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Abstract We study the link between parton dynamics in
the collinear limit and the logarithmically enhanced terms
of the groomed jet mass distribution, for jets groomed with
the modified mass-drop tagger (mMDT). While the leading-
logarithmic (LL) result is linked to collinear evolution with
leading-order splitting kernels, here we derive the NLL struc-
ture directly from triple-collinear splitting kernels. The cal-
culation we present is a fixed-order calculation in the triple-
collinear limit, independent of resummation ingredients and
methods. It therefore constitutes a powerful cross-check of
the NLL results previously derived using the SCET formal-
ism and provides much of the insight needed for resummation
within the traditional QCD approach.

1 Introduction

The study of the substructure of jets is now an established and
highly active component of LHC phenomenology. Following
early work on the subject [1,2], the true power of substructure
methods for new particle discoveries in the boosted regime
was first revealed over a decade ago [3]. This in turn led to
an explosion of interest in the subject and rapid development
of tools for tagging and grooming jets as well as their direct
exploitation in experimental searches and studies at the LHC
(see [4–7] for reviews and further references).

Jet substructure has also proved to be a fertile field for the
development of calculations and concepts in QCD, aimed at
improving the theoretical understanding of substructure. For
a review of such work we refer the reader to Refs. [8,9] and
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references therein. An especially important development in
this context has been the invention of methods and observ-
ables that can be perturbatively calculated to high precision
in a hadron collider environment and receive only modest
non-perturbative corrections. This is a significant develop-
ment for jet based studies which are generally subject to
large non-perturbative uncertainties from hadronisation and
the underlying event (in addition to pile-up), as well as pertur-
bative issues such as the presence of non-global logarithms
where the resummation accuracy is still generally limited
to leading-logarithms and the use of the leading Nc limit
[10,11].

A well-known set of observables, that eliminate some and
ameliorate other issues obstructing precision for hadron col-
lider jets, are those involving groomed jets where groom-
ing is implemented through the modified mass-drop tagger
(mMDT) [12,13] or its subsequent generalisation SoftDrop
[14]. The use of a zcut parameter as a threshold below which
soft particles can be groomed away, eliminates non-global
logarithms (NGLs) that otherwise appear in the ungroomed
jet mass. Although NGLs still appear as logarithms in zcut,
the phenomenologically relevant values of zcut ∼ 0.1 imply
that resummation of logarithms of zcut is not strictly nec-
essary. Moreover grooming via SoftDrop also considerably
reduces the impact of non-perturbative effects relative to the
ungroomed jet mass [12], virtually eliminating the underly-
ing event at high pT and leaving a modest hadronisation con-
tribution amenable to analytic studies. These developments
mean that theoretical calculations for jet observables with
mMDT/SoftDrop grooming can be carried out to high pre-
cision and accurate comparisons can be made to LHC data,
which is a program that has already been successfully estab-
lished with several recent theoretical studies, experimental
measurements and phenomenology [15–28].

In this paper we focus on the mMDT (equivalently Soft-
Drop with β = 0) jet mass distribution in the region of small
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ρ, ρ � zcut, where ρ is the normalised jet mass which for
hadron collider jets is generally defined as ρ = m2

p2
T R

2 , with

m2 the squared jet-mass, pT the jet’s transverse momentum
and R the jet radius parameter. In addition to the removal of
non-global logarithms and a considerable reduction in non-
perturbative contributions mentioned above, the mMDT is
unique in that the leading-logarithmic resummed result, for
the jet mass ρ, is single-logarithmic i.e. contains only terms
αn
s lnn ρ where the logarithms in ρ are of pure collinear ori-

gin. Such a structure is of course well-known for collinear
evolution, both space-like and time-like, of partons via the
DGLAP evolution equations for structure functions and frag-
mentation functions and for the small R limit of jet cross-
sections [29] but is exceptional for observables like jet masses
which in the ungroomed case receive double logarithmic
terms at each perturbative order.

The leading-logarithmic (LL) resummed result for the
mMDT jet mass, amounting to a resummation of the single-
logarithmic terms in ρ, was first derived in Ref. [12]. The
main result of that paper was written in the limit of small
zcut i.e. neglecting terms power suppressed in zcut. A result
including finite zcut corrections was also presented in the
appendix of Ref. [12] where complications arising from the
leading parton flavour changing were accounted for through
a matrix structure for the resulting resummation. An NLL
result, in the small zcut limit, was computed for the first time in
Ref. [15] and most recently a resummation to NNLL accuracy
in the same limit has been carried out [23].1 Phenomenolog-
ical studies have also been carried out for mMDT/SoftDrop
jet masses where resummed calculations, supplemented by
non-perturbative corrections, have been compared directly to
experimental data. In the mMDT context the resummed cal-
culations refer to LL calculations including finite zcut effects
and matching to full next-to-leading order (NLO) calcula-
tions [16,17] as well as calculations with NLL resummation
but without finite zcut corrections and matched to LO calcu-
lations [15]. Generally good agreement with data has been
observed in each case and we refer the reader to Refs. [26–28]
for further details.

In the present article we take a fresh look at the NLL
structure of the mMDT jet mass where previous work on the
subject has been entirely within the context of soft-collinear
effective theory (SCET) calculations [15,19,21,23,24]. The
original work of Ref. [15] recycled SCET calculations for soft
functions with an energy veto [30,31] and calculated a correc-
tion for C/A jet clustering [32,33] to derive the result for the

1 Our description of the resummation accuracy for the mMDT is consis-
tent with the original reference Ref. [12] while more recent work uses
a convention inspired by the general structure of SoftDrop jet mass,
where single logarithms are referred to as NLL, in spite of the absence
of double logarithmic terms. In this convention the work of Ref. [15] is
NNLL while that of Ref. [23] achieves NNNLL accuracy.

mMDT. In the current paper we shall approach this question
from the viewpoint of QCD calculations by directly address-
ing the collinear nature of the ln ρ terms in the jet mass dis-
tribution. Thus while a leading-logarithmic resummed result
can be derived in a strongly ordered picture with collinear
emissions widely separated in angle, the NLL structure with
terms αn

s lnn−1 ρ stems from lifting the strong ordering on a
pair of emissions. At order α2

s this leads us to consider two
emissions (i.e. three partons) within a jet, which are at small
angles θ2 � ρ

zcut
� 1 but with no relative strong ordering

between them. Such configurations are related to an NLL
DGLAP evolution picture and the QCD matrix element can
be approximated by triple-collinear splitting functions [34–
36]. In the strongly-ordered limit the triple-collinear split-
ting functions reduce to a product of LO splitting functions
thereby restoring the LL picture.

There has been much recent interest and work towards the
incorporation of higher-order splitting functions, including
the triple-collinear and double-soft limits, in the context of
parton shower algorithms [37–39]. With the emergence of
new research clarifying and pushing forward the logarithmic
accuracy of parton showers [40,41], it is also of interest to
understand in more detail the connection between higher-
order splitting functions and the logarithmically enhanced
terms for QCD observables.

With the above points in mind, in this paper we compute
the O

(
α2
s ln ρ

)
NLL term, for quark initiated jets, using the

triple-collinear splitting functions and phase-space. Our cal-
culation is a pure fixed-order computation, with the main
approximation being the use of the collinear limit. In par-
ticular we do not make use of known ingredients from any
resummation approach. We show that the expected leading-
logarithmic terms emerge from our calculations along with
recovering the proper argument of the running coupling in
the soft limit and the constant K related to the emergence
of the CMW or “physical” coupling [42–44]. Apart from
these standard ingredients we also derive the collinear NLL
terms finding agreement with the SCET results [15,19,24].
Given our derivation directly from the QCD matrix-elements
and independent of any previous SCET work, this constitutes
a strong completely independent check on the main results
involved in the NLL resummation for mMDT jet mass. We
shall also shed further light on the collinear structure we find
here in terms of standard QCD resummation elements which
should, we hope, enable the resummation of the mMDT jet
mass also within a QCD resummation formalism e.g. through
a suitable modification of the NNLL ARES method [43,45]
or directly by embedding the triple-collinear splitting within
a strongly-ordered parton cascade. We note that calculations
based on triple-collinear splitting functions in the context
of jet physics have also been carried out in Refs. [46,47].
For early work on integrals of triple-collinear splittings in
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the context of initial state space-like splittings we refer the
reader to Ref. [48].

Although we carry out our present calculation in the con-
text of e+e− annihilation precisely as in Ref. [15] to control
process dependent pieces of the calculation, the final NLL
results we extract derive purely from the collinear limit and
hence are universal. We confine our attention here to quark
initiated jets though similar calculations can be performed for
gluon jets. Also, while for the purposes of the present paper,
we shall work in the small zcut approximation purely for sim-
plicity, we stress that our approach can be extended to obtain
the finite zcut corrections at the NLL level. Although finite zcut

NLL corrections are expected to be numerically small they
should be of increased relevance in the context of the recent
NNLL calculation performed in the small zcut limit [23].

The current paper is organised as follows. We start in
Sect. 2 by defining the normalised jet mass observable ρ,
for which we use the same e+e− definition as in Ref. [15]
i.e. study the groomed heavy hemisphere mass, and write
down the leading-logarithmic resummed formula with run-
ning CMW coupling. In Sect. 3.1 we compute the leading-
order result in the small ρ limit and identify the ρ independent
constant term C1 αs that multiplies the Sudakov factor in the
LL formula. We then expand the LL result to order α2

s and
note that while this expansion also produces terms that are
NLL in ρ, such terms originate within an LL context, being
still related to the strongly-ordered picture. In Sect. 4 we carry
out our α2

s calculations for the jet mass differential distribu-
tion, ρ dΣ

dρ , considering various real-emission configurations
including emissions in opposite hemispheres and those in the
same hemisphere. We compute separately the contributions
from gluon emission with a C2

F colour factor and from gluon
decay with CFCA, CFTRn f and CF (CF −CA/2) terms and
combine the divergent real-emission results with those from
virtual corrections. At this stage we compare our results to
the expansion of the LL formula and identify the process-
independent NLL terms. In Sect. 5 we compare our results for
each colour channel to the SCET results finding agreement
in each case. We finally comment on the nature of our results
within the QCD resummation context and briefly mention
some prospects for further work. Various formulae relevant
to the derivation of our results are listed in the appendices.

2 Observable definition and leading-log resummation

We are interested in the jet mass distribution of a QCD jet
after the application of grooming via the modified mass-drop
tagger (mMDT) or equivalently SoftDrop (β = 0). In the
current article, for reasons of convenience, we shall work in
the context of e+e− collisions, though the NLL pure collinear
terms we will eventually extract are process independent and
hence apply also to jets at hadron colliders.

We will compute the standard heavy hemisphere jet mass
observable extensively studied in e+e− collisions but with
the modification that we compute the heavy jet mass after
running the mMDT procedure on the particles in each hemi-
sphere. This was also the observable studied in the first
mMDT NLL resummed calculation performed in Ref. [15].
In general one may separate the event into two hemispheres
in different ways e.g. by clustering to two jets as in Ref. [15]
or as is traditional by using the thrust axis. At the level of
our calculations and for extracting the terms we seek, we
are insensitive to the precise details since in the soft and/or
collinear limit we can take the hemispheres to be defined by
the directions of the initial quark–anti-quark pair.

The mMDT algorithm, as applied to e+e− collisions,
involves declustering particles in a hemisphere of an e+e−
event using the Cambridge/Aachen (C/A) algorithm, as one
does for a hadron collider jet. We produce, at each stage, two
branches i and j and we require

min(Ei , E j )

Ei + E j
> zcut. (1)

If a branching fails this requirement we reject the softer
branch and proceed with declustering the harder branch until
the condition passes or we end up with a massless hard par-
ton. We then define

ρ = max(M2
R, M2

L)

Q2/4
, (2)

where we select the larger of the left or right hemisphere
squared invariant masses (M2

L and M2
R respectively) and nor-

malise to (Q/2)2 which corresponds to the squared energy
of a hemisphere in the Born limit.

We shall work in the formal limit ρ � zcut � 1, which
means that we will examine the structure of ln ρ enhanced
terms, but shall neglect power corrections in zcut therein. A
leading log (LL) resummation formula for the mMDT jet
mass distribution, based on an independent emission picture
with emissions strongly ordered in angles, was first provided
in Ref. [12] (see Eq. (7.2) of Ref. [12] for the result). While
that result applies directly to a jet produced in hadron col-
lisions, it can be easily modified to the case of the heavy
groomed hemisphere mass in e+e− annihilation. We express
our leading-logarithmic resummed result in terms of the inte-
grated distribution, Σ(ρ) = ∫ ρ

0
1
σ0

dσ
dρ′ dρ′ as

ΣLL(ρ) =
(

1 + CFαs

2π
C1

)
exp

[
−

∫ 1

ρ

dρ′

ρ′

×
∫ 1−max(zcut,ρ

′)

0
dz pqq(z)

CF

π
αcmw
s

(
(1 − z) ρ′Q2/4

)
]

,

(3)
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where we defined the splitting function
pqq(z) = (1 + z2)/(1 − z) and σ0 is the Born cross section.

