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A Robust Filtered Basis Functions Approach for
Feedforward Tracking Control—With Application
to a Vibration-Prone 3-D Printer

Keval S. Ramani

Abstracit—The filtered basis functions (FBF) approach is
gaining interest for feedforward tracking control of linear,
especially, nonminimum phase systems. It expresses the
control input to the plant as a linear combination of basis
functions with unknown coefficients. The basis functions
are forward filtered through the plant dynamics and the
coefficients are selected such that the tracking error is
minimized. This article proposes a robust FBF approach for
tracking control of linear time invariant systems with known
uncertainty. A robust filter is formulated as the inverse of
an optimal controller that minimizes a frequency-domain
cost function over the known uncertainty. The proposed
robust FBF approach filters the basis functions using the
robust filter in lieu of the nominal plant dynamics. Stability
issues associated with the robust filter are discussed, as
are the incorporation of dynamic uncertainty into the robust
filter. Applied to a vibration-prone desktop 3-D printer with
dynamic uncertainty, significant improvements in tracking
accuracy are demonstrated using the robust FBF approach
compared to the standard FBF approach.

Index Terms—B-splines, nonminimum phase (NMP) sys-
tem, optimal control, robust control, 3-D printing, vibration
control.

I. INTRODUCTION

RACKING control is a fundamental problem encountered
T in a wide range of application domains, including man-
ufacturing, robotics, and aerospace. The objective of tracking
control is to force the output of the controlled system to follow
a desired trajectory. Feedforward approaches are very important
in tracking control applications, where they are often used to
complement feedback approaches. There are also several appli-
cations where feedforward is the only or primary recourse for
tracking control, e.g., due to technological, practical or economic
infeasibility of sensing. A good example is desktop 3-D printers
where low-cost stepper motors, which have no feedback sensors,
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are commonly used to generate motion. Another example is
industrial wafer scanners where feedforward control accounts
for over 99% of control effort [1]. This article is motivated by
such applications.

In the context of feedforward control, perfect tracking control
can be achieved by pole-zero cancellation [2]. However, if the
plant has nonminimum phase (NMP) zeros, then the resulting
control trajectory can be highly oscillatory or unbounded. NMP
zeros are quite prevalent in practice, especially in systems with
structural flexibilities [3]-[5]. Various strategies have been de-
vised for feedforward tracking control of NMP systems (in-
terested readers can see literature reviews in [6]-[8]). Of the
available methods, the filtered basis functions (FBF) approach
has recently been gaining interest for feedforward tracking
control of linear, especially NMP, systems [9]-[12]. The FBF
approach expresses the control input as a linear combination
of user-defined basis functions with unknown coefficients. The
basis functions are forward filtered through the plant dynamics
and the coefficients are selected, using an elegant least-squares
solution, such that the tracking error is minimized. The FBF
approach finds its origins in iterative learning control (ILC)
through the work of Frueh and Phan [13] but was not applied
to feedforward tracking control of NMP systems until recently
[9]-[12]. Unlike most of the methods in the literature, the FBF
approach is effective for a wide range of desired trajectories and
plants including nonhyperbolic systems (systems with zeros on
the unit circle in the z plane) [10], [12], square and nonsquare
multi-input multi-output (MIMO) systems, linear time varying
systems, linear parameter varying systems [14], etc.

However, the FBF approach faces at least two practical chal-
lenges. The first is that its computational cost becomes very
high as the length (number of samples) in the motion trajectory
increases. To overcome this challenge, a limited preview version
of FBF, viz., limited preview filtered B-splines (LPFBS), was
proposed by Duan et al. [11]. LPFBS was shown to significantly
reduce the computational cost of the FBF approach without
significantly sacrificing its tracking performance, allowing it to
be implemented successfully on a desktop 3-D printer [11]. A
second challenge is that, being a purely feedforward technique,
the tracking accuracy of the FBF approach degrades in the
presence of inaccuracies in the plant model or uncertainty in
the plant dynamics [11].

