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Abstract Hydropower reservoirs are well‐known emitters of greenhouse gases to the atmosphere. This is
due in part to seasonal water level fluctuations that transfer terrestrial C and N from floodplains to
reservoirs. Partial pressures and fluxes of the greenhouse gases CH4, CO2, and N2O are also a function of in
situ biological C and N cycling and overall ecosystemmetabolism, which varies on a diel basis within inland
waters. Thus, greenhouse gas emissions in hydropower reservoirs likely vary over seasonal and diel time
scales with local hydrology and ecosystem metabolism. China's Three Gorges Reservoir is among the largest
and newest in the world, with a floodplain that encompasses approximately one third of the reservoir
area. We measured diel partial pressures and fluxes of greenhouse gases in ponds on the Three Gorges
Floodplain. We repeated these measurements on the submerged floodplain following inundation by the
Three Gorges Reservoir. During reservoir drawdown, CH4 ebullition comprised 60–68% of emissions from
floodplain ponds to the atmosphere. Using linear mixed effects modeling, we show that partial pressures of
CH4 and CO2 and diffusive CO2 fluxes in floodplain ponds varied on a diel basis with in situ respiration.
Floodplain inundation by the Three Gorges Reservoir significantly moderated areal CH4 diffusion and
ebullition. Diel pCO2, pCH4, pN2O, and diffusive fluxes of CO2 on the submerged floodplain were also driven
by in situ respiration. The drawdown/inundation cycle of the Three Gorges Reservoir therefore changes the
magnitudes of aquatic greenhouse gas fluxes on its floodplain.

Plain Language Summary Considered to be clean sources of energy, reservoirs emit greenhouse
gases like other inland waters. Reservoir water levels fluctuate seasonally, introducing terrestrial organic
matter to dammed rivers. Greenhouse gases such as methane and carbon dioxide are produced daily when
organic matter is respired by aquatic microbes. This is balanced by consumption of carbon dioxide during
daytime photosynthesis. We measured concentrations and fluxes of methane, carbon dioxide, and nitrous
oxide over 24 hr in ponds on the Three Gorges Floodplain. We repeated these measurements in the
overlaying Three Gorges Reservoir following its inundation of the floodplain. Among the different flux
pathways, methane bubbles comprised the bulk of greenhouse gas emissions from floodplain ponds. Daily
methane and carbon dioxide concentrations and carbon dioxide fluxes in these floodplain ponds varied with
microbial respiration. By contrast, methane fluxes were much lower per unit area following floodplain
inundation by the Three Gorges Reservoir. Daily concentrations of these gases and carbon dioxide fluxes
were also driven by microbial respiration on the submerged floodplain. Seasonal water level fluctuations in
the Three Gorges Reservoir therefore change how greenhouse gases move to the atmosphere on
its floodplain.

1. Introduction

Impounded rivers are an important component of the global carbon (C) cycle, contributing 4–17% of C
emitted from inland waters to the atmosphere each year (Aufdenkampe et al., 2011; Barros et al., 2011;
Deemer et al., 2016). A recent synthesis of hydropower reservoirs measured globally found that 84% were
sources for diffusive carbon dioxide (CO2), and all were either sources for diffusive methane (CH4) or CH4

neutral (Deemer et al., 2016). Hydropower reservoirs occur in larger watersheds than naturally occurring
lakes and receive comparatively high nutrient and organic matter (OM) inputs, which influence in situ pri-
mary production and respiration (Hayes et al., 2017; Knoll et al., 2003; Mendonca et al., 2017). Reservoirs
also receive OM through the flooding of terrestrial landscapes during reservoir formation and subsequent
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fluctuations in water storage (Jacinthe et al., 2012; Maeck et al., 2014). Growth of terrestrial OM on reservoir
floodplains is transferred to reservoirs during often predictable seasonal drawdown/inundation cycles (Junk
et al., 1989; Battin et al., 2008; Chen, Wu, et al., 2009; Chen, Yuan, et al., 2009). Respiration of terrestrial OM
proceeds considerably faster in lakes, rivers, and flooded soils (Battin et al., 2008; McNicol & Silver, 2014).
Riverine OM concentrations have been shown to spike following inundation of subtropical and temperate
floodplains (Burns & Ryder, 2001; Vasquez et al., 2015; Wainright et al., 1992). This likely results in concur-
rent spikes in diffusive CH4 and CO2 emissions as OM is respired.

Bubbling or ebullition is another important pathway for CH4 to the atmosphere in temperate (Del Sontro
et al., 2010) and tropical (Del Sontro et al., 2011) reservoirs. Sparingly soluble CH4 may be produced in anae-
robic sediments more quickly than sediment‐water diffusion rates and form bubbles (Fendinger et al., 1992;
Mattson & Likens, 1990). These bubbles rise to the water's surface, undergoing minimal oxidation (Del
Sontro et al., 2010; Ostrovsky et al., 2008). Deemer et al. (2016) estimate that ebullition comprises an average
of 65% of total CH4 emissions from reservoirs globally. Under low and dynamic hydrostatic pressures on
submerged floodplains, ebullition is likely a key component of CH4 emissions.

There have been fewer measurements of N2O emissions from hydropower reservoirs. The recent synthesis
by Deemer et al. (2016) included flux measurements from 161 reservoirs for CH4, 229 for CO2, and just 58
for N2O. Tropical (Guerin et al., 2008; Naqvi et al., 2018), subtropical (Chen, Yuan, et al., 2009; Yuan,
et al., 2009; Li et al., 2018; Zhao et al., 2013; Zhu et al., 2013), temperate (Beaulieu et al., 2014; Deemer
et al., 2011; Li et al., 2018; Tomaszek & Czerwieniec, 2003), and boreal (Huttunen et al., 2002) reservoirs that
have been measured indicate that they are also sources for N2O. N2O has 298 times the global warming
potential of CO2 on a per molar basis in the atmosphere over a 100‐year time scale, making it an important
addition to measurements of reservoir greenhouse gas emissions (IPCC, 2001; Myhre et al., 2013).

CH4, CO2, and N2O within inland waters result from metabolic fixation and respiration of C and nitrogen
(N). Most studies of hydropower reservoirs and other aquatic ecosystems concentrate sampling at a single
point during the day, despite this association with ecosystem metabolism. Odum (1956) classically showed
themetabolic balance of inlandwaters to bemore autotrophic during the day andmore heterotrophic during

the night using net oxygen (O2) dynamics. Tobias et al. (2007), Hotchkiss and Hall (2014), and Schindler
et al. (2017) have since shown that daytime aerobic respiration can be 54–340% of nighttime respiration
in temperate lakes and streams. They attribute this to greater production of labile OM algal exudates
(Bains & Pace, 1991; Cole et al., 1982; Kaplan & Blott, 1982) and higher temperatures during the day

(Yvon‐Durocher et al., 2012). Decoupling of CO2 partial pressures from O2 dynamics and correlations to
primary production and aerobic respiration have also been shown by others (Peeters et al., 2016; Stets

et al., 2017). Thus, metabolic properties such as dissolved O2 and temperature have the potential to influence

net consumption or production of CO2 differently over 24 hr. How the partial pressures and fluxes of CH4

and N2O vary with ecosystem metabolism on diel time scales is less clear (Hoellein et al., 2013).

Efforts have been made to characterize greenhouse gas emissions from hydropower at other temporal and
spatial scales. Hydropower reservoirs less than 10–20 years old tend to emit more CH4 and CO2 per unit area
than older hydropower reservoirs (Barros et al., 2011; St. Louis et al., 2000). Of these, reservoirs in tropical
regions tend to emit more CH4 and CO2 per unit area than reservoirs in temperate regions (Barros et al.,
2011; Galy‐Lacaux et al., 1997). Current rates of hydropower development are greatest in tropical and
subtropical regions (Zarfl et al., 2015). Some of the highest rates of impoundment (>100 dams currently
planned) are in China's Yangtze River basin (Zarfl et al., 2015), making these newly constructed, subtropical
reservoirs likely greenhouse gas emitters.

