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ABSTRACT: Inverse Kohn−Sham (iKS) methods are needed to fully understand the one-to-
one mapping between densities and potentials on which density functional theory is based.
They can contribute to the construction of empirical exchange−correlation functionals and to
the development of techniques for density-based embedding. Unlike the forward Kohn−Sham
problems, numerical iKS problems are ill-posed and can be unstable. We discuss some of the
fundamental and practical difficulties of iKS problems with constrained-optimization methods
on finite basis sets. Various factors that affect the performance are systematically compared and
discussed, both analytically and numerically, with a focus on two of the most practical methods:
the Wu−Yang method (WY) and the partial differential equation constrained optimization
(PDE-CO). Our analysis of the WY and PDE-CO highlights the limitation of finite basis sets.
We introduce new ideas to make iKS problems more tractable, provide an overall strategy for
performing numerical density-to-potential inversions, and discuss challenges and future
directions.

I n Principle versus in Practice. Kohn−Sham (KS) density
functional theory (DFT)1,2 has long been the most widely

used method for electronic-structure calculations in condensed
matter physics and quantum chemistry computations.3,4 KS-
DFT is formally exact in the sense that, given the exact
exchange−correlation (XC) energy functional, a numerically
exact solution of the self-consistent KS-DFT equations is
guaranteed to yield the exact ground-state density n(r) and
energy for any system of N electrons in a time-independent
external potential v(r). The word “exact”, which has been used 4
times already in this introductory paragraph, is sometimes
dismissed with scorn when confronted with results in practice.
The results of actual DFT calculations are evidently not exact.
Nevertheless, it is the proven existence of an exact one-to-one
correspondence between ground-state densities and potentials
which has given impetus to the development of approximations
in DFT. A different one-to-one mapping exists for any choice of
electron−electron interaction. Nature’s choice is the Coulomb
interaction, but the correspondence can be established also for a
fictitious system of noninteracting electrons. Calculations are
simpler in this fictitious world, and the one-to-one maps allow
one to connect the answers back to the real world, in principle. In
practice, the exchange−correlation energy Exc[n], “nature’s
glue”,5 needs to be approximated. This Perspective discusses a
clash between “in principle” and “in practice”: The density-to-
potential mappings are in principle one-to-one. For a given
density n(r) and choice of approximate Exc[n], there is in
principle only one XC potential vxc(r) corresponding to n(r).
That potential is the functional derivative of Exc[n] with respect
to the density, evaluated at that density. The potential vxc(r)
should be calculable from the given density by solving an inverse

problem, in principle. In practice, unfortunately, the process is a
numerical minefield. For a user’s choice of approximate Exc[n],
most quantum-chemistry codes solve the forward KS-DFT
problem; that is, self-consistently calculate n(r) and, from it, the
total energy for a given v(r) and N. Another output of this
calculation is the self-consistent vxc(r). Much less common are
codes that can solve the inverse Kohn−Sham problem (iKS) to
find the XC potential corresponding to a given density.6,7 But
why would one want to do such calculations? We list four
answers below:

• Exploring the Hohenberg−Kohn1 and Runge−Gross8
mappings: Density-to-potential inversions are useful for
calculating numerically exact XC potentials from numeri-
cally exact densities, i.e., a point-by-point exploration of
the Hohenberg−Kohn and Runge−Gross mappings. In
ground-state DFT, inversions can reveal features of XC
potentials that encode the physics of strong correla-
tions9,10 and are missed by approximate functionals. In
time-dependent DFT, inversions can also shed light on
properties of the exact time-dependent XC potentials
needed to describe electronic dynamics11,12 and to
propose approximations that go beyond the adiabatic
limit,13−16 as needed for describing multiple and charge-
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transfer excitations in molecules or excitonic transitions in
solids.

• Analyzing errors of approximate XC functionals: iKS can
be utilized for measuring density-driven errors in KS-
DFT;17 iKS from numerically exact densities can assist in
the development of explicit XC functionals. There are also
recent examples of the use of iKS to improve XC
functionals in the field of nuclear DFT.18−20 Furthermore,
machine-learning approaches under development21−24

also take inverted XC potentials as input. The efficiency
and accuracy of the iKS methods are critically important
here.