In the presence of uncertainty in the plant dynamics, the
tracking accuracy of feedforward controllers such as FBF can be

1083-4435 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 15,2020 at 23:49:19 UTC from IEEE Xplore. Restrictions apply.



RAMANI et al.: ROBUST FILTERED BASIS FUNCTIONS APPROACH FOR FEEDFORWARD TRACKING CONTROL

2557

improved by complementing them with some form of feedback
control. Examples include real-time feedback [15]-[17], adap-
tive control [18], ILC [19]-[23], etc. However, as mentioned
earlier, there are a good number of situations where feedback-
based techniques do not apply due to infeasibility or inadequacy
of sensing. An alternative approach, therefore, is to improve the
robustness of feedforward tracking controllers without relying
on feedback, using a priori knowledge of plant uncertainty.
In this regard, Wu and Zou [24] proposed a gain modulated
inversion-based controller to minimize the worst case tracking
error in the presence of dynamic uncertainty, which imposes
bounds on the magnitude as well as phase of the uncertainty.
Lunenburg [25] presented an optimal feedforward controller that
minimized (in an average sense) the tracking error in the fre-
quency domain using a conventional multiplicative uncertainty
framework that bounds only the magnitude of the uncertainty.
A weakness of the robust controllers proposed in [24] and [25]
is that, being direct inversion feedforward controllers [26], they
cannot be applied directly to nonhyperbolic plants.

In the context of the FBF approach, which is directly ap-
plicable to nonhyperbolic plants, the authors have proposed
a regularized FBF approach [27] to improve the tracking ac-
curacy of FBF in the presence of uncertainty. However, the
regularized approach, which is obtained by solving a set of
nonlinear-coupled equations, is not amenable to the compu-
tationally efficient LPFBS approach. Hence, from a practical
standpoint, an approach that improves the robustness of FBF
and at the same time retains the elegance of the least-squares
solution, which facilitates LPFBS, is needed.

Hence, this article (and its preliminary version [28]) makes
the following contributions to the literature.

1) It proposes a robust FBF approach that retains the ele-
gance of the least-squares solution of the standard FBF
approach by using a robust filter instead of nominal plant
dynamics to filter basis functions.

2) It proposes the inverse of an optimal feedforward con-
troller that minimizes an error cost function for known
plant uncertainty as a robust filter for use in robust FBF.

3) It demonstrates the effectiveness of the proposed robust
FBF approach using simulation examples and experi-
ments on a desktop 3-D printer with dynamic uncertainty.

The rest of this article is organized as follows. Section II
presents an overview of the FBF approach. Section Il introduces
the proposed robust FBF approach and robust filter, as well as
stability issues and incorporation of dynamic uncertainty into
the robust filter. The effectiveness of the robust FBF approach is
demonstrated using simulation examples and experiments on a
desktop 3-D printer in Section I'V. Finally, Section V concludes
this article.

Il. FBF APPROACH

Consider the discrete-time linear time invariant (LTT) single-
input single-output plant G(z) shown in Fig. 1, augmented with a
tracking controller C(z) with overall dynamics L(z) = C(z)G(z)
and error dynamics Ef¢(z) =1 — C(2)G(z). The plant G(z)

Fig. 1. Block diagram for tracking control.

could represent the transfer function of an open-loop or a
closed-loop controlled system [29]. This section assumes that
the plant model has no uncertainty. Given a desired trajectory
ya(k), where 0 < k < M, k € Z, and M + 1 is the number
of discrete points in the trajectory, the objective of the tracking
controller C(z) is to produce a signal u(k), which after passing
through G(z) results in an output trajectory y(k) that follows the
desired trajectory yq (k) as closely as possible.

