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Abstract

The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum
of rank one terms, plays an important role in signal processing and machine learning. In
this paper we extend the CPD framework to the more general case of bilinear factoriza-
tions subject to monomial equality constraints. This includes extensions of multilinear
algebraic uniqueness conditions originally developed for the CPD. We obtain a determin-
istic uniqueness condition that admits a constructive interpretation. Computationally,
we reduce the bilinear factorization problem into a CPD problem, which can be solved
via a matrix EigenValue Decomposition (EVD). Under the given conditions, the dis-
cussed EVD-based algorithms are guaranteed to return the exact bilinear factorization.
Finally, we make a connection between bilinear factorizations subject to monomial equal-
ity constraints and the coupled block term decomposition, which allows us to translate
monomial structures into low-rank structures.

Keywords: tensor, canonical polyadic decomposition, block term decomposition,
coupled decomposition, monomial, uniqueness, eigenvalue decomposition.
2010 MSC: 15A15, 15A23

1. Introduction

Tensors have found many applications in signal processing and machine learning; see
[1, 2] and references therein. The most well-known tensor decomposition is the Canonical
Polyadic Decomposition (CPD) in which a tensor X ∈ CI×J×K is decomposed into a sum
of a minimal number of rank-one terms [3, 4]:

X =
R∑
r=1

ar ◦ br ◦ sr, (1)

where ar ∈ CI , br ∈ CJ and sr ∈ CK . The symbol ‘◦’ denotes the outer product, i.e.,
the (i, j, k)-th entry of X is equal to xijk =

∑R
r=1 airbjrskr in which air denotes i-th

entry of ar (similarly for br and sr). In this paper we will mainly consider a matrix
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unfolded version of X in which the entries xijk are stacked into a matrix X ∈ CIJ×K
with factorization

X = (A�B) ST , (2)

where ‘�’ denotes the Khatri–Rao (columnwise Kronecker) product, A = [a1, . . . , aR] ∈
CI×R, B = [b1, . . . ,bR] ∈ CJ×R and S = [s1, . . . , sR] ∈ CK×R. A formal definition of the
CPD and detailed explanation of matrix unfoldings of a tensor will be provided in Section
1.2. In signal processing, the CPD is related to the ESPRIT [5, 6] and ACMA [7] methods
while in machine learning, it is related to the naive Bayes model [8, 9, 10, 11]. In [12, 13]
we extended the CPD framework to coupled CPD and we have shown the usefulness
of the latter decomposition in sensor array processing [14], wireless communication [15]
and in multidimensional harmonic retrieval [16, 17]. In this paper we will further extend
the CPD framework to more general monomial structures. (A monomial is a product of
variables, possibly with repetitions.) More precisely, we consider bilinear factorizations
of the form

X = a1 ◦ s1 + · · ·+ aR ◦ sR = a1s
T
1 + · · ·+ aRsTR = AST ∈ CI×K , (3)

in which the columns of A = [a1, . . . , aR] ∈ CI×R (or similarly the columns of S =
[s1, . . . , sR] ∈ CK×R) are subject to monomial equality constraints of the form

ap1,r · · · apL,r − as1,r · · · asL,r = 0, (4)

where am,r denotes the m-th entry of the r-th column of A. Since ap1,r · · · apL,r and
as1,r · · · asL,r are monomials of degree L, we sometimes say that the monomial equality
constraint (4) is also of degree L. (In Sections 4 and 5 it will become clear that (2) is a
special case of (3).)

To make things more tangible, let us consider a concrete example. In signal pro-
cessing, the separation of digital communication signals is probably one of the earliest
examples involving monomial structures. For instance, blind separation of M -PSK sig-
nals in which the entries of S in (3) take the form

skr = e
√
−1ukr with ukr ∈

{
0, 2π/M, . . . , 2π(M − 1)/M

}
(5)

has been considered (e.g., [18, 19]). From (5) it is clear that sMk1r = sMk2r for all k1, k2 ∈
{1, . . . ,K}. In other words, for every pair (k1, k2), with k1 < k2, we can exploit C2

K =
(K−1)K

2 monomial relations of the form sMk1r−s
M
k2r

= 0. In this paper we will explain how
to translate this type of problems into a tensor decomposition problem. Another example,
which will be discussed in Section 6.2, is the Binary Matrix Factorization (BMF):

X = AST ∈ CI×K , (6)

where A ∈ {0, 1}I×R is a binary matrix. BMFs of the form (6) play a role in binary
latent variable modeling (e.g., [20, 21, 22]).

Bilinear factorizations subject to monomial equality constraints have the interesting
property that they provide a framework that allows us to generalize the CPD model.
As an example, the presented tensor decomposition framework for bilinear factorizations
subject to monomial equality constraints enables us to extend the CPD model (2) to the
case of binary weighted rank-one terms (this will be made clear in Section 6.1):

X = (D ∗ (A�B))ST ∈ CIJ×K , (7)
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where ’∗’ denotes the Hadamard (element-wise) product and D ∈ {0, 1}IJ×R is a binary
matrix that is not fixed a priori. Binary weighted rank-one terms are of interest in
clustering applications involving tensor structures (e.g., [23, 24]).

We mention that using tools from algebraic geometry, generic identifiability condi-
tions for certain bilinear factorizations subject to monomial equality constraints can be
obtained (e.g., [25, 26, 27]). For instance, when the entries of A correspond to rational
functions, in which the variables can be considered to be randomly drawn from absolutely
continuous distributions, a generic uniqueness condition was obtained in [26]. The bilin-
ear factorization (3) is also related to the so-called X-rank decomposition in which the
columns of A belong to a variety, which again can be used to obtain generic uniqueness
conditions (e.g., [27]). However, the entries cannot always be assumed to be drawn from
an absolutely continuous distribution. For example, in separation of digital communica-
tion signals the entries of A may be restricted to a finite alphabet, i.e., ai,r must be a

root of the polynomial
∏M
m=1(x − βm) = 0, where βm ∈ C. In this paper we limit the

discussion to the binary case where M = 2, β1 = 0 and β2 = 1, corresponding to the
BMF (6). Another example is the CPD of an incomplete tensor X in which entries are
unobserved. We have shown in [28] that if the observed data pattern is structured, then
variants of the bilinear factorization approach discussed in Sections 4 and 5 can be used
to obtain identifiability conditions. In this paper we discuss the binary weighted variant
(7) of CPD, which is another example where the entries of A are not randomly drawn
from an absolutely continuous distribution but fits within our framework.

The paper is organised as follows. In the rest of the introduction we will first present
the notation used throughout the paper, followed by a brief review of the well-known
CPD. Section 2 reviews the lesser known Block Term Decomposition (BTD) [29] and
coupled BTD [12, 13]. As our first contribution, we will in Section 3 present a new link
between bilinear factorizations subject to monomial equality constraints of the form (3)
and the coupled BTD. This connection enables us to translate the monomial constraint
(4) into a low-rank constraint, which in turn allows us to treat the matrix factorization
(3) as a tensor decomposition problem. Next, in Section 4 we will present identifiability
conditions. It will be explained that the presented identifiability is an extension of a
well-known CPD uniqueness condition developed in [30, 31, 32, 33] to the monomial
case. As our third contribution, we will in Section 5 extend the algebraic algorithm for
CPD in [31, 34] to bilinear factorizations subject to monomial equality constraints. In
Section 6 we explain that the tensor decomposition framework for bilinear factorizations
subject to monomial equality constraints can be used to generalize the CPD model (2) to
the binary weighted CPD model (7). We also demonstrate how the presented algebraic
algorithm can be adapted and used for the computation of a BMF of the form (6).

1.1. Notation

Vectors, matrices and tensors are denoted by lower case boldface, upper case boldface
and upper case calligraphic letters, respectively. The r-th column, conjugate, transpose,
conjugate-transpose, determinant, permanent, inverse, right-inverse, rank, range and

kernel of a matrix A are denoted by ar, A∗, AT , AH , |A|,
+
A

+
, A−1, A†, rank(A),

range(A), ker(A), respectively. The dimension of a subspace S is denoted by dim(S).
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The symbols ⊗ and � denote the Kronecker and Khatri–Rao product, defined as

A⊗B :=

 a11B a12B . . .
a21B a22B . . .

...
...

. . .

 , A�B := [a1 ⊗ b1 a2 ⊗ b2 . . . ] ,

in which (A)mn = amn. The outer product of, say, three vectors a, b and c is denoted by
a◦b◦c, such that (a ◦ b ◦ c)ijk = aibjck. The number of non-zero entries (the Hamming
weight) of a vector x is denoted by ω(x) in the tensor decomposition literature, dating
back to the work of Kruskal [35]. Let Diag(a) ∈ CJ×J denote a diagonal matrix that
holds a column vector a ∈ CJ×1 or a row vector a ∈ C1×J on its diagonal. In some cases
a diagonal matrix is holding row k of A ∈ CI×J on its diagonal. This will be denoted
by Dk (A) ∈ CJ×J . Furthermore, let vec(A) denote the vector obtained by stacking the
columns of A ∈ CI×J into a column vector, i.e., vec(A) = [aT1 , . . . , a

T
J ]T ∈ CIJ . Let

e
(N)
n ∈ CN denote the unit vector with unit entry at position n and zeros elsewhere.

The all-ones vector is denoted by 1R = [1, . . . , 1]T ∈ CR. Matlab index notation will be
used for submatrices of a given matrix. For example, A(1:k,:) represents the submatrix
of A consisting of the rows from 1 to k of A. The binomial coefficient is denoted
by Ckm =

(
m
k

)
= m!

k!(m−k)! . The k-th compound matrix of A ∈ CI×R is denoted by

Ck (A) ∈ CCkI×CkR . It is the matrix containing the determinants of all k × k submatrices
of A, arranged with the submatrix index sets in lexicographic order. See [32, 34, 36, 37]
and references therein for a discussion. Finally, we let SymL(CR) denote the vector space
of all symmetric L-th order tensors defined on CR. The associated set of vectorized

(“flattened”) versions of the symmetric tensors in SymL(CR) will be denoted by π
(L)
S ,

i.e., a symmetric tensor X ∈ CR×···×R in SymL(CR) is associated with a vector x ∈ CRL

in π
(L)
S .

1.2. Canonical Polyadic Decomposition (CPD)

Consider a tensor X ∈ CI×J×K . We say that X is a rank-1 tensor if it is equal to the
outer product of non-zero vectors a ∈ CI , b ∈ CJ and s ∈ CK such that xijk = aibjsk. A
Polyadic Decomposition (PD) is a decomposition of X into a sum of rank-1 terms [3, 4]:

X =
R∑
r=1

E(r) ◦ sr =
R∑
r=1

ar ◦ br ◦ sr, (8)

where E(r) = arb
T
r = ar ◦ br ∈ CI×J is a rank-1 matrix. The rank of the tensor X

is equal to the minimal number of rank-1 tensors that yield X in a linear combination.
When the rank of X is R, then (8) is called the Canonical PD (CPD) of X .

1.2.1. Matrix representation

Consider the k-th frontal matrix slice X(··k) ∈ CI×J of X , defined by (X(··k))ij =

xijk =
∑R
r=1 airbjrskr. The tensor X can be interpreted as a collection of matrix slices

{X(··k)}, each admitting a decomposition in rank-one terms

X(··k) =
R∑
r=1

E(r)skr =
R∑
r=1

arb
T
r skr, k ∈ {1, . . . ,K}. (9)
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Note that

vec(X(··k)T ) =
R∑
r=1

(ar ⊗ br)skr = [a1 ⊗ b1, . . . , aR ⊗ bR]ST e
(K)
k , k ∈ {1, . . . ,K},

where ST e
(K)
k denotes the k-th column of ST . Stacking yields (2):

X =
[
vec(X(··1)T ), . . . , vec(X(··K)T )

]
= [a1 ⊗ b1, . . . , aR ⊗ bR]ST = (A�B) ST . (10)

The matrices A = [a1, . . . , aR] ∈ CI×R, B = [b1, . . . ,bR] ∈ CJ×R and S = [s1, . . . , sR] ∈
CK×R will sometimes be referred to as the factor matrices of the PD or CPD of X .

