accurately simulate the behavior of D,
for |I] smaller than k = % In(2). For large |I| we simply need to simulate the uniform distribution.
To do so, we can take the bitwise AND of log,(1/p) — 1 independent samples from a k-wise e-biased
set (using seed length only loglogn). This simulates D, ;. Finally we take the bitwise product of
this with a final e-biased set with seed length logn. For small |I|, the behavior of the parities under
D, are preserved, and for large |I|, the product of the k-wise e-biased sets will contain at least one
1, so the final probability the parity is 1 will be the probability that the final e-biased set outputs
1 on a specific coordinate, which is roughly 1/2.

1.5 Paper Organization

In Section 2 we define the necessary preliminaries and notation. Section 3 presents and proves the
correctness of our construction and Section 4 presents the applications of our result to randomness
efficient noise and small set expansion. Finally in Section 5 we discuss lower bounds for our
generalization of e-biased sets and further directions for research.

2 Preliminaries and Notation

In general we denote random variables as capital letters such as X and Y. We denote fixed values
using lowercase such as x,y. Distributions are denoted with calligraphic capital letters such as
D, and the uniform distribution on a set S is denoted via U(S). We distinguish vector-valued
random variables from scalars via boldface: X, x, and refer to a value at a specific index of a vector
via the corresponding nonbolded symbol with subscript: X;,x;. Vectors in this paper generally
take on values in the field Fo and thus arithmetic is generally done modulo 2. We use (-,-) to
denote the inner product of two vectors modulo 2. Finally, we define the binary operation “®”
between two vectors as the entrywise product modulo 2. For example, for X = (Xq,...,X,,) and
Y =(Y1,...,Y,), we have: XOY = (X;Y1,...,X,Y,). It is straightforward to verify that for any



vectors x,y,z € {0,1}", we have: (x,y ®z) = (x0Yy,z)

We first define the bias of a subset according to a distribution.

Definition 2 (Bias). Let I C [n] and D be any distribution on {0,1}". Then the bias of I according

to D is defined as
brp = Prx~p [@ ;i =0| — Prx~p [@ Ti= 1]

el i€l

Equivalently, if o € {0,1}" then we say that the bias is:
bap = Prxp [(a,x) = 0] — Pryxp [(a,x) = 1]

When the probability distribution is clear from context, we denote the bias of I as b;.

Next, we define the concept of e-biased sets and k-wise independent e-biased sets, both of which
have already well known constructions, and are crucial for our construction of e-biased product
distributions with marginals p.

Definition 3 (e-biased set). An e-biased set is a small set S C {0,1}" such that for every o €
{0,1}"™ we have:

‘baJ/{(S)‘ = ‘PTXNZ/{(S)[<a7X> = 0} - PTXNZ/{(S)[<a7X> = 1” Se

or equivalently:
| Prosyl{a, x) = 1] — Pry gi01ym [{0, x) = 1] < ¢/2

Numerous works [NN93,TS17] show that there are explicit constructions of e-biased sets that require
logn + O(log %) random bits to specify a random point in S, or in other words, the size of S is
linear in n. A weaker notion of e-biased sets only considers the parity of subsets of indices of size
at most k:

Definition 4 (k-wise e-biased set). A k-wise e-biased set is a small set S C {0,1}" such that for
any a € {0,1}"™ with hamming weight |a| < k. We have:

bazi(s)| = | Prxeaucs)[(0,x) = 0] = Prygysy[{o, x) = 1] < ¢

or equivalently:
‘PTXNZ/{(S)[<a7X> = 1} - Prx~M({0,1}")[<a7X> = 1” < E/2

Naor and Naor show that there are explicit constructions of k-wise e-biased sets that require
O(log k + loglogn + log %) random bits to specify a random point in S.

Our notion of approximating a product distribution with marginals p is the natural extension of
the notion of approximation given by e-biased sets: the parity of any subset of coordinates from
our approximate distribution should look like the parity of the subset of coordinates from D,,.