The above result modifies the result of Ref. [12] by replac-
ing p2

T by Q2/4 and is written in terms of the splitting func-
tion pqq(z) rather than pgq(z) so that the variable 1 − z in
the above result corresponds to the variable z in Eq. (7.2)
of Ref. [12]. We have also inserted an additional factor of
two in the Sudakov exponent which takes into account the
fact that we are considering the result due to two hard par-
tons in the left and right hemispheres respectively, rather than
just a single parton initiating a jet. This is accounted for by
our definition of the splitting function which has a factor of
two relative to that defined in Ref. [12]. The above result
is labelled LL since it correctly resums terms αn

s L
n , with

L = ln ρ, i.e. the leading logarithms in ρ. Additionally a
fixed-coupling calculation of the exponent in Eq. (3) reveals
a term of the form αs ln2 zcut, which although subleading in
ρ, correctly resums terms

(
αs ln2 zcut

)n
[12].

In Eq. (3) we have defined the coupling in the CMW or
“physical” scheme [42–44] and have set the argument of the
running coupling to be the transverse momentum squared of
a soft and collinear emission relative to the direction of its
hard parent parton, expressed in terms of the invariant mass
ρ′ and the energy fraction of the emitted gluon Q

2 (1 − z),
since we have k2

t = (1 − z)ρ′Q2/4.2 Both the specification
of the CMW scheme and the precise details of the argument
of the running coupling (beyond the fact that it scales with
ρ) in fact produce terms that are formally NLL in ρ but with
logarithmic enhancements in zcut. These terms are an intrin-
sic part of the leading-logarithmic resummation framework
and hence naturally belong in our LL formula. In a similar
spirit we have also included in Eq. (3), a ρ independent con-
stant order αs coefficient C1, which is process dependent and
on physical grounds factorises from the leading-logarithmic
Sudakov resummation. On expanding the exponent, multipli-
cation by the C1 term results in an α2

s L term. While this term
should be reproduced by our order α2

s calculations, it is pro-
cess dependent and unrelated to the collinear NLL structure
we ultimately seek to extract. Hence the explicit identifica-
tion of C1 is needed, to account for the role of this piece in
our final result.

We then expect that our eventual order α2
s result should

contain all terms generated by the expansion of (3) and addi-
tionally all terms of genuine NLL origin (i.e. unrelated to the
strongly-ordered in angle LL dynamics). These terms should
arise from collinear physics, and be independent of zcut and
of the specific hard process.

2 Recall that in the soft-collinear limit ρ′ = m2/(Q2/4) ≈ (1 − z)θ2

while kt = Q
2 (1 − z)θ .

3 Leading order calculation and expansion of LL result

Throughout this article we shall work in the resummation
region where ρ � zcut and hence ignore the presence of a
transition point at ρ ≈ zcut, beyond which the groomed jet
mass result becomes coincident with the plain ungroomed
mass. We shall consider for simplicity that zcut � 1, so that
we can neglect powers of zcut, although this is not a require-
ment on the validity of our triple-collinear calculations.

Our first step will be to determine the ρ independent coef-
ficient C1 that appears in Eq. (3). We do this in the following
subsection by performing a leading-order calculation in the
soft and collinear limit.

3.1 Leading-order calculation

Here we derive, in the small ρ and zcut limit as defined before,
the order αs contribution to Σ(ρ). At this order we have
to consider a single real emission and the one-loop virtual
correction to qq̄ production. To handle divergences in the
real emission calculation, we perform the calculation in con-
ventional dimensional regularisation (CDR) in d = 4 − 2ε

dimensions, and combine with the virtual correction before
taking ε → 0.

Since we are interested in the region of small jet mass and
small zcut, we can work in the soft and/or collinear limit, per-
form the calculation for a single hemisphere and then double
the result. Considering the gluon to be in the same hemi-
sphere as the quark (for example) and applying the
mMDT, we have a situation where the zcut condition passes
or fails. If it passes then one obtains a non-zero hemisphere
mass, while if it fails the hemisphere mass vanishes.

When the zcut passes, we are considering a pair of rel-
atively energetic partons which produce a small jet mass,
implying that the angle between partons is small, θ2 ∼
ρ
zcut

� 1, which allows the use of the collinear approxi-
mation. In this region the emission probability is just the
q → qg splitting function in 4 − 2ε dimensions pqq(z, ε) =
pqq(z) − ε(1 − z), and the result follows by applying the
standard d-dimensional collinear phase space [49]:

Σ1,r1(ρ) = 2 × CFαs

2π

(4πμ2)ε

Γ (1 − ε)

(
Q

2

)−2ε ∫
dθ2

θ2(1+ε)

×
∫ 1−zcut

zcut

(z(1 − z))−2ε pqq(z, ε) Θ(z(1 − z)θ2 < ρ)dz,

(4)

where the label r1 indicates the first of three distinct real-
emission terms that we encounter, and we have provided an
explicit factor of 2 to take account of both hemispheres, which
shall apply to all the real-emission terms we compute in this
section. The constraint arising from restricting the jet mass
is written in terms of a step function involving ρ, while the
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zcut condition removes any soft singularity in the integral and
we obtain just a collinear pole alongside finite corrections.
We have not explicitly written, for brevity, the dependence
on zcut in the argument of Σ1,r1 which is left implicit here
and throughout the article.

Next we turn to the region where the zcut condition fails,
the softer particle is groomed away, and we obtain a massless
hemisphere. This can happen when the quark goes soft for
z < zcut or when the gluon goes soft for z > 1 − zcut, and in
either case the jet mass vanishes so that we can replace the
step function in Eq. (4) by unity. The region corresponding to
a soft quark also contributes only a collinear divergence and
finite terms which are suppressed by powers of zcut which
we neglect. Hence retaining just the collinear divergence,
corresponding to a pole in ε produced by the θ2 integral, we
can write this contribution as

Σ1,r2(ρ) = −2
CFαs

2π

1

ε

∫ zcut

0

(
1 + z2

1 − z

)
dz , (5)

where we performed the θ2 integral and discarded all finite
terms owing to their suppression with zcut. Accordingly we
have dropped the ε dependence of the constant prefactor mul-
tiplying the integral, since this only leads to finite power sup-
pressed in zcut corrections.

Lastly there is the region z > 1 − zcut corresponding
to a soft gluon emission, which is removed by grooming. As
there is no longer a constraint on the angle, one has to replace
the soft-enhanced part of the splitting function with the full
eikonal function to account for the wide-angle region. For
soft-regular pieces, however, one merely needs the collinear
pole as any finite contributions are power suppressed in zcut.
Hence, using pqq(z, ε) = 2/(1 − z) − (1 + z) − ε(1 − z), to
separate the soft enhanced and regular terms of the splitting
function, we write

Σ1,r3 = Σ1,r3 soft + Σ1,r3 coll., (6)

where explicitly

Σ1,r3 soft = 2
CFαs

2π

(4πμ2)ε

Γ (1 − ε)

(
Q

2

)−2ε ∫ 1

1−zcut

2 dz

(1 − z)1+2ε

×
∫ 1

0

2 d (cos θ)

(1 − cos θ)1+ε (1 + cos θ)1+ε
, (7)

Σ1,r3 coll. = 2 × CFαs

2π

1

ε

∫ 1

1−zcut

dz(1 + z). (8)

In the expression for Σ1,r3 soft the upper limit of the cos θ

integral corresponds to θ = π/2 for the boundary of the
hemisphere under consideration, while in the expression for
Σ1,r3 coll. we have retained only the singular contribution as
finite corrections vanish with zcut.

Our final ingredient is the well-known virtual correction
to qq̄ production (see e.g. [49]):

V (ε) = CFαs

2π

Γ (1 + ε)Γ 2(1 − ε)

Γ (1 − 2ε)

×
(

− 2

ε2

(
4πμ2

Q2

)ε

+ π2 − 8 − 3

ε

(
4πμ2

Q2

)ε
)

.

(9)

We express our results in terms of the renormalised coupling
in the MS scheme, αs(μ

2
R), using the relation

μ2εαs = S−1
ε μ2ε

R αs(μ
2
R) + O(α2

s ), (10)

where we have the standard MS factor

Sε = (4π)εe−εγE , (11)

and we choose μR = Q/2.3

Carrying out the necessary integrals we obtain the result
for the real emission term Σ1,r = Σ1,r1 +Σ1,r2 +Σ1,r3 soft +
Σ1,r3 coll.,

Σ1,r = CFαs
(
Q2/4

)

2π

(
2

ε2 + 3 − 4 ln 2

ε

− ln ρ (4 ln zcut + 3) + 2 ln2 zcut + 8 ln 2 ln zcut

+ 4 ln2 2 − 7π2

6
+ 7

)
. (12)

Combining with the virtual correction we obtain the leading-
order result, Σ1(ρ) = Σ1,r + V (ε):

Σ1(ρ) = CFαs
(
Q2/4

)

2π

[ (
− ln

1

ρ

(
4 ln

1

zcut
− 3

)

+2 ln2 zcut

)
− 2 ln 2

(
4 ln

1

zcut
− 3

)
− 1

]
, (13)

where the argument of the running coupling reflects our
choice of μR . We have written the above result separating
the contributions that arise from expanding the LL formula
(i.e the ln 1/ρ and ln2 zcut contributions that are associated to
the fixed-coupling Sudakov exponent) from the contributions
we shall associate to C1. This allows us to identify

C1 = −2 ln 2

(
4 ln

1

zcut
− 3

)
− 1. (14)

We note that defining the observable as v = ρ/4, correspond-
ing to a normalisation to Q2, would result in the elimination

3 Beyond order αs , the RHS of Eq. (10) contains UV poles in ε related
to the renormalisation of the strong coupling.
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of the term proportional to ln 2 and hence the ln zcut depen-
dence fromC1, but the resummation of ln zcut terms is beyond
the scope of our results.

3.2 LL result at order α2
s

On performing the full order α2
s calculation, to our NLL in

ρ accuracy, we should recover all terms produced by the
expansion of Eq. (3) in addition to terms that are unrelated
to the leading logarithmic structure, which will then act as
one of the checks on our results. To this end we report below
the expansion of Eq. (3) for the differential distribution ρ dΣ

dρ

(to correspond to the calculations of the following sections).
The leading-order result is given by (for our choice of μR =
Q/2),

ρ
dΣLL

1

dρ
= CFαs

(
Q2/4

)

2π
(−3 − 4 ln zcut) . (15)

To obtain the order α2
s result one needs to compute the

Sudakov exponent with running coupling and switch from
the CMW scheme to the MS scheme, which gives

ρ
dΣLL

2

dρ
=

( αs

2π

)2
[
C2
F

(
(3 + 4 ln zcut)

2 ln ρ − 8 ln3 zcut

− 2(3 + 16 ln 2) ln2 zcut

+ (4 − 48 ln 2) ln zcut − 18 ln 2 + 3

)

+ CFCA

(
11

6
(3 + 4 ln zcut) ln ρ

+11

3
ln2 zcut +

(
2π2

3
− 134

9

)
ln zcut

)

+ CFTRn f

(
−2

3
(3 + 4 ln zcut) ln ρ

−4

3
ln2 zcut + 40

9
ln zcut

) ]
. (16)

The above result contains a term which is LL in ρ origi-
nating from the exponentiation of the leading-order result.
It also contains NLL in ρ terms, corresponding to ρ inde-
pendent terms in ρ dΣ2/dρ generated by an interplay of the
LL exponent with C1 and by fixing the scale and scheme of
the running coupling. In particular the ln2 zcut terms in the
CFCA and CFTRn f channels derive from the 1 − z factor in
the argument of the running coupling while the ln zcut term in
the same channels is generated by changing from the CMW
scheme to the MS scheme as can be seen through their coef-

ficient, proportional to K =
(

67
18 − π2

6

)
CA − 10

9 TRn f . In

addition to these terms, the 1 − z factor in the argument of
the running coupling and the CMW coefficient K applied to
the full splitting function, rather than just its soft enhanced

piece, are also responsible for producing zcut independent
NLL terms, which go beyond the strict jurisdiction of the LL
formula. The full set of such terms will be identified through
the calculation we perform here and can be properly accom-
modated within a consistent NLL resummation formula.

In the next sections we shall derive the full result at order
α2
s through to NLL accuracy, compare it to the expectations

from Eq. (16) and derive the zcut independent NLL correc-
tions.

4 NLL at O
(
α2
s
)
: the triple-collinear limit

At LL accuracy, for the mMDT jet mass, we have a picture
of successive collinear parton branchings which are strongly
ordered in angle with each branching being described by a
leading-order (LO) 1 → 2 splitting function. Thus at order
α2
s , the real emission matrix-element simply involves a prod-

uct of two LO splitting functions. To obtain NLL accuracy,
at order α2

s , one has to consider three partons that are compa-
rably collinear i.e. the opening angle between any two par-
tons is small θ2

i j � 1 but there is no strong ordering so that

θ2
12 ∼ θ2

13 ∼ θ2
23. Such configurations are described by the

1 → 3 collinear splitting of an initial parton, and the matrix-
element involves triple-collinear splitting functions. In the
strongly-ordered limit, the triple-collinear splitting functions
reduce to a product of LO splitting functions (in general after
azimuthal averaging) thus restoring the LL picture.

