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Optimal Selection of Basis
Functions for Robust Tracking
Control of Uncertain Linear
Systems—With Application to
Three-Dimensional Printing

There is growing interest in the use of the filtered basis functions (FBF) approach to
track linear systems, especially nonminimum phase (NMP) plants, because of its distinct
advantages compared to other tracking control methods in the literature. The FBF
approach expresses the control input to the plant as a linear combination of basis func-
tions with unknown coefficients. The basis functions are forward filtered through the plant
dynamics, and the coefficients are selected such that tracking error is minimized. Similar
to other feedforward control methods, the tracking accuracy of the FBF approach deteri-
orates in the presence of uncertainties. However, unlike other methods, the FBF
approach presents flexibility in terms of the choice of the basis functions, which can be
used to improve its accuracy. This paper analyzes the effect of the choice of the basis
functions on the tracking accuracy of FBF, in the presence of uncertainties, using the
Frobenius norm of the lifted system representation (LSR) of FBF’s error dynamics. Based
on the analysis, a methodology for optimal selection of basis functions to maximize
robustness is proposed, together with an approach to avoid large control effort when it is
applied to NMP systems. The basis functions resulting from this process are called robust
basis functions. Applied experimentally to a desktop three-dimensional (3D) printer with
uncertain NMP dynamics, up to 48% improvement in tracking accuracy is achieved using
the proposed robust basis functions compared to B-splines, while utilizing much less con-
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1 Introduction

Tracking control is a fundamental problem encountered in a
wide range of fields such as manufacturing, robotics, automotive,
and aeronautics. The objective of tracking control is to force the
output trajectory of the controlled system to follow a desired tra-
jectory as closely as possible. Tracking control could be achieved
using feedforward and/or feedback controllers. This paper is writ-
ten in the context of feedforward tracking control of discrete-time
linear systems and is motivated by: (i) applications where
feedforward is the only recourse due to lack or inadequacy of
feedback sensors, for example, stepper motor driven three-
dimensional (3D) printers, and (ii) applications where feedforward
control plays a larger role in tracking control as compared to
feedback control, for example, in wafer scanning stages where
99% of the control effort required for tracking is generated by
feedforward [1].

Feedforward tracking control of linear systems can be ideally
achieved using perfect tracking control, i.e., pole-zero cancelation
[2]. However, in practice, ideal feedforward control cannot be
realized due to (i) nonminimum phase (NMP) zeros and (ii) uncer-
tainty in the plant dynamics [3]. When applied to NMP systems,
perfect tracking control results in highly oscillatory or unbounded
control trajectories which are unacceptable. NMP zeros are quite
prevalent in practice. For example, they occur in systems with fast
sampling rates [4], as well as in systems with noncollocated place-
ment of sensors and actuators [5]. Hence, a lot of research on
feedforward tracking control of NMP systems can be found in the
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literature (Refs. [6—8] present detailed literature reviews on the
subject). Recently, the filtered basis functions (FBF) approach has
been gaining attention as an effective approach for feedforward
tracking control of linear NMP systems [9-13]. The FBF approach
expresses the control input as a linear combination of user-defined
basis functions (of which there are a wide range of choices, e.g.,
B-splines [9], cosine signals [14], radial basis functions [11], etc.).
The basis functions are forward filtered through the plant dynam-
ics, and the coefficients are selected, using an elegant least squares
solution, such that the tracking error is minimized. The FBF
approach finds its origins in iterative learning control [14] but was
not applied to feedforward tracking control of NMP systems until
recently [9-13]. Unlike most of the methods in the literature, the
FBF approach is effective for a wide range of desired trajectories
and plants including nonhyperbolic systems (systems with zeros
on the unit circle in the z-plane) [10,13], square and nonsquare
multi-input multi-output systems, linear time-varying (LTV) sys-
tems, linear parameter varying systems [11], etc. Also, the track-
ing accuracy of FBF does not change significantly with plant
dynamics, as compared to other popular methods in the literature
[15].

A key challenge of feedforward controllers, including FBF, is
how to improve their robustness in the presence of uncertainty in
plant dynamics [3,16-21]. The tracking accuracy of feedforward
methods such as FBF can be improved by complementing them
with some form of feedback control, for example, real-time feed-
back [16,22,23], adaptive control [17], iterative learning control
[24-28], etc. However, as mentioned previously, this paper
focuses on applications where feedforward is the only or promi-
nent mode of control. An alternative approach, therefore, is to
improve the robustness of feedforward tracking controllers with-
out relying on feedback, using a priori knowledge of plant uncer-
tainty, e.g., Refs. [20] and [21]. Recently, motivated by use of a
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priori knowledge of plant uncertainty, optimal selection of coeffi-
cients [29] and optimal filtering of basis functions [30,31] have
been explored as avenues to improve the robustness of the FBF
approach. However, optimal selection of basis functions presents
an opportunity for improving the robustness of the FBF approach
that is unavailable to other feedforward tracking control methods;
it could be used as an alternative or complement to existing meth-
ods. Recently, Ref. [32] has proposed an optimal set of basis func-
tions to achieve a desired level of tracking accuracy with
minimum control effort. The optimization was realized using the
Frobenius norm of the lifted system representation (LSR) of the
FBF’s error as well as controller dynamics. In a similar vein as
Ref. [32], this paper explores optimal basis function selection for
robust tracking control using the FBF approach. This paper (and
its preliminary version [33]) makes the following original contri-
butions to the literature:

(1) It analyzes the effect of basis functions on the tracking
accuracy of FBF, in the presence of uncertainty, using the
Frobenius norm of the LSR of the error dynamics.