1.2.2. Connection to bilinear factorizations subject to monomial equality constraints

Consider the CPD of X given by (8) in which E(r) = arb
T
r is associated with the

r-th column of A�B. The structure of E(r) implies that any 2-by-2 submatrix of E(r)

is either a rank-0 or rank-1 matrix, i.e.,

∣∣∣∣ e(r)i1j1
e
(r)
i1j2

e
(r)
i2j1

e
(r)
i2j2

∣∣∣∣ = e
(r)
i1j1

e
(r)
i2j2
− e(r)

i1j2
e

(r)
i2j1

= 0. Since

there are C2
I ways of selecting two rows of E(r) and C2

J ways of selecting two columns

of E(r), it is clear that the CPD can be interpreted as a bilinear factorization subject to
monomial equality constraints involving N = C2

IC
2
J monomial relations of degree L = 2

of the form

e
(r)
i1j1

e
(r)
i2j2
− e(r)

i1j2
e

(r)
i2j1

= 0, 1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J. (11)

Conversely, if the columns of E(r) satisfy the monomial relations (11), then it admits the

rank-1 factorization E(r) = arb
T
r . Two well-known CPD uniqueness conditions that rely

on property (11) will be stated next.

1.2.3. Uniqueness conditions for CPD

The rank-1 tensors in (8) can be arbitrarily permuted and the vectors within the same
rank-1 tensor can be arbitrarily scaled provided the overall rank-1 term remains the same.
We say that the CPD is unique when it is only subject to these trivial indeterminacies.

For cases where S in (10) has full column rank, the following necessary and sufficient
uniqueness condition stated in Theorem 1.1 was obtained in [30] and later reformulated
in terms of compound matrices in [32]. The derivations in [30, 32] are based on Kruskal’s
permutation lemma [35]. Theorem 1.1 makes use of the matrix

G
(2)
CPD = C2 (A)� C2 (B) ∈ CC

2
IC

2
J×C

2
R (12)

and the vector
f(2)(d) = [d1d2, d1d3, . . . , dR−1dR]T ∈ CC

2
R , (13)

which consists of all distinct products of entries dr · ds with r < s from the vector
d = [d1, . . . , dR]T ∈ CR.
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Theorem 1.1. [30, Condition B and Eq. (16)], [32, Theorem 1.11] Consider an R-term
PD of X ∈ CI×J×K in (8). Assume that S has full column rank. The rank of X is R
and the CPD of X is unique if and only if the following implication holds

G
(2)
CPD · f

(2)(d) = 0⇒ ω(d) ≤ 1, (14)

for all structured vectors f(2)(d) of the form (13).

In practice, condition (14) can be hard to check. However, as observed in [30, 31, 32],

if G
(2)
CPD in (14) has full column rank, then f(2)(d) = 0 and the condition is automatically

satisfied. This fact leads to the following more easy to check uniqueness condition, which
is only sufficient.

Theorem 1.2. [30, Condition B and Eq. (17)], [32, Theorem 1.12], [31, Remark 1, p.
652] Consider an R-term PD of X ∈ CI×J×K in (8). If{

S has full column rank,

G
(2)
CPD has full column rank,

(15)

then the rank of X is R and the CPD of X is unique.

Furthermore, if condition (15) is satisfied, then the CPD of X can be computed via
a matrix EVD [31, 34]. In short, the “CPD” of X can be converted into a “basic CPD”
of an (R×R×R) tensor Q of rank R, even in cases where max(I, J) < R [31, 34]. The
latter CPD can be computed by means of a standard EVD (e.g., [3, 38]). In Section 5
we briefly discuss how to construct the tensor Q from X and how to retrieve the CPD
factor matrices A, B and S of X from the CPD of Q.

More details about the CPD can be found in [3, 35, 31, 32, 33, 30, 34, 39, 2] and
references therein.

2. Review of Block Term Decomposition (BTD) and coupled BTD

2.1. Block Term Decomposition (BTD)
The multilinear rank-(P, P, 1) term decomposition of a tensor is an extension of the

CPD (8), where each term in the decomposition now consists of the outer product of a
vector and a matrix that is low-rank [29]. More formally, ar ◦ br ◦ sr in (8) is replaced
by Er ◦ sr:

X =
R∑
r=1

Er ◦ sr, (16)

where Er ∈ CI×J is a rank-P matrix with min(I, J) > P . Note that if P = 1, then (16)
indeed reduces to (8) with Er = arb

T
r = ar ◦ br.

Connection to polyadic decomposition. Since Er is low-rank, we know that (16) can also
be expressed in terms of a PD:

X =

R∑
r=1

Er ◦ sr =

R∑
r=1

M(r)N(r)T ◦ sr =

R∑
r=1

P∑
p=1

m(r)
p ◦ n(r)

p ◦ sr, (17)

where Er = M(r)N(r)T , in which M(r) = [m
(r)
1 , . . . ,m

(r)
P ] ∈ CI×P is a rank-P matrix

and N(r) = [n
(r)
1 , . . . ,n

(r)
P ] ∈ CJ×P is a rank-P matrix.
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Matrix representation. Similar to (9), the tensor X given by (16) can be interpreted as

a collection of matrix slices {X(··k)}, each of which can be written as

X(··k) =
R∑
r=1

Erskr =
R∑
r=1

(
P∑
p=1

m(r)
p n(r)T

p

)
skr, k ∈ {1, . . . ,K}. (18)

Note that vec(X(··k)T ) =
∑R
r=1

∑P
p=1(m

(r)
p ⊗ n

(r)
p )skr, k ∈ {1, . . . ,K}. Define

M =
[
M(1), . . . ,M(R)

]
∈ CI×PR, (19)

N =
[
N(1), . . . ,N(R)

]
∈ CJ×PR, (20)

S(ext) =
[
1TP ⊗ s1, . . . ,1

T
P ⊗ sR

]
∈ CK×PR. (21)

Then, according to (10), the decomposition (17) can also be expressed in terms of the

matrices M, N and S(ext) as follows:

X = [vec(X(··1)T ), . . . , vec(X(··K)T )] = (M�N)S(ext)T . (22)

By exploiting the structure of S(ext), relation (22) can also be written more compactly
as

X = [vec(E1), . . . , vec(ER)]ST , (23)

where we recall that Er = M(r)N(r)T .

2.2. Extension to coupled BTD

In this paper we will consider the extension of (16) in which a set of tensors X (n) ∈
CIn×Jn×K , n ∈ {1, . . . , N} is decomposed into a sum of coupled BTDs [12]:

X (n) =
R∑
r=1

E(n)
r ◦ sr, n ∈ {1, . . . , N}, (24)

where

E(n)
r := M(n,r)N(n,r)T = [M̃

(n,r)
,0In,P−Pr,n ][Ñ

(n,r)
,0Jn,P−Pr,n ]T ∈ CIn×Jn (25)

is a matrix with rank(E(n)
r ) = Pr,n ≤ P and min(In, Jn) > P , M̃

(n,r)
∈ CIn×Pr,n and

Ñ
(n,r)

∈ CJn×Pr,n are rank-Pr,n matrices, and 0m,n denotes an (m × n) zero matrix.
More precisely, we consider the coupled decomposition (24) subject to

max
1≤n≤N

rank(E(n)
r ) = P and sr 6= 0, ∀r ∈ {1, . . . , R}. (26)

An important observation is that condition (26) does not prevent that rank(E(n)
r ) < P for

some pairs (r, n). Note also that the vectors s1, . . . , sR ∈ CK in (24) are shared between
all X (n), i.e., the third mode induces the coupling. It is the coupling of X (1), . . . ,X (N)

via {sr} that makes the coupled BTD useful for studying bilinear matrix factorizations
subject to monomial equality constraints, as will be explained in Section 3. As in the
CPD case, the rank of the coupled BTD is defined as the minimal number of coupled
terms {E(n)

r ◦ sr} with property (26) that yield X (1), . . . ,X (N).
7



Matrix representation. Similar to (19) and (20), we define

M(n) =
[
M(n,1), . . . ,M(n,R)

]
∈ CIn×PR, (27)

N(n) =
[
N(n,1), . . . ,N(n,R)

]
∈ CJn×PR. (28)

We know from (22) that the matrix representation X(n) of X (n) admits the factorization

X(n) = (M(n) �N(n))S(ext)T , n ∈ {1, . . . , N}. (29)

Similar to (23), relation (29) can be written more compactly as

X(n) = [vec(E
(n)
1 ), . . . , vec(E

(n)
R )]ST , n ∈ {1, . . . , N}, (30)

where E(n)
r = M(n,r)N(n,r)T .

2.3. Uniqueness condition for (coupled) BTD

The coupled BTD version of G
(2)
CPD in (12) is given by

G
(N,P+1)
BTD =

 CP+1(M(1))� CP+1(N(1))
...

CP+1(M(N))� CP+1(N(N))

PBTD ∈ CN×(CP+1
R+P−R), (31)

where the row-vectors CP+1(M(n)) ∈ C1×CP+1
PR and CP+1(N(n)) ∈ C1×CP+1

PR take into

account that the matrices M(n,r) and N(n,r) in (27)–(28) can be rank-P matrices. The

stacking of the matrices {CP+1(M(n)) � CP+1(N(n))} is a consequence of the coupling

between X (1), . . . ,X (N) via the shared factor S. The matrix PBTD ∈ CC
P+1
PR ×(CP+1

R+P−R)

is the “compression” matrix that takes into account that each column vector sr in (21)
is repeated P times. The reasoning behind the construction PBTD can be found in [13,
p. 1032]. The CP+1

R+P −R columns of PBTD are indexed by the lexicographically ordered
tuples in the set

Γc = {(r1, . . . , rP+1) | 1 ≤ r1 ≤ · · · ≤ rP+1 ≤ R} \ {(r, . . . , r)}Rr=1.

Consider also the mapping fc : {(r1, . . . , rP+1)} → {1, 2, . . . , CP+1
R+P −R} that returns the

position of its argument in the set Γc. Similarly, the CP+1
PR rows of PBTD are indexed by

the lexicographically ordered tuples in the set

Γr = {(q1, . . . , qP+1) | 1 ≤ q1 < · · · < qP+1 ≤ PR}.

Likewise, we define the mapping fr : {(q1, . . . , qP+1)} → {1, 2, . . . , CP+1
PR } that returns

the position of its argument in the set Γr. The entries of PBTD are now given by

(PBTD)fr(q1,...,qP+1),fc(r1,...,rP+1) =

{
1, if d q1P e = r1, . . . , d qP+1

P e = rP+1,

0, otherwise.
(32)

It can be verified that when N = 1 and P = 1, then (31) reduces to (12), i.e., G
(1,2)
BTD =

G
(2)
CPD. Theorem 2.1 below is an extension of Theorem 1.2 to the coupled BTD case.
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Theorem 2.1. [13, Algorithm 5 and identity (5.28) in Section 5.2.3] Consider an R-
term coupled BTD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N} in (24). If{

S has full column rank,

G
(N,P+1)
BTD has full column rank,

(33)

then the coupled BTD rank of {X (n)} is R and the coupled BTD of {X (n)} is unique.

We stress that rank(E(n)
r ) < P is permitted, as long as condition (26) is satisfied. For-

tunately, statement (i) in Lemma 2.2 below asserts that the full column rank assumption

of G
(N,P+1)
BTD implies that condition (26) is satisfied. This fact will be useful in Section 3.

Lemma 2.2. [13, Lemma S.3.1] Assume that the matrix G
(N,P+1)
BTD ∈ CN×(CP+1

R+P−R)

given by (31) has full column rank. Then

(i) max
1≤n≤N

r(E(n)
r ) = P for all r ∈ {1, . . . , R},

(ii) the matrix


vec(E

(1)
1 ) · · · vec(E

(1)
R )

...
. . .

...

vec(E
(N)
1 ) · · · vec(E

(N)
R )

 has full column rank.