For our current calculations, the relevant functions are the
unpolarised triple-collinear splitting functions for a quark
(or anti-quark) initiated 1 → 3 splitting, denoted 〈Pabq〉
for a splitting q → qab with a and b representing parton
flavours, which were first computed in Refs. [34–36], and
are listed in the appendix. For the q → ggq splittings there
is both a gluon emission contribution with aC2

F colour factor,
and a gluon decay contribution with a CFCA colour factor.
The q → qq̄q splitting arises from gluon decay and has
a CFTRn f colour factor as well as a contribution from an
identical particle interference contribution, involving quarks
of the same flavour in the final state, which has a colour
factor CF (CF − CA/2) i.e. vanishes in the leading Nc limit.
Identical considerations apply for the decay of an initial anti-
quark. In the following subsections, we consider the gluon
emission and decay contributions in turn.

4.1 Gluon emission contribution

Here we study the emission of two gluons from the initial
qq̄ system, associated with a C2

F colour factor. The emitted
gluons can either be in the same or in opposite hemispheres,
with the latter case being simply related to the leading-order
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calculations we have already performed. We deal with each
contribution in turn below.

4.1.1 Emissions in opposite hemispheres

Consider a gluon emitted in each of the “right” and “left”
hemispheres containing the quark and anti-quark respec-
tively. Let us assume that the right hemisphere is heavier after
grooming and that its groomed jet mass is ρ. This implies
that the branching in the right hemisphere must pass the zcut

requirement corresponding to 1 − zcut > z > zcut and that
it must set a mass ρ, while in the left hemisphere the mass
must be below ρ for it to be lighter, and hence the grooming
can either retain both or remove one of the two particles. The
fact that in the right hemisphere the grooming passes, cou-
pled with the limit we are working in, with ρ � zcut, allows
us to use the collinear approximation, so that the branching
in the right hemisphere factorises from the dynamics of the
left hemisphere. Here we do not require the triple-collinear
splitting functions, as the emissions in opposite hemispheres
are well separated.

For the left hemisphere the constraint on the mass to be
below ρ simply gives us Σ1,r/2 with Σ1,r the real emission
result already computed in the previous section (see Eq. (12).
For the right hemisphere the distribution can be simply cal-
culated in the collinear limit using the LO splitting function
and the collinear 1 → 2 phase space. Finally a factor of two
accounts for the case when the left hemisphere is heavier
after grooming.

For compactness, here and in the sections below, we define
the quantity F (ρ),

F (ρ) = ρ
dΣ2

dρ
, (17)

where Σ2 is the order α2
s contribution to Σ(ρ). The result for

the emissions in opposite hemispheres can then be written as
a product of two leading-order factors4:

F opp.(ρ, ε) = Σ1,r × CFαs

2π

eεγE

Γ (1 − ε)

×
∫ 1−zcut

zcut

(ρz(1 − z))−ε pqq (z, ε) dz. (18)

Note that although the LO jet mass distribution for the right
hemisphere is a finite quantity, we have retained its ε depen-
dence in the result above, since Σ1,r contains double and
single ε poles and finite terms (in the limit ε → 0) are gen-
erated by the ε expansion.

4 Having specified our choice of μR = Q/2 we shall not explicitly
indicate the argument of αs in the order α2

s pieces.

4.1.2 Emissions in the same hemisphere

When two emissions, i.e. three partons, are in the same hemi-
sphere one has to consider the action of the mMDT taking into
proper account the Cambridge/Aachen clustering sequence.
This involves considering different angular regions where
the two emissions can be clustered separately to the quark
(or anti-quark according to the hemisphere in question) or
are first clustered together and then clustered to the quark. It
proves convenient to divide the calculation into two pieces: a
first piece where in all angular regions we apply the mMDT
as if the gluons are clustered separately to the quark and a
second piece which restores the correct action of the mMDT
in the angular region where the two gluons are clustered. We
are then led to consider the following distinct cases:

– Larger-angle gluon passes zcut: Neglecting the cluster-
ing of the two gluons, the mMDT declustering produces
two branches, consisting of the larger-angle gluon and
a massive branch with the quark and the smaller-angle
gluon. When the first declustering passes the zcut condi-
tion all three partons are retained. The angle between the
branches is small, being set by θ2 ∼ ρ/zcut and hence the
three partons are constrained to be within a small angu-
lar region and the triple-collinear limit generates the full
result. The result for the real emission calculation will
be divergent due to the smaller-angle emission becoming
soft and/or collinear and will contain double and single
ε poles.

– Larger-angle gluon fails zcut : Another relevant situation
is that the larger-angle gluon is soft and hence the first
declustering fails the zcut condition.5 In this case the soft
gluon is groomed away while the tagger then declusters
the second gluon and we require the second declustering
to pass the zcut condition to obtain a massive hemisphere.
In this case only the smaller-angle gluon is constrained
by the jet mass to be collinear to the quark, while the first
emission can be at a large angle. Hence we need to modify
the triple-collinear splitting functions to match the cor-
rect soft large-angle emission pattern for the first gluon,
precisely as we did in Sect. 3.1. The result is divergent
due to the soft divergence produced by the larger-angle
gluon, though it contains only a single pole in ε.

– Correction for gluon clustering: In the region where the
angle between the two gluons, θ12, is the smallest angle
the gluons are clustered in the C/A algorithm. Hence the
first declustering produces a massive branch with the two
gluons and a massless branch i.e. the quark. If the quark

5 The first declustering can also fail the zcut condition due to the massive
quark-gluon branch going soft, but rejection of this branch leads to a
massless hemisphere and hence this contribution can be ignored for ρ 	=
0.
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Fig. 1 An illustration of the parameterisation used for kinematic vari-
ables in the gluon emission process, relevant to the triple-collinear limit
calculation discussed in the main text

is soft the zcut condition can fail and the tagger recurses
down the massive two-gluon branch. However such con-
figurations with a soft quark are suppressed by powers
of zcut and can be ignored consistent with our intended
accuracy. The two-gluon branch must also pass the zcut as
grooming it away would lead to a massless jet. Hence we
can always take the first declustering to pass the zcut con-
dition so that all three partons are retained, implying that
the triple-collinear limit is once again the relevant one.
In the angular region where the gluons are clustered, we
shall subtract the contributions already included in the
first two scenarios described above, and shall add the cor-
rect constraints just discussed. The difference between
the correct and subtraction terms is finite and can be cal-
culated in four dimensions.

For calculations in the triple-collinear limit, we work in
terms of the energy fractions zi , defined wrt the initiating
parton’s energy, and which satisfy

∑
i zi = 1, and the angles

θi j between any two partons i and j , such that θi j � 1. The
triple-collinear phase space in 4 − 2ε dimensions may be
written as6 [50]

dΦ3 = 1

π

(
Q

2

)4−4ε 1

(4π)4−2ε Γ (1 − 2ε)

×dz2dz3dθ2
13dθ2

23dθ2
12 (z1z2z3)

1−2ε Δ−1/2−ε Θ(Δ),

(19)

where the Gram determinant Δ is defined as

Δ = 4θ2
13θ

2
23 −

(
θ2

12 − θ2
23 − θ2

13

)2
. (20)

To make contact with the LO splitting functions in the
strongly-ordered limit, it is useful to parameterise the vari-
ables zi in terms of variables z and z p as depicted in Fig. 1.
Our general method for integrating the triple-collinear func-
tions and extracting its divergences is briefly described in
Appendix B. It involves systematic subtraction of soft and
collinear divergences, via a series expansion around diver-
gent limits, to obtain the pole structure and a pure finite con-
tribution which we integrate numerically in four dimensions.

6 Additionally a 1/2! symmetry factor applies for identical particles in
final state.

Our results shall thus be partly analytical (stemming from
performing an ε expansion of the coefficients of the pole
terms) and partly numerical in nature.

We first provide the details for results neglecting the
clustering of gluons starting from the contribution where
the larger-angle emission passes the zcut, which we label
F pass(ρ, ε). We take θ13 to be the larger angle and hence
for the first declustering to pass the zcut condition we have
that 1 − zcut > z > zcut. The smaller angle gluon is not
examined for the zcut condition and can be arbitrarily soft
and/or collinear leading to divergences in both limits i.e.
from z p → 1 and θ23 → 0. The relevant splitting func-
tion and prefactor is specified by Eqs. (A.1), (A.3) and we
obtain

Fpass(ρ, ε) = 2S−2
ε

(
Q

2

)4ε

×
∫

dΦ3
(8παs)

2

s2
123

C2
F

〈
P(ab)
q→g1g2q3

〉

×δρ(1, 2, 3)Θzcut (1|23)Θ(θ23 < θ13), (21)

where s2
123 = Q2

4

∑3
j>i

∑2
i=1 zi z jθ

2
i j is the squared invariant

mass of the three parton system and δρ(1, 2, 3) is an abbre-
viated notation for the condition that the normalised hemi-
sphere jet mass ρ involves all three partons i.e. the condition

δρ(1, 2, 3) = ρ δ

(

ρ − 4s2
123

Q2

)

, (22)

where the factor of ρ in front of the delta function takes care
of the fact that we are studying the logarithmic derivative
ρdΣ/dρ. We shall also use the notation Θzcut (a|b) to denote
the condition that two branchesa andb, made up of one or two
partons, pass the zcut condition. Partons not included in a and
b fail the zcut condition and are removed by grooming. Thus
Θzcut (1|23) in Eq. (21) indicates that both branches i.e. gluon
1 and the massive branch with gluon 2 and the quark (with
index 3) pass the zcut condition. More explicitly we have
Θzcut (1|23) = Θ (z < 1 − zcut)Θ (z > zcut), amounting to
simply a cut on z.

In Eq. (21) we have also introduced the renormalised MS
coupling αs(μ

2
R) via the use of Eq. (11) leading to the appear-

ance of the S−2
ε factor and chosen μR = Q/2, though for

brevity we have not explicitly written the argument of the
running coupling above. We have introduced a factor of two
to account for the other hemisphere containing the branching
of the anti-quark.

Carrying out the integrals with the method discussed in
the appendix, the result can be expressed in the following
form:
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Fpass(ρ, ε) =
(
CFαs

2π

)2

×
∫ 1−zcut

zcut

2

(
Hsoft−coll.(z, ρ, ε)

ε2 + H coll.(z, ρ, ε)

ε

+ H soft(z, ρ, ε)

ε
+ Hfin.(z)

)
dz, (23)

where one notes the presence of a double pole coming from
the soft z p → 1 and collinear θ2

23 → 0 limit and where
single-pole contributions are separated into the contributions
from soft (z p → 1) and collinear (θ2

23 → 0) divergences
alone given, respectively by the H soft and H coll. functions.
We have

Hsoft−coll.(z, ρ, ε) = pqq(z, ε)z
−2ερ−2ε

(
1 − π2

6
ε2 + O(ε3)

)
,

H coll.(z, ρ, ε) = pqq(z, ε)z
−2ερ−2ε

×
(

3

2
+ 13

2
ε − 2π2

3
ε + O(ε2)

)
,

Hsoft(z, ρ, ε) = 0. (24)

The function Hfin.(z) represents a finite contribution whose
precise analytic form we have not extracted. Instead we study
this finite contribution by direct numerical integration over
the triple-collinear phase-space in 4 dimensions. The result
for the integration of Hfin.(z) gives a constant as zcut → 0.
The result that we obtain using integration with Suave [51],
setting zcut = 0 is,

2
∫ 1

0
Hfin.(z)dz = 1.866 ± 0.002. (25)

Next, we study the situation where the larger-angle gluon,
i.e. emission 1, fails the zcut condition and is groomed away,
corresponding to 1 > z > 1−zcut. This leaves the mass to be
set by the smaller-angle emission 2, ρ = z2z3θ

2
23 = z2z p(1−

z p)θ2
23. This emission must survive grooming i.e. 1 − zcut >

z p > zcut and hence θ2
23 � 1 for ρ � zcut. The softness

of emission 1, with energy proportional to 1 − z, implies
that any terms regular in the limit z → 1 produce power
suppressed corrections in zcut which we can neglect. Hence
the only contribution comes from the singularity as z → 1,
which produces an ε pole and associated finite corrections.