• Quantum embedding: Various modern variants of
density-based subsystem and embedding approaches25,26

employ potential reconstruction techniques.27−29 Here,
typically, a target density is updated many times in a self-
consistent loop and the potential corresponding to that
target density must be found at each step of the loop,
implying a significant additional computational cost to
calculations that do not make use of efficient inversion
techniques.

• Optimized effective potentials (OEP): Approximate
expressions for Exc[n] can be either explicit or implicit
functionals of the density. Explicit functionals are usually
preferred for their simplicity and efficiency. However,
implicit XC functionals30 that depend on the KS orbitals
are often used when higher accuracy is needed.31,32 In
particular, OEP methods are being increasingly used for a
variety of applications.33−35 The OEPmethod is often the
bottleneck of the calculations. The direct OEP method
developed by Yang and Wu36 shares many of the same
features of iKS discussed here.37−39 Improvements on
inversion methods would potentially offer significant
speed-ups allowing for more widespread adoption of OEP
calculations.

iKS Methods. Several methods exist for solving the iKS
problem through self-consistent density-based calcula-
tions.40−50 The connections between many of these methods
have been cogently analyzed recently by Kumar et al.51,52 An
entirely different approach that makes use of the wave function
(instead of the density) has been developed by Ryabinkin et al.
(mRKS) and has been shown to provide very accurate
results.53,54 mRKS uses as input the one- and two-particle
reduced density matrices. Its computational cost is thus out of
reach for calculations on large systems. A detailed discussion
explaining the success of wave function-based methods
compared to pure density inversions (i.e., where only the
densities are needed) was provided recently by Kumar et al.55

We concentrate on pure Kohn−Sham inversions, referred to as
iKS in this Perspective. Methods other than self-consistent
calculations have also been designed, many of which feature
constrained optimizations.50,52,56−60

In spite of all the methods in hand, iKS problems are still
difficult. First, different methods feature different capabilities
regarding accuracy and efficiency. Many of them have been
tested only on single atoms or diatomic molecules for
illustration. Some accurate methods, such as mRKS, are difficult
to apply to molecules with more than∼10 atoms. Kanungo et al.
recently implemented the PDE-constrained optimization
method (PDE-CO) on a systematically improvable finite-
element basis that provided results for polyatomic systems
with an accuracy comparable to that of mRKS using affordable

computation resources.60 Moreover, KS inversion is usually ill-
posed. A problem is well-posed if a solution exists, is unique, and
continuously changes with the input as defined by Hadamard61

(if a problem is not well-posed, it is then ill-posed). Analogous
inverse problems in many fields are generally known for their
instabilities. In the case of iKS, the uniqueness is guaranteed by
the Hohenberg−Kohn theorem. The existence is known as the
v-representability problem. In discretized systems, densities are
ensemble v-representable.62−64 The existence is usually assumed
to be true, and the continuity was proven for discrete densities.65

However, when the problem comes into practice with a finite
basis set and rounding-errors, the errors/variations to the
densities are usually arbitrary, the smoothness condition breaks
down, and the iKS problem becomes ill-posed.59 Because the
kinetic operator in the KS equation plays a role of regulator,
different XC potentials can reproduce very similar den-
sities.22,66,67 In practical KS inversion calculations on finite
basis sets, many factors can lead to unphysical oscillations/
overfitting to the final vxc(r). Therefore, special consideration
and regularization is often essential for reasonable results.
Simple tricks can often greatly improve an inversion when using
one particular inversion method, but those same tricks may be
totally unhelpful when used in combination with other methods.
Many of these tricks depend on error cancellations of some
form,38,39,54,60,68−70 making it extremely difficult to predict
when they will work or fail.
Organization of this Perspective. We focus on two of the most

efficient constrained-optimization methods for iKS, the Wu−
Yang method69 (WY) and PDE-CO.58−60 First, we review the
theory behind both methods and their implementation on finite
basis sets, including the first implementation of PDE-CO on
finite Gaussian potential basis sets. Except for the well-known
drawbacks of the finite potential basis set (PBS), PBS
significantly improves the efficiency and helps to control
problems that one would encounter in a general PDE-CO
problem.59,60,71 Different factors that influence the stability of
the inversion are systematically discussed and compared, both
analytically and numerically, including finite basis sets,
regularization/corrections, optimization methods, and guide
potentials.
There is no way of avoiding the use of many acronyms for the