The FBF approach assumes that the following conditions
hold:

1) the desired trajectory yq(k) is known a priori, which
is often the case, e.g., in manufacturing, robotics, and
aeronautics applications [30];

2) the control signal u(k) is expressed as a linear combination
of basis functions as follows:

u(k) = vipi(k) (1)
1=0

where ;(k) and ~; are the user-defined basis functions and
their coefficients, respectively. The control input vector u =

[u(0)u(1) ... u(M)]" can be expressed as
u= vy 2
where
¢ = [900 #1 ‘Pn] .
0, =[vi(0) @i(1) s @i(M)] 3)
y=[w v - W

The resulting output trajectory y = [y(0) y(1) ... y(M)]T

can be expressed as a linear combination of FBF
y = dy )

where @ is an (M + 1) x (n + 1) matrix whose columns ¢,
are obtained by filtering ¢, using a nominal model Gy, of the
plant G, as shown in Fig. 2. The implication is that the tracking
error vector e can be expressed as

e=yq— By (5)

where yq = [ya(0) ya(1) ... ya(M)]T. The coefficients ~ are
selected such that an objective function J, representing the
2-norm of the tracking error, is minimized, i.e.

min [J = fle]l, = || v - v ©)
v 2
the result is an optimal coefficient vector « given by

Y= (@T@)”&)Tyd. )
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Fig. 2. Flowchart for the standard FBF approach.

Accordingly, the FBF controller Crpr and overall dynamics
Lypr can be expressed as
TN~ RV SR
Crpr = @(@T@) &, Lypp = @(@T@) & (8
Remark 1: Tt can be shown (see [10]) that Crpr is an approx-
imation of ¢ ;gm, where Gy,op, 18 the lifted system representation
(LSR) of Guom. As n — M, Cpp — G;gm. However, n =
M leads to unstable G}, in the presence of NMP zeros in
Grom. Hence, n < M is typically used to bound the control
effort produced by Cppr.

I1l. RoBuUST FBF APPROACH
A. Definition of Robust Filter

The standard FBF controller discussed in the previous section
assumes that the nominal model, G0, 18 a perfect representa-
tion of the actual plant, G. However, in practice, G # Gy, due
to uncertainty. In this section, we propose a robust FBF approach
that replaces G0 in the standard FBF approach with a robust
filter, G-, which considers the uncertainty in G.

In the presence of uncertainty in G, the optimal tracking con-
troller has been proposed in the literature [25] as the controller
that minimizes the following cost function (at each frequency,
w) over the uncertainty:

Jp = /A f(A)|EfsPdA; Epp=1-0G (9
where f{A) is the distribution of the actual plant G w.r.t. the un-
certainty A. Note that for simplicity of notation, the dependence
of fAA) and E¢; on w is not explicitly shown in (9) and in the
following equations. The optimal controller can be obtained by
differentiating J,. w.r.t. C* and equating the result to zero, where
the superscript * denotes the complex conjugate. The optimal
controller is given by

oo [a f(A)GraA
P F(A)GGrAT

(10)

The goal of robust FBF is for Cypr defined in (8) to emulate
Copt (the LSR of Cypt). To do this, we note from Remark
1 that Cypr approximates the inverse of the dynamics used
to filter the basis functions ®. In the case of the standard
FBF, it approximates G-l because Gyop is used to filter .

nom?

Therefore, to make Crpr to approximate Cp¢, we propose a
robust filter G,. as

1>

o [ [ (D) GGdA

Gr =Copy = :
P S [ (A)GHdA

(1)

By filtering ® using G, instead of Gyom, Crar — Copt as
n— M. Accordingly, referring to Fig. 2, the robust FBF approach
simply replaces Gyon, in the standard FBF by G,.. Hence, the
proposed robust FBF approach retains the elegance of the least-
squares solution of the standard FBF approach, which facilitates
LPFBS.