As in Theorem 1.2, if condition (33) in Theorem 2.1 is satisfied, then the coupled
BTD of {X (n)} can be computed via a matrix EVD [13].

In this paper we extend the CPD/BTD results discussed in this section to the case of
bilinear matrix factorizations subject to monomial equality constraints. More precisely, in
Section 3 we explain that the bilinear matrix factorization subject to monomial equality
constraints can be interpreted as a coupled BTD. Next, in Section 4 we extend the
uniqueness conditions stated in Theorems 1.2 and 2.1 to the case of bilinear models
with factor matrices satisfying monomial relations. Finally, in Section 5 we extend the
algebraic algorithm associated with Theorems 1.2 and 2.1 to the case of bilinear matrix
factorizations subject to monomial equality constraints.

3. Link between bilinear factorizations subject to monomial equality con-
straints and coupled BTD

In Section 3.1 we explain how to represent the monomial structure (4) as a low-rank
constraint on a particular matrix. Using this low-rank matrix, we will in Section 3.2
translate the bilinear factorization (3) into the coupled BTD of the form (24) reviewed
in Section 2.1.

3.1. Representation of monomial structure via low-rank matrix

In this section we will propose to encode a monomial equality constraint of the form
(35) via the rank deficiency of a matrix, which is to the best of our knowledge a novel con-
tribution of this paper. Before presenting the low-rank matrix used to represent a mono-
mial equality constraint, we need to introduce some notation. Consider again the factor-
ization of X given by (3), consisting of R rank-one terms a1s

T
1 , . . . , aRsTR. Recall that we

9



say that column ar is subject to a monomial equality constraint of degree L if there exist
L entries ap1,r, . . . , apL,r and L entries as1,r, . . . , asL,r such that relation (4) is satisfied.
We assume that every column a1, . . . , ar enjoys N such monomial equality constraints of
degree L, each denoted by the subscript ‘n’, i.e., ap1,n,r · · · apL,n,r − as1,n,r · · · asL,n,r = 0.
For notational convenience, the scalars ap1,n,r, . . . , apL,n,r and as1,n,r, . . . , asL,n,r will be
viewed as coordinates of the vectors{

a(+,n)
r = [a

(+,n)
1r , . . . , a

(+,n)
Lr ]T =

[
ap1,n,r, . . . , apL,n,r

]T ∈ CL,

a(−,n)
r = [a

(−,n)
1r , . . . , a

(−,n)
Lr ]T =

[
as1,n,r, . . . , asL,n,r

]T ∈ CL,
(34)

in which a
(+,n)
lr = apl,n,r corresponds to the pl,n-th entry of the r-th column of A (sim-

ilarly for a
(−,n)
lr ). To summarize, we assume that the bilinear rank-R factorization of X

is subject to N monomial equality constraints involving monomials of degree L:

L∏
l=1

a
(+,n)
lr −

L∏
l=1

a
(−,n)
lr = 0, r ∈ {1, . . . , R}, n ∈ {1, . . . , N}. (35)

Define the structured matrix AL(a
(+,n)
r ,a

(−,n)
r ) ∈ CL×L:

AL

(
a(+,n)
r ,a(−,n)

r

)
:=



a
(+,n)
1r 0 · · · 0 (−1)L · a(−,n)

1r

a
(−,n)
2r a

(+,n)
2r

. . . 0

0 a
(−,n)
3r

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 a
(−,n)
Lr a

(+,n)
Lr


. (36)

The low-rank property of matrix AL(a
(+,n)
r ,a

(−,n)
r ) stated in Lemma 3.1 will be used to

translate a bilinear matrix factorization subject to monomial equality constraints into a
coupled BTD.

Lemma 3.1. Consider the vectors a
(+,n)
r ∈ CL and a

(−,n)
r ∈ CL with property (35).

Then rank(AL(a
(+,n)
r ,a

(−,n)
r )) ≤ L−1. Furthermore, if

∏L
l=1 a

(+,n)
lr 6= 0 or

∏L
l=1 a

(−,n)
lr 6=

0, then rank(AL(a
(+,n)
r ,a

(−,n)
r )) = L− 1.

Proof. From the cofactor expansion of |AL(a
(+,n)
r ,a

(−,n)
r )| along the first row, the con-

10



nection between (35) and (36) becomes clear:

|AL(a(+,n)
r ,a(−,n)

r )| = a
(+,n)
1r ·

∣∣∣∣∣∣∣∣∣∣∣

a
(+,n)
2r 0 · · · 0

a
(−,n)
3r

. . .
. . .

...
. . .

. . . 0

a
(−,n)
Lr a

(+,n)
Lr

∣∣∣∣∣∣∣∣∣∣∣
(37)

+ (−1)La
(−,n)
1r (−1)L+1

∣∣∣∣∣∣∣∣∣∣∣

a
(−,n)
2r a

(+,n)
2r

0 a
(−,n)
3r

. . .
...

. . .
. . . a

(+,n)
L−1r

0 · · · 0 a
(−,n)
Lr

∣∣∣∣∣∣∣∣∣∣∣
=

L∏
l=1

a
(+,n)
lr −

L∏
l=1

a
(−,n)
lr = 0 ,

where we exploited that the two involved (L− 1)× (L− 1) minors in (37) are triangular.

The determinant property (37) also explains that AL(a
(+,n)
r ,a

(−,n)
r ) is low-rank under the

condition (35). More precisely, since |AL(a
(+,n)
r ,a

(−,n)
r )| = 0, rank(AL(a

(+,n)
r ,a

(−,n)
r )) ≤

L − 1. Furthermore, if
∏L
m=1 apm 6= 0 or

∏L
n=1 asn 6= 0, then the minors in (37) do not

vanish and consequently AL(a
(+,n)
r ,a

(−,n)
r ) is a rank-(L− 1) matrix. �

To summarize, a monomial relation of the form (35) can be represented via the rank

deficiency of the matrix in (36). Consequently, the structure of AL(a
(+,n)
r ,a

(−,n)
r ) can

be relaxed without dropping the monomial equality constraint.

3.2. Bilinear factorizations subject to monomial equality constraints via coupled BTD

Consider the bilinear factorization (3) in which the columns of A satisfy N monomial
relations of the form (35). The bilinear property of the matrix factorization X = AST

together with the low-rank property of matrix (36) enables us to transform (3) into a
coupled BTD. In detail, for every monomial relation (n ∈ {1, . . . , N}), we build a tensor
X (n) ∈ CL×L×K with matrix slices X (··1,n) ∈ CL×L, . . . ,X (··K,n) ∈ CL×L, (cf. Eq. (18)

with Er = AL(a
(+,n)
r ,a

(−,n)
r )):

X (··k,n) = AL(x
(+,n)
k ,x

(−,n)
k ) =

R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )skr, k ∈ {1, . . . ,K}, (38)

in which x
(+,n)
k ∈ CL and x

(−,n)
k ∈ CL are constructed from the entries of the k-th

column of X in accordance to the n-th monomial relation, so that (cf. Eq. (34)):{
x

(+,n)
k = [x

(+,n)
1k , . . . , x

(+,n)
Lk ]T =

[
xp1,n,k, . . . , xpL,n,k

]T
,

x
(−,n)
k = [x

(−,n)
1k , . . . , x

(−,n)
Lk ]T =

[
xs1,n,k, . . . , xsL,n,k

]T
.

(39)

The key observation is that since AL(a
(+,n)
r ,a

(−,n)
r ) defined by (36) is low-rank, the tensor

X (n) with matrix slices (38) is a BTD. The collection of all tensors {X (1), . . . ,X (N)} yields

the coupled BTD (cf. Eq. (24) with E(n)
r = AL(a

(+,n)
r ,a

(−,n)
r )):

CL×L×K 3 X (n) =
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r ) ◦ sr, n ∈ {1, . . . , N}. (40)
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In more detail, let the rank of AL(a
(+,n)
r ,a

(−,n)
r ) be equal to Lr,n < L, then it admits the

low-rank factorization AL(a
(+,n)
r ,a

(−,n)
r ) = E(n)

r in which (cf. Eq. (25) with In = Jn = L
and P = L− 1):

E(n)
r = M(n,r)N(n,r)T = [M̃

(n,r)
,0L,L−1−Lr,n ][Ñ

(n,r)
,0L,L−1−Lr,n ]T , (41)

where M̃
(n,r)

∈ CL×Lr,n and Ñ
(n,r)

∈ CL×Lr,n are rank-Lr,n matrices and 0m,n denotes

an (m×n) zero matrix. Note that any M̃
(n,r)

and Ñ
(n,r)

obtained via a rank factorization

of E(n)
r can be used (e.g., via the singular value decomposition of E(n)

r ). Note also that

if ω(a
(+,n)
r ) = L or ω(a

(−,n)
r ) = L, then Lr,n = L − 1, as explained in Section 3.1. We

can now conclude that if for all r ∈ {1, . . . , R} there exists an n ∈ {1, . . . , N} such
that Lr,n = L − 1 so that condition (26) with P = L − 1 is satisfied, then the bilinear
matrix factorization (3) subject to the monomial equality constraints of the form (4) can
be turned into the coupled BTD (40). Theorem 3.2 below summarizes the uniqueness
result based on the link between a bilinear matrix factorization subject to the monomial
equality constraints and the coupled BTD.

Theorem 3.2. Consider the coupled BTD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N} in (40).
If {

S has full column rank,

G
(N,L)
BTD has full column rank,

(42)

then the coupled BTD rank of {X (n)} is R, the coupled BTD of {X (n)} is unique, the
bilinear factorization of X in (3) is unique, and A in (3) has full column rank.

Proof. The result is an immediate consequence of Theorem 2.1 and Lemma 3.1. �

Note that in Theorem 3.2 we state that if condition (42) is satisfied, then A in (3)
has full column rank. This is an obvious consequence of the uniqueness property of
the full column rank factor matrix S. Note also that we have dropped the structure

on AL(a
(+,n)
r ,a

(−,n)
r ) and instead used the low-rank factorization AL(a

(+,n)
r ,a

(−,n)
r ) =

E(n)
r = M(n,r)N(n,r)T in the coupled BTD of {X (n)}.

4. Identifiability conditions for bilinear matrix factorizations subject to the
monomial equality constraints

By exploiting the properties of the mixed discriminant reviewed in Section 4.1, we will

in this section explain how to explicitly take the structure of AL(a
(+,n)
r ,a

(−,n)
r ) into ac-

count. More precisely, instead of considering the matrix G
(N,L)
BTD , we will work with a ma-

trix G
(N,L)
MEC derived in Section 4.2 that explicitly takes the structure of AL(a

(+,n)
r ,a

(−,n)
r )

into account. Using the matrix G
(N,L)
MEC , we will in Section 4.3 derive a uniqueness con-

dition for bilinear matrix factorizations subject to monomial equality constraints. We
will also explain that the obtained uniqueness condition is a generalization of the unique-
ness condition stated in Theorem 1.2 for CPD to bilinear matrix factorizations subject
to monomial equality constraints. Finally, in Section 4.4 we explain that the obtained
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uniqueness condition based on G
(N,L)
MEC is in fact equivalent to the uniqueness condition

stated in Theorem 3.2, which is based on the matrix G
(N,L)
BTD that does not explicitly take

the structure of AL(a
(+,n)
r ,a

(−,n)
r ) into account.

4.1. Mixed discriminants

In Theorem 4.5 we present a uniqueness condition for the bilinear factorization of X.
The overall idea is to find a condition that ensures that ST has a unique right-inverse (up
to intrinsic column scaling and permutation ambiguities), denoted by W. If W is unique,
then Xwr = ar is also unique and ω(STwr) = 1 for all r ∈ {1, . . . , R}. This means

that if dr = STwr, then
∑K
k=1 AL(x

(+,n)
r ,x

(−,n)
r )wkr =

∑R
s=1 AL(a

(+,n)
r ,a

(−,n)
r )dsr =

AL(a
(+,n)
r ,a

(−,n)
r ) is a matrix with rank strictly less than L. The latter property can

be used to derive a condition that ensures the uniqueness of W. In this section we will
provide a derivation based on mixed discriminants, defined next.