The Three Gorges Reservoir on the Yangtze River represents an opportunity for the study of diel greenhouse
gas emissions from a comparatively new subtropical hydropower reservoir and its floodplain. Filled in 2010,
the Three Gorges Reservoir is among the largest in the world, covering 1,106 km2 in central China (Zhang
et al., 2018). The Three Gorges Floodplain covers 321 km2 or just under one third of the reservoir's area
(Zhang et al., 2018). Studies by Chen, Wu, et al. (2009), Chen, Yuan, et al. (2009), Zhao et al. (2013), Zhu
et al. (2013), Li et al. (2013), and Zhou et al. (2017) have quantified diffusive CH4, CO2, and N2O fluxes in
the region. However, none have measured diel fluxes and CH4 ebullition during both reservoir drawdown
and inundation on the Three Gorges Floodplain.
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The Three Gorges Floodplain is increasingly targeted by displaced farmers for pond aquaculture in attempts
to supplement agricultural productivity during reservoir drawdown (Li et al., 2013; Zhang et al., 2018; Zhou
et al., 2017). Globally, ponds less than 1,000 m2 are hot spots for CH4 and CO2 emissions (Holgerson &
Raymond, 2016). Although water bodies this size are difficult to detect and delineate from wetlands using
satellite imagery, it is thought that ponds comprise approximately 9% of nonrunning or lentic inland waters,
which include lakes and reservoirs (Holgerson & Raymond, 2016). Holgerson and Raymond (2016) estimate
that natural ponds contribute 40% of diffusive CH4 emissions from lentic inland waters worldwide. Ponds
created on the terrestrial landscape for a variety of purposes including stock watering, irrigation, and
aquaculture have been also found to emit CH4 (Ollivier et al., 2019; Peacock et al., 2019). In some cases, these
ponds emit CH4 at higher rates than natural ponds through diffusive and ebullition flux pathways (Grinham
et al., 2018), though more comparative data are needed. Natural and aquaculture ponds are among the
aquatic environments that remain on the Three Gorges Floodplain during approximately 6 months of
reservoir drawdown, from April to September each year. These expanding environments on the Three
Gorges Floodplain are likely emissions hot spots.

In this study, we measured diel greenhouse gas partial pressures and fluxes during both reservoir drawdown
and inundation on the Three Gorges Floodplain. During reservoir drawdown, we carried out measurements
in a natural pond and a newly created aquaculture pond. We repeated these measurements on the
submerged floodplain following inundation by the Three Gorges Reservoir. We used linear mixed effects
modeling to determine relative importance of ecosystem metabolism to observed diel patterns of CH4,
CO2, and N2O partial pressures and diffusive fluxes. By conducting field‐based measurements of C and N
cycling, we account for commonly overlooked contributions of CH4 emissions from floodplain ponds. We
show that greenhouse gas partial pressures and fluxes vary over both seasonal and diel time scales along with
drawdown/inundation cycle and ecosystem metabolism.

2. Materials and Methods
2.1. Study Sites

We conducted this study in the Pengxi RiverWetland Reserve on the Three Gorges Floodplain between June
2014 and January 2015 (Figure 1). This region of P.R. China is characterized by a subtropical, humid mon-
soonal climate, with a mean annual temperature of 18.2 °C and a mean annual precipitation of 1,200 mm.
The Pengxi RiverWetland Reserve occupies 36.9 km2 at elevations ranging from 160 to 175m above sea level
(a.s.l.). During reservoir drawdown, water levels in the Three Gorges Reservoir are 145m a.s.l., leavingmuch
of the reserve exposed at preimpoundment levels (Figure 1b). We sampled one natural pond (31°5′37.74″ N,
108°27′45.05″ E, 150 m a.s.l., 488‐m2 area, 54‐cm mean depth) and one aquaculture pond (31°12′30.26″ N,
108°27′0.05″ E, 159 m a.s.l., 314‐m2 area, 82‐cm mean depth). The aquaculture pond was used to cultivate
the emergent macrophyte Nelumbo nucifera (lotus). Water storage in the Three Gorges Reservoir increases
to 175 m a.s.l. from September to February, submerging most of the reserve (Zhou et al., 2017; Figure 1c). We
repeated sampling at the same study sites on the submerged floodplain following inundation by the Three
Gorges Reservoir.

2.2. Partial Pressures

We sampled three replicate partial pressures of CH4, CO2, and N2O from a water depth of 10 cm in the nat-
ural and aquaculture ponds every 12 hr, for 24 hr, on 28–29 June, 9–10 August during a rain event (12‐mm
rain), and 13–14 August after a rain event (reservoir drawdown). We sampled three replicate partial pres-
sures every 2 hr, for 24 hr, at the same study sites after they were submerged by the Three Gorges
Reservoir on 4–5 January. Along with each of these partial pressures in water, we sampled three replicate
partial pressures in ambient air 1 m above the water's surface. Water samples were equilibrated following
Kling et al. (2000). Equilibrated water samples and ambient air samples were stored in evacuated 5‐ml glass
vials and analyzed using gas chromatography in the College of Forestry at Northwest Agricultural and
Forestry University in Xi'an, P.R. China (PE Clarus 500, PerkinsElmer, Inc., USA, equipped with a flame
ionizer detector operating at 350 °C and a 2‐m Porapak 80–100 Q Column).
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2.3. Diffusive Fluxes

We sampled diffusive CH4, CO2, and N2O fluxes in the natural and aquaculture ponds every 2 hr, for 24 hr,
during the June, August, and January sampling events using three replicate floating chambers (Keller &
Stallard, 1994). Chambers measured 29.5‐cm height above the surface of the water by 31.5‐cm width by
31.5‐cm depth and were made of heat‐insulated propathene plastic. Headspace from each chamber was col-
lected at 0, 5, 10, and 15 min following enclosure and stored in evacuated 5‐ml glass vials. All samples were
analyzed as above. Diffusive fluxes were determined following Frankignoulle (1988) and Alin et al. (2011):

FD ¼ dP
dt

� �
V

RTKA

� �
; (1)

where FD is diffusive flux (mg CH4, CO2, or N2O m2/hr; mg·m−2·day−1) measured directly using floating

Figure 1. Three Gorges Reservoir on the Yangtze River and its tributaries, with study sites in the Pengxi River Wetland
Reserve (a). Blue shading represents the extent of the reservoir during peak floodplain inundation. Study sites were one
natural pond and one aquaculture pond on the Three Gorges Floodplain during reservoir drawdown (b) and on the
submerged floodplain following inundation by the Three Gorges Reservoir (c).
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chambers, P is the partial pressure of CH4, CO2, or N2O (uatm), t is time (min), V is the volume of the floating
chamber (L), R is the ideal gas constant (L atm·mol−1·K−1), TK is air temperature in degrees Kelvin, and A is
the surface area of the floating chamber (m2; n= 973 total). Each diffusive flux therefore results from a linear
regression of four partial pressures that increase or decrease over time. For a positive diffusive flux, the
regression is

yi ¼ β1x1 þ β2x2 þ β3x3 þ β4x4; (2)

where yi is any observed partial pressure of CH4, CO2, or N2O; β1…4 are the regression coefficients; and x1…4
are 0, 5, 10, and 15 min. Highly influential data points or outliers in this linear regression resulting from
measurement and experimental errors were identified using the difference between the fitted value and
the difference in betas (Kutner et al., 2004). The difference between the fitted value was determined using

DFFIT ¼ byi−byi ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE ið Þ

p
hii

; (3)

where DFFIT is the difference between the fitted value,by is the estimate of yi using all data points, yi(i) is the
estimate of yi using the regression model with the ith observation omitted,MSEi is the mean square error for
the regression model with the ith observation omitted, and hii is the ith diagonal term for the hierarchical
matrix using all values. The difference between betas was determined using

DFBETAS ¼
bβk−bβk ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE ið Þ

p
ckk

; (4)

where DFBETAS is the difference between betas, bβk is the regression coefficient for the kth parameter using
all data points, bβk ið Þ is the regression coefficient for the kth parameter with the ith observation omitted, and
ckk is the kth diagonal element in the matrix (X ′ X)−1. Thresholds of |DFFIT| > 2 and |DFBETAS| > 2 were
set for omission of highly influential positive and negative data points in regression models. Such omissions
typically moderated diffusive fluxes.