B. Implications of NMP Behavior of Robust Filter

One may wonder why one should emulate or approximate
Copt using robust FBF instead of simply employing Cop¢ as
a standalone controller. A major reason is that C,p could be
unstable, even if G is stable [25]. In such a case, the unstable
poles in C,p,¢ become NMP zeros in G, which are handled
effectively by the FBF approach, regardless of their location in
the complex plane (including zeros on the unit circle [10], [11],
[31].

However, C,p,; could also have NMP zeros, even if G is
minimum phase (MP). The implication is that GG,, would have
unstable poles, yielding unstable FBF that are detrimental to the
robust FBF approach. This section demonstrates this challenge
using a simple first-order plant with parametric uncertainty and
proposes an approach to tackle it.

Consider the first-order plant [32] in the following, consisting
a real stable pole p, whose location in the z plane is known
precisely, and a real zero a, whose location in the z plane is not
known accurately but belongs to a set as follows:

z—a

Gy ="

where a; and aj, are lower and upper limits on zero location,

respectively. Substituting (12) in (11) (assuming uniform distri-
bution of uncertainty, {A) = fla) = 1) gives

a € [ay, ap] (12)

Zz_(anom‘i'al +3aa%i >Z+]
GT(Z) _ nom nom o 7& 0
(z = p) (Z - )
A ap+aq A ap — ap
Gnom = ) y Qg = B . (13)
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Proposition 1: For ag > 0, the robust filter given by (13) has
two distinct real zeros, one of which lies inside the unit circle
and the other outside the unit circle in the z plane.

Proof:
min < ) =2

Since
and aé /3anom has same sign as dnom + 1/dnom, one can con-
clude that

1

Anom + (14)

a’IlOIIl

1 2

Gnom + —— + 4| >2
al’lOHl 3anom
1 2\
= (anom++ad> >4, (15)
anom 3a‘1’10111

The implication of (15) is that the discriminant corresponding
to the zeros of G, is greater than zero and hence, GG, has two
distinct real zeros.

Since the product of the roots of a quadratic equation is equal
to the constant term divided by the leading coefficient, one can
conclude that the product of the two zeros is one. Therefore, one
zero lies outside the unit circle, whereas, the other lies inside the
unit circle in the z plane. ]

The robust filter G- can be expressed as

G ( ) Z — Gnom 2 — (anom + Gnom 3anom) z+1
r\#Z) =
zZ—=0p (z—anom)<z—a1 )
Grom(2)
a(z)
(16)

which implies that it is obtained by gain modulation of the
nominal plant model. Note that a(z) = 1 and G..(2) = Gpom(2)
for ag = 0. The implication is that in the absence of uncertainty,
the robust filter is the nominal model. Notice that the robust filter
G- has an NMP zero irrespective of whether the nominal plant is
NMP or MP. Also, the robust filter has two poles—one of which
is stable, whereas the stability of the other depends on whether
the nominal plant is NMP or MP. The robust filter is stable if the
nominal plant is NMP and unstable if the nominal plant is MP.
The unstable pole is a challenge for using GG,. in robust FBE.

Remark 2: The optimal controller C,,;, [inverse of the robust
filter G, given by (16)] is obtained by gain modulating the
inverse of the nominal model. To ensure gain modulation, the
poles and zeros should mirror each other in the z plane w.r.t.
the unit circle. Mirroring results in an NMP controller if the
nominal plant is MP and an MP controller if the nominal plant
is NMP. Similar behavior has also been observed in the literature,
for example, the popular zero phase error tracking controller [2]
has NMP zero(s) if the plant is MP and MP zero(s) if the plant
is NMP.

To address the instability of GG,., we propose filtering the basis
functions with G,. using a strategy similar to the stable inversion
approach [25], [26]. The filter GG,. is decomposed into stable
and unstable dynamics. The basis functions are filtered through
the stable dynamics using past information (forward in time
domain), and filtered through unstable dynamics using preview

(backward in time). Once the basis functions are filtered, the
remaining process to obtain the coefficients and the control input
is identical to the one described in Section II. However, the
above-described filtering approach cannot handle poles on the
unit circle. One possible solution for poles on the unit circle is
to replace them with slightly perturbed poles that are close to
but not on the unit circle [33].