4.1.1. Definition

Let H(r) ∈ CL×L and dr ∈ C. The mixed discriminants of the sum of R matrices
H(1)d1 + · · ·+ H(R)dR correspond to the coefficients of the homogeneous polynomial∣∣∣∣∣

R∑
r=1

H(r)dr

∣∣∣∣∣ =
R∑

r1,...,rL=1

D(H(r1), . . . ,H(rL)) · dr1 · · · drL . (43)

The coefficients {D(H(r1), . . . ,H(rL))} in (43) are known as mixed discriminants and are
given by

D(H(r1), . . . ,H(rL)) =
∂L
∣∣∣H(r1)dr1 + · · ·+ H(rL)drL

∣∣∣
∂dr1 · · · ∂drL

. (44)

It can be verified that [40]:

D
(
H(r1), . . . ,H(rL)

)
=

1

L!

∑
σ∈SL

sgn(σ)
∣∣∣[h(r1)

σ(1),h
(r2)
σ(2), . . . ,h

(rL)
σ(L)

]∣∣∣ , (45)

where h
(rl)
σ(l) denotes the σ(l)-th column of H(rl), SL denotes the set of all permutations

of 1, 2, . . . , L and sgn(σ) denotes the sign of the permutation σ.

4.1.2. Properties

From (45) it is clear that the mixed discriminant can be understood as an extension

of the determinant. Indeed, if H := H(r1) = · · · = H(rL), then (45) reduces to the
determinant

D (H, . . . ,H) =
∑
σ∈SL

sgn(σ)
L∏
l=1

hl,σ(l) = |H| . (46)

The mixed discriminant can also be understood as an extension of the permanent. More
precisely, let D(1) ∈ CL×L, . . . ,D(L) ∈ CL×L be diagonal matrices, then from (45) we
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obtain (a scaled version of) the permanent

D
(
D(1), . . . ,D(L)

)
=

1

L!

∑
σ∈SL

L∏
l=1

d
(σ(l))
l,l =

1

L!

+

|B
+

| , (47)

where B ∈ CL×L is given by (B)il = d
(l)
ii and

+

|B
+

| denotes the permanent of B. Fur-

thermore, let D(1) ∈ CL×L, . . . ,D(L) ∈ CL×L be diagonal matrices, then

D
(
D(1), . . . ,D(L)

)
= D

(
D(σ(1)), . . . ,D(σ(L))

)
=

1

L!

+

|B
+

| , ∀σ ∈ SL, (48)

which follows from the column permutation invariance property of the permanent, i.e.,
+

|B
+

| =
+

|BΠΠΠ
+

| for any permutation matrix ΠΠΠ ∈ CL×L. Note that the permanent can be

seen as a signless version of the determinant (i.e.,
+

|H
+

| is equal to (46) when sgn(σ) is
dropped). This directly explains the permutation invariance property of the permanent.
The three properties (46)–(48) of the mixed discriminant will be used in the derivation
of Theorem 4.5. A further discussion of the mixed discriminant and its properties can
be found in [40, 41]. A discussion of the properties of the permanent can be found in
[36, 37].

4.2. Construction of G
(N,L)
MEC and its properties

The proof of the uniqueness condition stated in Theorem 4.5 will make use of a
compact expression of the mixed discriminants associated with the expansion of the

expression
∣∣∣∑R

r=1 AL(a
(+,n)
r ,a

(−,n)
r )dr

∣∣∣ in terms of the scalars d1, . . . , dR. Observe that∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ =
∑
σ∈SL

sgn(σ)
L∏
l=1

(
R∑
r=1

dr · (AL(a(+,n)
r ,a(−,n)

r )lσ(l)

)

=

L∏
l=1

(
R∑
r=1

dra
(+,n)
lr

)
−

L∏
l=1

(
R∑
r=1

dra
(−,n)
lr

)
, (49)

where SL denotes the set of all permutations of 1, 2, . . . , L, and sgn(σ) denotes the sign
of the permutation σ. Note also that (49) directly follows from the patterned structure

of AL(a
(+,n)
r ,a

(−,n)
r ). (See also equations (36) and (37).) In terms of the matrices and

vectors defined below a compact expression of (49) will be introduced in Lemma 4.2
below. For every weak composition of L in R terms (i.e., l1 + · · · + lR = L subject to
lr ≥ 0) we define the square (L× L) matrices

A
(+,n)
(l1,...,lR) =

[
1Tl1 ⊗ a

(+,n)
1 , . . . ,1TlR ⊗ a

(+,n)
R

]
∈ CL×L, (50)

A
(−,n)
(l1,...,lR) =

[
1Tl1 ⊗ a

(−,n)
1 , . . . ,1TlR ⊗ a

(−,n)
R

]
∈ CL×L. (51)

From the matrices in (50) and (51), we also build the row vectors g
(n,L)
+ ∈ C1×(CLR+L−1−R)

and g
(n,L)
− ∈ C1×(CLR+L−1−R) whose entries are indexed by an R-tuple (l1, l2, . . . , lR) with

0 ≤ lr ≤ L− 1 and ordered lexicographically:
14



g
(n,L)
+ =

[
+

|A(+,n)
(L−1,1,0,0,...,0)

+

| ,
+

|A(+,n)
(L−1,0,1,0,...,0)

+

| , . . . ,
+

|A(+,n)
(0,...,0,1,L−1)

+

|
]
, (52)

g
(n,L)
− =

[
+

|A(−,n)
(L−1,1,0,0,...,0)

+

| ,
+

|A(−,n)
(L−1,0,1,0,...,0)

+

| , . . . ,
+

|A(−,n)
(0,...,0,1,L−1)

+

|
]
. (53)

Based on (52) and (53) we in turn build the row vector, whose entries correspond to the

mixed discriminants of |
∑R
r=1 AL(a

(+,n)
r ,a

(−,n)
r )dr|, as will be made clear in the proof

of Lemma 4.2:

g
(n,L)
MEC =

(
g

(n,L)
+ − g

(n,L)
−

)
D

(L)
W ∈ C1×(CLR+L−1−R), (54)

in which the subscript ‘MEC’ stands for Monomial Equality Constraint and the diagonal

weight matrix D
(L)
W ∈ C(CLR+L−1−R)×(CLR+L−1−R) is given by

D
(L)
W = diag

(
w

(L)
(L−1,1,0,0,...,0), w

(L)
(L−1,0,1,0,...,0), . . . , w

(L)
(0,...,0,1,L−1)

)
, (55)

where the scalar w
(L)
(l1,l2,...,lR) = 1

l1!l2!···lR! takes into account that, due to the column

permutation invariance property of the permanent,
+

|A(+,n)
(l1,l2,...,lR)

+

| and
+

|A(−,n)
(l1,l2,...,lR)

+

|

appear L!
l1!l2!···lR! times in the expansion of

∣∣∣∑R
r=1 AL(a

(+,n)
r ,a

(−,n)
r )dr

∣∣∣ and that each

permanent is scaled by the factor 1
L! (see (47)). Stacking yields

G
(N,L)
MEC =


g

(1,L)
MEC

g
(2,L)
MEC
...

g
(N,L)
MEC

 ∈ CN×(CLR+L−1−R). (56)

It can be verified that (56) is an extension of (12) to the monomial case, i.e., if X satisfies

the CPD factorization (10) with full column rank S, then G
(N,L)
MEC reduces to G

(2)
CPD. Note

that in the former case there are two superscripts. Namely, ‘N ’ and ‘L’ that indicate the
number of monomial constraints / equations and the degree of the involved monomials,
respectively. In the CPD case we have N = C2

IC
2
J and L = 2. It will be shown in the

proof of Lemma 4.2 that
∣∣∣∑R

r=1 AL(a
(+,n)
r ,a

(−,n)
r )dr

∣∣∣ = g
(n,L)
MEC · f

(L)(d), where

f(L)(d) = [dL−1
1 d2, d

L−1
1 d3, . . . , dR−1d

L−1
R ]T ∈ C(CLR+L−1−R). (57)

Comparing (13) with (57), it is clear that the latter is also an extension of the former.

More precisely, f(L)(d) consists of all CLR+L−1 distinct entries of d⊗ · · · ⊗d minus the R

entries dL1 , . . . , d
L
R. The vector f(L)(d) has the following two properties.

Lemma 4.1. Consider a vector f(L)(d) ∈ C(CLR+L−1−R) of the form (57). Then

ω(d) ≥ 2⇒ f(L)(d) 6= 0, (58)

f(L)(d) = 0⇒ ω(d) ≤ 1. (59)
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Proof. Property (58) follows from the fact that if ω(d) ≥ 2, then did
L−1
j 6= 0 for some

i 6= j. Similarly, f(L)(d) = 0 implies that did
L−1
j = 0 for all i 6= j, necessitating that

ω(d) ≤ 1. �

Lemmas 4.2 and 4.3 relate g
(n,L)
MEC and G

(N,L)
MEC to |

∑R
r=1 AL(a

(+,n)
r ,a

(−,n)
r )dr| and A,

respectively.

Lemma 4.2. Let AL(a
(+,n)
r ,a

(−,n)
r ) ∈ CL×L be of the form (36) and let d1, . . . , dR ∈ C.

Then ∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ = g
(n,L)
MEC · f

(L)(d), (60)

where g
(n,L)
MEC ∈ C1×(CLR+L−1−R) is given by (54) and f(L)(d) ∈ C(CLR+L−1−R) is given by

(57).

Proof. Define

A(+,r) =


a

(+,1)T
r

...

a
(+,N)T
r

 ∈ CN×L and A(−,r) =


a

(−,1)T
r

...

a
(−,N)T
r

 ∈ CN×L. (61)

Let [L]R denote the set of all weak compositions of L in R terms, i.e.,

[L]R = {(l1, . . . , lR) | l1 + · · ·+ lR = L and l1, . . . , lR ≥ 0}. (62)

Note that the cardinality of [L]R is CLR+L−1. The expansion of
∣∣∣∑R

r=1 AL(a
(+,n)
r ,a

(−,n)
r )dr

∣∣∣
in terms of d1, . . . , dR yields the homogeneous polynomial∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ =

L∏
l=1

(
R∑
r=1

a
(+,n)
lr dr

)
−

L∏
l=1

(
R∑
r=1

a
(−,n)
lr dr

)
(63)

=

∣∣∣∣∣
R∑
r=1

Dn(A(+,r))dr

∣∣∣∣∣−
∣∣∣∣∣
R∑
r=1

Dn(A(−,r))dr

∣∣∣∣∣ (64)

=
R∑

r1,...,rL=1

[
D
(
Dn(A(+,r1)), . . . , Dn(A(+,rL))

)
(65)

−D
(
Dn(A−,r1)), . . . , Dn(A(−,rL))

)]
dr1 · · · drL

=
∑

(l1,...,lR)∈[L]R

L!

l1! · · · lR!

[
D
(
Dn(A(+,1)), . . . , Dn(A(+,1))︸ ︷︷ ︸

l1 times

, . . . , Dn(A(+,R)), . . . , Dn(A(+,R))︸ ︷︷ ︸
lR times

)
(66)

−D

Dn(A(−,1)), . . . , Dn(A(−,1))︸ ︷︷ ︸
l1 times

, . . . , Dn(A(−,R)), . . . , Dn(A(−,R))︸ ︷︷ ︸
lR times

]dl11 · · · dlRR
=

∑
(l1,...,lR)∈[L]R

1

l1! · · · lR!

(
+

|A(+,n)
(l1,...,lR)

+

| −
+

|A(−,n)
(l1,...,lR)

+

|
)
dl11 · · · d

lR
R , (67)
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where (64) follows from the definition (61), (65) follows from the definition of the mixed
discriminant (43), (66) follows from the permutation invariance property (48) and (67)
follows from property (47).