2.4. Ebullition

We estimated CH4 ebullition (mg·m−2·hr−1) in shallow water (<2 m) using the distribution and variance in
gas transfer velocities among the four replicate floating chambers during the June, August, and January
sampling events. Essentially, if one chamber's apparent gas transfer velocity was substantially larger than
those measured in adjacent chambers, we assumed that it received ebullition. The apparent gas transfer
velocity at ambient temperature in centimeters per hour, kT, was calculated following Bastviken et al.
(2004, 2010) and Sawakuchi et al. (2014):

kT ¼ dP
dt

� �
V Pw−P0ð Þ
KH RTKA

; (5)

where P is the partial pressure of CH4 (μatm), t is time (min), V is the volume of the floating chamber (L), Pw
is the partial pressure of CH4 inside the chamber in equilibrium with Paq (μatm), P0 is the partial pressure of
CH4 inside the chamber at t = 0 (μatm; presumably local atmospheric), KH is the temperature‐dependent
Henry's constant (mmol·L−1·atm−1; Figure 3) (Wilhelm et al., 1977), R is the ideal gas constant (L atm·-
mol−1·K−1), TK is water temperature in degrees Kelvin, and A is the surface area of the floating chamber
(m2). The Schmidt number (Sc) for kinematic viscosity and the gas transfer velocity given a Sc of 600,
k600, were also calculated following Wanninkhof (1992):

Sc ¼ 1897:8− 114:28 TKð Þ þ 3:2902 TK
2

� �
− 0:039061 TK

3
� �

; (6)

k600 ¼ kT
600
Sc

� �−0:5

: (7)

Ratios were then created for calculated k600:minimum k600 in each of the four replicate floating chambers.
Because there were two clear groups in binned ratios for <6.5 and >6.5, chambers with a ratio >6.5 were
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assumed to have received ebullition (supporting information Figure S1). Diffusive CH4 flux was calculated
using the minimum k600 from equations (6) and (7), and CH4 ebullition was assumed to be the
remaining flux.

We also sampled CH4 ebullition (mg·m−2·day−1) in deep water (16–25 m) during the January sampling
event using inverted funnels (n = 14). Funnels were made of vinyl with minimal seams and no openings
along their interior collection surfaces. Funnels channeled CH4 bubbles from a circular, 0.79‐m2 opening
at a water depth of 2 m into a sealed syringe at their terminus (Environnement Illumite, Inc.; Strayer &
Tiedje, 1978; Del Sontro et al., 2010). According to Ostrovsky et al. (2008), CH4 bubbles collected at this depth
in an unstratified water column undergo <5% oxidation before reaching the surface. We assumed that
ebullition measured at this depth represented emissions from the water surface. Because ebullition can be
a stochastic phenomenon, funnels were deployed continuously over 24 hr. Upon retrieval, headspace was
sampled using a syringe, stored, and analyzed as described above. Ebullition was determined using

FE ¼ pCH4KHð ÞV
tdAf

; (8)

where FE is CH4 ebullition (mg·m−2·day−1) in deep water, pCH4 is the partial pressure of CH4 inside of the
collected bubbles (μatm), KH is the temperature‐dependent Henry's constant (mmol·L−1·atm−1), V is the
bubble volume in the collection syringe (L), td is the deployment time (days), and Af is the cross‐sectional
area of the sampling funnel (0.79 m2).

2.5. Water Quality

Wemeasured dissolved O2 (mg/L), water temperature (°C), pH, and chlorophyll a (μg/L) from a water depth
of 10 cm using a multiparameter sonde (YSI 6920, YSI, Inc., USA) every 2 hr, for 24 hr, during each diffusive
flux measurement. Dissolved O2 data were then used to calculate Apparent Oxygen Utilization (AOU) in
milligrams per liter, or the departure from atmospheric equilibrium concentrations of O2 due to utilization
of this dissolved gas by aerobic respiration, following Richey et al. (1988):

AOU ¼ pO2;eqKH− O2½ �measured; (9)

where pO2,eqKH is the equilibrium concentration of O2 in water according to the temperature‐dependent
Henry's Constant.

2.6. Hypothesis Testing

We assessed normality in the data using quantile‐quantile plots and Shapiro‐Wilk Tests and heteroscedasti-
city in the data using Bartlett Tests for Homogeneity of Variance. CH4, CO2, and N2O partial pressures and
fluxes followed nonnormal distributions with unequal variances across sites and months. We compared
means of partial pressures and fluxes across sites and months using nonparametric pairwise Wilcoxon
signed rank t tests. We used a Bonferroni correction to an initial critical α value of 0.05 in order to compen-
sate for loss in statistical power over subsequent comparisons (Zar, 2010). The corrected α for by‐site and
by‐month comparisons was 0.025.

Our methods resulted in large sample sizes for each site (n ~ 36) and month (n ~ 72). To assess whether dif-
ferences between means were independent of sample size and ecologically as well as statistically significant,
we calculated effect sizes following Cohen (1988):

d ¼ μi−μjffiffiffiffiffiffiffiffiffiffi
σ2i þσ2j

2

q ; (10)

where d is a descriptive measure corresponding to a small (0.0–0.4), medium (0.5–0.7), or large (0.8–2.0)
effect size, μ is the mean of the sample, and σ is the standard deviation of the sample. Absolute Cohen's d
values for effect size are reported with each α value.

2.7. Linear Mixed Effects Modeling

We investigated the diel ecosystem drivers of partial pressures and fluxes using linear mixed effects models
(Table 1). Linear mixed effects models allowed these heteroscedastic data to vary independently across the
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random effects of site and month. The slope of each fixed effect relative to each random effect was also
allowed to vary independently following Bates et al. (2015):

yi ¼ β0;i þ βixi…þ 1jgið Þ þ 0þ xij gið Þ…þ εy; (11)

where yi is the partial pressure or flux; β0,i is the intercept of yi; βi is the coefficient for each effect, xi; gi is a
random effect, such as site or month; and εy is the error associated with yi. Small sample size‐corrected
Akaike Information Criterion (AICC) was used for model selection following Burnham and Anderson
(2004). The likelihood of each model in describing partial pressures and diffusive fluxes relative to the other
models was expressed in terms of ΔAICc and ΔAICc weight, wi, following Burnham and Anderson (2004):

ΔAICc ¼ AICc;i−AICc;min; (12)

wi ¼ e−0:5ΔAICc;i

∑e−0:5ΔAICc;i
; (13)

whereAICc,min is the lowest AICc value in a group of candidate models. Candidate models for CH4, CO2, and
N2O partial pressures, CH4, CO2, and N2O fluxes, and CH4 ebullition, yi, were designed according to
hypothesized drivers. Model 1 was a null model, which included sampling site and month, only, as random
effects with different intercepts.