methods, algorithms, and basis sets employed here. Table 1
compiles the acronyms we use most. We highlight our use of
“CX/CY” when cc-pCVXZ is being used as the basis set to
expand the orbitals and cc-pCVYZ as the basis set to expand the
potentials. The input density is CCSD unless further specified.
The exact XC potential data comes from quantum Monte
Carlo calculations,72,73 as in many other discussions on
iKS.48,49,51−54,69 All the calculations are implemented on
Psi4.74,75 Atomic units are used throughout.
The Wu−Yang Method. The central idea of the WY method

follows directly Levy’s31 and Lieb’s76 definition of the universal
functional. The noninteracting kinetic energy is optimized under
the constraint that the density matches a target. Unlike many
other methods that depend on some sort of self-consistent
calculation, the WY method relies on gradient and Hessian-
based optimizations. Thus, the WY method can be very easily
implemented with a standard general optimizer and is robust for
most systems. On the other hand, given the ill-posed nature of
iKS and the ill-conditioning of theHessianmatrices, there can be
numerical problems, and regularization is usually essential. The
Lagrangian for the WY constrained optimization is
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W v v T v n nr r r r, d ( ) ( ) ( )det KS KS s det KS in∫[Ψ [ ] ] = [Ψ ] + { − }
(1)

where nin(r) is the target input density and n(r) is

n Nr r r r r r( ) d ... d ( , , , )N N2 det 2
2∫= |Ψ ··· |

(2a)

r2 ( )
i

N

i

/2
2∑ ψ= | |

(2b)

TheΨdet in eqs 1 and 2 is the KS Slater determinant consisting of
N/2 doubly occupied orthonormal KS orbitals {ψi}. Our
discussions will be limited to spin-unpolarized systems for
convenience. vKS(r) in eq 1 is the KS potential

v r r r
1
2

( ) ( ) ( )i i i
2

KS ψ ψ− ∇ + = ϵ
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (3)

but appears in eq 1 as a Lagrange multiplier because of the
necessary condition on the stationary point:

W v
n r

,
( )

0det KSδ
δ
[Ψ ]

=
(4)

Here, a Lagrangian dual problem of the ZMP56 problem is
solved and vxc(r) is the dual variable of the density.52,77

Therefore, eq 1 needs to be maximized. This will also be proven
later through features of the Hessian matrices.
From eq 1

W v v
v

n n
r

r r
,

( )
( ) ( )det KS KS

KS
in

δ
δ

[Ψ [ ] ]
= −

(5)

and

W v v
v v

n
vr r

r
r

r r r r

,
( ) ( )

( )
( )

2
( ) ( ) ( ) ( )

i a

i a i a

i a

2
det KS KS

KS KS KS
occ. unocc.

∑ ∑

δ
δ δ

δ
δ

ψ ψ ψ ψ

[Ψ [ ] ]
′

=
′

=
* ′ * ′

ϵ − ϵ (6)

PDE-Constrained Optimization (PDE-CO). Considering the
Hohenberg−Kohn theorem1 and assuming nondegeneracy, one

would expect from an “exact” input density the exact KS
potential. It is generally assumed that, at least near the “exact”
density, a more accurate potential is expected to give a more
accurate density and vice versa. To find the best vKS(r) given the
limitation of a basis set or a grid, searching for a density that is
closest to the “exact” input density is usually a good idea. To do
this, one could define a density error function to minimize

u n nr r r rargmin d ( ) ( ) ( )v
w

r( ) in
KS

∫ | − |
(7)

subject to constraints (eq 3) and

r r( ) d 1i
2∫ ψ| | =

(8)

u(r) in eq 7 can be a positive weight function that should not
change the final convergence theoretically. u r( )

n r
1
( )p

= for p ∈
[1, 2) can be helpful for the asymptotic region when vKS(r) is
calculated on a grid. Properties of the weight function u(r) when
calculations are performed on a grid can be found in the recent
work by Kanungo et al.60 Because in our basis-set
implementation vKS(r) is expanded as in eq 11, the asymptotic
behavior is determined by v0(r) (see below), and we use u(r) = 1
andw = 2 in what follows. Note that eq 7 is just the simplest form
of an error function. The main reason to choose this form is to
derive the gradient analytically, as we will do. However, with the
help of automatic differentiation,78 more sophisticated error
functions can be designed.
The ZMPmethod56 has a connection to PDE-CO in the sense

that the penalty terms in ZMP (as defined by Kumar and
Harbola52) can be seen as an error function, while ZMP can in
turn be regarded as a special method of optimization.
The Lagrangian can be written as