We start by considering the triple-collinear splitting func-
tion P(ab)

q→g1g2q3 and its integral over the phase-space, as for
the previous case where emission 1 passes the zcut condition.
However since now emission 1 fails the zcut condition and is
groomed away, it is not constrained to be collinear and has
a range of angular integration going from θ13 ∼ θ23 � 1
up to the boundary of the hemisphere at θ13 = π/2. Near
the lower limit of integration the triple-collinear approxima-
tion is valid, but to account correctly for soft emission at

large angles we have to modify the angular dependence of
the integral. This is precisely the same modification we made
to account for soft large-angle emission for the calculation
of C1 (c.f. Eq. (7)). After neglecting pieces which contribute
only an O(zcut) term on integration, we find the result

Ffail(ρ, ε) =
(
CFαs

2π

)2 2e2εγE

Γ (1 − 2ε)

×
∫ 1−zcut

zcut

(
(1 − z p)z p

)−2ε
pqq(z p, ε)dz p

×
∫ 1

1−zcut

(1 − z)−2ε 2 dz

1 − z

×
∫ 1− ρ

2z p (1−z p )

0

2 d (cos θ13)

(1 − cos θ13)
1+ε (1 + cos θ13)

1+ε

×
∫

dθ2
23

θ
2(1+ε)
23

δρ(2, 3) , (26)

where δρ(2, 3) is the condition that emission 2 and the quark
labeled 3 contribute to the hemisphere invariant mass ρ. In
fact, one can directly reach the same equation by realizing
that the emission probability of a hard-collinear gluon com-
pletely factorizes from that of a soft gluon, i.e. the gluons are
emitted independently in this region of phase space. There-
fore, the total emission probability is a product of an eikonal
function and a LO splitting function. This factorized struc-
ture is manifest in Eq. (26). The integral over θ2

23 is triv-
ially performed using the delta function constraint which sets
ρ = z2z p(1 − z p)θ2

23 ≈ z p(1 − z p)θ2
23, where we have used

the fact that z ∼ 1 corresponding to the softness of emission
1.7 We have modified the angular dependence so that at small
θ13 we obtain the result arising from the triple-collinear split-
ting functions but for θ13 ∼ 1 we have the correct angular
dependence for a soft emission emitted off the qq̄ dipole.
We have also introduced the renormalised MS coupling and
choose μR = Q/2 as before. Evaluating the integrals we
obtain:

Ffail(ρ, ε) =
(
CFαs

2π

)2 ∫ 1−zcut

zcut

dz p pqq(z p, ε)

×
[

− 2

ε
ln

4z p(1 − z p)

ρ

− π2

3
+ 4 ln2 2 − ln2 z p(1 − z p)

ρ

+ 2 ln
4z p(1 − z p)

ρ
ln(z2

cut(1 − z p)z pρ)

]
.

(27)

Finally we account for the correct action of the tagger when
emissions 1 and 2 i.e. the two gluons are clustered first in

7 Retaining the z dependence in the mass constraint produces terms
that vanish with zcut and are beyond our accuracy.
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the C/A algorithm and then the gluon pair is clustered to
the quark. On applying the tagger one first encounters two
branches, consisting of the quark and the massive gluon pair
respectively. If the quark fails the zcut condition, one would
then follow the branch consisting of the gluon pair. How-
ever such configurations with a soft quark are suppressed by
powers of zcut and hence ignored. On the other hand config-
urations where the massive gluon branch fails the zcut con-
dition would lead to a massless hemisphere. Hence we only
need to study the situation where both branches pass the
zcut condition and all three partons are retained. The open-
ing angle between the branches is small, being set by ρ/zcut,
which implies that all three partons are collinear and we can
use purely triple-collinear kinematics. To correct our earlier
results, we simply need to calculate the difference between
the correct configuration described here and our simplified
treatment included as part of Ffail(ρ, ε) and Fpass(ρ, ε).
The relevant angular region for the calculation is θ2

12 < θ2
23,

which corresponds to the C/A clustering of the two gluons,
since we already have the ordering θ2

13 > θ2
23. Our clustering

correction takes the form

F clust.
C2
F

= lim
zcut→0

2
∫

(8παs)
2

s2
123

C2
F

〈
P(ab)
q→g1g2q3

〉
dΦ3

× Θ(θ23 < θ13)Θ(θ12 < θ23)

(
δρ(1, 2, 3)Θzcut (3|12)

− δρ(1, 2, 3)Θzcut (1|23) − δρ(2, 3)Θzcut (2|3)

)
, (28)

where in the second line the first term in parentheses repre-
sents the correct treatment of the tagger while the second and
third terms correspond to the removal of the gluon clustering
region from Fpass(ρ, ε) and Ffail(ρ, ε) respectively.

In the angular region relevant to their clustering, the small-
est angle is that between the two gluons, so there is no
collinear divergence in the gluon emission channel. We have
potential soft divergences as each of z and z p tend to 1 (i.e.
z1 or z2 vanish), but in both those limits the correct calcu-
lation cancels with the subtraction terms in the second line
of Eq. (28), so that the result is purely finite and we can set
ε = 0 in the integrals that follow.

In the correct treatment, i.e. the first step function on the
second line of Eq. (28), the condition that the first decluster-
ing passes the zcut corresponds to 1−zcut > z3 > zcut, where
z3 = zz p. There are then two regions for the integration over
energy fractions, according to the range of z:

zcut < z < 1 − zcut,
zcut

z
< z p < 1, and

1 − zcut < z < 1,
zcut

z
< z p <

1 − zcut

z
. (29)

For the region zcut < z < 1 − zcut, this corresponds to the
region in z where gluon 1 passes the zcut in our simplified cal-
culations, so we need to correct the calculation ofFpass(ρ, ε)

and the third term in the second line of Eq. (28) vanishes. In
the region 1 > z > 1 − zcut corresponding to the grooming
away of gluon 1 in the simplified calculation, we need to cor-
rect the treatment of Ffail(ρ, ε) and here the second term in
Eq. (28) vanishes.

In the former case one has a particularly simple situation
since both in the simplified calculation and the correct treat-
ment all three partons are retained and contribute to the jet
mass via the δρ(1, 2, 3) condition. This results in an identical
angular integration in both cases and the difference between
the correct and simplified treatment is purely due to the differ-
ent limits on z p. Denoting the result of the angular integrals
by I(z, z p), we can write the clustering correction as:

∫ 1−zcut

zcut

(∫ 1

zcut
z

I(z, z p)dz p −
∫ 1

0
I(z, z p)dz p

)

dz

= −
∫ 1−zcut

zcut

dz
∫ zcut

z

0
I(z, z p)dz p, (30)

where the subtracted term above represents the removal of
the simplified calculation in the gluon clustering region and
where

I(z, z p) = 2
∫

(8παs)
2

s2
123

C2
F

〈
P(ab)
q→g1g2q3

〉
dΦ3

× δρ(1, 2, 3)Θ(θ23 < θ13)Θ(θ12 < θ23)

× δ(z(1 − z p) − z2)δ(zz p − z3). (31)

I(z, z p) has been written with a factor of two to account for
both hemispheres and the angular integration extends only
over the region relevant to the clustering of emissions 1 and
2. The simplified and correct calculations differ only in how
soft the quark is allowed to be and in the limit zcut → 0, the
result after integration over z and z p vanishes with zcut. This
has been verified directly by numerical integration. Hence
the correction term, given by Eq. (30), can be neglected in
our approximation.

The situation in the region 1 − zcut < z < 1, where we
derive a correction to F fail(ρ, ε), is somewhat more subtle.
In the simplified version of the calculation, emission 1 is
groomed away and the mass is set by emissions 2 and 3
which leads to a different constraint given by δρ(2, 3) on the
angular integration compared to the correct version where all
three partons are retained with δρ(1, 2, 3), so one obtains a
different result Ĩ(z, z p) given by:
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tildeI(z, z p) = 2
∫

(8παs)
2

s2
123

C2
F

〈
P(ab)
q→g1g2q3

〉
dΦ3

× δρ(2, 3)Θ(θ23 < θ13)Θ(θ12 < θ23)

× δ(z(1 − z p) − z2)δ(zz p − z3). (32)

Due to the fact that we are restricted to the angular region
where the two gluons would be clustered, all angles are con-
strained to be small and we can use the triple-collinear limit
for obtaining Ĩ(z, z p), ignoring the wide-angle modification
required for the full calculation of F fail(ρ, ε).

One key point here is that in the limit z → 1, or equiv-
alently z1 → 0, where there is a potential soft divergence,
the condition δρ(1, 2, 3) reduces to δρ(2, 3) so that the differ-
ence between Ĩ(z, z p) and I(z, z p) vanishes, leading to a finite
result as already observed above. Moreover in the zcut → 0
limit we have that z → 1 over the full integration range so
that one may simply replace Ĩ(z, z p) with I(z, z p) up to finite
corrections suppressed by zcut. Doing so leads to

F clust.
C2
F

= lim
zcut→0

∫ 1

1−zcut

(∫ 1−zcut
z

zcut
z

I(z, z p)dz p

−
∫ 1−zcut

zcut

Ĩ(z, z p)dz p

)
dz

= lim
zcut→0

∫ 1

1−zcut

dz
∫ 1−zcut

z

1−zcut

I(z, z p)dz p, (33)

where in writing the third line we have replaced Ĩ(z, z p)
with I(z, z p) and have exploited the fact that the difference
between the lower limits of z p integration in the correct and
subtracted term, corresponding to the region of a soft quark,
leads only to terms power suppressed in zcut. We can numer-
ically evaluate the integrals for a given zcut value and on
decreasing zcut, to reduce the impact of power suppressed
terms, we find the result converges to a constant. For our
smallest value zcut = 10−5, using the numerical method
suave [51], we obtain

F clust.
C2
F

=
(
CFαs

2π

)2

(4.246 ± 0.002) . (34)

The smallest value of zcut was chosen so that the error
on the numerical integration was larger than the difference
between the central values for the lowest and second lowest
zcut values.

The fact that the result for F clust.
C2
F

tends to a constant

as zcut → 0 is related to the behaviour of the integrand
in the soft limit for both emissions z p → 1 and z → 1,
and this allows us to also extract the result analytically. A
series expansion of I(z, z p) around z = 1 reveals a leading
behaviour ∝ 1

(1−z)(1−z p)
, which derives from the soft limit

of the matrix-element, and generates the full result in the

limit zcut → 0. It is straightforward to perform the integrals
analytically to obtain:

F clust.
C2
F

=
(
CFαs

2π

)2
π

12
√

3

(
3ψ(1)

(
1

3

)
− ψ(1)

(
5

6

))
,

(35)

where we have expressed the result in terms of the Polygamma
function ψ(1)(x). Note that one can further write

π

12
√

3

(
3ψ(1)

(
1

3

)
− ψ(1)

(
5

6

))
= 4π

3
Cl2

(π

3

)

= 4.25138 · · · (36)

to obtain a compact result in terms of the Clausen function
Cl2(x) [52]. This analytic result is consistent with the value
obtained numerically for zcut → 10−5, keeping in mind that
the latter includes power suppressed in zcut terms varying
as zcut ln2 zcut. We also note that ignoring a region of phase
space which only contributes a power of zcut to Fclust, the
limits on the energy fraction integrals of Eq. (33) can be
re-written in terms of z1 and z2:

z1 < zcut, z2 < zcut, z1 + z2 > zcut. (37)

It is now apparent that clustering the two emissions together
only leads to differences from our simplified treatment of the
tagger where both emissions would separately have failed
the zcut condition, but together lead to a cluster which passes
the zcut condition.

Our result for theF clust.
C2
F

turns out to be precisely the same

as the result calculated previously, for the corresponding con-
tribution to the non-cusp global soft anomalous dimension
for the mMDT jet mass in SCET [15,19]. While our start-
ing point using the triple-collinear splitting functions goes
beyond just the soft limit, the observation made above that
the relevant limit for F clust.

C2
F

is the limit when emissions 2

and 3 are additionally soft, explains the agreement with the
soft limit calculations of Refs. [15,19]. However it is worth
stressing that our approach based on triple-collinear splitting
functions remains valid beyond the soft limit and hence can
also be used to compute the finite zcut corrections that we
have neglected in the present article.

4.1.3 Virtual corrections and combined result

Here we combine the results for double-real emission with
the one-real one-virtual corrections to generate a finite result.
The one-real-one-virtual terms are provided in Appendix D.
We define the integral of the one-real-one-virtual term over
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z as VC2
F , given by

VC2
F (ρ, ε) =

∫ 1−zcut

zcut

dz V
C2
F

1,1 (ρ, z, ε), (38)

with V
C2
F

1,1 (ρ, z, ε) given in Eq. (D.1). Combining terms, we
can write the gluon emission contribution as

(
ρ
dΣ2

dρ

)gluon-emission

= F opp.(ρ, ε) + F pass(ρ, ε)

+ F fail(ρ, ε) + F clust.
C2
F

+ VC2
F (ρ, ε).

(39)

We find that after cancellation of all the singular contributions
we are left with

(
ρ
dΣ2

dρ

)gluon-emission

=
(
CFαs

2π

)2 (
(3 + 4 ln zcut)

2 ln ρ

− 8 ln3 zcut − 2(3 + 16 ln 2) ln2 zcut

+ (4 − 48 ln 2) ln zcut − 24ζ(3)

+ 2π2 + 7

2
− 18 ln 2

+ 4π

3
Cl2

(π

3

)
+ 1.866 ± 0.002

)
,

(40)

where the numerically quoted value 1.866±0.002 represents
the contribution to Fpass(ρ, ε) arising from Hfin.(z) (see
Eqs. (21), (25)). It is then evident that the terms in Eq. (40)
that depend on ln ρ and ln zcut are in precise agreement with
those expected from the C2

F term in the expansion of the
leading-log resummed result, i.e. Eq. (16). In addition there
is a constant contribution corresponding to an α2

s ln ρ NLL
term in Σ2(ρ). We shall analyse the constant contribution in
more detail, after including another C2

F term coming from
the gluon decay terms computed in the next sub-section.