Models 2 and 3 were nested in situ primary production models, which included hours since sunrise, water
temperature, dissolved O2, and chlorophyll a as fixed effects. Net primary production is typically greatest
during the day (Odum, 1956), when photosynthesis produces dissolved O2 and the photosynthetic pigment,
chlorophyll a. Photosynthesis is also a temperature‐dependent process (Farquhar et al., 1980).

Models 4 and 5 were nested in situ respiration models, which included hours since sunset, water tempera-
ture, AOU, and pH as fixed effects. Net respiration is typically greatest at night (Odum, 1956), when
dissolved O2 is consumed and CO2 is produced in the absence of photosynthesis. Like photosynthesis,
respiration is highly temperature dependent (Yvon‐Durocher et al., 2012).

We assessed multicollinearity of fixed effects using Variance Inflation Factors (VIF) and bivariate Pearson
Correlation Tests. VIF indicates the magnitude of variance among model coefficients, βi, when a fixed effect,
xi, is included in a model. Where VIF > 5, the multicollinear fixed effect was tested against all other fixed
effects in the model. Where a Pearson coefficient > 0.7 (r), the less ecologically relevant fixed effect for the
hypothesized driver was omitted. For example, chlorophyll a and pH were found to be highly correlated in
the full in situ primary production model (r = 0.70, df = 201, p < 0.001), so pH was omitted from this model.

3. Results
3.1. Magnitudes of Partial Pressures and Fluxes
3.1.1. Floodplain Ponds During Drawdown
Floodplain ponds were typically oversaturated with greenhouse gases relative to partial pressures sampled in
ambient air, leading to diffusive emissions of CH4, CO2, and N2O to the atmosphere (Table 2). There were

Table 1
Candidate Models and Number of Model Parameters (Including σε) Used in Corrected Akaike Information Criterion Analyses, Grouped by Hypothesized Drivers of yi

Model number Model name Model Number of model parameters

1 Null yi = (1|gi) … + εy 4
2 Partial in situ production yi = hours since sunrise + (1|gi) + (0 + xi|gi) … + εy 7
3 Full in situ production yi = hours since sunrise + water temperature + dissolved

O2 + chlorophyll a + (1|gi) + (0 + xi|gi) … + εy
16

4 Partial in situ respiration yi = hours since sunset (1|gi) + (0 + xi|gi) … + εy 7
5 Full in situ respiration yi = hours since sunset + water temperature + AOU

+ pH + (1|gi) + (0 + xi|gi) … + εy
16

Note. Here, yi is the partial pressure of CH4, CO2, or N2O, diffusive flux of CH4, CO2, or N2O, or CH4 ebullition. The intercept and slope of each fixed effect, xi,
relative to each random effect, gi, were allowed to vary independently as additional model parameters. Because inundation was measured during only one
month, January, this random effect was omitted from the models describing drivers of diel partial pressures and fluxes on the submerged floodplain.
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significant differences in pN2O and diffusive CH4 fluxes between natural and newly created aquaculture
ponds on the Three Gorges Floodplain (Table 3). pN2O was significantly greater in the natural pond in
June (p < 0.015, d = 1.9) and August During Rain (p < 0.009, d = 1.9). During periods of no rain,
diffusive CH4 fluxes were also significantly greater in the natural pond than in the aquaculture pond (p <
0.001, d = 0.8 for June; p = 0.001, d = 0.7 for August After Rain). Effect sizes for these significant
differences ranged from medium (d = 0.5–0.7) to high (d > 0.8), indicating both ecological and statistical
significance (Cohen, 1988).

Precipitation had a significant effect on the partial pressures, diffusive fluxes, and ebullition of CH4 in floodplain
ponds.We observed significantly greater pCH4 (p< 0.001, d=2.0) and diffusive CH4 fluxes (p< 0.001, d=0.9) dur-
ing rain in August than 3 days later, when the same sites were sampled again under conditions of no rain. Mean
ebullition was also greater during rain in August (19 ± 5 mg·m−2·hr−1, n = 6) than after (6 ± 2 mg·m−2·hr−1, n
= 12). Partial pressures and diffusive fluxes of CO2 and N2O were comparatively unaffected by this rain event.

Monthly and seasonal differences in greenhouse gas emissions measured in floodplain ponds and on the
submerged floodplain following inundation by the Three Gorges Reservoir are shown as CO2‐equivalents in
Figure 2. CO2‐equivalents were calculated over a 100‐year time scale using CO2 as a reference gas for global
warming potential, where CH4 has a global warming potential 25 times that of CO2 and nitrous oxide has a
global warming potential 298 times that of CO2 (IPCC, 2001; Myhre et al., 2013). CH4 diffusion and ebulli-
tion increased as a fraction of total CO2‐equivalents emitted by floodplain ponds from June to August, spik-
ing to 98–99% during a rain event. CO2 diffusion showed the opposite trend, and N2O diffusion changed little
throughout reservoir drawdown.
3.1.2. Submerged Floodplain During Inundation
Areal diffusive CH4 fluxes were significantly lower on the submerged floodplain following inundation by the
Three Gorges Reservoir (p < 0.001, d = 0.7; Figure 2). CH4 ebullition also decreased significantly from reservoir
drawdown to inundation (p< 0.001, d= 1.4). Little CH4 was emitted through either diffusion or ebullition during
inundation, when CO2 and N2O contributed 57–58% of total CO2‐equivalents emitted to the atmosphere.

3.2. Diel Patterns of Partial Pressures and Diffusive Fluxes

Oversaturation of CO2 relative to the atmosphere corresponded with undersaturation of O2 on the floodplain
during both reservoir drawdown and inundation, consistent with net heterotrophy (Figure 3). The equimo-
lar consumption of O2 and production of CO2 during aerobic respiration can be expressed as a slope of −1
when excess O2 is regressed with excess CO2. In both the natural and aquaculture ponds, these slopes were
approximately −1, indicating in situ respiration as a key driver of pCO2 (r = −0.13, df = 15, p = 0.63 for the nat-
ural pond and r = −0.60, df = 15, p = 0.010 for the aquaculture pond). This slope deviated from −1 on the

Table 2
Mean Diffusive Fluxes (mg·m−2·hr−1) ± SE and Partial Pressures (μatm) ± SE for CH4, CO2, and N2O

Study Month,
Site n

CH4 flux
(mg·m−2

·hr−1) n

Ebullition
(mg·m−2

·hr−1) n
pCH4
(μatm) n

CO2 flux
(mg·m−2

·hr−1) n
pCO2
(μatm) n

N2O flux
(mg·m−2

·hr−1) n
pN2O
(μatm)

June 67 2.2 ± 0.4 13 15 ± 4 12 50 ± 10 62 120 ± 20 12 160 ± 20 62 0.021 ± 0.009 12 0.37 ± 0.02
Natural 34 3.5 ± 0.7 9 18 ± 5 6 37 ± 9 30 80 ± 30 6 140 ± 20 32 0.030 ± 0.009 6 0.41 ± 0.01
Aquaculture 33 0.8 ± 0.3 4 9 ± 6 6 60 ± 20 32 170 ± 30 6 180 ± 40 30 0.01 ± 0.02 6 0.32 ± 0.02
August during
rain

65 10 ± 1 6 19 ± 5 12 130 ± 20 65 15 ± 10 12 320 ± 70 65 0.03 ± 0.01 12 0.31 ± 0.02

Natural 32 12 ± 2 6 19 ± 5 6 114 ± 3 32 5 ± 18 6 250 ± 50 32 0.03 ± 0.01 6 0.35 ± 0.02
Aquaculture 33 8 ± 1 0 6 160 ± 30 33 30 ± 10 6 400 ± 100 33 0.03 ± 0.01 6 0.27 ± 0.01
August after
rain