C. Consideration of Dynamic Uncertainty and
Uncertainty Distribution

The first-order example in the previous section considered
parametric uncertainty with uniform distribution. However, in
practice, uncertainty is typically dynamic in nature and its
distribution is not uniform [11], [24], [25]. Hence, this section
presents an approach to incorporate dynamic uncertainty and a
versatile kernel distribution into the formulation of the robust
filter.

In the presence of dynamic uncertainty, the actual plant can
be expressed as

G (W) =r(w)e?@

(W) € [Fmin(W), Tmax(W)]; 0(w) € [Omin(w), Omax(w)]

A7)

where j is the unit imaginary number, r is the magnitude of the
actual plant, 6 is the phase of the actual plant, w is the frequency
in rad/s, and the subscripts “max” and “min” denote upper and
lower bounds. Fig. 3(a) and (b) illustrates G using the Bode plot
and the complex plane.

The distribution of uncertainty f{A) = f(r,d) can take different
forms, and can be described using various types of uncertainty
distribution models, e.g., normal, uniform, Rayleigh, etc. Here,
without loss of generality, we propose a kernel distribution (with
normal kernels) because of its versatility in describing various
types of uncertainty distributions [34]. The kernel distribution
is defined as follows (for frequency w):

f(r0)=fi(r) f2(0)
1 r—r; ! ""” )’
fl(r):lar;K( oy >: V2rlo? z::
1 9*91')2
oy Z ( o0 ) B mza ;
(18)

where indicesi = 1,2, ...,/ denote frequency response functions
(FRFs) sampled from G, corresponding to the different operating
conditions; [ is the total number of FRF samples; K is the
normal kernel with mean values (r;, 6;) and standard deviations
(0, 0p). The mean values r; and 6; are the magnitude and phase
of the ith FRF at frequency w, respectively. For a given frequency
w, the standard deviations o,. and oy are identical for all / kernels.
Fig. 3(c) depicts an example of individual normal kernels and
their summation. Substituting function f(r,f) defined by (18)
and uncertainty given by (17) into (11), the robust filter can be
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(19)

Remark 3: Wu and Zou [24] designed an optimal controller

in the presence of dynamic uncertainty [given by (17)] using

worst case optimization, but assumed a gain modulated inversion

structure for their optimal controller. To improve the worst case

tracking error using FBF, the inverse of the optimal controller

proposed by Wu and Zou [24] can be used as the filter G, similar
to (11).

IV. APPLICATION TO A DESKTOP 3-D PRINTER
A. Setup for Simulations and Experiments

To keep their weight and costs low, commercial desktop 3-D
printers incorporate timing belts and lightweight components,
which introduce structural flexibilities into their dynamics.
Hence, manufactured parts suffer from surface waviness and
registration errors caused by excess vibration, especially when
high-acceleration motions are commanded [11]. Moreover, they
are driven in an open loop by stepper motors. Hence, they cannot

Fig. 4. (a) Lulzbot Taz 6 desktop 3-D printer. (b) FRFs corresponding
to dynamic uncertainty and robust filter. (c) Singular values of LSR of
x- and y-axes robust filters showing NMP behavior in x-axis.

sense and counteract the motion-induced vibration via feedback
control. Feedforward methods like the FBF approach can miti-
gate these vibrations by modifying the motion commands sent to
the 3-D printer and improving the accuracy of the parts, without
incurring any additional costs from feedback sensors. Up to 54%
reduction in printing time, without sacrificing accuracy, has been
demonstrated using the FBF method to compensate desktop 3-D
printer vibration in feedforward [35]. However, significant un-
certainty in system dynamics and its adverse effects on printing
accuracy has also been observed [11].