(2) It proposes a process for optimally selecting basis functions
to maximize the robustness of tracking control of uncertain
linear systems using FBF.

(3) It proposes an approach to ensure that the so-called “robust
basis functions” resulting from the optimal selection pro-
cess do not result in very large control inputs when applied
to NMP systems.

The paper is structured as follows: Sec. 2 presents some back-
ground information on the FBF approach and the Frobenius norm
metric and motivates the rest of the paper using an example. The
contributions of the paper are presented in Sec. 3. Section 4 dem-
onstrates the effectiveness of the proposed basis functions using a
simulation example and experiments on a desktop 3D printer, and
Sec. 5 concludes the paper.

2 Background and Motivation

2.1 Tracking Control Problem. For the sake of simplicity,
the FBF approach is presented here in the context of a linear time
invariant (LTI) single-input single-output (SISO) system. How-
ever, it is applicable to any discrete-time linear system [10,11,32].
Given a discrete-time LTI SISO system, G(g), as shown in Fig. 1,
which may represent a stable open-loop plant or a stable closed-
loop-controlled system, we can write

y(k) = G(q)u(k) (M

where £ is the time index, ¢ is the forward shift operator, and y
and u are the output and control input, respectively. The objective
of feedforward tracking control is to design a controller C(g) or
find a control input u(k) given by

u(k) = C(q)ya(k) (2)

where y,(k) is the desired trajectory, such that the tracking error
e(k)

e(k) = ya(k) — y(k)

= (1 -G(q)C(q) )ya(k) = Et(q)ya(k) 3
——
L(q)
u(k)
Ya(k) C(g) G(q) (k)
L(g)=1 1:},((/)

Fig. 1 Block diagram for feedforward tracking control
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is minimized, where L(g) and Eg{(q) are the overall dynamics and
the error dynamics of the controlled system, respectively.

For finite time, 0<k<M (M +1 is the number of discrete
points in the trajectory), the desired trajectory, control input,
tracking error, and output trajectory can be expressed using
vectors

¥o=1a(0) ya(1) .. ya(M)]", u=[u(0) u(1) ... u(M)]"
e=[e(0) e(1) ... )], y=[y(0) ¥(1) ... YM)]'
(C))
Accordingly, Egs. (1)—(3) can be expressed as
y=Gu; u=Cy,; e=(I-L)y,=Eyy, (5)

where G, C, L, and E¢ are the lifted system representations (see
Appendix A for more details) of G, C, L, and Ey;, respectively,
and I is the identity matrix of appropriate size. The use of bold-
face symbols for LSR of systems is maintained hereinafter.

2.2 Overview of the Filtered Basis Functions Approach.
Here, we provide an overview of the FBF approach, assuming no
uncertainty in the plant dynamics, to provide the reader with some
background needed for the proposed approach including uncer-
tainty discussed in Sec. 3. The FBF approach relies on two
assumptions:

(1) the desired trajectory is known a priori; and
(2) the control input u(k) is expressed as a linear combination
of n+ 1 user-defined basis functions ¢;(k); i.e.,

n

u(k) = 7, (k) ©)

i=0

where y; are unknown coefficients. Using vectors, Eq. (6) can be
expressed as

u= @y
Q=g o @, ], 0, =[0:(0) (1) ®;(M) ]Ta
=00 n - Wl
(7
Hence, for a linear system G(g), y can be expressed as
y =y
O = Guom®@; @; = Grom®;; O = (00 & .. ¢,]
(®)

where @ represents the filtered basis functions matrix, i.e., ® fil-
tered through the LSR of a nominal model G,,, of the actual
plant, as shown in Fig. 2. Note that, because in this section uncer-
tainty in plant dynamics is not considered, G0, = G is assumed.
The control objective is to find the optimal coefficient vector y
such that the squared two-norm of the tracking error

ee=(y, — ®y)' (y, — ®v) ©)
is minimized; the optimal solution is given by
. ST ST
Y =(@ @) Dy, (10)

Based on Eqgs. (5), (7), (8), and (10), the LSRs of the controller
and error dynamics can be expressed as

C=0@ o)'d"

Er=1-®@ @) 'd" an
———————
L
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Filtered Basis Functions Controller C

Ya ==\l = Y _ u y
Desired y=((I) (1)) 2y, Coefficients = Control - Output
Trajectory Trajectory Actual Trajectory

_ | Filtered Plant
Basis
Functions
L G
Basis o
Functions Nominal Model

Fig.2 Block diagram for feedforward tracking control using FBF approach

Remark 1. C and Eg both depend on the system as well as the
selected basis functions. Both matrices are, in general, non-
Toeplitz and nontriangular implying that the FBF controller is, in
general, LTV and noncausal [10].

Remark 2. The use of the LSR for formulating the FBF
approach indicates its applicability to any discrete-time linear sys-
tem (e.g., LTV or multi-input multi-output) because of their ame-
nability to LSR.

2.3 Frobenius Norm Metric. As a tracking performance
evaluation metric, the authors (in Refs. [15] and [32]) have pro-
posed the following metric, J,, based on the Frobenius norm of
Egr

E
do=Te e, = \f1e(EgEg) - > (o)}

(12)

where Tr is the trace of a matrix. The Frobenius norm is selected
because it takes into account all singular values/gains (o;) of Eg,
as opposed to, e.g., ||El|o, which considers only the maximum
singular value/gain.