71 2.8 ± 0.6 12 6 ± 2 12 18 ± 2 71 14 ± 9 12 150 ± 20 71 0.009 ± 0.007 12 0.37 ± 0.02

Natural 35 5 ± 1 5 7 ± 2 6 18 ± 2 35 −10 ± 10 6 170 ± 30 35 −0.007 ± 0.006 6 0.37 ± 0.04
Aquaculture 36 1.0 ± 0.2 7 5 ± 2 6 18 ± 3 36 40 ± 20 6 130 ± 10 36 0.02 ± 0.01 6 0.36 ± 0.02
January 72 0.13 ± 0.05 14 0.09 ± 0.05 72 20 ± 10 72 28 ± 5 72 114 ± 8 72 0.004 ± 0.019 72 1.30 ± 0.03
Natural 36 −0.02 ± 0.03 1 0.1 36 5.4 ± 0.2 36 30 ± 5 36 110 ± 10 36 0.02 ± 0.01 36 1.29 ± 0.05
Aquaculture 36 0.30 ± 0.08 13 0.09 ± 0.06 36 30 ± 20 36 26 ± 8 36 120 ± 10 36 −0.01 ± 0.04 36 1.30 ± 0.05

Note. Mean ebullition (mg·m−2·hr−1) ± SE is also included. SE = standard error.
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submerged floodplain following inundation by the Three Gorges Reservoir (Slope
= 0.4; r= 0.28, df= 68, p= 0.021), indicating that other ecosystem processes were
affecting pCO2 (Crawford et al., 2014). Diffusive fluxes of CH4, CO2, or N2O
varied throughout the 24‐hr sampling periods, along with dissolved O2 and other
fixed effects we associate with in situ primary production and in situ respiration
(Figures 4 and S2). Five linear mixed effects models were used to determine
whether in situ primary production and in situ respiration were more likely than
a null model to drive observed patterns in greenhouse gas partial pressures and
fluxes over diel time scales (Table 1).
3.3. Drivers of Partial Pressures and Fluxes
3.3.1. Floodplain Ponds During Drawdown
Diel partial pressures of CH4, CO2, and N2O in water showed weak relation-
ships with respective diel diffusive fluxes of CH4 (r = 0.52, df = 84, p <
0.001), CO2 (r = 0.11, df = 84, p = 0.310), and N2O (r = −0.03, df = 84, p =
0.810). Because diel partial pressures of greenhouse gases in water were
weakly related to diffusive fluxes in this study, diel partial pressures were
modeled separately from diffusive fluxes. Diel partial pressures were not
added as fixed effects in the modeling fluxes of diffusive fluxes.

We found that diel partial pressures of CH4 and CO2 in floodplain ponds were
strongly supported by our full in situ respiration model, which included hours
since sunset, water temperature, AOU, and pH as fixed effects (Table 4). pN2O
in floodplain ponds was best supported by the null model. Diel CO2 fluxes in
floodplain ponds were also driven by in situ respiration. This model was over
99% more likely to describe diel diffusive fluxes of CO2 in floodplain ponds
than in situ production or null models (seeWeight, Table 5). Model fits for diel
diffusive fluxes of CH4 were inconclusive; relative support of diel CH4 fluxes
was divided between the null model (47%) and the partial in situ production
model (51%), which included hours since sunrise as a fixed effect. Diffusive
fluxes of N2O in floodplain ponds were best supported by the null model.
3.3.2. Submerged Floodplain During Inundation
The relative importance of in situ respiration to diel partial pressures was con-
sistent following inundation of the floodplain by the Three Gorges Reservoir.
During inundation, diel pCH4 and pCO2 were still most strongly supported by
the full in situ respiration model. However, relative support of pCO2 by this
model decreased from 93% to 86% from reservoir drawdown to inundation,
consistent with the apparent decoupling of pCO2 from dissolved O2 dynamics
observed from drawdown to inundation (Figure 3). Diel pN2O was also most
strongly supported by in situ respiration (partial model).

Like diel pCO2, diel diffusive CO2 fluxes were strongly supported by the in situ
respiration model on the submerged floodplain following inundation by the
Three Gorges Reservoir. During inundation, diel diffusive CH4 and N2O
fluxes were best supported by the null model. Diel CH4 ebullition was also
more likely to be supported by the null model during both reservoir draw-
down and inundation.

4. Discussion
4.1. pCH4, pCO2, and CO2 Fluxes Varied on a Diel Basis With In Situ
Respiration During Drawdown

Like other lentic environments on floodplains in Southeast Asia (Holtgrieve et al.,
2013), West Africa (Kone et al., 2009), and Australia (Hunt et al., 2012), ponds on
the Three Gorges Floodplain were heterotrophic (Figure 3). The accumulation of
CH4 and CO2 within floodplain ponds varied on a diel basis with in situT
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respiration according to linear mixed effects modeling, which included hours
since sunset, water temperature, AOU, and pH as fixed effects. This model
was over 92% more likely to explain observed diel variations in pCH4,
pCO2, and diffusive CO2 fluxes than the null model. Our approach and
results are consistent with findings of Tobias et al. (2007), Hotchkiss and
Hall (2014), and Schindler et al. (2017), who show that respiration rates can
vary widely throughout the day. Thus, it may be necessary to measure
pCH4, pCO2, and diffusive CO2 fluxes on a diel basis in studies of not only
stream and lake metabolism but also reservoir carbon cycling.

Respiration in the surrounding terrestrial landscape may have also con-
tributed to significant increases in pCH4 and diffusive CH4 fluxes during
precipitation and transfers of respiratory by‐products from floodplain soils
to ponds. During a rain event in August, diffusive CH4 and ebullition
fluxes spiked to 98–99% CO2‐equivalents emitted to the atmosphere from
floodplain ponds. Ponds are intimately connected to the surrounding
terrestrial landscape owing to comparatively high surface area‐to‐volume
ratios (Holgerson, 2015). Terrestrial‐aquatic transfers can enrich surface
waters with by‐products of soil respiration, increasing the partial
pressures of CH4 and CO2 (Butman & Raymond, 2011; Kling et al.,
1991; Raymond et al., 2016), or these flows can dilute surface water solute
concentrations (Johnson et al., 2010). pCH4 and diffusive CH4 fluxes were
significantly higher during rain than after rain, suggesting enrichment.

Figure 2. Fluxes of CH4, CO2, and N2O expressed in mg CO2‐equivalents·m
−2·hr−1 in floodplain ponds during June and August and on the submerged floodplain

following inundation by the Three Gorges Reservoir during January. The gray line at y = 0 delineates fluxes between these aquatic environments and the
atmosphere. Width of boxes reflects relative sample size, which is smaller for ebullition (ranging from n= 6 to n= 14) than for diffusive fluxes (ranging from n = 62
to n = 72). Statistical and ecological significance across subsequent months is indicated by α values and absolute Cohen's d values for effect size. *Statistically
significant with low effect size. **Statistically significant with medium effect size. ***Statistically significant with large effect size.

Figure 3. Saturation of O2 and CO2 in water relative to atmospheric
equilibrium, at the gray lines or 0.0 mmol/L1. The 1:1 line represents the
equimolar consumption of O2 and production of CO2 during aerobic
respiration. Slopes are the changes in excess dissolved O2 relative to excess
dissolved CO2.
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The onset of this rain event corresponded to a decrease in atmospheric pressure from 1,016 to 1,002 mbar,
which may also explain observed significant increases in CH4 ebullition (Ostrovsky et al., 2008).