Definition 5 ((p, €)-biased sample space). Let p € [0,1]. A (p,€)-biased sample space is a distri-
bution Z on {0,1}" with small support S C {0,1}" such that for every a € {0,1}" we have:

|Prozl(c,z) = 1] = Prop [(a,r) = 1]| <€

Historically, the definition of e-biased sets and k-wise independent e-biased sets use small bias as
their notion of approximation. As stated in their definitions above, this notion is equivalent (up
to constant factors) with the alternate notion that the distribution of the outputs of any linear
function on input x ~ U(S) is close to the distribution when x ~ U({0,1}"). This equivalence no
longer holds in the generalized notion of e-biased sets for D,. For example, if p is small, then the
bias by p, is almost 1 for any singleton subset I. The nonequivalence of these notions makes some
simple facts about standard e-biased sets more tedious to prove for e-biased sets for D,. For com-
pleteness, we now state the facts important for our analysis, and defer their proofs to the appendix.

First, there is a well known relationship between the biases of a random x € {0,1}" (over any
distribution) and the probability mass function for the distribution.

Proposition 6. Let D be any distribution. For any a € {0,1}", let pap be the probability of
sampling a under D. Let p be the 2" length vector of probabilities pap for each a. Let b be the 2"
length vector of biases ba,p indered by o € {0,1}". Let the Hadamard matriz H be the 2" x 2"
matriz where each entry is defined as (—1){2) then:

p=2"H"b
Given this proposition, we can prove a necessary fact for the analysis of our construction that if Z
is an (p, €)-biased space for D), then Z is close in max-norm to D,,.

Corollary 7 (e-biased implies close in max norm). Let Z be an (p,€)-biased sample space. Then
Z is 2e-close to D), in maz-norm. That is, for any a € {0,1}" we have:

|pa,2 - pa,Dp‘ < 2e

Finally, we note a useful fact that the distribution of the parity of k independent random variables
in {0,1} with marginals p is close to uniform on {0, 1} for sufficiently large k. The proof is again
deferred to the appendix.

Proposition 8. Consider k independent tosses of a biased coin with Pr[Heads| = p. Then the
probability of an odd number of heads is % - %(1 — 2p)*.

3 Construction

Our construction of a (p, €)-biased space for D), is as follows:

. _ 17,100 _ 1 P 1 2 _ 1 _2 _¢
Construction. Let k = 5 In == and t = log, 55 Lel € = 1571 = Too Togy 1 <j;<e

< i < t, let X; be t independent draws from a k-wise € -biased set of {0,1}". We let
X = O, X;. Let Y be drawn from an €-biased set of {0,1}". Our final distribution is then
Z



We first state a main lemma that the product of e-biased spaces approximates D, with the right
notion of approximation. We defer the proof to the appendix.

Lemma 9 (Coordinate-wise product of e-biased sets is e-biased for D,). Let k < n and let
X1,..., Xy be independent draws from k-wise e-biased sets on {0,1}". Then X = (;X; is a
k-wise (g, te/2)-biased sample space.

Given the lemma, we can then prove the correctness of our construction.

Theorem 10 (Main Result). Let 0 < p < 1/2. For any € > 0, Z is a (p,€)-biased sample space
requiring logn + O(log2 % + log % log% + log ;1) loglogn) uniform random bits to sample from.

Proof. We first note that using the constructions mentioned above, generating Z requires logn +
O(t(log k+log log n+log 5) +log %) = log n+O(log? %+log % log % +log %D loglogn) bits. Moreover,
since the original constructions are explicit, we can construct the support of Z via enumeration of
all elements in each used e-biased set.

We claim that Z is an e-biased distribution for D,. We show that for any o € {0,1}":
}PerzKoz,z) = 1] = Pry~p,[{c,7) = 1]| <e

The proof splits into two cases. For the first case, assume || < k. Since Y and the X;’s are k-wise
€’-biased, by Lemma 9 we have immediately that:

/

|Pro~zl(a, z) = 1] = Pre~p,[(a,r) = 1]| < (t + 1)% <e

In the second case, assume || > k. Let I C [n] be any subset of the indices of size exactly k for
which a is 1. Consider the first component in the construction of Z:

where each X; € {0,1}" is drawn from a k-wise €-biased set. By Lemma 9, we know that the
substring of X restricted only to indices in I, denoted X; € {0,1}", is (L, ~)-biased for Dy, for
v < te'/2 < €/100. Thus by Corollary 7, the distribution of X7 is £5-close to D%k in max-norm.
In particular, this means that:

11, 100 € €
P =t

€ € €
PX;=0H)<(1-p)f'+5<1-p) 5 100 150 =1

% =
Thus with probability at least 1 — €/4, the string X will contain at least one 1 on an index where
a is 1. This means that we have:

Pro.z({a,z) =1) = P({a,z) = 1 A Xo = 01¢) + P({a, 2) = 1 A X #£ 0l

+ > Poz)=1AX=x)
x:xa;éO“ﬂ

<

e



+ Y P(loyz)=1[X=x)P(X =x)
X:Xo 70/

+ Y Plaoxy)=1)PX =x)
X:Xo #0/¢

Similarly for a lower bound we have:

Pryz({o,z) =1) = P({a,z) = 1A Xy = 0\a|) + P(lonz) = 1A Xa # 0\04)
>0+ Y P(loyz)=1AX=x)
XX 700
- Z P(a,z)=1|X =x)P(X =x)
X:Xo 70/
Y Plaoxy)=1)P(X=x)

\%
n=
!
m\
;'i
il
I
8

v

>

Combining the upper and lower bound shows that Pr,.z({a,z) = 1) is €/2 close to 1/2. Since by
Proposition 8 we know that Pry.p,({(c,z) = 1) is also €/2 close to 1/2 we must have that:

|Pro~z({c,z) = 1) — Preop,({a,r) = 1)| < €

4 Applications

We first define the noisy hypercube, which is a crucial graph in our applications and also an
important graph in many areas of theoretical computer science.

10



Definition 11 (Noisy Hypercube Graph). The p-noisy hypercube graph, which we denote T}, is the
graph on vertex set {0,1}" such that a random step from node a € {0,1}" is equivalent to picking
r ~ D, and moving to a+r.

Note that the transition matrix of T, has no nonzero entries since there is a nonzero probability
of reaching any node from any other node and is thus very dense. Our e-biased distribution for
D,, allows us to construct a spare noisy hypercube that has similar properties to the original noisy
hypercube but with fewer edges.

Definition 12 (Sparse Noisy Hypercube Graph). Let Z be an (p,€)-biased sample space. The
sparse (p, €)-noisy hypercube graph, which we denote Tye" *, is the graph on vertex set {0,1}" such
that a random step from node a € {0,1}" is equivalent to picking z ~ Z and moving to a + z.

Because of the size of our construction’s seed length, each row and column of the 2™ x 2™ transition

matrix of Tpe""* has O(n) nonzero entries when p and e are constant.

We first show that the noise operator defined by Tpe" °° has similar eigenvalues to that of the
original noise operator. This leads to the fact that our randomness efficient notion of stability
approximates the original notion of stability, and also implies that the graph T,%""* is our desired
sparse small set expander.

4.1 Eigenvalues

The main feature about 7,5 * from which our applications arise is that it has a similar spectrum
to T),. We first give a well known (and easily verifiable) fact about the eigenvalues and eigenvectors
of graphs on the boolean hypercube that are defined like above.

Theorem 13. Let Z be any distribution on {0,1}". Define G = (V, E) on vertices V.= {0,1}"
as the graph on which a random step starting at a € {0,1}" is equivalent to drawing z € Z and
moving to a+z. Let M be the 2™ x 2™ transition matriz of G. For every subset of indices I C [n],
define the vector vi € {—1,1}" to be 1 if the parity of the ith bitstring in {0,1}" restricted to I is
0 and —1 if the parity is 1. Each v is an eigenvector of M with eigenvalue by z.

Given this well known fact it is straightforward to see that the eigenvalue profiles of T}, and T,
are close:

Corollary 14. The graphs T, and T,2""* have the same eigenvectors. For every eigenvector v of
both graphs, the corresponding eigenvalues differ by at most 2e.

Proof. By Theorem 13, both T}, and T,%*"* have the same eigenvectors v; € {—1,1}?". For any I,
v has eigenvalue by p, in T}, and by z in T, Zi;;a'rse where Z is an e-biased distribution for D,,. However
we know by definition of (p, €)-biased distribution that:

br,z — br.p,| < 2¢

11



4.2 Randomness Efficient Noise

The stability of a boolean function f on {—1,1}" is a fundamental concept in the analysis of boolean
functions that measures the tendency of the output of a function to change when each bit of the
input is flipped independently with probability p. In our context, the stability is equivalent to

Stabl,gp = <f, Tpf>

where we think of f as a 2" length truth table, and 7), is the transition matrix of the noisy hyper-
cube above (here we no longer think of (-, -) as the inner product modulo 2).