Note that for a normalized desired trajectory (||y4||»=1)

llell. _ I[Esllr
M+1" VM+1

€rMS = =J. (13)

The implication is that J, is an upper bound on the root-mean-
square (RMS) tracking error (erps). Moreover, it is shown in Ref.
[32], that for an LTI system

[Esel-

— ||E as M — oo 14
e [|Ett ()], — (14)

In other words, J, approaches the system error two-norm criterion
(sometimes used in the design and analysis of LTI tracking con-
trollers [34]).

2.4 Motivational Example. This section motivates the rest of
the paper, using a damped oscillator with parametric uncertainty

»?
o 20wys + w?
Wpnom = 200Hz, {0 = 0.01
w, € [180, 220]Hz, { € [0.001, 0.1]

G(s)
(15)

where ,, and { denote the natural frequency and damping ratio,
and the subscript “nom” denotes the nominal value. The system in
Eq. (15) is representative of the dynamics of a vibration-prone 3D
printer with uncertainty [12,30] (also shown in Fig. 9). The system
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is sampled at 1 kHz. The set of actual plant dynamics is generated
by selecting 410 evenly distributed realizations of the plant
defined by Eq. (15). The nominal values of the plant parameters
are used to generate the nominal model for filtering the basis func-
tions. The desired signal y, is a white noise signal with zero mean
and unit variance (M = 1000). The choice of white noise for y, is
because its broadband nature eliminates biased results based on
arbitrarily selected y,. There is a wide choice of basis functions
that can be used with the FBF approach. This work uses discrete
cosine transform (DCT) [28], block pulse functions (BPF) [35],
and B-splines [36], due to their popularity (Appendix B gives
more details about each basis function).

Figure 3 shows the normalized RMS tracking error egns/Yarms
for DCT, BPF, and B-splines, for various numbers of basis func-
tions (n=10-990), using the 410 realizations of the actual plant
dynamics G, described previously. The metrics used for compari-
son are the mean, standard deviation, and nominal values (assum-
ing the plant model is perfect) of egms/Yarms- It is observed that
for the same n, the nominal tracking accuracy of FBF does not
vary significantly with the type of basis functions. This observa-
tion is in agreement with the discussion in prior work [32]. How-
ever, it is observed that the tracking accuracy of the FBF approach
deteriorates in the presence of uncertainty and varies significantly
depending on the type of basis functions. Hence, a methodology
for selecting an optimal set of basis functions for robust tracking
control using FBF is needed.

3 Optimal Selection of Basis Functions for Robust
Tracking

In this section, we propose an optimization process for selection
of basis functions for robust tracking. First, we reformulate the
FBF approach discussed in Sec. 2.1 to include uncertainty. Next,

(@) (b) (©

+lo band

\‘ \\
. \

Nominal %,
A
s
A
1 )
s .

0 500 1000 0 500 1000 0 500 1000
n n n

s’y russ
\ é
0

Fig. 3 Comparison of normalized RMS tracking error for DCT,
BPF, and B-splines, in the absence (nominal) and presence of
uncertainty, as functions of number of basis functions
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we analyze the effect of uncertainty and basis functions on the
tracking accuracy of the FBF approach, using the Frobenius norm
metric, then we find a set of robust basis functions that minimize
the effect of the uncertainty. Finally, to avoid large control inputs
for NMP systems, an approach to constrain the control input while
selecting the robust basis functions is presented.

3.1 Effect of Uncertainty and Basis Functions on Tracking
Accuracy of the Filtered Basis Functions Approach. Referring
to Fig. 2, assume that, due to uncertainty, the LSR of actual plant
dynamics G belongs to the set {G;},j=1,2, ..., I. The set could
represent a plant with additive uncertainty, multiplicative uncer-
tainty, parametric uncertainty, etc. Without loss of generality, this
paper assumes that the set has a finite number of members which
sufficiently sample the uncertainty. Sampling of uncertainty has
been used in the literature, e.g., Refs. [21] and [37], for robust
controller design. Also, because of uncertainty, the nominal model
Gpom used to design the FBF controller (see Fig. 2) is not neces-
sarily equal to G and may or may not belong to the set {G,}.
Accordingly, the LSR of the error dynamics corresponding to G;
is given by Eg;. To analyze the robustness of C, the Frobenius
norm metric J, . can be expressed as

I 1
Eg;|| IT - G,C ,
J?:E S j.:” JIF — Y IF . E Ji=1
N~ T ES VM + 1 i

(16)

where {/;} denotes weights associated with the distribution of the
uncertainty. Note that G, may or may not belong to {G;}.

Remark 3. Note that the metric given by Eq. (16) is based on
summation over the entire set of uncertain plant dynamics {G},
as opposed to the worst-case G,;. Worst-case plant dynamics is
often considered in robust feedback control, due to the need to
guarantee stability based on the worst-case scenario. However, in
feedforward tracking control where tracking accuracy is of pri-
mary interest, a worst-case design tends to be overly conservative,
especially if the worst-case rarely occurs in practice [21]. Hence,
an approach which considers the distribution of the occurrence of
the uncertain plant dynamics is considered in this paper.

Remark 4. This paper focuses on FBF, and hence the metric J, .
will only be explored in the context of FBF in the remainder of
this paper. However, the metric can be used to analyze robustness
of other tracking controllers.

If C is designed using G o, then C is given by

C=0@ o) (17

Since analysis using the pseudoinverse is quite cumbersome, D=
Gpom® is transformed into the decoupled filtered basis functions
matrix ¥ = Guon ¥ [10]. After transformation, C and Eg; can be
expressed as

- T

C= ‘I"i’T§ Egj = Ly — ¥Y4,¥ v = L1 (13)

where ‘i’,,j is obtained by filtering ¥ using G;.