Due to property (46), we also know that if

(l1, . . . , lR) ∈ Ω := {(L, 0, 0 . . . , 0), (0, L, 0 . . . , 0), . . . , (0, 0 . . . , 0, L)},

then
+

|A(+,n)
(l1,...,lR)

+

| −
+

|A(−,n)
(l1,...,lR)

+

| =
∏L
l=1 a

(+,n)
lr −

∏L
l=1 a

(−,n)
lr = 0. Consequently, (67)

can be written as ∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ = g
(n,L)
MEC · f

(L)(d), (68)

where g
(n,L)
MEC and f(L)(d) are given by (54) and (57), respectively. �

Lemma 4.3. If G
(N,L)
MEC ∈ CN×(CLR+L−1−R) given by (56) has full column rank, then

A ∈ CI×R in (3) has full column rank.

Proof. Assume that G
(N,L)
MEC has full column rank. Suppose that A does not have full

column rank. Then there exists a vector d ∈ CR with property ω(d) ≥ 2 such that
Ad = 0. This also means that∣∣∣∣∣

R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ = 0, n ∈ {1, . . . , N}, (69)

where AL(a
(+,n)
r ,a

(−,n)
r ) ∈ CL×L is given by (36) and N denotes the number of involved

monomial equality constraints of the form (35). Due to relation (60) in Lemma 4.2, (69)
can be written more compactly as

g
(n,L)
MEC · f

(L)(d) =

∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ = 0, n ∈ {1, . . . , N}, (70)

Stacking yields

G
(N,L)
MEC · f

(L)(d) = 0 , (71)

where G
(N,L)
MEC is given by (56). Since ω(d) ≥ 2 we know from property (58) in Lemma 4.1

that f(L)(d) 6= 0. This property together with relation (71) in turn implies that G
(N,L)
MEC

cannot have full column rank, which is a contradiction. �

4.3. Uniqueness condition based on G
(N,L)
MEC

Using Kruskal’s permutation lemma stated in Lemma 4.4 we will derive the suffi-
cient uniqueness condition stated in Theorem 4.5 for bilinear factorizations subject to
monomial equality constraints.
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Lemma 4.4. [35, 42]. Consider two matrices S ∈ CK×R and Ŝ ∈ CK×R̂ with no zero

columns and R̂ ≤ R. Let rŜ denote the rank of Ŝ. If for every z ∈ CK , we have that

ω(Ŝ
T
z) ≤ R− rŜ + 1⇒ ω(ST z) ≤ ω(Ŝ

T
z), (72)

then R̂ = R and S = ŜΠΠΠ∆S, where ΠΠΠ is an (R×R) column permutation matrix and ∆S

is an (R×R) nonsingular diagonal matrix.

Theorem 4.5. Consider an R-term bilinear factorization of X in (3) subject to N
monomial equality constraints of the form (4). If{

S has full column rank,

G
(N,L)
MEC has full column rank,

(73)

then the bilinear factorization of X is unique.

Proof. Let the pair (Â, Ŝ) be an alternative decomposition of (3) with R̂ ≤ R terms
so that

X = AST = ÂŜ
T
. (74)

We first establish uniqueness of S, i.e., we provide a condition that ensures that S =
ŜΠΠΠ∆S, where ΠΠΠ is an (R × R) column permutation matrix and ∆S is an (R×R) non-

singular diagonal matrix. Lemma 4.4 ensures the uniqueness of S if ω(ST z) ≤ ω(Ŝ
T
z)

for every vector z ∈ CK such that ω(Ŝ
T
z) ≤ 1. Lemma 4.3 together with the full col-

umn rank assumption of G
(N,L)
MEC stated in condition (73) implies that A has full column

rank. This fact together with the assumption that S has full column rank implies that
Ŝ must also have full column rank (recall that R̂ ≤ R ≤ K) and that R̂ = R. Denote

d = ST z and d̂ = Ŝ
T
z. Kruskal’s permutation lemma now guarantees uniqueness of S if

ω(d) ≤ ω(d̂) for every ω(d̂) ≤ R− rŜ + 1 = 1, where rŜ denotes the rank of Ŝ. Thus, we

only have to verify that this condition holds for the two cases ω(d̂) = 0 and ω(d̂) = 1.

Case ω(d̂) = 0. Let us first consider the case ω(d̂) = 0⇔ Ŝ
T
z = 0. Since A has full

column rank, we know from (74) that AST z = ÂŜ
T
z = 0 ⇔ ST z = 0, where we took

into account that d̂ = Ŝ
T
z = 0. In other words, we must have that d = ST z = 0 for all

z ∈ CK such that ω(d̂) = 0. We conclude that the inequality condition 0 = ω(ST z) ≤
ω(Ŝ

T
z) = 0 in Kruskal’s permutation lemma is satisfied.

Case ω(d̂) = 1. Consider again a vector z ∈ CK so that from (74) we obtain

Xz = AST z = ÂŜ
T
z. (75)

Recall that d = ST z and d̂ = Ŝ
T
z. We assume that the vector z ∈ CK is chosen so that

ω(d̂) = ω(Ĉ
T
z) = 1. Due to relation (38), relation (75) can be expressed in terms of

(L× L) matrices:

R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr =
R∑
r=1

AL(â(+,n)
r , â(−,n)

r )d̂r , n ∈ {1, . . . , N}. (76)
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Since ω(d̂) = 1 and AL(â(+,n)
r , â(−,n)

r ) is a matrix with rank strictly less than L, we know
that ∣∣∣∣∣

R∑
r=1

AL(â(+,n)
r , â(−,n)

r )d̂r

∣∣∣∣∣ =
∣∣∣AL(â(+,n)

r , â(−,n)
r )

∣∣∣ d̂Lr = 0, n ∈ {1, . . . , N}.

Consequently, the determinant of the left-hand side of (76) must vanish as well:∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ = 0, n ∈ {1, . . . , N}. (77)

Thanks to Lemma 4.2 (see also equations (69)–(71) in the proof of Lemma 4.3) we know
that identity (77) can be expressed more compactly as

G
(N,L)
MEC · f

(L)(d) = 0 , (78)

where G
(N,L)
MEC is given by (56). Since G

(N,L)
MEC has full column rank by assumption, we

know that f(L)(d) = 0. Due to property (59) in Lemma 4.1 this implies that ω(d) ≤ 1.

Hence, the inequality condition ω(d) = ω(ST z) ≤ ω(Ŝ
T
z) = ω(d̂) = 1 in Lemma 4.4

is satisfied. We conclude that condition (73) is sufficient for the uniqueness of S. This
fact together with the full column rank assumption of S also implies the uniqueness of
A = X(ST )†. �

4.4. Equivalence between Theorem 3.2 and 4.5 (G
(N,L)
MEC =G

(N,L)
BTD )

Proposition 4.8 below explains that the uniqueness condition (73) in Theorem 4.5 is
equivalent to the uniqueness condition (42) in Theorem 3.2. The proof of Proposition
4.8 will be based on the following lemmas related to symmetric tensors.

Lemma 4.6. [43, Proposition 3.4] Let SymL(CR) denote the vector space of all sym-
metric L-th order tensors on vector space CR. The dimension of SymL(CR) is

(
L+R−1

L

)
.

Furthermore, since {e(R)
1 , . . . , e

(R)
R } is a basis for CR, the set of vectors∑

σ∈SL

e
(R)
iσ(1)
◦ e(R)

iσ(2)
◦ · · · ◦ e(R)

iσ(L)
∈ SymL(CR), 1 ≤ i1 ≤ i2 ≤ · · · ≤ iL ≤ R (79)

is a basis for SymL(CR), where SL denotes the symmetric group of permutations on
{1, . . . , L}.

Note that we will work with vectorized symmetric tensors. In that case the basis vectors
(79) can be expressed as∑

σ∈SL

e
(R)
iσ(1)
⊗ e

(R)
iσ(2)
⊗ · · · ⊗ e

(R)
iσ(L)

, 1 ≤ i1 ≤ i2 ≤ · · · ≤ iL ≤ R. (80)

Lemma 4.7. [43, Lemma 4.2] Let A ∈ SymL(CR) be a symmetric tensor. Then there
exist vectors y1, . . . , ys ∈ CR such that A =

∑s
i=1 yi ◦ · · · ◦ yi.
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In words, Lemma 4.7 states that every symmetric tensor admits a decomposition as a
sum of symmetric rank-one tensors.

Proposition 4.8. Consider the bilinear factorization of X in (3) subject to N monomial

equality constraints of the form (4). Let G
(N,L)
MEC be the matrix given by (56) and let G

(N,L)
BTD

be the matrix given by (31). Then

G
(N,L)
MEC = G

(N,L)
BTD . (81)

Proof. Consider the low-rank factorization AL(a
(+,n)
r ,a

(−,n)
r ) = M(r,n)N(r,n)T , where

M(r,n) ∈ CL×(L−1) and N(r,n) ∈ CL×(L−1) are matrices with rank strictly less than L.

Recall that G
(N,L)
MEC was obtained from the expansion of the |

∑R
r=1 AL(a

(+,n)
r ,a

(−,n)
r )dr|.

Using the low-rank factorization AL(a
(+,n)
r ,a

(−,n)
r ) = M(r,n)N(r,n)T , we obtain∣∣∣∣∣

R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ =

∣∣∣∣∣
R∑
r=1

M(r,n)N(r,n)T dr

∣∣∣∣∣
=
∣∣∣N(n)Diag

(
d(ext)

)
M(n)T

∣∣∣ , n ∈ {1, . . . , N}, (82)

where we exploited that |A| = |AT |, M(n) and N(n) are of the form (27) and (28),

respectively, and Diag(d(ext)) is a diagonal matrix that holds the column vector

d(ext) = d⊗ 1L−1 =
[
d11

T
L−1, . . . , dR1TL−1

]T ∈ C(L−1)R (83)

on its diagonal. Relation (82) can be expressed in terms of compound matrices as follows

∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ = CL
(
N(n)

)
CL
(

Diag
(
d(ext)

))
CL
(
M(n)T

)
, n ∈ {1, . . . , N}.

(84)
Consider the set S = {(i1, i2, . . . , iL) | 1 ≤ i1 < i2 < · · · < iL ≤ R(L− 1)}, in which the
L-tuples are ordered lexicographically and indexed by S(1), . . . , S(CLR(L−1)). Let1

d(ext,L) =

[
d

(ext)
S(1) , d

(ext)
S(2) , . . . , d

(ext)

S(CL
R(L−1)

)

]T
∈ CC

L
R(L−1) , (85)

where d
(ext)
S(j) = d

(ext)
i1

d
(ext)
i2
· · · d(ext)

iL
with S(j) = (i1, i2, . . . , iL). Relation (84) can now

also be expressed as∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ =
(
CL
(
M(n)

)
� CL

(
N(n)

))
d(ext,L), n ∈ {1, . . . , N}. (86)

1The vector d(ext,L) corresponds to the diagonal part of the diagonal compound matrix
CL(Diag(d(ext))) = CL(Diag(d⊗ 1L−1)) in (84), i.e., Diag(d(ext,L)) = CL(Diag(d(ext))).
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We will now take into account that coefficient dl is repeated L−1 times in d(ext). Observe
that

d
(ext)
(i1,i2,...,iL) = d

(ext)
i1

d
(ext)
i2
· · · d(ext)

iL
= dd i1

L−1 e
dd i2

L−1 e
· · · dd iLL−1 e

= dj1dj2 · · · djL ,

where j1 = d i1
L−1e, j2 = d i2

L−1e, . . ., jL = d iL
L−1e. Using the “compression” matrix

PBTD ∈ CC
L
R(L−1)×(CLR+L−1−R), defined by (32), we obtain the following compact version

of (86):∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣ =
(
CL
(
M(n)

)
� CL

(
N(n)

))
PBTD · f(L)(d), n ∈ {1, . . . , N},

(87)

where f(L)(d) is given by (57). Stacking yields

G
(N,L)
BTD · f

(L)(d), (88)

where G
(N,L)
BTD is of the form (31). We also know from the proof of Lemma 4.3 that the

stacking of
∣∣∣∑R

r=1 AL(a
(+,n)
r ,a

(−,n)
r )dr

∣∣∣, n ∈ {1, . . . , N}, yields G
(N,L)
MEC f(L)(d). Hence,

from (88) we can conclude that for any d ∈ CR, we have that

G
(N,L)
BTD f(L)(d) = G

(N,L)
MEC f(L)(d)⇔

(
G

(N,L)
BTD −G

(N,L)
MEC

)
f(L)(d) = 0.