4.2 Gluon decay contributions

Here we consider the contributions that are associated to the
decay of a collinear gluon, emitted off the initiating quark,
into a qq̄ pair and a gluon pair associated with CFTRn f and
CFCA factors respectively. For the case of the gluon decay
to qq̄ with a quark initiated jet i.e. a q → qq̄q process, there
is also an interference contribution from identical fermions
in the final state with a colour factor CF (CF −CA)/2, which
contributes to the overall results for the C2

F and CFCA chan-
nels. We shall first discuss this piece and then turn to the
CFTRn f and CFCA terms.

4.2.1 CF

(
CF − CA

2

)
contribution

The identical fermion contribution is simple to compute since
it is finite both for the angular and energy integrals. The
calculation can therefore be easily carried out numerically in
four dimensions. The relevant splitting function is given in
Eq. (A.8) and we set ε → 0. Moreover due to the fact that
the splitting function is regular in the energy fractions, the
contribution from the region of integration where any parton
has energy fraction z < zcut is suppressed with zcut. For this
reason the clustering and grooming sequence does not matter
as the result in the small zcut limit comes from a configuration
when all three partons contribute to the jet mass ρ and have
energy fraction z > zcut i.e. the ungroomed limit. To obtain
the leading term, which is a constant in the small zcut limit,
we set zcut = 0 and numerically perform the integral using
our general rescaling method discussed in the appendix. We
then have

Fid =
∫

dΦ3
(8παs)

2

s2
123

P(id)
q→qq̄q δρ(1, 2, 3)

= CF

(
CF − CA

2

) ( αs

2π

)2
(1.4386 ± 0.0001) , (41)

where we performed the integral numerically with Suave and
the result includes a factor of 2 to take account of both hemi-
spheres as well an identical particle 1/2! phase-space sym-
metry factor. We believe that our result here coincides with
an older calculation for the identical fermion contribution
that enters initial state splittings, by Grazzini and de Florian,
who obtained an analytical result

13

2
− π2 + 4ζ(3) = 1.43862 · · · (42)

which they subtract to construct the relevant non-singlet con-
tribution (see Eq. (71) of Ref. [48]). We shall return to this
result, its analytical form and its combination with the C2

F
and CFCA results, when summarising our results.

4.2.2 CFTRn f contribution

Next we discuss the CFTRn f term again related to gluon
decay to a qq̄ pair. The relevant diagram with our parame-
terisation of the kinematics is shown in Fig. 2. One encoun-
ters a collinear singularity in the squared matrix element as
θ12 → 0, since the g → qq̄ splitting is regular in the infrared,
which leads to a 1/ε pole for the jet mass distribution. We
also expect that an analysis of the gluon decay contributions
should lead to the emergence of the correct argument of the
running coupling i.e. kt in the soft limit, and the factor asso-
ciated to the physical CMW scheme.
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Fig. 2 An illustration of the kinematic parametrisation in theCFTRn f
gluon decay channel

As we did for the C2
F piece, it proves convenient to break

the calculation into two pieces : a first piece that simplifies
the action of the tagger and contains the divergent pole struc-
ture and a correction term which only has support in non-
singular regions, leading to a finite result which can be com-
puted numerically in four dimensions. We will also account
for virtual corrections which cancel the pole in the real emis-
sion piece, leaving a finite result. The divergence occurs as
θ12 → 0 which is the region where the q and q̄ are clustered
first in the C/A algorithm, and then the qq̄ pair is clustered to
the parton 3. We shall therefore first carry out the calculation
always taking the q and q̄ to be clustered together which mis-
treats regions where emissions 1 or 2 could be first clustered
with 3. These regions will be subject to our finite clustering
corrections.

For the contribution clustering the q and q̄ from the gluon
decay, on declustering we produce two branches consisting of
the quark (or anti-quark labeled) 3 and the clustered fermion
pair or equivalently the massive parent gluon. If the quark
labeled 3 is soft and fails the zcut then we obtain only terms
power suppressed in zcut. If the massive gluon branch fails
the clustering we obtain a massless hemisphere. Thus we
have a situation where in order to obtain a finite result in
the zcut → 0 limit, both branches pass the zcut condition
so that all three partons are retained and contribute to the
jet mass. The condition ρ � zcut once again implies that
all three partons are collinear and we can apply the triple-
collinear splitting function and phase-space. In order to use
our integration strategy based on rescaled angular variables,
we consider two regions θ2

12 < θ2
13 and θ2

12 > θ2
13, with

the first mentioned region contributing the divergence. We
denote the respective contributions to ρ dΣ2

dρ by F θ12<θ13(ρ)

and F θ12>θ13(ρ) where explicitly we have for the former,

F θ12<θ13(ρ, ε) = 2S−2
ε

(
Q

2

)4ε ∫
dΦ3

(8παs)
2

s2
123

〈
Pq̄ ′

1q
′
2q3

〉

× δρ(1, 2, 3)Θzcut (12|3)Θ(θ12 < θ13),

(43)

where a sum over flavours leading to a factorn f is left implicit
on the RHS of the above equation. The notation Θzcut (12|3)

denotes that each of the two branches passes the zcut condi-

tion equivalent to the constraint on the parent gluon energy
1 − zcut > z > zcut, the result is written in terms of the
renormalised MS coupling and a factor of two accounts for
both hemispheres.

In terms of the rescaled angular variable y = θ2
12/θ

2
13 and

the parent energy fraction z, we obtain a result of the form
(where G(y, z, ε) is regular as y → 0)

F θ12<θ13(ρ, ε) = ρ−2ε

∫ 1−zcut

zcut

dz
∫ 1

0

dy

y1+ε
G(y, z, ε)

− ρ−2ε

ε

∫ 1−zcut

zcut

dz G(0, z, ε)

+
∫ 1−zcut

zcut

dz
∫ 1

0

dy

y
(G(y, z, 0) − G(0, z, 0)) .

(44)

In writing the above we first isolated the singular contri-
bution by taking only the leading term in the expansion of
G(y, z, ε) around y = 0, and integrated over y to obtain the
pole in ε in the first term above, while the second term is finite
by construction since (G(y, z, 0) − G(0, z, 0)) vanishes as
y → 0. The finite term can be computed in four dimen-
sions, so we set ε = 0. However while the term involving
(G(y, z, 0) − G(0, z, 0)) is finite, it has a leading behaviour
in the z → 1 limit proportional to 1

1−z , which can be extracted
through a series expansion about z = 1. The limit z → 1 cor-
responds to a soft parent gluon and gives rise to ln zcut terms
in the result, which build up the constant K which relates the
coupling in the MS scheme to that in the CMW scheme. After
separating the 1/(1 − z) term which can be handled analyt-
ically, we integrate the remainder of the finite contribution
numerically.

We then have

F θ12<θ13(ρ, ε) = CFTRn f

( αs

2π

)2

×
∫ 1−zcut

zcut

(
H coll.

1 (z, ρ, ε)

ε
+ Hfin.−soft

1 (z) + Hfin.
1 (z)

)

dz ,

(45)

where

H coll.
1 (z, ρ, ε)n

= ρ−2ε(1 − z)−2ε pqq(z, ε)

(
−4

3
− 46

9
ε + O(ε2)

)
,

Hfin.−soft
1 (z) = 4

9

1

1 − z
. (46)

Hfin.−soft
1 (z) is the soft parent finite contribution and the finite

remainder Hfin.(z) tends to a constant as zcut → 0. Using
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Mathematica’s NIntegrate [53] with zcut = 0 we obtain

∫ 1

0
Hfin.

1 (z)dz = −1.479 ± 0.001. (47)

Next we need the contribution from the angular region
θ13 < θ12 which does not contain any poles. However, as
discussed above for θ12 < θ13, there is again a soft enhance-
ment as z → 1 giving rise to a ln zcut term related to the
CMW constant K . Explicitly we have:

F θ13<θ12 (ρ)

= 2
∫

dΦ3
(8παs)

2

s2
123

〈
Pq̄ ′

1q
′
2q3

〉
δρ(1, 2, 3)Θzcut (12|3)Θ(θ13 < θ12),

= CFTRn f

( αs

2π

)2
∫ 1−zcut

zcut

(
Hfin.−soft

2 (z) + Hfin.
2 (z)

)
dz (48)

which has no collinear pole i.e. H coll.
2 (z) = 0 and where

Hfin.−soft
2 (z) = 16

3

1

1 − z
,

∫ 1

0
Hfin.

2 (z)dz = −6.242 ± 0.006. (49)

where, as before, the final term is evaluated numerically with
zcut = 0 to remove power corrections.

A final ingredient for generating the result is the TRn f

piece of the one-real-one-virtual contribution. This is reported
in Appendix D (see Eq. (D.4)) and a finite result is obtained on
combining the virtual contribution with F θ13>θ12(ρ). Defin-
ing

VCFTRn f (ρ, ε) =
∫ 1−zcut

zcut

dzV
CFTRn f

1,1 (ρ, z, ε) (50)

and

F tot.(ρ, ε) = F θ12<θ13(ρ, ε) + F θ13<θ12(ρ), (51)

we can combine the results to obtain

F tot.(ρ) + VCFTRn f (ρ, ε)

= CFTRn f

( αs

2π

)2
(∫ 1−zcut

zcut

dz G(z, ρ) − 7.721 ± 0.007

)
,

(52)

where

G(z, ρ) = 4

3
pqq(z) ln(ρ(1 − z)) − 20

9
pqq(z)

− 4

3
pqq(z) ln z + 26

9
(1 + z). (53)

It is worth making some remarks on the form of G(z, ρ).
Firstly we note a piece corresponding to the n f term in
−2 × pqqb0 ln (ρ(1 − z)), where b0 = 11

6 CA − 2
3TRn f is

the first perturbative coefficient of the QCD β function. This
term produces an LL contribution from the dependence on
ln ρ. In the soft limit, i.e. z → 1 and pqq(z) → 2

1−z it can be
absorbed into the leading-order result by correcting the scale

of the coupling αs

(
Q2

4

)
→ αs

(
Q2

4 ρ(1 − z)
)

= αs(k2
t ),

consistent with the LL formula (3). The term − 20
9 pqq(z)

corresponds to the appearance of the n f piece of the CMW
constant K , as also anticipated in the LL result. The remain-
ing terms produce a constant in the small zcut limit, on inte-
gration over z, which can be combined with the constants
we obtained numerically. However before doing so we shall
evaluate the correction term due to the proper use of the C/A
clustering sequence within the mMDT.

Turning to the clustering correction we first note that in
the angular region where θ12 is smallest our treatment of
the tagger, working as if partons 1 and 2 are always clus-
tered, needs no correction. The regions where a correction
is needed are when θ13 is smallest and when θ23 is smallest
which is identical due to the symmetry under 1 ↔ 2. These
regions contain no divergences and hence the calculation of
the correction term, i.e. the difference between the correct
and simplified calculations, can be performed numerically in
four dimensions. We shall also work in the limit zcut → 0
to eliminate power-suppressed terms in zcut, explicitly take
the case that θ13 is the smallest angle and double the result
to account for θ23 being smallest. We can then write

F clust.
CFTRn f

= lim
zcut→0

4
∫

(8παs)
2

s2
123

〈
Pq̄ ′

1q
′
2q3

〉
dΦ3 Θ(θ23 > θ13)

× Θ(θ12 > θ13)

(
δρ(1, 2, 3)Θzcut (2|13)

+ δρ(1, 3)Θzcut (1|3)

− δρ(1, 2, 3)Θzcut (3|12)

)
. (54)

The above equation reflects that when θ13 is the smallest
angle, there are two configurations that yield a massive hemi-
sphere: when parton 2 passes the zcut condition and all three
partons are retained (the first term on the second line), and
when parton 2 fails the zcut condition but partons 1 and 3
pass (the second term on the second line). The clustering
correction may then be expressed as

F clust.
CFTRn f

= lim
zcut→0

∫ 1

0

(
In f (z, z p)

(
Θzcut (13|2) − Θzcut (12|3)

)

+Ĩn f (z, z p)Θzcut (1|3)
)

dzdz p , (55)

where the subtraction term corresponds to removal of the
simplified contribution where 1 and 2 were taken to be clus-
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tered first and our usual notation applies where Θzcut (a|b)
denotes the two branches a and b that pass the zcut condition
in each case.8 The integrals In f (z, z p) and Ĩn f (z, z p) arise
from the angular integration for the case when all three par-
tons contribute to the jet mass and when only two partons
contribute respectively.9 Explicitly we have

In f (z, z p) = 4
∫

(8παs)
2

s2
123

〈
Pq→q̄ ′

1q
′
2q3

〉
dΦ3 δρ(1, 2, 3)

× Θ(θ13 < θ23)Θ(θ13 < θ12)

× δ(z(1 − z p) − z2)δ(zz p − z3) , (56)

and

Ĩn f (z, z p) = 4
∫

(8παs)
2

s2
123

〈
Pq→q̄ ′

1q
′
2q3

〉
dΦ3 δρ(1, 3)

× Θ(θ13 < θ23)Θ(θ13 < θ12)

× δ(z(1 − z p) − z2)δ(zz p − z3), (57)

where a factor of 4 accounts for both hemispheres and the
case when θ23 is the smallest angle.