ProposITION 1. For the set {G;} and associated weights {;},
J., can be expressed in terms of the uncertainty and basis func-
tions as

‘]L%J' =1-

n+1 ! ) ”(Gaj - Gnom)‘l’“;
P e ALY 1
M+1+j:zl/bj Ml (19)

Proof. This proof first finds the metric J,; and then finds J, , using
Eq. (16). Based on Egs. (16) and (18)

101006-4 / Vol. 143, OCTOBER 2021

- T

—_—
|7 = Tr(EfEry) = Tr((Tyg1 — Yo ) (hyr — W)
- T T o T o T
= TI'(IM_H — ‘Paj‘l’ — ‘F‘Puj + ‘P‘Pa]‘\Paj‘P )

Lot — (¥ + 0%, ) ¥ — (P 4 6,
=Tr
FWP + oW, (P + oW,

PIJPA JR7 (20)

Using the fact that trace is a linear mapping and is invariant under
cyclic permutations

~ =T - T -~ =T
|Esijl[7 = Tr(Ty 1) — Tr(P¥ ) —Tr(0¥,¥ ) — Tr(P¥ )

——
=M+1 =n+1 =n+1
~ =T ~ ~T~ ~T
~Tr(Wo¥,;) + Tr(¥¥ W)
: —_——
=n+1

+Tr(PSV, W) + Ti(PE 0%, ¥ )

“Tr(o¥]) —Tr(5, %)
+Tr(PoW, 0%, %)
—_—
=0 4lI7
=M +1)— (n+1)+]|6%,; @1)

Substituting Eq. (21) in Eq. (16) gives

! ! y 2

+ 1 H(Ga'fGnom) H
= I =1-2 > gyt R iE (22
JEJ = + 1 + = )] ( )

i M M+1
|
Remark 5. The metric can be expressed as
2 2 2 . pn ntl,
‘]eﬁr = ‘le,nom + ‘le.unc7 ‘]eﬁnom 21— ]W—_H7
(23)

Ga'_Gnom ¥ ;

The implication is that the metric is the summation of two
components—nominal and uncertainty-related. The nominal com-
ponent is identical to the value of the metric in the absence of the
uncertainty [32]; it only depends on the number of basis functions
and is independent of the plant dynamics and the choice of basis
functions. However, the uncertainty-related component depends
on the uncertainty, choice of nominal model, and the type and
number of basis functions. With increase in 7, the nominal com-
ponent decreases monotonically, whereas, due to the Frobenius
norm, the uncertainty-related component generally increases with
n. The implication is that the tracking error for FBF in the pres-
ence of uncertainty does not vary monotonically with the number
of basis functions (as seen in Fig. 3).

3.2 Proposed Approach for Optimal Selection of Basis
Functions. In this section, we find an optimal set of basis func-
tions that minimizes J,, for a given nominal model G, and
actual plant {G,;}. Toward achieving this objective, we first find
an optimal set of basis functions that minimize the uncertainty-
related component of J, ., for a given value of J,,om. The
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procedure for selection of optimal basis functions is outlined in
Proposition 2.

ProposiTioN 2. Given {Gy}, {4}, and Guom, the n+1 basis
functions ¥ that minimize J, u,. are given by

0 —n n
W= WoonZ L Wy | Mol
nom IrH»l

Gnom = ‘]nomZnomVVT

nom?’

&nom = VA,,D,,, ):‘Anom Wgnom
!
&nom = Awnomzq:olm; ATA = Z;“j(Ga_/ - Gnom)T(Ga_i N Gnom)
=1
(24)

where Viom, Xnom> and Wyon denote the left singular vector

matrix, singular value matrix, and right singular vector matrix of

Groms respectively. Similarly, Vi X5 and Wy denote the
left singular vector matrix, singular value matrix, and right singu-
lar vector matrix of Ayom, respectively.

Proof. The problem of minimizing J, ;. for a given value of n
can be expressed using Eq. (23) as

: 2
mll}n Jp,unc

_ ii H(Gaj - Gnom)‘PHIZT
- A
= M+1 (25)

. 5T
subjectto ¥ ¥ =1,
Note that the constraint is a result of the decoupling process

(Eqg. (18)). The objective of the problem, given by Eq. (25), can
alternatively be expressed as

po_ Z[:” [(Gyj — Grom)¥|l; Tr(PTATAY) 26)
€7unc_f:1 ] M+1 - M+1
Equation (26) can be expressed as
2 1 2 - 2
J2 — HA‘P”F — HAGnolm\I’HF — ”Awﬂomznolmvzom\[’”F
eume M+ 1 M+ 1 M+ 1
_ JAwonEll7 @7
M+1
Anom = AWnomZ;olrn; EL VIom‘P

The constraint in Eq. (25) can be expressed as

Y =L =¥ VeV W =1, =&

nom

E=Lyg (28

Hence, the optimization problem given by Eq. (25) can be rewrit-
ten as

eunc M + 1

I

e
min |:[2 _ ”Anom':HF

(29
subject to o
The optimal basis functions for robustness are the set of right sin-

gular vectors of the matrix Anom, corresponding to its 7+ 1 small-
est singular values [32], i.e.,

[

= W&"Dm {O(M—n)x(nﬂ) } : Anom = Vi X4 WE (30)

A
I nom nom
el nom

Journal of Dynamic Systems, Measurement, and Control

and the corresponding basis functions are

Y =W, VI W, ylg

nom " nom nom

= WoomE Wy [O(M—n)x(n+l) } a1

o Lt

3.3 Constraining Control Effort for Nonminimum Phase
Systems. Although the basis functions obtained by Eq. (31) are
optimal in terms of robustness, they might result in large control
inputs, especially if G,y has very small singular values. Very
small singular values might result in an unrealizable robust con-
troller [32], and hence the optimal basis functions should be
designed to avoid components corresponding to these very small
singular values.