This section validates the robust FBF approach using simula-
tions and experiments on a Lulzbot Taz 6 desktop 3-D printer,
as shown in Fig. 4(a). For system identification and control,
motion commands are sent to the printer’s stepper motors at
1-kHz sampling rate using a real-time controller (dASPACE 1202)
via stepper motor drivers (Pololu DRV8825).

The FRFs of the 3-D printer are obtained by applying swept
sine acceleration signals (with amplitudes ranging from 2 to
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5 m/s? in increments of 0.2 m/s?) to the printer’s stepper motors
(each having 10-um stepping resolution) and measuring the
relative acceleration of the build platform and print head using
accelerometers (SparkFun ADXIL.335 triple-axis). The uncer-
tainty region shown in Fig. 4(b) represents the variations in
magnitude and phase of the measured FRFs as functions of input
acceleration amplitude.

The standard deviations o,. and oy for the normal kernels are
estimated optimally from FRF data using the fitdist function in
MATLAB. Using (19), the robust filters for the x- and y-axes are
obtained and their FRFs are shown in Fig. 4(b). Fig. 4(c) shows
the singular values of the LSRs of the robust filters. Singular
values of the LSR provide information about stability and NMP
behavior of the corresponding dynamics. Very high and small
values of the singular values, which deviate from the cluster,
denote the presence of unstable pole(s) and NMP zeros(s),
respectively (for details about LSR and its singular values see
[31], [36]). In Fig. 4(c), since the highest singular values do not
deviate from the cluster of singular values, the robust filters are
stable. However, the two smallest singular values for the x-axis
deviate from the cluster, which implies that the robust filter for
the x-axis has a pair of complex NMP zeros.

B. Simulations

As discussed in Sections II and III, the basis functions are
user-defined and there is a wide range of basis functions available
for use with the standard FBF and robust FBF methods, e.g.,
Laguerre functions [37], wavelets [38], etc. This section uses the
B-splines [9] because they are commonly used to parameterize
commands sent to manufacturing machines and robots [30]. For
a B-spline of degree m, having n + 1 < M + 1 control points
(same as coefficients of basis functions), ¥o, Y1, - - -, ¥n, and
knot vector [19 11 ... Nmni1]? . its real-valued basis functions,
©i,m, are given by [39]

vi(k) = @im(&k)

Ek— 1 Ni+m+1 — Ek
= 7@%”&*1(5) + 7(%#1,77%*1(5)
Ni+m — i Nitm41 — Ni+1
, U s <& < i
Pio(Er) = {O otherwise (20)
where i =0, 1, ..., n with & € [0, 1], representing normalized

time, discretized into M + 1 points, &, &;
uniform knot vector, selected such that

...&u,and n; is a

0 0<j<m
N = whmd m+1<j<n 21

1 n+1<j7j<m+n+1.

For comparison of robust FBF with standard FBF, a signal
with frequency content uniformly distributed between 5 and
50 Hz, along the x-axis, is used as the desired trajectory. The
length of the desired trajectory is 1 s, resulting in 1001 discrete
points (i.e., M = 1000) based on sampling time 75 = 1 ms.
For each acceleration magnitude shown in Fig. 5, the basis
functions are filtered with the corresponding FRF to generate a
standard FBF controller for that particular FRF. The robust FBF

100

80

60 -

40 -

20+

2 3 4 5
FRF Acceleration Magnitude [m/sz]

Fig. 5. Bar graph showing metric defined in (22) for different FRFs
based on simulations of 10 000 realizations of the actual plant dynamics
of the x-axis using B-splines basis functions (n = 200, M = 1000).

and each case of the standard FBF approach is simulated for
10 000 realizations of G (generated using the kernel distribution
specified by function f(r, #)), along the x-axis. B-splines with
parameters m = 5 and n = 200 are used as basis functions.
The performance of the robust FBF relative to standard FBF
approach is quantified by the following metric g:

= mean(erms,s) — mean(egms,r) « 100

mean(eRMs,s)

(22)

where ervs,s and egms, r denote the root mean square (RMS)
errors corresponding to standard and robust FBF, respectively,
for the 10 000 realizations of G. Fig. 5 plots g for each FRF
acceleration magnitude. It is seen that robust FBF outperforms
the standard FBF approach by factors ranging from 1% to 99%,
depending on the FRF acceleration magnitude.