This in turn implies that(
G

(N,L)
BTD −G

(N,L)
MEC

) si∑
j=1

f(L)(d
(i)
j ) = 0, (89)

where d
(i)
j ∈ CR and si ∈ N. According to Lemma 4.6 there exist CLL+R−1−R symmetric

tensors A1, . . . ,ACLL+R−1−R ∈ SymL(CR) with zero diagonal elements, i.e., (ai)k,...,k = 0

for all i ∈ {1, . . . , CLL+R−1 − R} and k ∈ {1, . . . , R}. In particular, A1, . . . ,ACLL+R−1−R
can be chosen to be the basis vectors (79) with 1 ≤ i1 ≤ i2 ≤ · · · ≤ iL ≤ R and i1 6= iL.
Let

f(L)(Aj) := [(ai)1,1,...,2, (ai)1,1,...,3, . . . , (ai)R−1,R,...,R] ∈ CC
L
L+R−1−R

be a vector that consists of all distinct elements of Ai minus the R zero diagonal elements

(ai)1,1,...,1, . . . , (ai)R,R,...,R. Due to Lemma 4.7 there exist vectors f(L)(d
(i)
1 ), . . . , f(L)(d(i)

si )
such that

f(L)(Aj) =

si∑
j=1

f(L)(d
(i)
j ) ∈ CC

L
L+R−1−R.

Since (G
(N,L)
BTD −G

(N,L)
MEC )f(L)(Aj) = (G

(N,L)
BTD −G

(N,L)
MEC )

∑si
j=1 f(L)(d

(i)
j ) = 0 and the vectors

f(L)(A1), . . . , f(L)(ACLL+R−1−R) are linearly independent, we conclude from (89) that

dim
(

ker
(
G

(N,L)
BTD −G

(N,L)
MEC

))
= CLL+R−1 −R.

We can now conclude that

G
(N,L)
BTD −G

(N,L)
MEC = 0⇔ G

(N,L)
BTD = G

(N,L)
MEC .

�
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5. Algorithm for bilinear factorization subject to monomial equality con-
straints

In this section we will present an algebraic algorithm tailored for the bilinear factor-
ization of X. The overall idea is that since S is assumed to have full column rank, we
know that ar ∈ range(X). Hence, there exists a vector wr such that

Xwr = ar, r ∈ {1, . . . , R}. (90)

Th goal is now to look for a matrix W ∈ CR×R whose columns w1, . . . ,wR have the
property (90) so that Xwr obeys the N monomial constraints associated with column
ar and that the R rank-1 terms a1s

T
1 , · · · ,aRsTR in (3) becomes separated, i.e.,

D = [d1, . . . ,dR] = STW and W = S−TΠΠΠ∆∆∆, (91)

where ΠΠΠ is a permutation matrix and ∆∆∆ is a nonsingular diagonal matrix. Note that the
separation property of dr implies that ω(dr) = 1. By exploiting the monomial equality
constraints on ar, wr can, under certain conditions, be obtained, observing only X.
Algorithms based on Theorem 4.5 can be derived. However, it turns out to be more
convenient to work with an alternative null space formulation of Theorem 4.5 presented
in Section 5.1. Based on this null space formulation, we will in Section 5.2 present an
algebraic algorithm for bilinear factorization subject to monomial equality constraints.

5.1. Uniqueness condition in terms of dimension of null space

Theorem 5.3 below provides an alternative formulation of Theorem 4.5, which may

be more easy to comprehend. It makes use of a matrix ΨΨΨ(N,L) ∈ CN×RL , defined as

ΨΨΨ(N,L) =

ψψψ
(1,L)

...
ψψψ(N,L)

 =


(ã

(+,1)
1 ⊗ · · · ⊗ ã

(+,1)
L )T

...

(ã
(+,N)
1 ⊗ · · · ⊗ ã

(+,N)
L )T

−


(ã
(−,1)
1 ⊗ · · · ⊗ ã

(−,1)
L )T

...

(ã
(−,N)
1 ⊗ · · · ⊗ ã

(−,N)
L )T

 , (92)

where ã
(+,n)
l = [a

(+,n)
l1 , . . . , a

(+,n)
lR ]T =

[
apl,n,1, . . . , apl,n,R

]T
= e(I)T

pl,n
A ∈ CR,

ã
(−,n)
l = [a

(−,n)
l1 , . . . , a

(−,n)
lR ]T =

[
asl,n,1, . . . , asl,n,R

]T
= e(I)T

sl,n
A ∈ CR.

(93)

In words, ã
(+,n)
l is the pl,n-th row of A and ã

(−,n)
l is the sl,n-th row of A. Theorem 5.3

will also make use of the subspace

ker(ΨΨΨ(N,L)) ∩ π(L)
S , (94)

where we recall that π
(L)
S denotes the subspace of vectorized RL symmetric tensors. The

link between Theorem 4.5 and Theorem 5.3 follows from Lemmas 5.1 and 5.2 below and
the following relation (as will be explained in the proof of Lemma 5.1):

g
(n,L)
MEC · f

(L)(d) =

∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )dr

∣∣∣∣∣
=
(
ã

(+,n)
1 ⊗ · · · ⊗ ã

(+,n)
L − ã

(−,n)
1 ⊗ · · · ⊗ ã

(−,n)
L

)T
(d⊗ · · · ⊗ d)

= ψψψ(n,L)(d⊗ · · · ⊗ d), (95)
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where d = [d1, . . . , dR]T ∈ CR.

Lemma 5.1. Consider the bilinear factorization of X in (3) subject to N monomial

equality constraints of the form (4). Let G
(N,L)
MEC ∈ CN×(CLR+L−1−R) be given by (56) and

let the matrix ΨΨΨ(N,L) ∈ CN×RL be given by (92). Then

G
(N,L)
MEC

(∑
s

αsf
(L)(ds)

)
= ΨΨΨ(N,L)

(∑
s

αsds ⊗ · · · ⊗ ds

)
. (96)

where αs ∈ C and ds ∈ CR.

Proof. From the definition of ψψψ(n,L), we obtain

ψψψ(n,L)

(∑
s

αsds ⊗ · · · ⊗ ds

)
= (ã

(+,n)
1 ⊗ · · · ⊗ ã

(+,n)
L )T

(∑
s

αsds ⊗ · · · ⊗ ds

)

− (ã
(−,n)
1 ⊗ · · · ⊗ ã

(−,n)
L )T

(∑
s

αsds ⊗ · · · ⊗ ds

)

=

(∑
s

αs

L∏
l=1

(ã
(+,n)
l )Tds

)
−

(∑
s

αs

L∏
l=1

(ã
(−,n)
l )Tds

)

=
∑
s

αs

(
L∏
l=1

(
R∑
r=1

a
(+,n)
lr drs

)
−

L∏
l=1

(
R∑
r=1

a
(−,n)
lr drs

))

= g
(n,L)
MEC ·

(∑
s

αsf
(L)(ds)

)
, (97)

where the last identity follows from relation (49) and the left-hand side of (68). �

Note that f(L)(d) ∈ C(CLR+L−1−R) given by (57) can be interpreted as a vector that
holds the distinct entries of a symmetric rank-1 tensor d ◦ · · · ◦ d ∈ SymL(CR) minus
the R diagonal entries d1,...,1, . . . , dR,...,R. In Lemma 5.2 below we will consider a vector

f(L)(D) ∈ C(CLR+L−1−R) that can be interpreted as a vector that holds the distinct entries
of a symmetric tensor D ∈ SymL(CR) minus the R diagonal entries d1,...,1, . . . , dR,...,R.

More precisely, the coordinates of any vector x ∈ C(CLR+L−1−R) can be interpreted as the
distinct off-diagonal entries of a symmetric tensor D ∈ SymL(CR). Due to Lemma 4.7 we
know that there exist vectors d1, . . . ,ds ∈ CR such that D =

∑s
i=1 di ◦ · · · ◦ di. Hence,

we obtain the decomposition x =
∑s
i=1 f(L)(di), where di ∈ CR is associated with a

symmetric rank-one term in the symmetric tensor decomposition D =
∑s
i=1 di ◦ · · · ◦di.

This will be denoted by

x = f(L)(D), f(L)(D) =
s∑
i=1

f(L)(di). (98)

Lemma 5.2. Consider the bilinear factorization of X in (3) subject to N monomial

equality constraints of the form (4). If dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R, then A in (3) has

full column rank.
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Proof. Since AL(a
(+,n)
r ,a

(−,n)
r ) has rank strictly less than L (i.e., |AL(a

(+,n)
r ,a

(−,n)
r )| =

0), we have that∣∣∣∣∣
R∑
r=1

AL(a(+,n)
r ,a(−,n)

r )e(R)
r

∣∣∣∣∣ = ψψψ(n,L)(e(R)
r ⊗ · · · ⊗ e(R)

r ) = 0, r ∈ {1, . . . , R},

where relations (49) and (96) were used. Since we assume that the subspace ker(ΨΨΨ(N,L))∩
π

(L)
S is R-dimensional, the linearly independent vectors in the set {e(R)

r ⊗ · · · ⊗ e
(R)
r }Rr=1

form a basis for ker(ΨΨΨ(N,L)) ∩ π(L)
S , i.e., any d ∈ ker(ΨΨΨ(N,L)) ∩ π(L)

S can be written as

d =
R∑
r=1

αre
(R)
r ⊗ · · · ⊗ e(R)

r ,

where αr ∈ C. Due to relation (96) in Lemma 5.1 and the fact that ΨΨΨ(N,L)d = 0, we
know that

ψψψ(n,L)d = ψψψ(n,L)

(
R∑
r=1

αre
(R)
r ⊗ · · · ⊗ e(R)

r

)
= g

(n,L)
MEC ·

(
R∑
r=1

αrf
(L)(e(R)

r )

)
= 0,

Since f (L)(e
(R)
r ) = 0 for any r ∈ {1, . . . , R}, we have

∑R
r=1 αrf

(L)(e
(R)
r ) = 0. The

other way around, if G
(N,L)
MEC x = G

(N,L)
MEC f(L)(D) = 0, where relation (98) was used,

then ψψψ(n,L) (
∑s
i=1 di ⊗ · · · ⊗ di) = 0, which by assumption dim(ker(ΨΨΨ(N,L)) ∩ π(L)

S ) = R
implies that D =

∑s
i=1 di ◦ · · · ◦ di is a diagonal tensor. This in turn implies that

x = f(L)(D) = 0. Hence, when dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R, then G

(N,L)
MEC x = 0 implies

that x = 0, i.e., ker(G
(N,L)
MEC ) = {0}. This in turn implies that G

(N,L)
MEC has full column

rank. Lemma 4.3 now tells us that A has full column rank. �

Theorem 5.3. Consider the bilinear factorization of X in (3) subject to N monomial
equality constraints of the form (4). If{

S has full column rank,

ker(ΨΨΨ(N,L)) ∩ π(L)
S is an R-dimensional subspace,

(99)

then the bilinear factorization of X is unique.