ProposiTioN 3. Given {G;}, {4}, and Gom (with r very small
singular values, due to NMP zeros or nonzero relative degree
[32]), the n+ 1 basis functions ¥ that minimize J, . while avoid-
ing the very small singular values of Guom are given by

W, Or—n—r)x(nt1)
Y = WiomE,, ! o L

0)'><(n+1)
Avoms =Vi Xz WL (32)

nom.s “Anom.s " Anom,s

T .
Gnom - Vnomznomwnmm

Anom = AVVnom271 = [Anom‘s Anom.,r‘]§

nom

/
ATA - Z/lj(Gaj - Gnom)T(Gaj - Gnom)
=

where Viom, Xnoms Wnom> VA Xy o and Wy are defined

in Eq. (24). Also, &nom’x and Apom, are the first M+ 1—r columns
and last r columns of Anom, respectively.

Proof. Based on the discussion in Ref. [32], the components
corresponding to 7 very small singular values of G,y can be
avoided by equating the elements of last 7 rows of E,oy, to zero,
i.e., reformulate Eq. (29) as

nom,s 4 nom.s nom,s

AvomZ |7
min {J = LoonZle

[

subjectto 2 E =1,

the last  rows of Z have elements equal to 0

The new constraint can be embedded into the objective and ortho-
gonality constraint by

&nomé = [&nom,s &nom.,r] |:0 - :| = &n01n7xés
rx(nt1) (34)
=T = ~T és ~ T~
E E:[Ey on xr} :ESES
s Cn) 0, (nt)

where Am,mys and &nom,,. are defined in Eq. (32). The optimization
problem, given by Eq. (33), can be rewritten as

= (35)

The optimal solution to Eq. (35) is the set of right singular vectors
of the matrix Apom, corresponding to its 7+ 1 smallest singular
values [32]
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Determine A
1 1’
4=/>4(6,-G,.) (G,-G,,)
J=1
— T
G = VionZon Woon
Determine A,
1
A, =AW, 2,
Determine robust basis functions
Evlaluate Afmgl ()ﬁrsl M +dl -r |:0(M—-n—-v)x(vml)}
columns o to avoid 7 near- _ 1 Rpoms
N = Wi -

zero singular values 0

rx(n+1)

Ay =Vs Zi W

o, s By B,

Fig. 4 Flowchart describing the process for optimal selection
of robust basis functions to minimize J,  n While maintaining
Jenom (i.e., minimize uncertainty while maintaining nominal
tracking accuracy) and avoiding small singular values

0(M—n—r‘)><(n+l)

E=W;
’ I/1+1 (36)
A — V. - T
Anoms = V3,00 Eirn Wa,o,

and the corresponding basis functions are

‘P WanZ VT ‘i’nom*WnomZ ! é

nom - nom nom

0(M—n—r)><(n+l)

W
s =W - Anom,s
nomznom : In+l
0/‘>< (n+1)

=
=

- Wnomz_

‘nom
0/'>< (n+1)
(37

Figure 4 summarizes the procedure for selection of optimal
basis functions, described in Propositions 2 and 3.

Remark 6. Avoiding the very small singular values might have
small adverse impact on the tracking accuracy but is largely bene-
ficial in terms of minimizing the control input. In practice, the
impact on tracking error would be very small because of the expo-
nential/oscillatory nature of the singular vectors corresponding to
the very small singular values, and their resulting small contribu-
tion to desired trajectories used in engineering applications. Also,
inclusion of the very small singular values in selection of basis
functions results in a very large control input to compensate for a
small tracking error which can be easily addressed by avoiding
the very small singular values.

Remark 7. Since the choice of basis functions only affects the
uncertainty-related component and does not affect the nominal
component (Remark 5), the proposed robust basis functions are
selected such that robust tracking is realized without affecting the
nominal tracking accuracy of FBF (Proposition 2). This is unlike
other robust tracking controllers in the literature, e.g., Ref. [31],
whose improved robustness in tracking is achieved at the cost of
deterioration in nominal tracking accuracy.

Remark 8. For the basis functions given by Eq. (37), the value
of metric J, ync 1S given by

M+1—r N
2y T
2 i=M—-r—n
J = (38)
e,unc M+ 1

Ji=1,2, ...,

nom,s !

the matrix Ayom, in the descending order. For n=0 (1 basis

where {03 M 41 —r are the singular values of
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function), J, s only depends on the smallest singular value of
Anoms. The implication is that in an M + 1 dimensional vector
space, the basis function is aligned with the most robust vector,
i.e., the vector that ensures that the uncertainty has the least effect
on the tracking accuracy of FBF. As n increases, new basis func-
tions are added such that the next higher singular values are added
to J, unc and the next most robust vectors in the M + 1 dimensional
vector space are selected. Among all possible n+ 1 dimensional
vector spaces for vectors of length M + 1, the effect of the uncer-
tainty on tracking accuracy of the FBF approach is minimum in
the vector space created by the n+ 1 basis functions given by
Eq. (37).