We can show that the stability of a function under our notion of “derandomized noise”, where noise
is added to the input via a sample from a (p, €)-biased space for D, is close to the original notion
of stability.

Theorem 15 (Randomness Efficient Noise Stability is Close to Noise Stability). Let f : {—1,1}" —
[0,1] be a function with E[f] = u. Then:

Stabl_gp(f) —2e < Stabsparse( ) < Stabl_gp(f) + 2¢

Proof. We can write f in the fourier basis as:
f=> frvi
I

It is a well know fact in fourier analysis that:

(f, T,f) wapfl

Similarly we can derive the corresponding expression for Tpe = :

<f Tspar56f>

) T p,E

- <szvz,T;,em > f>
T I

= <ZfIV];ZbI,ZfIVI>
i i
= brafi (v, vr)
i

Z br.p, + 2€)f7
T

= (£, Tpf) + 2¢

For the lower bound, we replace the inequality with by z > by p, — 2¢ O
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4.3 Small Set Expansion

We now show that our sparse noisy hypercube is our desired sparse small set expander with large
eigenvalues. We first define the expansion of a graph.

Definition 16 (Expansion). Given graph G = (V, E), let S be any subset of vertices of G. The
expansion of S, denote ®(S) is the probability that a randomly chosen edge (u,v) has v ¢ S
conditioned on u € S. Equivalently, if G is a reqular undirected graph, we have:

B E(S,V\595)
26(5) = =~ degt)

In the context of small set expansion, we are typically interested in the expansion of sets that contain
a small constant fraction § of vertices. We say that a graph is a small set expander if for sufficiently
small §, all subsets containing J-fraction of vertices have expansion at least some constant (such
as 0.9). We know that the noisy hypercube has n eigenvalues that are at least 1 — 2p. As a con-
sequence of Corollary 14, we know that T,%""*“ has at least n eigenvalues that are at least 1—2p—2e.

It remains to verify that the sparse noisy hypercube is also a small set expander. The following
theorem relates the top eigenvectors of a graph to the expansion of sets [BGH™11].

Theorem 17. For any vector space V, define the p — q norm of a subspace U of V as:

HPUUHq
U = - = 7
|| ||P%q I;Elea;( HU‘ |p

Where Py is the projection operator onto subspace U.

For graph G = (V, E), let U be the subspace spanned by all eigenvectors of G with eigenvalue larger
than A. Then for any S C V containing § fraction of vertices we have:

B(S) >1— - [|U|3_ V6

In the case of the noisy hypercube, once can show via the Bonami Lemma that ||{||2—4 is bounded.
This implies via Theorem 17 that for sufficiently small 4, the expansion of S is large. Finally, the
next corollary relates the expansion of sets in Tp%""* to those in T},.

Corollary 18. Let Usrye be the subspace spanned by all eigenvectors of T), with eigenvalue larger
than X. Let Upseudo be the subspace spanned by all eigenvectors of Tpe' ™ with eigenvalue larger
than A+ 2¢. Then for any S C V that contains § fraction of vertices we have:

@T;ia'rse(s) 2 1—-—X— HutrueH%—A\/g — 2¢

Proof. Observe that since the eigenvalues of T), are at most 2e away from the eigenvalues of Ty ¢,
we have Upseudo C Uprye. This implies that ||Upseudol|2—4 < ||Utruell2—4. Thus by Theorem 17 we
have:

(I)Tpsfz‘”“ () 21— (A+2¢) - ||upseud0||§—>4\/g >1-A- Hutrue”§—>4\/g —2e
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Thus sets in Tp%"° have similar expansion to those in 7,. As mentioned earlier, by the Bonami
Lemma [0'D14], we have that when A = (1 — 2p)* then |[Uprye||3_,4 < 3%. Thus we have:

@T;ia'r'se(s) 2 1-— (1 — 2p)k — 3]6\/5 — 2¢

Thus if we want expansion at least 1 — ~ for some small 7, we can set € < {, k > O (m ;10/ 7)7 and

o< 70(%).