( )

L v p

n n

p v

r r r

r r

r r

, , , ,

( ( ) ( )) d

( )
1
2

d

( ) d 1

i i i i

i

N

i i i

i

N

i i

KS

in
2

1

/2
2

KS

1

/2
2

∫

∫

∫

∑

∑

ψ μ

ψ

μ ψ

[ { } {ϵ } { } { }]

= −

+ − ∇ + − ϵ

+ | | −

=

=

i
k
jjj

y
{
zzz

(9)

where pi(r) and μi are the Lagrange multipliers introduced for
eqs 3 and 8. Variations with respect to the ψi(r), ϵi, and vKS(r)
yield

v p

n n

r r

r r r r

1
2

( ) ( )

8 ( ( ) ( )) ( ) 2 ( )

i i

i i i

2
KS

in ψ μ ψ

− ∇ + − ϵ

= × − −

i
k
jjj

y
{
zzz

(10a)

p r r r( ) ( )d 0i i∫ ψ =
(10b)

L
v

p
r

r r
( )

( ) ( )
i

N

i i
KS 1

/2

∑δ
δ

ψ=
= (10c)

The optimization strategy generally adopted is to solve for the
pi(r) and the ψi(r) from eqs 3, 10a, and 10b and build L

vKS

δ
δ

from

eq 10c for each step. The shape of L[vKS, {ψi}, {ϵi}, {pi}, {μi}]
can be arbitrary (not necessarily convex or concave). Thus, a

Table 1. Acronym List

CCSD coupled-cluster singles-and-doubles
CX cc-pCVXZ
CX/CY The OBS/PBS is CX/CY.
FA Fermi−Amaldi
iKS inverse Kohn−Sham
KS Kohn−Sham
LDA local density approximation
mRKS modified Ryabinkin−Kohut−Staroverov
NSC null-space correction
OBS atomic orbital basis set
PBS potential basis set
PBE Perdew−Burke−Ernzerhof
PDE partial differential equation
PDE-CO PDE-constrained optimization
QMC quantum Monte Carlo
TSVD truncated singular value decomposition
WY the Wu−Yang method
XC exchange−correlation
ZMP Zhao−Morrison−Parr
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good initial guess for vKS(r) is important to find the stationary
point of the Lagrangian.
Potential Basis Sets (PBS). There is a general trade-off between

the accuracy and efficiency in iKS. Using PBS improves the
efficiency significantly. The original WY method69 represented
vKS(r) as

v v v vr r r r( ) ( ) ( ) ( )KS ext 0 PBS= + + (11)

where vext(r) is the external potential due to the nuclei and v0(r)
is a guide potential, whose role is discussed below. The rest is
expanded on a finite potential basis set (PBS) {ϕt}

v br r( ) ( )
t

t tPBS ∑ ϕ=
(12)

Compared to a fine mesh, this choice is usually limited at
resolving fine features of the XC potentials, but it greatly
improves the efficiency. The PDE-CO method has been
implemented on systematically improvable basis sets providing
remarkable accuracy on polyatomic systems, including the
“strongly-correlated” C6H4.