The value of J, . for the proposed robust basis functions is given
by

M+1-r
o—% _
n+1 i=M—r—n+1 nom,s >
G 39
M1 M+ 1 (39)
—_——
T2 hom T2 ine

The difference in values of J2, as n increases from n=n, to
n=n;+ 11is given by

2
o< —
Anom,s,M—r—n;

T2 (ni 41— J% nj) =
e,r[n_‘_} e,)[n} M+1

(40)

where J2[n;] denotes the value of J2, for n=n,. Hence, the value
of the metrlc decreases (i.e., trackmg accuracy improves) if

Apoms M—r—n; < 1 and increases (i.e., tracking accuracy deterio-
rates) ifox 4y, > 1.

Remark 9. Based on the above discussion, following three sce-
narios are possible with the proposed optimal basis functions:

(i) If all singular values {o3 .} are less than 1, thenJ;, 2 isa
decreasing function of 7. Thus n=M —r results 1n the
most robust basis functions for the given nominal model
and actual plant.

(i) If all singular values {o5 _ } are greater than 1, then JZ,
is an increasing function of n, and n = 0 results in the most
robust basis functions for the given nominal model and
actual plant.

(iii) If {o5__ ;} has values dispersed on either side of 1, then
for lower values of n, J2_ is a decreasing function of n,
until o3y, <1, and for higher values of n, J2,
an increasing function of n. The most robust basis func—
tions, for the given nominal model and actual plant, are
achieved at the highest value of »n for which

O—&mm_&M-H—r—n <L

For a given uncertainty, scenario (i) would be the most desira-
ble, since the optimal value is achieved for highest value of n (the
most optimal nominal tracking accuracy and spans the entire pos-
sible trajectory space). This analysis also demonstrates that
smaller singular values {o5 ;} are desirable.

Remark 10. Since the singular values depend on the uncertainty
and the nominal model, an ideal way to optimize tracking accu-
racy of FBF, in addition to optimal selection of basis functions,
would be to optimize the nominal model to minimize singular val-
ues of Apom . The ongoing work of the authors [31,38] focuses on
optimal selection of the nominal model for robust control.

4 Examples

4.1 Simulations. The discussion in this paper was motivated
using a simple example in Sec. 2.4, and this section continues
with the same example. The robust basis functions proposed in
Sec. 3.3 are compared with popular basis functions in the
literature, viz., DCT, BPF, and B-splines. While DCT, BPF, and
B-splines are defined independent of the plant dynamics (see

Transactions of the ASME

120z 8unr g uo Jasn uebiyoip jo Aussenun Aq ypd-900L0L~ 0L EvL SP/ZEZ20.9/900101/0L/E 1L /3pd-aoie/swalsAsolweudp/Bio swse uonos|joofelbipswse//:dpy woy papeojumoq



(@) (b) (©)
1.5
+lo band
== DCT == BPF = = B-splines
E=Robust E==Robust E=Robust
0 500 1000 0 500 1000 0 500 1000
n n n

Fig. 5 Comparison of normalized RMS tracking error for
DCT, BPF, B-splines, and the robust basis functions, in the
presence of uncertainty, for various values of number of basis
functions, n

Appendix B), the robust basis functions are designed based on the
nominal model as well as the known uncertainty in the plant
dynamics, using Proposition 3. The system and desired trajectory
parameters are same as that in Sec. 2.4. For design of the robust
basis functions, the set of possible actual plant dynamics {G,;} is
generated by selecting /=410 evenly distributed realizations of
the plant defined by Eq. (15) such that ;= 1/I. Also, the LSRs of
members of the set of possible actual plant dynamics {G,;} have
one very small singular value, and hence r = 1.

Figure 5 shows the normalized RMS tracking error egys/Yarms
for DCT, BPF, B-splines, and the proposed robust basis functions,
for various numbers of basis functions (n=10-990). The metrics
used for comparison are the mean and standard deviation of egys/
Yarws. It is observed that for all values of #, the robust basis func-
tions result in minimum values of mean and standard deviation.
For example, at n =500, compared to DCT, BPF, and B-splines,
the robust basis functions result in improvements in mean and
standard deviations of erms/Yarms by up to 1.5 times and 77
times, respectively. The nominal values of egys/ysrms for DCT,
BPF, B-splines, and robust basis functions are 0.6686, 0.6708,
0.6662, and 0.6794, respectively (all within 2% of one another).
This demonstrates that the significant improvement in mean and
standard deviations of egrms/ysrwms is achieved without signifi-
cantly affecting nominal tracking accuracy of the FBF approach.

Since the uncertainty is concentrated around the resonance of
the oscillator, the uncertainty will affect the tracking error only
when the basis functions span the frequencies at or near the reso-
nance. For DCT, BPF, and B-splines, as the number of basis func-
tions increases, their bandwidth increases; for lower values of n,
they span lower frequencies, and for higher values they span most
of the frequency range. The DCT and BPF basis functions are

0 200 400 600 800 1000
k

Fig. 6 Singular values of —A . ¢
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rudimentary basis functions in the frequency domain and time
domain, respectively [10]. For lower values of n, the DCT basis
functions only span the lower frequencies, whereas the BPF basis
functions are pulses, which to some extent span higher frequen-
cies. Hence, as seen in Fig. 5, the tracking accuracy of FBF for
DCT is not affected by uncertainty for lower values of n, until the
basis functions span the resonance frequencies. Once the band-
width of DCT basis functions is greater than the resonance, the
effect of uncertainty does not change much, and the standard devi-
ation is mostly constant. Even for lower values of n, the pulse-
based basis functions (BPF) span high frequencies to some extent
and have nonzero standard deviation for lower values of n. As n
increases, the BPF basis functions have similar characteristics as
DCT basis functions, beyond the resonance. In terms of frequency
characteristics, B-splines lie between DCT and BPF. Hence, they
start demonstrating nonzero standard deviation for values of n
greater than that demonstrated by BPF but for lower n than DCT
basis functions. For lower values of 7, the robust basis functions
are designed to span the frequencies, which have minimal uncer-
tainty, resulting in small deviation in the error, and as n increases,
the effect of the uncertainty increases steadily, resulting in higher
error (see Remark 8). B