4.2. Ebullition Was a Substantial Fraction of Total Drawdown Emissions

CH4 ebullition comprised 60–68% of all CO2‐equivalents emitted fromfloodplain ponds to the atmosphere during
reservoir drawdown (Figure 3). This is consistent with findings from the lake and reservoir literatures (Deemer
et al., 2016; Del Sontro et al., 2010; Grinham et al., 2011; Maeck et al., 2014). Del Sontro et al. (2016) measured
both the magnitude and drivers of ebullition in 10 northern temperate ponds. These ebullitive fluxes averaged
3.1 ± 0.7 mg CH4·m

−2·hr−1, compared with the 15 ± 4, 19 ± 5, and 6 ± 2 mg CH4·m
−2·hr−1 that we measured

in June, August During Rain, and August After Rain, respectively (Table 2). The lower magnitude of ebullitive
fluxes in ponds measured by Del Sontro et al. (2016) in northern temperate ponds may be due to the strong tem-
perature dependence of respiration generally (Yvon‐Durocher et al., 2012) and methanogenesis particularly in
freshwater environments (Lofton et al., 2014; Schultz & Conrad, 1996; Segers, 1998; Yvon‐Durocher et al.,
2014). Temperatures ranged from 25 to 39 °C in our subtropical floodplain ponds and from 28 to 35 °C in their
sediments, where ebullition originates. Del Sontro et al. (2016) found that sediment temperatures in their ponds
rarely exceeded 25 °C and that ebullition was related to both sediment temperature and trophic status. Diel CH4

ebullition in our study was not supported by our in situ production and in situ respiration models, suggesting
other biotic and abiotic drivers during reservoir drawdown and inundation, such as atmospheric pressure.

Figure 4. Diel variation in dissolvedO2 in natural and aquaculture ponds during each sampling event, comparedwith diel variation in diffusive CH4, CO2, andN2Ofluxes.
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4.3. pCH4 and CH4 Fluxes Varied Seasonally, FromReservoir Drawdown to Floodplain Inundation

Diel pCH4, pCO2, and diffusive CO2 fluxes were also driven by in situ respiration on the submerged flood-
plain following inundation by the Three Gorges Reservoir. Inundation did change the driver of diel pN2O
from other ecosystem processes during reservoir drawdown (indicated by strong support of the null model)
to in situ respiration. Battin et al. (2008) andMcNicol and Silver (2014) have each documented respiration of
floodplain vegetation following inundation. The only plant species that survive seasonal flooding of the

Table 4
AICc Results for Five Candidate Models Predicting the Partial Pressures of CH4, CO2, and N2O in Floodplain Ponds and the Submerged Floodplain

Floodplain ponds Submerged floodplain

Model name AICc ΔAICc Weight AICc ΔAICc Weight

pCH4 (df = 35) (df = 71)
Null model 368.58 26.95 0.000 841.55 34.62 0.000
Partial in situ production 364.39 22.76 0.000 837.30 30.37 0.000
Full in situ production 352.27 10.65 0.005 812.26 5.33 0.065
Partial in situ respiration 363.97 22.34 0.000 837.77 30.84 0.000
Full in situ respiration 341.61 0.00a 0.995a 806.93 0.00a 0.935a

pCO2 (df = 35) (df = 71)
Null model 455.15 41.27 0.000 800.96 39.16 0.000
Partial in situ production 448.76 34.88 0.000 790.01 28.21 0.000
Full in situ production 418.96 5.07 0.073 765.36 3.56 0.144
Partial in situ respiration 444.96 31.07 0.000 793.09 31.29 0.000
Full in situ respiration 413.88 0.00a 0.927a 761.80 0.00a 0.856a

pN2O (df = 35) (df = 71)
Null model −95.76 0.00a 0.743a 31.92 36.26 0.000
Partial in situ production −92.15 3.61 0.122 18.63 22.96 0.000
Full in situ production −65.72 30.04 0.000 27.93 32.26 0.000
Partial in situ respiration −92.35 3.40 0.135 4.33 0.00a 0.948a

Full in situ respiration −74.23 21.53 0.000 1.46 5.79 0.052

aModels with relative support (over two ΔAICc units).
AICc = corrected Akaike Information Criterion.

Table 5
AICc Results for Six Candidate Models Predicting the Diffusive Fluxes of CH4, CO2, and N2O From Floodplain Ponds and the Submerged Floodplain

Floodplain ponds Submerged floodplain

Model name AICc ΔAICc Weight AICc ΔAICc Weight

Diffusive CH4 fluxes (df = 202) (df = 71)
Null model 1,337.29 0.14 0.472 70.12 0.00a 0.995a

Partial in situ production 1,337.15 0.00 0.507 81.96 11.85 0.003
Full in situ production 1,356.43 19.28 0.000 97.60 27.49 0.000
Partial in situ respiration 1,343.54 6.39 0.021 81.90 11.79 0.002
Full in situ respiration 1,352.23 15.08 0.000 95.92 25.81 0.000

Diffusive CO2 fluxes (df = 197) (df = 71)
Null model 2,861.12 17.11 0.000 915.37 11.94 0.002
Partial in situ production 2,861.35 17.33 0.000 917.48 14.05 0.001
Full in situ production 2,853.87 9.86 0.007 909.50 6.08 0.045
Partial in situ respiration 2,856.87 12.86 0.002 916.06 12.63 0.002
Full in situ respiration 2,844.01 0.00a 0.991a 903.43 0.00a 0.950a

Diffusive N2O fluxes (df = 198) (df = 71)
Null model −530.07 0.00a 0.999a −67.56 0.00a 0.997a

Partial in situ production −514.27 66.14 0.000 −54.63 12.93 0.002
Full in situ production −463.93 66.14 0.000 −30.92 36.64 0.000
Partial in situ respiration −514.81 15.26 0.001 −54.19 13.37 0.001
Full in situ respiration −475.58 54.49 0.000 −31.71 35.84 0.000

aModels with relative support (over two ΔAICc units).
AICc = corrected Akaike Information Criterion.
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Pengxi River Wetland Reserve are the grasses Cynodon dactylon and Echinochloa crusgali var. zelayensis and
the legume Aeschynomene indica (Wang et al., 2009). Remaining terrestrial vegetation in the reserve dies
following inundation, including the lotus (Nelumbo nucifera) cultivated in aquaculture ponds. Seasonal
senescence of many aquatic and terrestrial plant species on the Three Gorges Floodplain likely provides
ample substrates for in situ respiration following inundation.

Interestingly, the magnitudes of CH4 emissions alone seemed affected by inundation. Diffusive CH4 fluxes
and CH4 ebullition decreased significantly from 2.8 ± 0.5 and 6 ± 2 mg·m−2·hr−1, respectively, during
reservoir drawdown to 0.13 ± 0.05 and 0.09 ± 0.05 mg·m−2 hr−1 during inundation. pCO2, pN2O, and the
diffusive fluxes of CO2 and N2O per square meter were not significantly different from reservoir drawdown
to inundation in January. This meant that diffusive CO2 and N2O fluxes were proportionately more impor-
tant to total CO2‐equivalents emitted per unit area during inundation than during reservoir drawdown. The
decrease in areal CH4 emissions during inundation may be due to a combination of lower temperatures and
higher O2 saturation on the submerged floodplain following inundation by the Three Gorges Reservoir.
During winter inundation, water temperatures in on the submerged floodplain ranged from 13 to 14 °C com-
pared to 25 to 39 °C in floodplain ponds during summer reservoir drawdown. Fewer CH4 bubbles may have
been produced in colder submerged floodplain sediments. During inundation, inverted funnels in deeper,
colder water (16–25 m) also captured much smaller magnitudes of ebullition than floating chambers in shal-
lower water (<2 m; p < 0.001, d = 1.4), which is consistent with other studies (Del Sontro et al., 2016;
Deshmukh et al., 2014). Furthermore, dissolved O2 on the submerged floodplain was significantly greater
than during drawdown in floodplain ponds (p < 0.001, d = 2.0; Figure 4), sometimes approaching 98%
saturation. Dissolved CH4 may have been oxidized within this more oxic water column (Guerin & Abril,
2007). Therefore, both inundation and the season in which it occurs likely contributed to our observed
decreases in diffusive CH4 fluxes and CH4 ebullition.