We can evaluate the integrals numerically by choosing
a small zcut to suppress power corrections and find that the
result tends to a zcut independent constant on decreasing zcut.
On evaluation of the integrals numerically with Suave we
obtain, for zcut = 10−5 as for the C2

F clustering piece, the
result

F clust.
CFTRn f

= CFTRn f

( αs

2π

)2
(−1.754 ± 0.002) . (58)

Further insight into the nature of the clustering correction
reported above can be obtained via similar considerations to
those for the C2

F clustering correction. Firstly one notes that
in the limit parton 2 goes soft and fails the zcut condition the
angular integral Ĩn f (z, z p) may be replaced by In f (z, z p) up
to terms that vanish with zcut. This lets us combine the con-
straints on the z integrals and, again, with neglect of power
corrections in zcut one obtains the conditions on z1 and z2:

z1 + z2 > zcut, z1 < zcut, z2 < zcut. (59)

These conditions are the same as for the C2
F case, however

here the clustering correction enters with a negative sign

8 This implies also the condition that partons not included in these
branches fail the zcut e.g. for parton 2 in Θzcut (1|3).
9 In the case when a parton is soft enough to be groomed away it is not
constrained by the jet mass and can in principle be at a large angle. For
correlated emission such configurations, where one of the gluon decay
offspring is at a large angle to the other, are dynamically suppressed
and only contribute at the level of power corrections in ρ. This implies
that the integrals converge within the triple-collinear region which does
not need to be modified, which we have also verified numerically.

while a positive correction was noted for the C2
F term. The

reason for this is that our simplified treatment in the C2
F

channel amounted to discarding two emissions that individu-
ally failed the zcut, thereby excluding the contribution where
they pass the zcut when correctly treated as a cluster since
z1 + z2 > zcut. Here on the other hand, our simplified picture
includes configurations where incorrectly treating emissions
as a cluster they pass the zcut condition, while in the cor-
rect treatment of clustering where the gluon decay products
are not clustered the emissions each fail the zcut leading to a
massless hemisphere.

Furthermore, we note once again that our clustering cor-
rections originate in the soft region, albeit still also within
the triple-collinear regime and that our calculations can be
extended to include finite zcut terms. The numerical value
we obtain for the clustering piece, F clust.

CFTRn f
, is once again

in agreement within errors (and potential zcut ln2 zcut terms)
to that previously obtained for the n f part of the clustering
term for the non-cusp global soft anomalous dimension for
mMDT in the SCET framework [15,19].

Finally we quote our overall result for the CFTRn f chan-
nel, combining the different contributions i.e. performing the
integral over z in Eq. (52) and adding in the clustering cor-
rection:

ρ
dΣ

CFTRn f
2

dρ
= CFTRn f

( αs

2π

)2

×
(

− 2

3
(3 + 4 ln zcut) ln ρ − 4

3
ln2 zcut + 40

9
ln zcut

+ 4π2

9
+ 25

3
− 7.721 ± 0.007 − 1.754 ± 0.002

)
, (60)

where the −1.754 is the clustering correction computed
above, and the other terms are the full result for our sim-
plified treatment of the tagger. We note that the ln ρ and
ln zcut dependent terms in Eq. (60) are in exact agreement
with expectations from the expansion of the leading loga-
rithmic result (16). We shall shed further light on the con-
stant term 4π2

9 + 25
3 − 7.721 ± 0.007 following an analytic

calculation in the next subsection.

4.2.3 Analytic calculation using web variables

Our aim is to compute the simplified piece of the differential
distribution, i.e.F tot., which neglects the proper C/A cluster-
ing in specific angular regions, using the web variables given
in Appendix C. In particular, this allows for a complete ana-
lytic extraction of the constant in Eq. (52). In addition, the
analytic computation offers insight into the structure of the
answer for the CFCA channel to be presented in Sect. 4.2.4,
which shall become evident when we discuss the final results.
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First, we recall

F tot.(ρ) = 2S−2
ε

(
Q

2

)4ε

×
∫

dΦ3
(8παs)

2

s2
123

〈
Pq̄ ′

1q
′
2q3

〉
δρ(1, 2, 3)Θzcut (12|3).

(61)

With few steps one can express the triple-collinear splitting
function in terms of the web variables. In particular, we have

t12,3 = −2
z

1 − z
z p(1 − z p)

×
[

1 − 2z p
z p(1 − z p)

s12 + 2kt
√
s12√

z p(1 − z p)
cos θ

]

− (1 − 2z p)s12 , (62)

where θ ∈ [0, π ] is the polar angle in the (2 − 2ε)-
dimensional transverse plane, i.e. the opening angle between
q⊥ and k⊥. In addition, the jet mass reads

s123 = s12 + z

1 − z
s12 + z

1 − z
k2
t , (63)

and here we observe the first simplification, namely that the
jet mass does not depend explicitly either on z p or θ , conse-
quently, the latter variables can be integrated from the out-
set.10 One can partition the computation initially into two
pieces, the first contains the collinear divergence while the
second is collinear-regular.

Let us start with the divergent piece which, after angular
averaging over θ , reads

F tot.
pole(ρ) = CFTRn f

( αs

2π

)2
4−2ε

×
∫ 1−zcut

zcut

dzz1−2ε

1 − z

dk2
t

k2ε
t

ds12

(s12)1+ε

dz p
(z p(1 − z p))ε

×
[
−8

z

1 − z

z p(1 − z p)

1 − ε
+ 4z

1 − z

+(1 − z)(1 − 2z p)
2 + (1 − 2ε)(1 − z)

]

× δ

(
s12

1 − z
+ zk2

t

1 − z
− ρ

4

)
, (64)

where (and in what follows below) we rescaled all dimen-
sionful quantities by Q2. In the above equation we can
observe another simplification, namely the double-soft limit,

10 A caveat exists in the presence of soft divergences, e.g. for theCFCA
channel. In this case, one has to re-express the phase space in terms of
the angle θ12 instead of the invariant mass s12. This is because s12 ∝
z p(1 − z p)θ2

12, which affects the ε-dependent integration measure over
z p .

i.e. z → 1, is quite transparent. One can rewrite the integral,
making sure to isolate the double-soft behaviour, as follows

F tot.
pole(ρ) = CFTRn f

( αs

2π

)2
4−2ε

×
∫ 1−zcut

zcut

dzz1−2ε

1 − z

dk2
t

k2ε
t

ds12

(s12)1+ε

dz p
(z p(1 − z p))ε

×
[

4
pqg(z p, ε)

1 − z
− 4pqg(z p, ε) + (1 − z)(1 − 2z p)

2

+(1 − 2ε)(1 − z)] δ

(
s12

1 − z
+ zk2

t

1 − z
− ρ

4

)
, (65)

where the g → qq̄ d-dimensional splitting function has been
identified

pqg(z p, ε) = 1 − 2
z p(1 − z p)

1 − ε
. (66)

Now the double-soft piece in eq. (65) can be integrated
directly over z p to find the CMW coupling. Finally we add
the contribution in F tot. which do not exhibit a collinear
pole, i.e.

F tot.
reg.(ρ) = −CFTRn f

( αs

2π

)2
∫ 1−zcut

zcut

dz
4

3
(1 − z), (67)

where we performed the integrals over kt , s12 and z p. The
final result is obtained after adding in the virtual corrections,
and we get

F tot.(ρ) = 2CFTRn f

( αs

2π

)2

×
∫ 1−zcut

zcut

dz

[
2

3
pqq(z) ln(ρ(1 − z)) − 10

9

2

1 − z

+ 10

9
(1 + z) − 2

3
(1 − z)

]
. (68)

An important feature of the analytic result is the disappear-
ance of any ln(z) terms as they fully cancel between real
and virtual corrections. These structures, if present, would
have led to ζ(2) when integrated against pqq(z). We can now
include the clustering correction and integrate Eq. (68) over
z (dropping power corrections in zcut) to find

ρ
dΣ

CFTRn f
2

dρ
= CFTRn f

( αs

2π

)2
(

− 2

3
(3 + 4 ln zcut) ln ρ

− 4

3
ln2 zcut + 40

9
ln zcut + 5 − 1.754 ± 0.002

)
,

(69)

which is fully consistent with Eq. (60).
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4.2.4 CFCA contribution from q → qgg

The same kinematic variables apply as in Fig. 2 for the gluon
decay to qq̄ . One of the key differences with the n f piece is
now the presence of soft divergences as z p → 0 and z p →
1.11

We can organise the calculation in precisely the same way
as for the n f piece by first computing a simplified term where
for applying the grooming the offspring gluons are always
treated as a cluster equivalent to the parent gluon. We then
correct for the proper C/A clustering so that, as before, our
correction term is finite and calculable in four dimensions.
Again as done before for the n f piece, we can further divide
the simplified calculation into two pieces where θ12 < θ13

and vice-versa. The region with θ12 < θ13 contains all the
divergences, resulting in 1

ε2 and 1
ε

poles. The region θ13 > θ12

gives only a finite contribution in spite of the presence of soft
divergences in the g → gg splitting, as a consequence of the
angular ordering property of soft radiation.

F θ12<θ13
CFCA

(ρ, ε) = 2S−2
ε

(
Q

2

)4ε ∫
dΦ3

(8παs)
2

s2
123

〈
P(nab)
q→g1g2q3

〉

× δρ(1, 2, 3)Θzcut (12|3)Θ(θ12 < θ13) , (70)

which is written as before in terms of the renormalised MS
coupling with μR = Q/2, and a factor of 2 to account for
both hemispheres. Further analysis using our general inte-
gration method, outlined in the appendix, gives

F
θ12<θ13
CFCA

(ρ, ε) = CFCA

( αs

2π

)2

×
∫ 1−zcut

zcut

(
Hsoft−coll.(z, ρ, ε)

ε2 + H coll.(z, ρ, ε)

ε
+ Hfinite(z)

)
dz ,

(71)

where

Hsoft−coll.(z, ρ, ε) = ρ−2ε(1 − z)−2ε

× pqq (z, ε)

(
2 − π2

3
ε2 + O(ε3)

)
,

H coll.(z, ρ, ε) = ρ−2ε(1 − z)−2ε

× pqq (z, ε)

(
11

3
+ 134

9
ε − 4π2

3
ε + O(ε2)

)
.

(72)

As in Sect. 4.2.2 the finite term Hfinite(z) is enhanced in the
limit of a soft parent, z → 1, and produces ln zcut terms,
which we wish to separate since they relate to the CMW

11 In order to avoid considering both limits one can simply take the
region z p < 1 − z p , where the divergence only comes from z p → 0,
and double the result exploiting the symmetry between the gluons.

scheme. As before we use a series expansion about z = 1, to
make the decomposition

Hfinite(z) = c

1 − z
+ f (z), (73)

where f (z) is finite as z → 1. The constant, c is evaluated
numerically (on integrating over the angular variables and
z p), as is the integral over f (z) and, again using NIntegrate
with zcut = 0, we obtain:

∫ 1−zcut

zcut

Hfinite(z) = (2.4361±0.0002) ln zcut−0.117±0.001.

(74)

In the region θ13 < θ12 there are no poles in ε and we can
perform the calculation setting ε → 0, so we have

F θ13<θ12
CFCA

(ρ) =
∫

dΦ3
(8παs)

2

s2
123

〈
Pq→g1g2q3

〉

× δρ(1, 2, 3)Θzcut (12|3)Θ(θ13 < θ12). (75)

Again separating the integrand into pieces which diverge as
z → 1 and those which do not, we obtain, after numerical
integration with zcut = 0,

F θ13<θ12
CFCA

(ρ) = CFCA

( αs

2π

)2
[(5.8730 ± 0.0006) ln zcut

+(6.795 ± 0.006)] . (76)

Finally we account for the clustering corrections. This is
done as for the n f piece in Eq. (54) and the result is finite as
soft divergences cancel in the combination of the correct and
simplified treatments. The result can be computed numeri-
cally in four dimensions. Using Suave with zcut = 10−5 we
obtain:

F clust.
CFCA

= CFCA

( αs

2π

)2
(−1.161 ± 0.001) . (77)

The same comments apply to the origin of the clustering
correction here as for the n f piece, namely it originates from
incorrectly allowing, in the simplified result, the gluon pair
to pass the clustering due to the fact that the parent passes
the zcut. The correct tagging procedure would be applied to
the individual gluons instead, which fail the clustering lead-
ing to a massless jet and a nil contribution. The result again
agrees with previous calculations of the clustering piece in the
mMDT SCET non-cusp soft anomalous dimension [15,19]
to within errors and potential zcut ln2 zcut corrections.

Finally we combine all pieces and include the one-real-
one-virtual correction VCFCA (ρ, ε) = ∫ 1−zcut

zcut
dzV CFCA

1,1
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(ρ, z, ε) defined in the appendix to obtain the result

ρ
dΣ2

dρ

q→qgg,nab.