Figure 6 shows the singular values of Aoy, for the known
uncertainty and nominal model. It is observed that the singular
values are dispersed on either side of 1, and hence this case repre-
sents scenario (iii) in Remark 9. Using the singular values, the
optimal value of n for the proposed robust optimal basis functions
should be achieved at n=2891 (see Remark 9 for more details).
The simulations (see Fig. 5) show that the minimum value of
mean(egms/Yarms) for robust basis functions is achieved at
n=_890. The values of mean(egms/yYsrms) for =890 and 891
are 0.3935 and 0.394, respectively. This small difference in esti-
mation of n could be attributed to the fact that the Frobenius norm
metric only represents a trend and does not consider the effect of
the desired trajectory. As compared to the other three basis func-
tions, DCT, BPF, and B-splines, the robust basis functions achieve
improvement in the minimum value of mean(egms/Ysrms) by up
to 1.8 times.

Figure 7 shows the normalized RMS control input ugns/Ysrms
for different types and number of basis functions (n = 10-990).
The maximum values of ugrms/Yarms, over n, for DCT, BPF, B-
splines, and the robust basis functions are 1.1 x 10°, 1.21 x 10",
7.64 x 10°, and 2.34 x 10", respectively. The value of max(ugrms/
Yarwms) is highest for B-splines, followed by DCT, robust, and
BPF basis functions. The high values for B-splines and DCT can
be attributed to the contribution of the very small singular value.
The robust basis functions avoid the very small singular value due
to the constraint formulation used for design of the basis functions

10]0 . F
----- DCT '.
- = BPF i
==-==-B-splines ,"
=== RoObust ’I'
< .
54
>?» 105 L Il '!
’ I
~ ¥ 14
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A w
0 ot o
10 "(,-_——A:T.Lr___,......m 1

Fig. 7 Comparison of normalized RMS control effort for
DCT, BPF, B-splines, and the robust basis functions, in the
presence of uncertainty, for various values of humber of basis
functions, n
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Fig. 9 Frequency response functlons (FRFs) correspondlng
input acceleration levels 2 m/s?, 3m/s?, 4m/s?, and 5m/s?, and
uncertainty

(Proposition 3). The BPF basis functions result in the least control
effort for the current example, but this cannot be guaranteed for
all cases. Also, the maximum control effort required by BPF and
robust basis functions is of the same order of magnitude. This
demonstrates that the robust basis functions achieve large
improvements in tracking accuracy without large increases in con-
trol effort, as compared to the popular basis functions in the
literature.

4.2 Experiments. This section demonstrates the effectiveness
of the robust basis functions as compared to B-splines using a
Lulzbot Taz 6 desktop 3D printer (see Fig. 8). The FRFs of the 3D
printer are obtained by applying swept sine acceleratlon signals
(with amphtudes ranging from 2m/s* to 5m/s” in increments of
0.2m/s%) to the printer’s stepper motors (each having 10 ym step-
ping resolution) and measuring the relative acceleration of the
build platform and print head using accelerometers (SparkFun
ADXL335 triple—axis). Figure 9 shows the uncertainty and FRFs
for 2m/s%, 3m/s*, 4m/s*, and 5m/s>. For robust FBF controller,
the set {Ga,} consists of the plant dynamics obtained from 16
FRFs (/=16), correspondmg to acceleration amplitudes 2-5 m/s
in increments of 0.2m/s%. For FRFs corresponding to 2m/s> and
3m/s?, the corresponding LSRs do not have very small singular
values (r=0), whereas, for FRFs corresponding to 4m/s*> and
5m/s, the LSRs have one very small singular value (r=1). The
implication is that the set {G,;} contains minimum phase as well
as NMP plants. The robust basis functions (4;= 1//) are des1gned
for nominal models based on FRFs corresponding to 2m/s?,
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Fig. 10 (a) Desired position and (b) fast Fourier transform of
its acceleration, to approximate operating condition corre-
sponding to acceleration of 1 m/s?
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Fig. 11 Bee-swarm plots showing comparison of normalized
RMS tracking error for robust basis functions and B- spllnes
using four dlﬂerent nominal models: correspondlng to (a) 2m/s?
FRF, (b) 3m/s? FRF, (c) 4m/s? FRF, and (d) 5m/s®> FRF (n=100
and M= 1000)
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Fig. 12 Comparison of normalized RMS control input for
robust basis functions and B-splines usmg four dlfferent noml-
nal models: correspondlng to 2m/s? FRF, 3m/s? FRF, 4 m/s?
FRF, and 5m/s? FRF (n= 100 and M= 1000)
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3m/s%, 4m/s?, and 5m/s>. A signal with frequency content pri-
marily distributed between 5 and 50 Hz is used as the desired tra-
jectory (see Fig. 10). Such signals with high frequency content
often occur when a 3D printer is rapidly tracing intricate contours
with abrupt changes in direction [12,31]. The length of the signal
is 1s, resulting in 1001 discrete points (i.e., M = 1000) based on
sampling time T = 1 ms. The control inputs generated for various
combinations of basis functions (7 = 100) and nominal models are
scaled and sent to the 3D printer to emulate 31 different uncertain
plant dynamics. This essentially implies scaling the desired posi-
tion to achieve o?erating conditions corresponding to accelera-
tions of 2-5m/s” in increments of 0.1m/s® (resulting in 31
different uncertain dynamics). Figure 10 shows the desired posi-
tion that approximates acceleration of 1 m/s>.