No other studies in the Three Gorges Reservoir have measured ebullition, meaning that spatial coverage is
limited to our study, 14 inverted funnels, a small area of the submerged floodplain, and one January sam-
pling event over 2 days thus far. Wik et al. (2016) estimated that 11 inverted funnels and 39 days of sampling
were required in northern temperate lakes encompassing 0.02–0.17 km2 in order to accurately (±20%) mea-
sure ebullition captured by 17 funnels over 62 days. Lower spatial and temporal coverage most often results
in underestimates of ebullition (Wik et al., 2016). This makes greater coverage and more accurate ebullition
estimates for the Three Gorges Reservoir a priority for future studies.

4.4. Partial Pressures Were Weakly Related to Diffusive Fluxes

Themodeled diffusive flux of any gas betweenwater and the atmosphere is a function of its concentration gra-
dient between water and the atmosphere and the gas transfer velocity. Yet, partial pressures of CH4, CO2, and
N2O in water were weakly related to our measured diffusive fluxes. This indicates the importance of the gas
transfer velocity, which depends largely on turbulence at the interface between water and the atmosphere
(Banerjee & MacIntyre, 2004; McGillis et al., 2004). Turbulence on the surface of ponds and reservoirs can
result from convection or wind speed, which are positively correlated to diffusive flux (MacIntyre et al.,
2010). Diffusive CH4 fluxes measured by this study were slightly more related to the gas transfer velocity
(r = 0.60, df = 84, p = 0.016) than to partial pressures of CH4 (r = 0.52, df = 84, p < 0.001). This was
not true for diffusive CO2 and N2O fluxes. It is generally assumed and in some cases empirically shown
(Natchimuthu et al., 2017) that partial pressures are highly correlated to diffusive fluxes. Other studies
by Schilder et al. (2013) in lakes and Crawford et al. (2015) in streams have shown weak relationships
between partial pressures and diffusive fluxes and stronger relationships between diffusive fluxes and the
gas transfer velocity. Our results and others suggest that synoptic observations of partial pressures do not
always predict the magnitudes of diffusive fluxes. Further comparisons between partial pressures of CH4,
CO2, and N2O in water and the diffusive fluxes measured by floating chambers are needed, particularly
when partial pressures are widely used to model diffusive fluxes when not directly measured by chambers.

4.5. Ponds on the Three Gorges Floodplain Were Sizeable CH4 Emitters

We used the Institute for Scientific Information Web of Science to review other studies reporting diffusive
CH4, CO2, and N2O fluxes from aquatic and terrestrial environments on the Three Gorges Floodplain and
in the Three Gorges Reservoir. During reservoir drawdown, these environments included ponds,
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wetlands, the Yangtze River, its tributaries, grasslands, forests, and agricultural lands. During inundation,
these environments included the mainstem Three Gorges Reservoir and its submerged floodplain. Fluxes
were converted to mg CO2‐equivalents·m

−2·day−1 ± Standard Error of the mean for comparison across
environments (Tables 6 and 7). The surface areas occupied by each environment during reservoir
drawdown and inundation are presented in Table 8 (Chen, Yuan, et al., 2009; Zhang et al., 2018). Studies
that did not specify sampling month or environment were omitted.

We found that most studies measure diffusive CH4 fluxes, only. Ponds and wetlands have the highest diffu-
sive CH4 emissions per square meter on the Three Gorges Floodplain during reservoir drawdown (Table 6),
meaning that recent expansion of ponds for aquaculture on the Three Gorges Floodplain is likely increasing
diffusive CH4 emissions (Li et al., 2013; Zhang et al., 2018; Zhou et al., 2017). Grasslands, forests, and agri-
cultural lands measured by other studies on the Three Gorges Floodplain were also sources for diffusive CH4

to the atmosphere. Globally, terrestrial soils are typically CH4 sinks (Smith et al., 2000). However, CH4 oxi-
dation rates in terrestrial soils are diminished by porewater content and landscape disturbances like agricul-
ture (Smith et al., 2000). Both high porewater content and landscape disturbances can be expected on a
humid, monsoonal, and historically densely populated Three Gorges Floodplain now undergoing seasonal
inundation. Published diffusive CH4 fluxes for the Yangtze River and its tributaries during reservoir draw-
down show that these environments are essentially CH4 neutral.

Table 6
MeanDiffusive CH4, CO2, and N2O Fluxes, in mg CO2‐Equivalents ± Standard Error, Reported by Other Studies in Aquatic and Terrestrial Environments on the Three
Gorges Floodplain, Yangtze River, and Its Tributaries During Reservoir Drawdown

Ecosystem type Month
CH4 flux

(mg CO2·m
−2·hr−1)

CO2 flux
(mg CO2·m

−2·hr−1)
N2O flux

(mg CO2·m
‐−2·hr−1) Source

Three Gorges Floodplain
Schoenoplectus triqueter wetland July–September 373 ± 273 15 ± 18 Chen, Wu, et al., 2009; Chen,

Yuan, et al., 2009
Juncus amuricus wetland July–September 6 ± 16 6 ± 15 Chen, Wu, et al., 2009; Chen,

Yuan, et al., 2009
Typha augustifolia wetland July–September 16 ± 28 6 ± 6 Chen, Wu, et al., 2009; Chen,

Yuan, et al., 2009
Paspalum distichum wetland July–September 170 ± 125 9 ± 12 Chen, Wu, et al., 2009; Chen,

Yuan, et al., 2009
Oryza sativa wetland June 122 ± 58 Lu et al., 2011
Aquaculture pond June 4 ± 1 Zhou et al., 2017
Aquaculture pond June 20 ± 8 168 ± 29 3 ± 6 This study
Natural pond June 35 ± 13 3 ± 12 Zhou et al., 2017
Natural pond June 88 ± 18 78 ± 32 9 ± 3 This study
Aquaculture pond August 113 ± 20 38 ± 14 3 ± 3 This study
Natural pond August 175 ± 25 6 ± 15 6 ± 3 This study
Grasslands July–September 7 ± 2 Chen, Wu, et al., 2009; Chen,

Yuan, et al., 2009
Grasslands June −1 ± 1 Yang et al., 2012
Grasslands June 18 ± 8 21 ± 9 Zhou et al., 2017
Forests June 0.3 ± 0.9 Yang et al., 2012
Forests June 13 ± 8 Zhou et al., 2017
Agricultural lands June −0.3 ± 0.8 Yang et al., 2012
Agricultural lands June 150 ± 50 Zhou et al., 2017

April 2 ± 2 Xiao et al., 2013
Yangtze River and tributaries
Yangtze River June 8 ± 23 Lu et al., 2012
Yangtze River July 13 ± 13 Yang et al., 2013
Yangtze River August 1.5 ± 0.5 Xiao et al., 2013
Tributary April 8 ± 2 Xiao et al., 2013
Tributary June −47 ± 22 Zhao et al., 2013
Tributary July 6 ± 2 Chen, Wu, et al., 2009
Tributary July −90 ± 18 Zhao et al., 2013
Tributary August 2.3 ± 0.5 Xiao et al., 2013
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Aquatic and terrestrial floodplain environments during reservoir drawdown (comprising a total surface area
of 1,053.3 km2) tend to have higher diffusive CH4 fluxes per square meter than the surface of both the main-
stem Three Gorges Reservoir and submerged floodplain during inundation (1,106.2 km2; Tables 6–8).
Diffusive CH4 fluxes range from −1 ± 1 mg CO2‐equivalents·m

−2·day−1 in grasslands to 373 ± 273 mg
CO2‐equivalents·m

−2·day−1 in wetlands during drawdown. These fluxes range from −1 ± 1 mg CO2‐equiv-
alents·m−2·day−1 in submerged grasslands to 13 ± 8 mg CO2‐equivalents·m

−2·day−1 in submerged agricul-
tural lands during inundation.