5 Lower Bounds and Discussion

A natural question is how the size of our construction compares to an optimal, possibly nonex-
plicit construction. We first note that a simple probabilistic argument shows that any collection
of 2™ tests from {0,1}"™ to {0, 1} under the uniform distribution can be e-fooled by some function
G :{0,1}* = {0,1}" for s = logn + 2log(1/€) + O(1). The probabilistic construction is to simply
pick each output of G independently and uniformly at random from {0,1}". Using an analogous
argument, picking each output of G independently from D, shows that there is a distribution Z
using the same seed length s that fools all 2" linear tests under D,. Thus, non-explicitly there
exists a construction of an (p, €)-biased distribution whose size does not depend on p. Moreover,
the distribution is uniform on its support, which is not the case for our explicit construction.

Alon et al [AGHP92] prove a lower bound of 2 (ﬁ) on the size of e-biased sets. We note that

as a whole, since our construction works for p = 1/2 this lower bound is also a lower bound in gen-
eral for e-biased sets for D,. However, the story changes dramatically for small p. The previously
mentioned lower bound is a result on the equivalence of e-biased sets with e-balanced linear error
correcting codes. In an e-balanced linear error correcting codes with message length n and block
length m, every codeword has weight between (1/2—¢)m and (1/2+¢)m. The equivalence between
such codes and e-biased sets breaks down when generalizing to (p, €)-biased sample spaces. Under
the assumption that we wish to construct an (p, €)-biased distribution for Dj, ,, of size m that is uni-

form on its support, we would require a linear error correcting code with basis ay,...,a, € {0,1}"™
such that the weight of the codeword 3, a; for every I C [n] is between & — (1 — 2p)ll — ¢ and

1t —2p)llte

We note that our construction worsens in comparison to the optimal as p gets small. Indeed, as p
approaches 1/n, the amount of entropy in D, approaches 1, however, our seed length approaches
log?n. Thus, our construction illuminates a peculiar question about simulating a unfair coin: in
order to simulate a coin with bias p, we require log% flips of a fair coin, or in other words log *
bits of Shannon entropy. This is an extremely wasteful amount of randomness needed to simulate
a distribution that has only H(p) < 1 bits of entropy. However, it is unclear how to simulate an
unfair coin using fair coins in a more efficient way. We note that the reverse direction of simulating
a fair coin with a biased coin is a well known riddle attributed to von Neumann [von63].

14



One reason that the efficiency of our construction depends on p is because of an asymmetry between
the nature of the seed and the output. We aimed to use O(logn) independent fair coin flips to
approximate the distribution of n independent wunfair coin flips. A more apt comparison would
be to stretch O(logn) unfair coins to approximate n unfair coins. It would be interesting to see
whether there are simple constructions that can do so.

References

[ABS15]

[AGHP92]

[BGH*11]

[BSSVWO03]

[EGL+92]

[GMRZ13]

[HAs96]

[KKMOO7]

[MOOO05]

[MRT18]

Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. J. ACM, 62(5):42:1-42:25, 2015.

Noga Alon, Oded Goldreich, Johan Hastad, and René Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures € Algorithms,
3(3):289-304, 1992.

Boaz Barak, Parikshit Gopalan, Johan Hastad, Raghu Meka, Prasad Raghavendra,
and David Steurer. Making the long code shorter, with applications to the unique
games conjecture. CoRR, abs/1111.0405, 2011.

Ben-Sasson, Sudan, Vadhan, and Wigderson. Randomness-efficient low degree tests
and short PCPs via epsilon-biased sets. In STOC: ACM Symposium on Theory of
Computing (STOC), 2003.

Even, Goldreich, Luby, Nisan, and Velickovic. Approximations of general independent
distributions. In STOC: ACM Symposium on Theory of Computing (STOC), 1992.

Parikshit Gopalan, Raghu Meka, Omer Reingold, and David Zuckerman. Pseudoran-
dom generators for combinatorial shapes. SIAM J. Comput, 42(3):1051-1076, 2013.

Johan Hastad. Testing of the long code and hardness for clique. In Proceedings of The
Twenty-FEighth Annual ACM Symposium On The Theory Of Computing (STOC ’96),
pages 11-19, New York, USA, May 1996. ACM Press.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for max-cut and other 2-variable csps? SIAM J. Comput,
37(1):319-357, 2007.

Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of
functions with low influences: invariance and optimality. CoRR, abs/math/0503503,
2005.

Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. FElectronic Colloquium on Computational Complezity (ECCC),
25:112, 2018.