60 Here we implement PDE-CO for
the first time on finite PBS.
In WY, the gradient vector of W[Ψdet[vKS], vKS] with respect

to the {bt} is

W v v
b

,

t

det KS KS∂ [Ψ [ ] ]
∂ (13a)

W v v
v

v
b

r
r

r
d

,
( )

( )

t

det KS KS

KS

KS∫ δ
δ

= ′
[Ψ [ ] ]

′
∂ ′

∂ (13b)

n nr r r rd ( ( ) ( )) ( )tin∫ ϕ= ′ ′ − ′ ′
(13c)

The Hessian matrix from first-order perturbation theory is

W v v
b b

,

t p

2
det KS KS∂ [Ψ [ ] ]
∂ ∂ (14a)

W v v
v v

v
b

v
b

r r
r r

r r
d d

,
( ) ( )

( ) ( )

t p

2
det KS KS

KS KS

KS KS∫ δ
δ
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[Ψ [ ] ]

′ ″
∂ ′

∂
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∂

i

k
jjjjjj

y

{
zzzzzz

(14b)

2
i a

i t a a p i

i a

occ. unocc.

∑ ∑
ψ ϕ ψ ψ ϕ ψ

=
⟨ | | ⟩⟨ | | ⟩

ϵ − ϵ (14c)

It can be easily proven that the Hessian matrices are negative
definite, which means that W[Ψdet[vKS], vKS] is concave for any
given PBS {ϕt} as discussed above.
Table 2 shows that both gradient and Hessian, calculated

through a finite-difference approximation, are numerically
accurate. The tests reported in Table 2 also show where the
influence of numerical errors comes in. It can be seen that,
before the optimization, the relative errors for the gradient are
always small. However, after convergence has been achieved and
the analytical gradients are small, the relative gradient errors
increase because the absolute numerical errors remain.
For the PDE-CO method, we represent all the terms on finite

basis sets. The KS-orbitals ψi(r) are represented on a finite OBS,
and vKS(r) is represented on PBS as discussed above.We use {ϕ}
to denote the PBS and {ϕ′} for the OBS. The pi(r) are expanded
on the OBS, just like ψi(r):

p cr r( ) ( )i
k

ik k∑ ϕ= ′
(15)

To solve for the coefficients cik, wemultiplyϕk′ on both sides of
eq 10a and integrate:

F S c g( )i i i− ϵ = (16)

where F is the Fock matrix and S is the overlap matrix Sij = ⟨ϕi′|
ϕj′⟩. The vectors gi

n ng r r r r r rd ( ) 8( ( ) ( )) ( ) 2 ( )i k k i i iin∫ ϕ ψ μ ψ{ } = ′ [ − − ]
(17)

are derived from eq 10a. The gradient is derived from eq 10c:

L
b

L
v

p

r
r

r

r r r r

d
d

d
( )

( )

d ( ) ( ) ( )

i
i

j

N

j j i

KS

1

/2

∫

∫∑

δ
δ

ϕ

ψ ϕ

=

=
= (18)

The well-known limitations of finite basis sets in connection
to the ill-posed nature of iKS have stimulated the development
of many methods38,39,68−70 to improve the results of density-to-
potential inversions, though some of them have overlapped
effects and they all have shortcomings. To date, there is no clear
and straightforward strategy that works reliably. In the following,
we explain the theoretical effects of basis sets, regularization,
guide potentials, and use of different optimizers; compare the

Table 2. Wu−Yang: Finite Difference Tests

Wu−Yang Gradient Testa

basis set CD/CD CD/CQ CQ/CQ

beforec after before after before after

Be 5.6 × 10−6 4.1 × 10−3 3.9 × 10−6 0.5 1.8 × 10−5 1.3 × 10−2

Ne 5.5 × 10−6 0.06 5.8 × 10−6 2.0 × 10−2 5.3 × 10−5 2.4 × 10−2

Ar 1.6 × 10−5 0.2 3.9 × 10−5 0.24 5.9 × 10−5 0.2
Wu−Yang Hessian Testb

basis set CD/CD CD/CQ CQ/CQ

before after before after before after

Be 2.3 × 10−7 8.1 × 10−8 1.5 × 10−7 7.0 × 10−8 1.5 × 10−6 1.8 × 10−7

Ne 2.2 × 10−7 3.2 × 10−8 3.1 × 10−7 6.3 × 10−8 2.6 × 10−6 1.5 × 10−7

Ar 4.3 × 10−7 8.8 × 10−8 6.6 × 10−7 1.0 × 10−7 2.7 × 10−6 3.2 × 10−7

aRelative errors for gradient (|grad − gradapproximation|/|grad|); |.| is the L
2 vector norm. bRelative errors for Hessian (|hess − hessapproximation|/|hess|);