Comparisons of diffusive CH4 emissions from aquatic and terrestrial
floodplain environments during reservoir drawdown and from the main
stem reservoir and submerged floodplain during inundation come with
two important caveats. The first is that data from the literature include
few measurements of diffusive CO2 fluxes and no estimates of terrestrial
primary production in grasslands, forests, and agricultural lands during
reservoir drawdown. Each of these ecosystems is likely to sequester con-
siderable quantities of CO2. Based on the negative diffusive CO2 fluxes
reported in the literature, tributaries are also net autotrophic. In a study
by Zhao et al. (2013), for example, it was found that the Yangtze River
and its tributaries have the potential to sequester up to 90 ± 18 mg
CO2·m

−2·hr−1 during reservoir drawdown. During late summer
(August), we also found that natural floodplain ponds also have the
potential to sequester comparatively small amounts (−10 ± 10 to 5 ±
18 mg·m−2·hr−1) of CO2, perhaps due to primary production. Indeed,
chlorophyll a was significantly higher in the natural pond than in the
aquaculture pond (p < 0.001, d = 2.0). More diffusive CO2 flux measure-
ments are needed in both aquatic and terrestrial floodplain environ-
ments during reservoir drawdown and inundation to adequately assess
the complete C balance of the region under its new and dynamic
hydrologic regime.

Second, the fate of CH4 stored in the large water volumes of the mainstem
Three Gorges Reservoir and its submerged floodplain is unknown.

Table 7
Mean Diffusive CH4, CO2, and N2O Fluxes, in mg CO2‐Equivalents ± Standard Error, Reported in the Mainstem Three Gorges Reservoir and Its Submerged
Floodplain During Inundation

Ecosystem type Month
CH4 flux

(mg CO2·m
−2·hr−1)

CO2 flux
(mg CO2·m

−2·hr−1)
N2O flux

(mg CO2·m
−2·hr−1) Source

Three Gorges Reservoir
Main stem reservoir January 5 ± 3 Yang et al., 2013
Main stem reservoir February 0.5 ± 0.3 Xiao et al., 2013
Main stem reservoir October 1.0 ± 0.8 Xiao et al., 2013

January‐April 8 ± 10 Chen et al., 2011
Submerged floodplain
Submerged wetlands
Submerged aquaculture pond January 8 ± 2 30 ± 9 −3 ± 9 This study
Submerged natural pond January −1 ± 1 Zhou et al., 2017
Submerged natural pond January 0.5 ± 0.8 33 ± 5 6 ± 3 This study
Submerged grasslands November 5 ± 8 Yang et al., 2012
Submerged grasslands January −1 ± 2 Zhou et al., 2017
Submerged forests November 5 ± 5 Yang et al., 2012
Submerged agricultural lands November 10 ± 10 Yang et al., 2012
Submerged agricultural lands January 13 ± 8 Zhou et al., 2017
Submerged tributary January–April 111 ± 11 Li et al., 2014
Submerged tributary January–April 5 ± 10 Chen et al., 2011
Submerged tributary March −13 ± 4 Zhao et al., 2013
Submerged tributary October 2.0 ± 0.5 Xiao et al., 2013

Table 8
Surface Areas of Aquatic and Terrestrial Environments in the Three
Gorges region, in Square Kilometers

Environment
Surface

Area (km2) Source

Reservoir drawdown
Ponds 100.0 Unavailable
Wetlands Chen, Wu, et al., 2009
Yangtze River
and tributaries

784.8 Chen, Wu, et al., 2009;
Zhang et al., 2018

Grasslands 15.1 Zhang et al., 2018
Forests 63.8 Zhang et al., 2018
Agricultural lands 89.6 Zhang et al., 2018
Building lands 52.9 Zhang et al., 2018
Inundation
Main stem reservoir 784.8 Chen, Wu, et al., 2009;

Zhang et al., 2018
Submerged floodplain 321.4 Chen, Wu, et al., 2009;

Zhang et al., 2018

Note. Surface areas during reservoir drawdown (Three Gorges Floodplain,
Yangtze River, and Tributaries) total 1,053.3 km2, not including 52.9 km2

of urban and suburban areas (Zhang et al., 2018). Surface areas during
inundation (Three Gorges Reservoir and Submerged Floodplain) total
1,602.1 km2.
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Though diffusive CH4 emissions are comparatively low from the surface of the reservoir during inundation,
total water volumes increase from 17.2 km3 during drawdown to 39.9 km3 during this period (Wang et al.,
2014). CH4 can be stored at higher concentrations in the anoxic layer of vertically stratified lakes and reser-
voirs and then released via diffusion during periods of overturn and mixing (Beaulieu et al., 2014;
Michmerhuizen et al., 1996; Riera et al., 1999). We sampled dissolved CH4 from the surfaces of the Three
Gorges Reservoir, only. Using these mean concentrations, the water level‐water volume relationship
reported byWang et al. (2014) for the Three Gorges region, and assuming that the water column is uniformly
mixed, we can extrapolate that the Three Gorges Reservoir stores 8 ± 1 kg CH4 during the winter, when
pCH4 and diffusive CH4 emissions are comparatively low. By comparison, the Three Gorges Floodplain,
Yangtze River, and its tributaries may store up to 3.6 ± 0.7 kg CH4 during reservoir drawdown in August,
when diffusive emissions are comparatively high, using CH4 concentrations measured in floodplain ponds
and a local tributary (Pengxi River). The fate of the larger quantities of dissolved CH4 in the Three Gorges
Reservoir during reservoir overturn and downstream export is unclear. Drops in hydrostatic pressure during
the transition from peak inundation to reservoir drawdown may also result in bubble release from reservoir
sediments and additional CH4 emissions (Beaulieu et al., 2018; Harrison et al., 2017). Reservoir overturn,
downstream export, and drops in hydrostatic pressure each constitute “hot moments” for CH4 emissions,
which are important to reservoir C balances though difficult to capture via synoptic field sampling
(Deemer et al., 2016). Irrespective of ultimate atmospheric CH4 contributions by the Three Gorges
Reservoir, our study and other studies show that ponds and wetlands on the Three Gorges Floodplain during
reservoir drawdown are also sizeable sources for diffusive CH4 to the atmosphere.

5. Conclusions

Our study shows that it is critical to consider how drawdown and inundation tie C and N cycling in hydro-
power reservoirs to their floodplains. Greenhouse gas emissions resulting from this C and N cycling are tem-
porally dynamic. This is due not just to the association of greenhouse gas production with diel ecosystem
metabolism but also with the seasonal disturbance regime of inundation. The Three Gorges Dam is one case
study in a global hydropower boom (Zarfl et al., 2015) that is altering the hydrologic regime, frequency and
scale of inundation, and balance of autotrophic and heterotrophic processes within river basins. We show
that the drawdown/inundation cycle on the Three Gorges Floodplain changes themagnitudes of greenhouse
gas fluxes from one of the world's largest reservoirs to the atmosphere and that certain environments on
reservoir floodplains during drawdown can be nontrivial sources for CH4.
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Erratum
In the originally published version of this article, Tables 3, 4, and 5 required corrections to formatting.
Additionally, the author contributions were incomplete. The tables and author contributions have since
been corrected, and this version may be considered the authoritative version of record.
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