Remark 4: It has been shown in Section IV-A that the robust
filters for the 3-D printer are stable. To demonstrate the effec-
tiveness of the proposed approach for unstable robust filters and
to validate the discussion in Section III-B, simulation examples
are presented in Appendix A.

C. Experiments

The model shown in Fig. 6 is printed using the 3-D printer,
shown in Fig. 4(a), with a maximum speed of 130 mm/s and
acceleration limits of 3 m/sZ, 4 m/s? and 5 m/s> imposed
separately on the desired trajectory. To generate the axis-level
commands, the controller reads a G-code file (generated using
Cura software package) and parses the G-code information into
axis-level commands. The model is printed using robust FBF as
well as standard FBFs (using FRFs corresponding to 3 m/s?, 4
m/s? and 5 m/s?). Since the length of the desired trajectory is
large, the parts are printed using the limited preview version of
FBF using B-splines, i.e., LPFBS. The LPFBS parameters are
Nup = 28, nc = 56, Lo = 952, m =5, L = 17 (for more details
about the LPFBS approach and the parameter definitions, see
Appendix B). For each printed model, the thickness x of each of
the 24 triangles is measured using Husky digital calipers (model#
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Fig. 6. (a) CAD model of the part. (b) Sample of a printed part.

0.08

Robust

L J

3m/s>  4m/s®  5m/s
Standard

Fig. 7. Bee-swarm plot comparing the relative error in thickness of
the total 72 triangles of three printed parts using robust FBF and three
cases of standard FBF generated using the FRFs corresponding to the
acceleration magnitudes shown in the figure.

1467H, 10-pum resolution) and compared to the desired thickness
of the triangles x4es = 4.05 mm.

Fig. 7 shows a bee-swarm plot comparing the relative error
(Ax/xges, Ax = |xges — x|) in the triangles for the robust and
standard FBF (using FRFs 3 m/s2, 4 m/s? and 5 m/s?) cases. In
an average sense, the robust FBF approach improves Ax/xges
w.r.t. 3 m/sZ, 4 m/s? and 5 m/s? standard FBFs by 7%, 2%, and
12%, respectively. Using the worst case scenario as a metric, the
robust FBF approach improves Ax/x4es by 4%, 10%, and 16%,
respectively, as compared to 3 m/s?, 4 m/s” and 5 m/s” standard
FBFs.

V. CONCLUSION

This article has proposed a robust FBF approach for feedfor-
ward tracking control of LTI systems with known uncertainty.
The standard FBF approach uses a nominal model of the plant for
filtering basis functions, so that the FBF controller approximates
the inverse of the nominal model—the optimal controller in the
absence of uncertainty. Conversely, the proposed robust FBF
approach substitutes a robust filter in place of a nominal plant
model. As a robust filter, this article proposes the inverse of
an optimal controller obtained by minimizing a cost function
over the range of known plant uncertainty. The substitution of
the nominal model with the robust filter ensures that the FBF
controller approximates the optimal controller in the presence
of uncertainties.

Stability issues associated with the robust filter are discussed
in the context of a first-order system with parametric uncertainty,
and an approach for resolving them is presented. The robust
and standard FBF approaches are compared in simulations and
experiments using a vibration-prone desktop 3-D printer as an
example. Dynamic uncertainty with a kernel distribution is used
to model the uncertain 3-D printer.

The approach devised in this article for achieving robust FBF
has broader implications, i.e., the FBF controller can be made
to emulate any linear controller simply by filtering the basis
functions with the inverse of the desired controller. This further
enhances the versatility and practicality of the FBF controller.
Future work will seek to extend the proposed robust filter design
approach to other types of linear systems, such as linear time
varying, linear parameter varying and MIMO systems, and basis
function selection for robust control.