c“Before” means result before the optimization; “after” means result after the optimization.
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results; and provide guidance on how to utilize them. In the end,
considering both accuracy and efficiency, we provide a
recommendation that is most robust (though not perfect)
according to our experience and could be directly adopted for
practical calculations.
We stress that there are two key aspects for numerical iKS: the

accuracy of the densities and the completeness of the PBS. In a
scenario in which both are commensurate, one can expect a well-
behaved solution for most inversion methods. Unfortunately,
this is not easy to achieve as discussed next.
Orbital Basis Sets (OBS). The limitations of finite OBS in

density-to-potential inversion are well-documented.79−81 More-
over, because atomic orbitals are specifically designed to
describe molecular orbitals, there is no guarantee that they can
be satisfying for PBS, which is often true for inversion in
embedding methods, whose embedding potentials usually have
different spatial features compared to molecular orbitals. In
practice, the results of both WY and PDE-CO methods can be
highly sensitive to both theOBS and the PBS, but there is usually
very little freedom in choosing them. There are two main
reasons finite OBS can lead to unphysical oscillations in the
potential. First, for a given finite OBS {ϕμ′}, all the XC potentials
that produce the same Fock matrices

V vr r r r( ) ( ) ( )d∫ ϕ ϕ= ′ ′μν μ ν
*

(19)

will lead to the same density. This many-to-one problem is at the
root of the relation between the exact external potential and
“effective” external potentials discussed by Gaiduk et al.68 and
Kumar et al.55 Second, the electron density cannot be
represented exactly on finite Gaussian basis sets.82 Small input
errors will lead to large oscillations given the ill-posed nature of
iKS.59,80

To address the first point above, we find that using similar
basis sets, even small ones, for orbital and potential is typically a
good choice. There is often error around the nuclei (Figure 1),
where both OBS and PBS are insufficiently accurate. On the
other hand, even though large basis sets for both the orbital and
potential are preferred, this is impractical. A well-adopted
strategy is to use a relatively small OBS to reduce the
computational cost and to use a large and carefully chosen

PBS to have a good representation for the potential. Following
this strategy often introduces unphysical oscillations, and thus,
regularization methods are required.
To better illustrate the limitations of finite basis sets and the

sensitivity of the resulting potentials, we compare in Figure 1 the
XC potentials obtained for the Ne atom fromWY and PDE-CO
methods using different combinations of basis sets. The results
are very sensitive to the choice of PBS and OBS. One could
imagine that the unphysical features of the resulting XC
potentials would depend strongly on the method used to
perform the iKS. However, Figure 2 confirms that they are not.

Even though the WY and PDE-CO methods are based on
different principles, with optimizers traveling along different
paths in the space spanned by the {ϕt}, the unphysical features of
the resulting XC potentials are largely the same, confirming the
dominant role played by the finite basis sets. From this
perspective, a systematically improvable basis set60,84,85 for
both OBS and PBS has the potential to significantly improve the
results of iKS.
Guide Potentials. The WY original method69 uses the Fermi−

Amaldi (FA) potentials56,69

v
N
N

n
r r

r
r r

( )
1

d
( )

FA
in∫= − ′

′
| − ′| (20)

as a guide potential v0(r) in eq 11, following Zhao et al.56

Because the FA potential can be understood as a Hartree

potential v r r( ) d n r
r rH
( )in∫= ′ ′

| − ′|
with a part from exchange−

correlation that partially prevents self-interaction, we also test
v0(r) = vH(r) below. Because PBS usually has poor behavior in
the asymptotic region, ∑t btϕt(r) often decays to 0 too quickly
(see Figure 3). In other words, v0(r) should have the asymptotic
behavior of vH(r) + vxc(r) because ∑t btϕt(r) has negligible
contributions far from the nuclei. In the case of LDA densities,
v0(r) = vH(r) fits this requirement better. However, the XC
potentials obtained using v0(r) = vFA(r) usually have an
asymptotic behavior that runs much closer to the exact one
and leads to better satisfaction of the ionization potential
theorem,86,87 ϵHOMO =−I. This is true even when the LDA input
density is used.50,57

Figure 1.Neon atom XC potential from different combinations of OBS
and PBS. The optimizer BFGS83 runs for 30 iterations for all the results.