Proof. Due to Lemma 5.2 we know that dim(ker(ΨΨΨ(N,L))∩π(L)
S ) = R implies that A has

full column rank. Since S has full column rank by assumption, we can conclude that X
has rank R. W.l.o.g. we can now assume that S is square (K = R) and nonsingular. Since
X = AST and S is nonsingular, there exists a nonsingular matrix W = S−TΠΠΠ∆∆∆ ∈ CR×R,
for some ΠΠΠ ∈ CR×R permutation matrix and nonsingular diagonal matrix ∆∆∆ ∈ CR×R,
with property

XW = ASTW = AD, (100)

where D = [d1, . . . ,dR] = STW = STS−TΠΠΠ∆∆∆ = ΠΠΠ∆∆∆ ∈ CR×R is a column permuted
nonsingular diagonal matrix. We will now argue that D and therefore also W is unique
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(up to the intrinsic column scaling and permutation ambiguities). Using (95), we obtain∣∣∣∣∣
R∑
s=1

AL(a(+,n)
r ,a(−,n)

r )dsr

∣∣∣∣∣ = ψψψ(n,L)(dr ⊗ · · · ⊗ dr) = 0, r ∈ {1, . . . , R},

where exploited that ω(dr) = 1 for all r ∈ {1, . . . , R} and that AL(a
(+,n)
r ,a

(−,n)
r ) has

rank strictly less than L. Overall, we obtain

ΨΨΨ(N,L)(D� · · · �D) = 0.

Since dim(ker(ΨΨΨ(N,L))∩π(L)
S ) = R, the columns of D�· · ·�D form a basis for ΨΨΨ(N,L))∩

π
(L)
S . Consequently, if the columns of B ∈ CRL×R constitute an alternative basis for

ker(ΨΨΨ(N,L)) ∩ π(L)
S , then there exists a nonsingular matrix F ∈ CR×R such that

B = (D� · · · �D)FT . (101)

Due to, e.g., Theorem 1.2 we can conclude from relation (101) that D is unique (up
to the intrinsic column scaling and permutation ambiguities). This implies that when

dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R, then w1, . . . ,wR are the only vectors (up to scaling am-

biguities) with the property that XW∆∆∆−1ΠΠΠ = A, where ∆∆∆ is an arbitrary nonsingular
diagonal matrix and ΠΠΠ is an arbitrary permutation matrix. We can now conclude that
A = XW∆∆∆ΠΠΠ and ST = ΠΠΠ∆∆∆W−1, implying the uniqueness of the bilinear factorization
of X. �

Note that Theorem 4.5 is based on the assumption that dim(ker(ΨΨΨ(N,L))∩π(L)
S ) = R.

Proposition 5.4 below explains that this is equivalent to G
(N,L)
MEC having full column rank.

Proposition 5.4. The subspace ker(ΨΨΨ(N,L))∩π(L)
S is R-dimensional if and only if G

(N,L)
MEC

has full column rank.

Proof. Assume that G
(N,L)
MEC has full column rank. Then G

(N,L)
MEC f(L)(d) = 0 implies

that f(L)(d) = 0. Due to Lemma 4.1 we know that ω(d) ≤ 1. Lemma 5.1 implies

that d ⊗ · · · ⊗ d ∈ ker(ΨΨΨ(N,L)) ∩ π(L)
S . This fact together with the fact that there

are R linearly independent vectors d1, . . . ,dR with property ω(dr) = 1 implies that

dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) ≥ R. We will now argue that dim(ker(ΨΨΨ(N,L)) ∩ π(L)

S ) ≤ R.

Assume on the contrary that dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) > R. Note that any vector in

ker(ΨΨΨ(N,L)) ∩ π(L)
S corresponds to a vectorized L-th order symmetric tensor, e.g., d ∈

ker(ΨΨΨ(N,L))∩π(L)
S implies that there exists a symmetric tensor D ∈ SymL(CR) such that

d = [d1,1,...,1, d1,1,...,2, . . . , dR,R,...,R]T . Since dim(ker(ΨΨΨ(N,L))∩π(L)
S ) > R we can assume

that the symmetric tensor D has a nonzero off-diagonal element, i.e., di1,...,iL 6= 0 for

some im 6= in (if not, then dim(ker(ΨΨΨ(N,L))∩π(L)
S ) = R). According to Lemma 4.7 there

exist vectors d1, . . . ,ds ∈ CR such that D =
∑s
i=1 di ◦ · · · ◦ di. Let

∑s
i=1 di ⊗ · · · ⊗ di

denote the vectorized version of D =
∑s
i=1 di ◦ · · · ◦di. Then, since

∑s
i=1 di⊗ · · ·⊗di ∈

ker(ΨΨΨ(N,L)) ∩ π(L)
S , we have

0 = ψψψ(n,L)

(
s∑
i=1

di ⊗ · · · ⊗ di

)
= g

(n,L)
MEC ·

(
s∑
i=1

f (L)(di)

)
,
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where relation (96) in Lemma 5.1 was used. Since G
(N,L)
MEC has full column rank, we must

have that
∑s
i=1 f

(L)(di) = 0. The latter implies that di1,...,iL = 0 whenever im 6= in,

which is a contradiction. We can now conclude that if G
(N,L)
MEC has full column rank, then

dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R.

Conversely, assume that dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R. Then, as explained in the

proof of Lemma 5.2, G
(N,L)
MEC has full column rank. �

5.2. Algorithm based on the null space formulation

In this section an algebraic algorithm for the bilinear factorization problem will be
outlined that is based on the null space formulation discussed in Section 5.1.

Step 1: Construction of matrix P(N,L). Assume that condition (99) in Theorem 5.3 is
satisfied. W.l.o.g. we can assume that S is square nonsingular (K = R). Note that
from (95) there exist R linearly independent vectors w1, . . . ,wR, each with property
ω(STwr) = ω(dr) = 1, such that for every n ∈ {1, . . . , N} we have that∣∣∣∣∣

R∑
q=1

AL(a(+,n)
q ,a(−,n)

q )dqr

∣∣∣∣∣ =

(
L∏
l=1

a
(+,n)
ls −

L∏
l=1

a
(−,n)
ls

)
dLsr = 0, (102)

where dsr denotes the s-th entry of dr = STwr. W.l.o.g. we assume that dr = e
(R)
r .

From Xwr = ASTwr = Adr = ar we conclude that

a
(+,n)
lr = e(I)T

pl,n
Xwr and a

(−,n)
lr = e(I)T

sl,n
Xwr. (103)

Plugging (103) into (35) yields

a
(+,n)
1r · · · a(+,n)

Lr − a(−,n)
1r · · · a(−,n)

Lr = 0⇔ p
(n)T
L ·

(
wr ⊗ · · · ⊗wr︸ ︷︷ ︸

L times

)
= 0, (104)

where

p
(n)T
L := ((e(I)T

p1,n X)⊗ · · · ⊗ (e(I)T
pL,nX))− ((e(I)T

s1,n X)⊗ · · · ⊗ (e(I)T
sL,nX))

=
(

(e(I)T
p1,n A)⊗ · · · ⊗ (e(I)T

pL,nA)− (e(I)T
s1,n A)⊗ · · · ⊗ (e(I)T

sL,nA)
)

(ST ⊗ · · · ⊗ ST )

= ψψψ(n,L)(ST ⊗ · · · ⊗ ST ) ∈ CR
L

,

in which relations (92) and (93) were used. Stacking yields

P(N,L) · (wr ⊗ · · · ⊗wr) = 0 , (105)

where

P(N,L) =


p

(1)
L
...

p
(N)
L

 = ΨΨΨ(N,L)(ST ⊗ · · · ⊗ ST ) ∈ CN×R
L

, (106)

where ΨΨΨ(N,L) is given by (92).
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Step 2: Computation of Q whose columns form a basis for ker(P(N,L)) ∩ π(L)
S . Since

P(N,L)(W � · · · �W) = 0, we know that there exist at least R linearly independent

vectors {wr ⊗ · · · ⊗ wr}, each with property wr ⊗ · · · ⊗ wr ∈ ker(P(N,L)) ∩ π(L)
S , and

each built from a column of W = [w1, . . . ,wR] = S−TΠΠΠ∆∆∆. Hence, if the dimension of

ker(P(N,L)) ∩ π(L)
S is R and the columns of Q form a basis for ker(P(N,L)) ∩ π(L)

S , then
there exists a nonsingular change-of-basis matrix F ∈ CR×R such that

Q = (W � · · · �W)FT . (107)

Lemma 5.5 below states that dim(ker(ΨΨΨ(N,L))∩π(L)
S ) = R or equivalently G

(N,L)
MEC has full

column rank, then dim(ker(P(N,L)) ∩ π(L)
S ) = R and the columns of Q in (107) indeed

form a basis for ker(P(N,L)) ∩ π(L)
S .

Lemma 5.5. Assume that S in (3) is nonsingular. If condition (99) in Theorem 5.3 is

satisfied (or equivalently G
(N,L)
MEC has full column rank), then dim(ker(P(N,L))∩π(L)

S ) = R.

Proof. Since we assume that dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R (or equivalently G

(N,L)
MEC has

full column rank; see Proposition 5.4), we know that the columns of D � · · · �D with

D = STW form a basis for ker(ΨΨΨ(N,L))∩ π(L)
S . (See Eqs. (100)–(101).) Let the columns

of B form an alternative basis for ker(ΨΨΨ(N,L)) ∩ π(L)
S , then there exists a nonsingular

matrix F ∈ CR×R such that B = (D�· · ·�D)FT . Since S is nonsingular, we know from

(106) that x ∈ ker(P(N,L))∩π(L)
S if and only if (S−T ⊗ · · ·⊗S−T )x ∈ ker(ΨΨΨ(N,L))∩π(L)

S .

Hence, if the columns of Q form a basis for ker(P(N,L)) ∩ π(L)
S , then

Q = (S−T ⊗ · · · ⊗ S−T )B

= (S−T ⊗ · · · ⊗ S−T )(D� · · · �D)FT

= (W � · · · �W)FT ,

where W = S−TD. Since rank(Q) = rank(W � · · · �W) = rank(F) = R, we conclude

that dim(ker(ΨΨΨ(N,L)) ∩ π(L)
S ) = R implies that dim(ker(P(N,L)) ∩ π(L)

S ) = R when S is
nonsingular. �

Step 3: Build tensor Q from Q. It is clear that relation (107) corresponds to a matrix
representation of the CPD of a tensor Q ∈ CR×···×R of order L+ 1:

Q =

R∑
r=1

wr ◦ · · · ◦wr ◦ fr . (108)

Step 4: Obtain W from CPD of Q. Since all the factor matrices of the CPD in (108)
have full column rank, we know that W can be recovered from (108) via an EVD (e.g.,
[3, 38]).

Step 5: Obtain A and S. Once W has been obtained, we can immediately compute
A = XW and S = W−T . This also implies the uniqueness of A = XW and S = W−T .

Theorem 5.6 below summarizes the above uniqueness result for bilinear factorizations,
which is based on a constructive interpretation of Theorem 5.3.
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Theorem 5.6. Consider the bilinear factorization of X in (3) with N monomial rela-
tions of the form (4). If{

S has full column rank,

ker(P(N,L)) ∩ π(L)
S is an R-dimensional subspace,

(109)

then A and S in (3) are unique, A has full column rank, and the bilinear factorization of
X can be reduced to the CPD of Q in (108). The latter decomposition can be computed
algebraically via an EVD.

Proof. The result follows directly from the preceding Steps 1–5 and Lemma 5.5. �

The constructive use of Theorem 5.6 when used to compute the bilinear factorization
of X in (3) is summarized as Algorithm 1.

Algorithm 1 Summary of constructive use of Theorem 5.6.