15



[NNO93] Naor and Naor. Small-bias probability spaces: Efficient constructions and applications.
SICOMP: SIAM Journal on Computing, 22, 1993.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput, 40(4):981-1025, 2011.

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. Electronic Collo-
quium on Computational Complezity (ECCC), 24:41, 2017.

[von63] J. von Neumann. Various techniques for use in connection with random digits. In von
Neumann’s Collected Works, volume 5, pages 768—770. Pergamon, 1963.

Appendix A Omitted Proofs

Proof of Proposition 6. We note that H~! = 27" H” and show that Hp = b. For any fixed entry
of b, we have:

ba,p = Pra~p [(c,a) = 0] — Pra.p [(a,a) = 1]

= Z Pa,D — Z PaD
1

a:(o,a)=0 a:(ova)=
=> (-1)*¥pap
= (Hp)a

Proof of Corollary 7. For any a € {0,1}", we have that:

‘ba,Z - ba,’Dp|

— [Pyl z) = 0] = Pryzl(,z) = 1] = (Pop, [(@,2) = 0] — (Pyn, (s 7) = 1))
< Pzl z) = 0] = Py, [0, 7) = 0| + |Prymzl(e, 2) = 1] = (Poup, [(@7) = 1])
< 2e.

Fix any a € {0,1}". By the formula from Proposition 6, we know that:
Pa,z = 27" Z (_1)<a7a>bcx,Z
ac{0,1}"

Similarly:

Pa,D = 27" Z (—1)<a’a>ba,D
ac{0,1}"
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Thus:

‘pa,Z - pa,D|

=927 " Z (_1)<a,a)(ba72 — ba,D)

ac{0,1}"

S 2™n Z |(ba,Z - ba,D)|
ac{0,1}"

< 2e¢

O]

Proof of Proposition 8. Let X; be a random variable with value —1 if the ith coin toss is heads and
1 otherwise. Then the probability of an odd number of heads is equal to Pr [Hf:1 X; = —1]. Note
that the random variable % + % Hle X; is an indicator random variable that is 1 when there is an
even number of heads. Thus

1 1 1 1 1
P f h =E|-+-[[X|=-+>T[EX]=>+2(1—2p)°
r(even number of heads) 5 13 11:11 2] 513 11:11 [X] 5 T 2( D)

Thus the probability of an odd number of heads is

1 1

- —Z(1-2p)F

5~ 5(l—2p)

O
Proof of Lemma 9. We wish to show that for any a € {0, 1}" with |a| < k:
Pry.x[(a,x) = 1] — Pryp , [(a,x) = 1]| < te
2t

We prove this via a hybrid argument.
Consider random variables Xi,..., X, Ry,..., Ry taking on values in {0,1}" where the X;’s are

independent draws from a k-wise e-biased set, R;’s are chosen independently and uniformly at
random from {0,1}". We then define for 0 < ¢ <t the ¢ + 1 hybrid distributions:

e fo(6m)-(01)

Notice that Ho = (a,x) when x ~ X, while H;y1 = (o, %), when z ~ D,. We show that
|He — Heos1] < € for every 0 < ¢ < t. Since each H; is a distribution on {0,1} we can write the
probability that distribution H, outputs 1 as:
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Ri,...,Ry,

o7 |{(Om) (0 x))]
< (©n)
<

= Pr
Ri,...,Ry,
X2+17"'7Xt -

= Pr
R17"'7R€7
Xpq1m Xt -

ac <éRZ>®<@ x) Xin 1]

i=0+2

Ri,...,Ry,
Xtz Xt -

Where the last equality makes use of the fact that all the X;’s and R;’s are independent from each
other. Similarly, we can write the probability that Hy,1 outputs 1 as:

(= (@)= (@)

Ri,.. :RZ+1»
Xpg2,0-5 Xt
4 t

For fixed Ry, ..., Ry and Xyya, ..., Xy, we know that 8 = a ® (@le Ri> © (O, X)) is a

vector with at most k 1’s. Thus since Xy is k-wise e-biased, we know that:

‘PTX£+1 [</37R€+1> = 1] - PTX4+1 [<ﬁ,Xg+1> = 1] | < 6/2

Since expectation is just a weighted average, and each H, is a distribution over {0,1}, we can
conclude that |Hy — Hyy1] < €/2. Combining all the hybrid steps via triangle inequality gives us
that |Ho — He| < te/2 O
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