= CFCA

( αs

2π

)2
[

11

6
(3 + 4 ln zcut) ln ρ + 11 ln2 zcut

3

+
(

4

3
π2 − 268

9
+ (8.3091 ± 0.0006)

)
ln zcut

+ 16ζ(3) − 11π2

9
− 121

6

+ (6.678 ± 0.006) − (1.161 ± 0.001)

]
, (78)

where the labelling q → qgg, nab. indicates the non-abelian
contribution to the q → qgg process and where we have
separately written the numerically computed clustering con-
tribution and the numerically computed part of the simpli-
fied calculation. The result above is in agreement with our
expectations from the expansion of the leading-logarithmic
resummed result Eq. (16) for the terms involving ln ρ and
ln zcut since the numerical value 8.3091 ± 0.0006 is in good
agreement with 134

9 − 2π2

3 , signalling again that the ln zcut

term is associated with the CMW scheme, while the ln ρ and
ln2 zcut terms are associated to the argument of the running
coupling i.e. kt in the soft limit. This leaves us to comment on
the constant term, other than the clustering correction, which
we shall do in the next section, where we shall consider the
full CFCA result including that from the CF (CF − CA/2)

term.

5 Structure of NLL results

In this section we discuss the structure of our results for each
of theC2

F ,CFCA andCFTRn f channels. As has already been
noted for every channel, the result at order α2

s reproduces the
terms expected from the expansion of the LL formula (16) in
addition to producing genuine NLL corrections.12 Therefore
we may focus only on the additional terms not produced as
part of the LL expansion and hence we write:

ρ
dΣ2

dρ
= ρ

dΣLL
2

dρ
+ ρ

dΣNLL
2

dρ
, (79)

where ρ
dΣLL

2
dρ is reported in Eq. (16) and ρ

dΣNLL
2
dρ describes

the NLL terms unrelated to LL dynamics.

To obtain our result for the ρ
dΣNLL

2
dρ in the C2

F channel we
combine the result from gluon emission Eq. (40) with the

12 Recall that the expansion of the LL formula also contains formally
NLL terms but which can be embedded within the LL strongly ordered
dynamics.

C2
F term arising from the gluon decay (41) identical particle

piece. After removal of the LL contribution we can write:

(

ρ
dΣNLL

2

dρ

)C2
F

=
(
CFαs

2π

)2

×
(

2π2 − 24ζ(3) + 1

2
+ (1.866 ± 0.002) + (1.4386 ± 0.0001)

)

+ F clust.
C2
F

, (80)

where F clust.
C2
F

is the clustering contribution Eq. (35).

The corresponding result for the CFTRn f term can be
obtained partly in numerical form from Eq. (60) or fully ana-
lytically from Eq. (69) and after removal of the LL contribu-
tion we get

(

ρ
dΣNLL

2

dρ

)CFTRn f

= CFTRn f

( αs

2π

)2 × 5.0 +F clust.
CFTRn f

,

(81)

where we used above the analytical result of Eq. (69) and the
clustering contribution is given in Eq. (58).

The result for theCFCA channel is obtained by combining
Eq. (78) with the identical particle contribution in Eq. (41)
and removing the LL contributions so that we obtain

(

ρ
dΣNLL

2

dρ

)CFCA

= CFCA

( αs

2π

)2
(

16ζ(3) − 11π2

9

− 121

6
+ (6.678 ± 0.006)

− (0.7193 ± 0.00005)

)
+ F clust.

CFCA
,

(82)

where F clust.
CFCA

is reported in (77).
Leaving aside the clustering corrections for the moment,

whose soft (and collinear) origin we have already discussed,
we focus on the structure of the rest of the result. It is well-
known that the intensity of collinear radiation from a quark at
second order in αs is related to a coefficient in the quark form
factor generally referred to as B(2) [54–57]. While there is
not a unique definition of B(2) since it depends on the details
of how the full resummation formula is organised, i.e. the
resummation scheme, it is always related to the endpoint
δ(1− z) contribution to the NLO DGLAP splitting functions
via the form (for a quark initiated jet) [58–60],

B(2) = −2γ (2)
q + CFb0X, (83)
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where b0 = 1
6

(
11CA − 4TRn f

)
and where γ

(2)
q , the DGLAP

endpoint contributions for a quark jet, are [61,62]

γ (2)
q = C2

F

(
3

8
− π2

2
+ 6ζ(3)

)

+ CFCA

(
17

24
+ 11π2

18
− 3ζ(3)

)
− CFTRn f

(
1

6
+ 2π2

9

)
.

(84)

We note that our analytic result for the coefficient of
CFTRn f α

2
s /(2π)2 in Eq. (81) is precisely consistent with

the form in Eq. (83) with

X = 2π2

3
− 7. (85)

Taking this value of X we obtain a result −7.03766 for the
CFCA term in Eq. (83) in good agreement with the numeri-
cal value for our result in Eq. (82) without the clustering cor-
rections, where we get −7.03791 ± 0.006. Finally Eq. (83)
gives a value −5.30508 for the coefficient ofC2

F , which again
agrees well with the result in Eq. (80) without the clustering
correction, which has the numerical value −5.30556±0.002.
Furthermore, using the de Florian and Grazzini analytical
result (Eq. (42)), for the identical particle gluon decay con-
tribution, we can identify the remaining numerical contri-
butions with analytic results i.e. the result 1.866 for the C2

F
piece in Eq. (80) corresponds to 8ζ(3) − 31

4 while the result

6.678 in Eq. (82) corresponds to 13π2

18 − 8ζ(3) + 55
6 .

We conclude that without the clustering corrections our
NLL results for the mMDT as defined above, are given by
the general collinear form Eq. (83) with the value of X spec-
ified in (85). Thus excluding the clustering corrections our
NLL result for the mMDT has a simple correspondence to
the collinear order α2

s contribution to the quark form factor.
Moreover the results for the CFCA and CFTRn f channels,
without the clustering correction, agree exactly with the order
α2
s NNLL term in the expansion of the ungroomed heavy jet

mass [43,45,63], a consequence of grooming affecting only
soft emissions in the small zcut limit. Finally we note that our
overall results in every channel are in agreement with those
from previous SCET calculations. An explicit expansion of
the SCET results to order α2

s , for the jet mass distribution,
has recently been provided in Ref. [24].13

6 Conclusions

In this article we have revisited the NLL structure of the jet
mass distribution for mMDT groomed jets from the view-

13 Note that we have removed ln 2 terms in the CFCA and CFn f chan-
nels present in the results of [24] via the choice of Q2/4 in the scale of
αs for our leading-order result.

point of its direct connection to the QCD matrix elements in
the triple-collinear limit. Previous NLL results have entirely
been within the framework of Soft-Collinear Effective The-
ory (SCET) and hence our work represents an approach
which provides strong independent confirmation of the main
results involved in the NLL resummation [15,19,30,31].

Our results establish a connection between the NLL
groomed jet mass result and the standard ingredients used
in QCD resummation. In particular we recover the expected
scale of the running coupling in the soft limit, i.e. the kt of
a soft emission, and the constant K related to the emergence
of the CMW coupling. We further obtain a link between the
NLL result and the general form of the B(2) coefficient that
controls the intensity of collinear radiation from a quark at
order α2

s and hence enters the quark form factor. Our result
also involves a clustering correction in all channels, which
stems from our simplifying the action of the mMDT to derive
the B(2)-like terms. The clustering corrections come from a
region of phase space where we have two soft emissions that
if examined individually fail the zcut condition but if exam-
ined as a cluster pass the zcut condition. We believe that these
results should allow for a resummation of the mMDT NLL
corrections within a QCD resummation framework. In fact
the B(2)-like pieces are already incorporated in an approach
such as ARES [43,45] as they also enter into the NNLL struc-
ture of the ungroomed heavy jet mass.14 It therefore remains
to consistently include the clustering corrections within the
standard QCD resummation formalism.

For future extensions of our work, one development that is
possible to make concerns the inclusion of finite zcut correc-
tions beyond the LL level [12,16,17]. These can be derived
through our triple-collinear calculations retaining terms that
we have omitted in the present article by taking the small
zcut limit of various formulae. Since these additional cor-
rections will be purely finite, they can be computed numer-
ically in four dimensions and incorporated into the resum-
mation framework described in Ref. [12]. While we expect
the resulting corrections to be numerically small, they should
become relevant to examine in the context of recent develop-
ments pushing the mMDT jet mass resummation to NNLL
level [23]. It would also be of interest to use our approach
to study β 	= 0 values for SoftDrop and hence to develop an
NNLL QCD resummation approach for those observables.
Our triple-collinear calculations should also give the insight
needed to address other similar collinear problems at the
NLL level such as that involving the small jet radius limit
of QCD jets, for which an LL resummation formalism was
constructed in Ref. [29] but a general resummation approach
at NLL is still missing.

14 In ARES [43,45], for the heavy jet mass the factor X in the definition
used for B(2) is equal to zero and the b0X term is associated to the
functions C (1)

hc and δFrec.
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Appendix A: Triple-collinear splitting functions

We use the results in the form listed in Refs. [35,36]. Fol-
lowing the notation of those references we define T as the
squared matrix element for e+e− → 4 partons. In the limit
where three of the final partons are collinear, it can be shown
that T satisfies the following factorized form:

T (e+e− → 4 partons) � T (e+e− → qq̄) ·
∑

k

T coll
k (1 → 3)

= T (e+e− → qq̄) · (8παsμ
2ε)2

s2
123

∑

k

〈
P̂k

1→3

〉
. (A.1)

Here, the k runs over the possible quark initiated 1 → 3
parton channels q → g1g2q3 (q̄ → g1g2q̄3), q →
q ′

1q̄
′
2q3 (q̄ → q̄ ′

1q
′
2q̄3) or q → q1q̄2q3 (q̄ → q̄1q2q̄3), s123 is

the squared invariant mass of the three collinear parton sys-

tem, and
〈
P̂k

1→3

〉
are the process independent spin averaged

triple-collinear splitting functions.
Hereinafter, we report the relevant expressions for the

triple-collinear splitting functions [35]. Note that due to
charge conjugation invariance, the splitting functions for
the anti-quark initiated channels can be obtained from the
corresponding functions for the quark initiated ones,. i.e.
P̂q̄ ′

1q
′
2q̄3

= P̂q̄ ′
1q

′
2q3

and P̂q̄1q2q̄3 = P̂q̄1q2q3 .

The spin-averaged splitting function for the q → g1g2q3

process can be written in terms of the different colour factors:

〈
P̂g1g2q3

〉
= C2

F

〈
P̂(ab)
g1g2q3

〉
+ CFCA

〈
P̂(nab)
g1g2q3

〉
, (A.2)

where the abelian and non-abelian contributions are

〈
P̂(ab)
g1g2q3

〉
=

{
s2

123

2s13s23
z3

[
1 + z2

3

z1z2
− ε

z2
1 + z2

2

z1z2
− ε(1 + ε)

]

+ s123

s13

[
z3(1 − z1) + (1 − z2)

3

z1z2
+ ε2(1 + z3)

−ε(z2
1 + z1z2 + z2

2)
1 − z2

z1z2

]

+(1 − ε)

[
ε − (1 − ε)

s23

s13

]}
+ (1 ↔ 2) , (A.3)

〈
P̂(nab)
g1g2q3

〉
=

{
(1 − ε)

(
t2
12,3

4s2
12

+ 1

4
− ε

2

)

+ s2
123

2s12s13

[
(1 − z3)

2(1 − ε) + 2z3

z2

+ z2
2(1 − ε) + 2(1 − z2)

1 − z3

]

− s2
123

4s13s23
z3

[
(1 − z3)

2(1 − ε) + 2z3

z1z2
+ ε(1 − ε)

]

+ s123

2s12

[
(1 − ε)

z1(2 − 2z1 + z2
1) − z2(6 − 6z2 + z2

2)

z2(1 − z3)

+2ε
z3(z1 − 2z2) − z2

z2(1 − z3)

]

+ s123

2s13

[
(1 − ε)

(1 − z2)
3 + z2

3 − z2

z2(1 − z3)

−ε

(
2(1 − z2)(z2 − z3)

z2(1 − z3)
− z1 + z2

)

− z3(1 − z1) + (1 − z2)
3

z1z2

+ε(1 − z2)

(
z2

1 + z2
2

z1z2
− ε

)]}

+(1 ↔ 2). (A.4)

The spin-averaged splitting functions for non-identical fermions
in the final state read

〈
P̂q̄ ′

1q
′
2q3

〉
= 1

2
CFTR

s123

s12

[

− t2
12,3

s12s123
+ 4z3 + (z1 − z2)

2

z1 + z2

+(1 − 2ε)

(
z1 + z2 − s12

s123

)]
, (A.5)

where

ti j,k ≡ 2
zi s jk − z j sik

zi + z j
+ zi − z j

zi + z j
si j . (A.6)
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In the case of final-state fermions with identical flavour, the
splitting function can be written in terms of Eq. (A.5), as

〈
P̂q̄1q2q3

〉
=

[〈
P̂q̄ ′

1q
′
2q3

〉
+ (2 ↔ 3)