1. Build P(N,L) in (106).

2. Obtain matrix Q whose columns form a basis for ker(P(N,L)) ∩ π(L)
S .

3. Build tensor Q in (108) from Q.
4. Obtain W from CPD of Q.
5. Compute A = XW and S = W−T .

6. Applications

6.1. Application: Extension of CPD to (0,1)-binary weighted CPD

A nice property of bilinear factorizations subject to monomial equality constraints is
that they allow us to extend the CPD model (2) to binary weighted CPD (7) in which

E(r) in (8) now takes the form E(r) = D(r) ∗ (arb
T
r ), where D(r) ∈ {0, 1}I×J is a binary

“connectivity” matrix. This means that the tensor representation (8) extends to

X =

R∑
r=1

E(r) ◦ sr =

R∑
r=1

(D(r) ∗ (arb
T
r )) ◦ sr (110)

for binary weighted CPD. We stress again that the binary “connectivity” matrices D(r)

are not known (fixed) a priori. From (10) and (110) it is clear that (7) is a matrix repre-

sentation of the binary weighted CPD of X in which D = [vec(D(1)T ), . . . , vec(D(R)T )] ∈
CIJ×R. Since E(r) is not necessarily a low-rank matrix and a 2-by-2 submatrix of E(r)

can have rank two, the CPD modeling approach cannot be used for binary weighted
CPD. However, it can be verified that any 2-by-2 submatrix of E(r) = D(r) ∗ (arb

T
r )

must satisfy the monomial relation

e
(r)
i1j1

e
(r)
i2j2

e
(r)
i1j2

e
(r)
i2j1
· (e(r)

i1j1
e

(r)
i2j2
− e(r)

i1j2
e

(r)
i2j1

) = 0. (111)

We can now conclude that the binary weighted CPD of a tensor can be interpreted
as a monomial factorization involving N = C2

IC
2
J monomial relations of the form (35)

with L = 6 and {
a(+,n)
r = [e

(r)
i1j1

, e
(r)
i2j2

, e
(r)
i1j2

, e
(r)
i2j1

, e
(r)
i1j1

, e
(r)
i2j2

]T ,

a(−,n)
r = [e

(r)
i1j1

, e
(r)
i2j2

, e
(r)
i1j2

, e
(r)
i2j1

, e
(r)
i1j2

, e
(r)
i2j1

]T ,
(112)
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in which the superscript ′n′ is associated with the tuple (i1, i2, j1, j2). From (111) it is

also clear that the rank of the matrix A6(a
(+,n)
r ,a

(−,n)
r ) will depend on the (0, 1)-binary

pattern of D(r). The maximal rank of A6(a
(+,n)
r ,a

(−,n)
r ) as a function of (0, 1)-binary

pattern of D(r) is listed in Table 1.


e
(r)
i1j1

e
(r)
i2j2

e
(r)
i1j2

e
(r)
i2j1


x
x
x
x

0
x
x
x

x
0
x
x

x
x
0
x

x
x
x
0

x
x
0
0

0
0
x
x

x
0
x
0

0
x
0
x

0
x
x
0

x
0
0
x

x
0
0
0

0
x
0
0

0
0
x
0

0
0
0
x

0
0
0
0

Max rank of A6(a
(+,n)
r ,a

(−,n)
r ) 5 5 5 5 5 4 4 3 3 3 3 2 2 2 2 0

Table 1: Max rank of A6(a
(+,n)
r ,a

(−,n)
r ) as a function of the zero-pattern of [e

(r)
i1j1

, e
(r)
i2j2

, e
(r)
i1j2

, e
(r)
i2j1

]T .

An ’x’ means that the corresponding entry is nonzero, e.g., [0 x 0 0]T means that e
(r)
i2j2

is nonzero.

Let us end this section with a concrete example that demonstrates that the connec-
tivity pattern of D makes the uniqueness properties of the binary weighted CPD of X
in (7) different from the uniqueness properties the CPD of X in (8). Let I = J = 5,
K = R = 3, and

A =


2 8 4
7 3 4
2 10 3
4 8 5
6 5 5

, B =


8 5 6
8 3 6
7 10 2
4 9 3
8 6 5

, S =

[
6 8 10
8 2 8
6 1 4

]
,

D(1) =


1 1 0 0 1
1 0 0 1 1
0 0 1 0 0
1 0 0 1 1
0 1 1 1 1

, D(2) =


1 1 1 1 1
0 1 1 1 0
0 0 0 1 0
0 1 1 1 0
0 0 0 1 0

, D(3) =


0 1 0 1 1
1 1 1 0 1
1 1 0 1 1
0 1 0 1 0
0 1 1 1 1

.
It can be verified that condition (73) in Theorem 4.5 is satisfied, implying the uniqueness
of A, B and S.

Remark. It can also be verified that the ranks of E(1) = D(1) ∗ (a1b
T
1 ), E(2) = D(2) ∗

(a2b
T
2 ) and E(3) = D(3) ∗ (a3b

T
3 ) are 4, 3 and 5, respectively, i.e., the connectivity

pattern implies that the binary weighted CPD factor matrices are not even required to
be low rank. If they were low rank, BTD would have applied; this exemplifies that binary
weighted CPD can guarantee uniqueness in cases where other tensor decompositions fail.
Observe also that in contrast to the ordinary CPD, the local low-rank properties of the

binary weighted CPD factor matrices can vary. For example, [e
(I)
1 e

(I)
2 ]TE(1)[e

(J)
1 e

(J)
2 ] =[ 16 16

56 0

]
is a rank-2 matrix while [e

(I)
I−1 e

(I)
I ]TE(1)[e

(J)
J−I e

(J)
J ] =

[ 16 32
24 48

]
is a rank-1

matrix.
The connectivity pattern of D also affects the identifiability of the CPD factor ma-

trices A and B. To see this, consider again the above example, but now we set a1 = a2

and b1 = b2. The binary weighted CPD of X in (110) is still unique, despite the
rank-deficient matrix A�B. In contrast, the CPD of X (i.e., D = 1IJ1TR) is not unique.
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6.2. Application: Binary Matrix Factorization (BMF)

Consider the BMF (6). It is clear that not every BMF is unique (up to the in-
trinsic column permutation ambiguity). For example, if X = [ 1 0

0 1 ] [s1, s2]T , then X =
[ 1 0
1 1 ] [s1, s2−s1]T yields an alternative BMF. Below we explain how the presented frame-

work can be used to obtain identifiability conditions and algebraic algorithms for BMFs
of the form (6).

6.2.1. Nonhomogeneous formulation

Let us first explain how Theorem 5.6 can be adapted to solve the BMF problem using
a variant of the ACMA method [7] for blind separation of constant modulus signals. The
property ai,r ∈ {0, 1} can be expressed via the nonhomogeneous (polynomial) relation

ai,r(ai,r − 1) = ai,rai,r − ai,r = 0. (113)

Following the procedure in Section 5.2, we obtain

ai,r(ai,r − 1) = ai,rai,r − ai,r = 0⇔
[
p

(i)
1 ,p

(i)
2

] [ wr

wr ⊗wr

]
= 0, 1 ≤ i ≤ I, (114)

where p
(i)
1 = e

(I)T
i X and p

(i)
2 = (e

(I)T
i X)⊗ (e

(I)T
i X). Stacking yields

P
(I)
BMF ·

[
wr

wr ⊗wr

]
= 0, where P

(I)
BMF =

 p
(1)
1 p

(1)
2

...
...

p
(I)
1 p

(I)
2

 ∈ CI×(R+R2). (115)

We know that there exist at least R linearly independent vectors {
[ wr
wr⊗wr

]
} in the

subspace ker(P
(I)
BMF) ∩ (CR × π

(2)
S ). Consequently, if the dimension of the subspace

ker(P
(I)
BMF) ∩ (CR × π(2)

S ) is minimal (i.e., R), then the problem of finding {wr} from
(115) can be reduced to a CPD problem. In more detail, let the columns of M ∈
C(R+R2)×R denote a basis for the subspace ker(P

(I)
BMF) ∩ (CR × π(2)

S ). Partition M as

follows M =
[
M1

M2

]
in which M1 ∈ CR×R and M2 ∈ CR2×R. Then there exists a

nonsingular matrix F ∈ CR×R such that we obtain the coupled factorization WFT = M1

and (W�W)FT = M2. The latter factorization corresponds to a matrix representation

of a CPD M2 =
∑R
r=1 wr ◦wr ◦ fr ∈ CR×R×R that can be computed via an EVD. This

also implies the uniqueness of A = XW.

6.2.2. Homogeneous formulation

Observe that X = AST = AD · D−1ST for any nonsingular diagonal matrix D ∈
CR×R. This property implies that in the context of BMF, the binary constraint A ∈
{0, 1}I×R can be relaxed to a binary zero-constant constraint A ∈ {0, α}I×R, where α ∈
C. Thus, as an alternative to (114), we propose the following homogeneous (monomial)
formulation of the binary constraint of air ∈ {0, 1}:

ai1,rai1,rai2,r − ai1,rai2,rai2,r = 0, 1 ≤ i1 < i2 ≤ I. (116)

From (116) it is clear that the BMF (6) can also be interpreted as a bilinear fac-
torization of the form (3) involving N = C2

I monomial relations of degree L = 3,
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a
(+,n)
r = [ai1,r, ai1,r, ai2,r]

T and a
(−,n)
r = [ai1,r, ai2,r, ai2,r]

T and where the superscript
′n′ is associated with the pair (i1, i2). Compared to (114), an interesting property of the
homogeneous formulation (116) is that it can lead to relaxed identifiability conditions.
As an example, consider the case where S ∈ CK×6 has full column rank with R = 6 and

A =


0 1 1 1 0 0 1 0 1 1 0 1 0
1 0 1 1 0 0 1 1 0 1 0 1 1
1 0 1 0 1 1 0 0 1 1 1 1 0
0 0 1 0 0 1 0 0 0 1 0 0 1
1 1 1 1 0 0 0 1 1 0 1 0 1
1 1 0 1 0 1 1 1 0 0 1 0 0


T

∈ C13×6

with I = 13. It can be verified that condition (109) in Theorem 5.6 is satisfied when

P(N,L) is built from the C2
I equations associated with (116). In contrast, the nonhomoge-

neous approach based on (113) together with Theorem 5.6 cannot guarantee uniqueness
for this BMF.

6.2.3. Numerical experiments

Let us end the section with an illustrative example. Consider (6) with K = 50, R = 4
and varying I. The goal is to estimate S from Y = X + N, where N is an unstructured
perturbation matrix. In each trial of the Monte Carlo experiment, the entries of S and
N are randomly drawn from a Gaussian distribution with zero mean and unit variance
while the entries of A are randomly drawn from a Bernoulli distribution in which the
random variable takes the values 0 and 1 with equal probability. The following Signal-to-
Noise Ratio (SNR) measure will be used: SNR = 10 log(‖X‖2F /‖N‖2F ). As a performance

measure we use the distance between S and its estimate, Ŝ. The distance is measured
according to the criterion P (S) = minΠΠΠΛΛΛ ‖S − ŜΠΠΠΛΛΛ‖F / ‖S‖F , where ΠΠΠ and ΛΛΛ denote a
permutation matrix and a diagonal matrix, respectively. We compare the two algebraic
methods associated with Theorem 5.6 when the nonhomogeneous (114) and homogeneous
(116) approaches are used. The mean P (S) over 100 Monte Carlo runs in which I = 20,
I = 30 and I = 40 are shown in Figure 1. We observe that for the case I = 20, the
homogeneous method performed better than the nonhomogeneous method. For the case
I = 40, the homogeneous and nonhomogeneous methods performed about the same.

10 20 30 40 50
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100
Nonhomogenous
Homogenous

10 20 30 40 50
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Homogenous
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10-1

100
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Figure 1: Mean P (S) values over 100 Monte Carlo runs when (left) I = 20, (middle) I = 30 and (right)
I = 40.

7. Conclusion

In this paper we studied bilinear factorizations of which one of the factor matrices
is subject to monomial equality constraints and the other has full column rank. We

31



have explained that such bilinear factorizations generalize the CPD of higher-order ten-
sors in which at least one factor matrix has full column rank, and we have extended
the framework accordingly. More precisely, we first presented a link between coupled
BTD and bilinear factorizations that allowed us to relax the monomial equality con-
straint into a low-rank constraint. By taking into account the specific structure that
captures the monomial constraint, we have even reduced the bilinear factorization to a
CPD. We demonstrated that BMFs can be interpreted as bilinear factorizations subject
to monomial equality constraints. This led to an algorithm and relatively easy-to-check
uniqueness conditions for BMF. Finally, the framework of bilinear factorizations subject
to monomial equality constraints enabled us to extend the CPD model to the decom-
position of a tensor into a sum of binary weighted rank-one terms. This allows one to
handle weighting structures that change over different slices.
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