Figure 11 shows bee-swarm plots comparing the normalized
RMS tracking error (egms/Yarms) for the proposed robust basis
functions and B-splines usin§ nominal models corresponding to
FRFs of 2m/s%, 3m/s*, 4m/s”, and 5m/s>. It is observed that the
robust basis functions perform better than B-splines in terms of
mean as well as standard deviation. The robust basis functions
improve the mean value of erms/Yarms by 17%, 6%, 48%, and
1% for the FRFs corresponding to 2m/s2, 3 m/s2, 4m/s2, and 5m/
s%, respectively, as compared to B-splines, whereas the corre-
sponding improvement in standard deviations is 27%, 38%, 20%,
and 46%, respectively. Figure 12 shows the values of urms/Yarms
for B-splines and robust basis functions. The maximum value of
urms/Yarms for B-splines is 2.76 times the maximum value for
the proposed basis functions which demonstrates that the robust
basis functions are also preferable in terms of the control effort.

5 Conclusion and Future Work

The literature has shown that the FBF approach is an effective
method for feedforward tracking control of linear (especially
NMP) systems, assuming the plant model is known precisely. In
reality, plant dynamics always has some uncertainty, and the
tracking accuracy of feedforward methods such as FBF suffers in
the presence of such uncertainty. However, unlike other methods
in the literature, the FBF approach presents an additional tuning
parameter, in the form of basis functions, which can be used to
improve the tracking accuracy of the FBF approach in the pres-
ence of uncertainty.

Using a Frobenius norm metric, this paper studies the effect of
known uncertainty and the choice of basis functions on the track-
ing accuracy of the FBF approach. The metric comprises of two
components—nominal and uncertainty-related. The nominal com-
ponent is independent of the plant dynamics and the type of basis
functions. However, the uncertainty-related component depends
on the known uncertainty, nominal model used for filtering the
basis functions, and the type of basis functions. A robust set of
basis functions that minimizes the effect of the uncertainty-
related component, while maintaining the desired level of nomi-
nal component (nominal tracking accuracy) and bounds on con-
trol effort, is optimally selected. The robust basis functions
ensure that the deviation in tracking error due to uncertainty
from the nominal tracking accuracy is minimized for a large
range of number of basis functions (Fig. 5). In many applica-
tions, this property could be useful in ensuring that the effective
tracking property of the FBF approach is retained even in the
presence of uncertainty.

In addition to basis functions and uncertainty, the tracking
accuracy of the FBF approach also depends on the nominal model
used for filtering the basis functions [31,38]; the nominal model
also affects control effort. Future work will complement optimal
selection of basis functions with optimal selection of nominal
model to further enhance the tracking accuracy or reduce the con-
trol effort of the FBF approach in the presence of uncertainty.
Future work will also focus on implementing the optimal basis
functions and nominal model in a computational efficient manner,
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e.g., using limited-preview optimization [12], to enable its use on
lengthy trajectories used in 3D printing and other applications.
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Appendix A: Lifted System Representation
An LTI SISO causal plant G can be expressed as

Glg)=g0+&q " +&q° +- (A1)
where the coefficients g, are the Markov parameters of G. The

sequence go, g1, g2 ... also represents the impulse response of G.
Then

W 0 1) (A2)
y(M) &m  8m-1 8o ”(M)
N —
y G u

For an LTI noncausal controller C
Clg)=...+ coa? +eaqg' +cot+ag gt (A3)

the LSR of C can be expressed as

u(0) @ ca e en | [y 0)
u(1) _ C1 Co s oMl ya(1) (A4)
u(M) (';‘,, ('M'—l ) L:O ya(M)

u C Ya

Similarly, overall dynamics L and error dynamics Eg can be
expressed in LSR as L and E¢. For LTI systems, the LSR is Toe-
plitz. For LTV systems or controllers, the construction of the LSR
for L and Ey follows a similar process but the resulting matrices
are not Toeplitz [39].

Appendix B: Basis Functions

The DCT is a frequency-based transform that is widely used in
signal processing; its basis functions are real-valued cosines
defined as [28]

S
B n(2k+1)i\ , M+ 1
QDi(k)—ﬁfCOS(m), Bi= \/T . BD
M+1
The BPF basis functions are given by
M M
[i—,(i-ﬁ-l) >,0§i<n
1 n+1 n+1
(k) = M M B2
#i(k) andke i M|, B2
n+1 n+1
otherwise

The BPF expressed in Eq. (B2) seeks to divide the time interval
from O to M among n+1 basis functions in a quasi-uniform
manner.
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For a B-spline of degree m, having n+ 1 <M + 1 control points
(same as coefficients of basis functions), yg, 71, ..., ¥, and knot
vector [1o, N1, ---» nm+,,+1]T, its real-valued basis functions, ¢, ,,
are given by [36]

ék — N Nitm+1 — ék
@i(k) == @ (&) = == 1 (&) + "
l o Nism — Wi " ! Nitm+1 — Mit1
Pit1m—1 (é)
Lo <& <y
q)i’O(ék) o otherwise

(B3)

where i=0, 1, ..., n with ¢, € [0,1], representing normalized
time, discretized into M 41 points, &g, &4, ..., &y, and y; is a uni-
form knot vector, selected such that

0 0<j<m
J—m .
=L 1<j< B4
ur pa———T m+1<j<n (B4)
1 n+1<j<m+n+1
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