]
+

〈
P̂(id)
q̄1q2q3

〉
, (A.7)

where

〈
P̂(id)
q̄1q2q3

〉
= CF

(
CF − 1

2
CA

) {
(1 − ε)

(
2s23

s12
− ε

)

+ s123

s12

[
1 + z2

1

1 − z2
− 2z2

1 − z3

− ε

(
(1 − z3)

2

1 − z2
+ 1 + z1 − 2z2

1 − z3

)
− ε2(1 − z3)

]

− s2
123

s12s13

z1

2

[
1 + z2

1

(1 − z2)(1 − z3)

−ε

(
1 + 2

1 − z2

1 − z3

)
− ε2

]}
+ (2 ↔ 3). (A.8)

Appendix B: Integrals and pole structure

We illustrate our approach by referring explicitly to the calcu-
lations for Fpass(ρ, ε), though similar considerations apply
to all our calculations. When all three partons contribute
to the jet mass i.e. we have the delta function condition
δρ(1, 2, 3), we can eliminate the integral over an angle, say
θ12, by using the delta function condition. In order to perform
the remaining integrals over the triple-collinear phase-space
dΦ3, (see Eq. (19)) it proves to be convenient to exploit the
fact that all partons are collinear, with a collinearity essen-
tially set by the jet mass or more accurately by the parameter
ρ
zcut

. One may extract the overall 1/ρ scaling of dΣ/dρ by

working in terms of rescaled angular variables y = θ2
23

θ2
13

and

x = θ2
13
ρ

. The limits on the x integral follow from the posi-
tivity of the Gram determinant Δ > 0, corresponding to the
conditions (θ13 + θ23)

2 > θ2
12 > (θ13 − θ23)

2, which can be
expressed in terms of our chosen variables as a condition on
x :

1

z1(1 − z1) + yz2(1 − z2) + 2
√
yz1z2

< x,

x <
1

z1(1 − z1) + yz2(1 − z2) − 2
√
yz1z2

. (B.1)

It proves to be convenient to map the integral over x to one
with simple limits i.e. 0 and 1 by introducing the change
of variables x = u(r2 − r1) + r1. Our integration variables
are then u and y for the angular integration, both lying in a
range 0 to 1, and the energy fractions z1 and z2 (recall that
z3 = 1 − z1 − z2) or equivalently z and z p.

We then have to consider the extraction of ε poles, to sep-
arate the integral into divergent and finite terms. Our strategy
is to isolate the divergences and exploit the simplification of
the integrand in divergent regions, to obtain the divergence
structure analytically. This also generates finite terms that do
not vanish as ε → 0 , which are obtained via an ε expansion
of the factors multiplying the poles. Additionally we also
obtain a finite integral leftover from the removal of singular
terms, which on the other hand is not a compact expression.
However, being finite, it can always be integrated numeri-
cally.

Since we study the differential distribution rather than its
integral, we work at fixed jet-mass which regulates both soft
and collinear divergence. In general that leaves us with at
most a 1/ε2 singularity from an emission that does not set
the jet mass. For the calculation of Fpass in particular, the
larger-angle emission passes zcut and cannot produce any
divergence, while the smaller angle emission produces diver-
gences from the soft z p → 1 and collinear y → 0 limits.
Setting 1 − z p = v we encounter a general integral of the
standard form

I (ε) =
∫ 1

0
dv

∫ 1

0
dy

G (v, y, ε)

v1+2ε y1+ε
, (B.2)

where G(v, y, ε) is finite as v → 0 as well as y → 0 and
integration over the other variables is left implicit so as to
focus on the divergences. We can re-express this result in the
following form

I (ε) =
∫ 1

0
dv

∫ 1

0
dy

[
G(v, y, ε) − G(v, 0, ε)

v1+2ε y1+ε

+G(v, 0, ε) − G(0, 0, ε)

v1+2ε y1+ε
+ G(0, 0, ε)

v1+2ε y1+ε

]
, (B.3)

where by construction the first term on the LHS of the above
has only a soft pole i.e. as v → 0, the second term has
only a collinear pole from y → 0, while the final term has
a double pole arising from v → 0 and y → 0. We define
for convenience f (v, ε) = (G(v, 0, ε) − G(0, 0, ε)) /v1+2ε

where f (v, ε) is finite as v → 0 and also define

h(v, y, ε) = (G(v, y, ε) − G(v, 0, ε)) /y1+ε,

which is finite as y → 0. Then one obtains the form

I (ε) = G(0, 0, ε)

2ε2 − 1

ε

∫ 1

0
f (v, ε)dv − 1

2ε

∫ 1

0
h(0, y, ε)dy

+
∫ 1

0
dv

∫ 1

0

h(v, y, ε) − h(0, y, ε)

v1+2ε
dy. (B.4)

The final integral on the RHS above is purely finite by con-
struction and can be evaluated in the limit ε → 0 i.e in 4
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dimensions. The above result shows explicitly the pole struc-
ture that emerges from the integral I (ε). The integrals mul-
tiplying the 1/ε poles need only to be evaluated up to order
ε terms i.e. one can expand the integrand in ε and retain only
terms up to order ε. This strategy gives us all divergent and
finite contributions in the limit ε → 0.

Appendix C: The web variables

We start with the full four-body phase space

dΦ(4) = dd−1 p

(2π)d−1

1

2Ep

dd−1 p̄

(2π)d−1

1

2E p̄

× dd−1k1

(2π)d−1

1

2E1

dd−1k2

(2π)d−1

1

2E2

1

2E p̄

× (2π)dδ(d)(Q − p − p̄ − k1 − k2), (C.1)

where the momentum of the quark is denoted by p, the anti-
quark by p̄ and the emitted partons by k1 and k2. Without
loss of generality, we take the partons to be collinear to the
quark direction and thus integrate over the anti-quark three-
momentum to collapse the spatial delta function. We find

dΦ(4) = dd−1 p

(2π)d−1

1

2Ep

dd−1k1

(2π)d−1

1

2E1

× dd−1k2

(2π)d−1

1

2E2

1

2E p̄
(2π)δ(Q − Ep − E p̄ − E1 − E2),

(C.2)

where

E p̄ =
√
E2
p + E2

1 + E2
2 + 2k1 · p + 2k2 · p + 2k1 · k2.

(C.3)

Now in the triple-collinear limit all pairwise angles are small,
which allows the following simplification

dΦ tc
(4) = (2π)2−d dΩd−1

4Q

dd−1k1

(2π)d−1

1

2E1

dd−1k2

(2π)d−1

1

2E2

× E1−2ε
p dEp δ

(
Q

2
− Ep − E1 − E2

)
, (C.4)

where the delta function forces the expected constraint on
the energies of the three-parton system. Notice that without
this energy constraint the triple-collinear phase space looks
identical to an unconstrained 2-body phase space.

Now we come to the most important step. We want to re-
express dΦ tc

(4) in terms of the transverse momentum of the
parent gluon, with respect to the quark direction, in addition
to the invariant mass of the composite parton system, i.e.
k1+k2. To this aim we introduce the Sudakov decomposition

along the quark direction and the associated phase space for
a massless parton

k = xp + x̄ p̄s + k⊥, k2
t = −k2⊥,

dd−1k

(2π)d−1

1

2E
= 1

(2π)d−1

dx

2x
dd−2k⊥. (C.5)

where p̄s is a spectator momentum given by p̄s = (Ep,−p).
Here, k⊥ is the transverse momentum with respect to the
quark direction. In the collinear approximation the relation
between the Sudakov x and the energy of the emissions is
quite simple, xi = Ei/Ep , and thus Eq. (C.4) becomes

dΦ tc
(4) = (2π)4−3d

16Q
dΩd−1

dE1

E1

dE2

E2
dd−2k⊥1d

d−2k⊥2

× E1−2ε
p dEp δ

(
Q

2
− Ep − E1 − E2

)
. (C.6)

We change to energy fractions, viz. E1 = Q/2(1 − z)z p
and E2 = Q/2(1 − z)(1 − zp) and use the delta function to
integrate over Ep to obtain

dΦ tc
(4) = (2π)4−3d

16Q
dΩd−1

(
Q

2

)1−2ε

× z1−2εdz

1 − z

dz p
z p(1 − z p)

dd−2k⊥1d
d−2k⊥2. (C.7)

Finally, we introduce the transverse momentum of the parent
gluon and the invariant mass of the emissions as follows

k⊥ = k⊥1 + k⊥2, q⊥ = k⊥1

z p
− k⊥2

1 − z p
,

z p(1 − z p)q
2
t = s12. (C.8)

Implementing the above transformations Eq. (C.6) takes on
the relatively simple form

dΦ tc
(4) = dΦB × dΦ3, (C.9)

where dΦB is the two-body phase space that we must extract
to form the Born cross section, viz.

dΦB = 4ε(2π)2−d

8Q2ε
dΩd−1, (C.10)

while the triple-collinear phase space reads

dΦ3 = (4π)2ε

256π4

2z1−2εdz

1 − z

1

Γ (1 − ε)

d2−2εk⊥
Ω2−2ε

ds12

(s12)ε

× dz p
(z p(1 − z p))ε

1

Γ (1 − ε)

dΩ2−2ε

Ω2−2ε

. (C.11)
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Here, the solid angle dΩ2−2ε is that of q⊥ in the transverse
plane aligning k⊥ along one axis. A nice feature of Eq. (C.11)
is the simplicity of the double-soft limit, z → 1. In fact, if we
set z = 1 in the measure one recovers the double-soft phase
space, the 4-dimensional limit of which is reported in [64].

Appendix D: One-loop corrections to 1 → 2 collinear
splittings

In addition to the case of two real emissions, for the jet mass
distribution at order α2

s we also have to consider a real emis-
sion that sets the mass ρ alongside a one-loop virtual cor-
rection which is divergent and where the divergences can-
cel against those in the double-real emission case, to leave
behind finite terms. The relevant real-virtual contribution to
ρdΣ2/dρ, may be collectively written in the form

V1,1 (ρ, z, ε) = V
C2
F

1,1 (ρ, z, ε) + V CFCA
1,1 (ρ, z, ε)

+ V
CFTRn f

1,1 (ρ, z, ε) , (D.1)

where we have separated out the various contributions
according to the colour factor i.e. C2

F , CFCA and CFTRn f

terms and in our notation V1,1 is the one-real, one-virtual
correction to qq̄ production, in the approximation of a real
emission, which is collinear to the q or q̄ , passes grooming
and sets a (normalised) jet mass ρ.

For V
C2
F

1,1 (ρ, z, ε) there are two distinct contributions :
firstly the one-loop correction to the Born level qq̄ pro-
duction, V (ε) (see Eq. (9)) multiplying the squared matrix-
element for a real collinear emission, and secondly the one-
loop correction to a 1 → 2 collinear splitting [65]. The latter
contribution can be explicitly obtained using the expression
for P(1)

q→qg in Eq. (103) of Ref. [65], in the CDR scheme with

α = 1 and δ = 1, and setting s12 = Q2

4 ρ, μ2 = Q2/4 and
z1 = 1 − z. The Hypergeometric function in Eq. (103) of
Ref. [65] may be expressed in terms of a function

f (ε, 1/x) = 1

ε
[2F1 (1,−ε, 1 − ε, 1 − x) − 1] ,

with the ε expansion [66]

f (ε, x) = ln x − ε

[

Li2(1 − x) +
∞∑

k=1

εk Lik+2(1 − x)

]

.

(D.2)

Writing our result in terms of the renormalised MS coupling,
accounting for both hemispheres with a factor of two, we
have

V
C2
F

1,1 (ρ, z, ε)

=
(
CFαs

2π

)2 [
2 pqq(z; ε)ρ−ε(4z(1 − z))−ε

×
(

− 2

ε2 + 4π2

3
−8− 3

ε

)
+ pqq(z, ε)ρ

−2ε(z(1 − z))−ε

×
(

4

ε
ln z + 4 Li2

(
z − 1

z

))
− 2

]
. (D.3)

The corresponding result for the CFTRn f piece, after
removal of UV poles via renormalisation (see e.g. Ref. [66]
for a detailed discussion), can be expressed as

V
CFTRn f

1,1 (ρ, z, ε) = 2CFTRn f

( αs

2π

)2 2

3

× pqq (z, ε)

(
1

ε
ρ−2ε(z(1 − z))−ε + ln ρ

)
.

(D.4)

The result for theCFCA piece has two distinct components
i.e. a component derived like the corresponding C2

F piece
using Eq. (103) of Ref. [65] which includes the double poles
that will cancel those in the real emission result, and a compo-
nent involving the β function coefficient b0 which is simply
related to Eq. (D.4) via the replacement 2

3TRn f → − 11
6 CA.

The combined result can be expressed in the form

V CFCA
1,1 (ρ, z, ε) = 2CFCA

( αs

2π

)2 {
pqq (z, ε)ρ

−2ε(z(1 − z))−ε

×
[−1

ε2 + 1

ε

(
ln

1 − z

z
− 11

6

)]

+ pqq (z)

[
Li2

(
z

z − 1

)

− Li2

(
z − 1

z

)
+ 2π2

3
− 11

6
ln ρ

]
+ 1

}
.

(D.5)
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