APPENDIX A
SIMULATION RESULTS FOR THE FIRST-ORDER SYSTEM

To validate the approach mentioned in Section III-B, simula-
tions are carried out using the first-order plant with a fixed pole at
p = 0.5 and nominal real zero locations |a,om| € {0.99, 1, 1.01}.
Nominal zero locations |a,om| = 0.99 and 1.01 yield G, with
unstable and stable poles close to the unit circle, respectively.
The uncertainty parameter ag = 0.1 and the desired trajectory y4
is a zero-mean white noise signal with variance equal to 1, M =
1000 and sampling frequency 10 kHz. B-spline basis functions
with =990 are used in this example. For |a,,om| > 1, G, is stable
and the basis functions are filtered forward in time. Conversely,
for |anom| < 1, G- is unstable and the basis functions are filtered
forward and backward in time, as described in Section III-B.
When |a,om| = 1, G, has a marginally stable pole, which cannot

0.3 0.3
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= 0.2 \;f 0.2
%) )
S 0.1 z0.1
) ol
0 0
Robust  Standard Robust  Standard
(a) (b)
03 . 0.8
% o % 0.6
\E ’ \E 0.4
KO0l F02
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Robust  Standard Robust  Standard
(d)
1.5
2 So06
< 1 =
= 204
) )
=05 =
& & 0.2
0 0
Robust  Standard Robust  Standard
(e
Fig. 8. Bee-swarm plots comparing normalized RMS error of standard

and robust FBF approaches for simple first-order plant with parametric
uncertainty (anom = (a) —1.01, (b) —1, (c) —0.99, (d) 0.99, (e) 1, and (f)
1.01, ag = 0.1) for 201 realizations of the plant.
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be dealt with by forward or reverse filtering in time. It is dealt
with by using a slightly perturbed value of |a,om| = 0.999, for
filtering. Fig. 8 shows the normalized RMS error egums /Y d,rMS
for 201 realizations of the plants, using bee-swarm plots. It is
observed that robust FBF has a much lower standard deviation
as compared to standard FBF. In terms of mean(erms/yd,rMS )
robust FBF outperforms standard FBF by 3%, 9%, 10%, 48%,
69%, and 46% for anon, = —1.01, -1, -0.99, 0.99, 1, and 1.01,
respectively.

APPENDIX B
LIMITED PREVIEW FILTERED B-SPLINES

This appendix presents a brief discussion on the LPFBS
approach. For more details, interested readers can refer to [11].
In contrast to the full preview version of the FBF approach,
the LPFBS approach generates the control input u(k) using
sequential batches (windows) of the desired trajectory y4 (k) (see
Fig. 9). Hence, the tracking problem is solved in small batches

_ ep Ya,p
e=y.—®¥& |ec | = | yYic
er Yd,F
®, 0 0 ¥p

— | ®pc ®c O Yo (23)
0 ®cr Pr| [AF

where subscripts “P,” “C,” and “F” denote the past, current,
and future batches, respectively, and the bar on the matrices and
vectors indicates that the impulse response of the FRF used for
filtering the B-splines is truncated. Using local least squares, the
coefficients of the current batch can be approximated as

~1
Yo = (‘i’g‘i’c) ‘i’g (Ya,c — ®prcp) (24)
where 75 denote coefficients calculated in the past batch. Note
that information from the future batch is not considered while
calculating coefficients for the current batch. In this manner,
using (24) coefficients are computed for the moving window.
The dimensions of the current window are defined by L and
nc, where L is the number of trajectory points considered in
the current batch and n¢ is the number of coefficients. Note that
although n¢ coefficients are computed, only n,,, are updated in
each window. The parameter L denotes the knot vector spacing.

Next

Fig. 9. lllustration for LPFBS.
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