Figure 2. Ne atom XC potentials on CD/C5. BFGS is used with the
different number of iterations specified. The same initial point ({bt} = 0
and v0 = vFA) is used.
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Regularization. The effects of regularization are usually
significant. The response function in eq 6 and the Hessian
matrix in eq 14c are supposed to sum over all unoccupied KS
orbitals. The real response functions are invertible, but the
Hessian matrices approximated with a finite number of KS
orbitals can be very singular, especially when the PBS differs
significantly or is larger than the OBS,37 as shown in Figure 4.

Truncated singular value decomposition (TSVD) regularization
is often necessary. Wu and Yang used TSVD88 without
providing a systematic way to determine the truncation
threshold.69 Bulat et al. introduced an additional λ-regularizer

v r b Tb( ) 2PBS
2 Tλ λ− ∥∇ ∥ → − (21)

where b is the coefficient vector for vPBS(r) and T is the kinetic
contribution to the Fock matrix.38 The L-curve method was
introduced to search for the regularization parameter λ.38,39

Both methods are widely used as standard regularization for
numerical optimization. They both contribute to the stability of
the inversions irrespective of the basis-set employed and help
overcome the overfitting problems especially around the nuclei.
To demonstrate this, we introduce here two simple but effective
tricks: (1) Cliff-plotting to determine the optimum parameters
for TSVD and (2) Ts-focusing to optimize λ for λ-regularization.
(1) The truncating parameters for TSVD depend on the

systems and basis sets. The most straightforward method to
determine these parameters is to plot the spectrum (the diagonal
vector of the S matrix in SVD; see Figure 4). In many cases, the
spectrum is of a “cliff” shape. Cutting at the edge of the cliff
usually works. The main idea is to eliminate the subspace whose
variations do not change the Fock matrices in eq 19. This simple
method can be tricky when the OBS is much smaller than the
PBS, where the spectrum shows several cliffs or disconnections
and one has to decide on which one to cut. On the other hand,
when the OBS and PBS are very close or the same, TSVD is
often unnecessary. Moreover, optimizers like trust-Krylov89 and
L-BFGS90 yield a result similar to that of the Newton method
with TSVD (Figure 4).
(2) Even with TSVD, there can still be overfitting, especially

around the nuclei (see Figure 4). We find that λ-regularization is
more reliable in this region. In addition to the L-curve method
introduced by Bulat et al.,38 we test here an alternative method
to search for λ. We calculate Ts(λ) as a function of λ (see Figure
5). The point of Ts(λ) with the largest λ that is close enough to

Ts(λ = 0) is chosen. The main idea is to adopt the simplest
potential (corresponding to the largest λ) which does not
essentially change the optimized result. Obtaining Ts(λ) curves
such as those of Figures 5 and 6 requires multiple inversion
calculations, but the efficiency of constrained optimization
methods on finite PBS makes it acceptable in practice.
Motivated by the very similar overfitting features exhibited by

the WY and PDE-CO methods, as evidenced in Figure 2, we
now add λ-regularization to the Lagrangian of the PDE-CO
method (eq 9). Note the sign for the regularization term needs

Figure 3. Neon atom XC potential and vPBS (eq 11) for different
(Fermi−Amaldi and Hartree) guide potentials (v0) calculated with WY
in C5/C5. H stands for Hartree, and FA stands for Fermi-Amaldi. Note
that for a Hartree guide potential, vxc = vPBS.

Figure 4. Neon atom XC potential using Newton+TSVD. The top
panel shows different results from different optimization methods. The
bottom graph is the spectrum of singular values of the Hessian matrix
before the convergence. The vertical red dashed line is the TSVD cutoff.
CD/CT basis sets are used.

Figure 5.Neon atomXC potentials from theWu−Yangmethod with λ-
regularization. Newton is used on CD/C5. TSVD is used when λ = 0.
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to be changed when compared to eq 21 because eq 9 is
minimized while eq 1 is concave for a given PBS. We follow a
similar strategy to search for λ as we have done for WY. Rather
than Ts(λ), the error (eq 7) as a function of λ is utilized, and the
largest λ for a small enough error is selected (Figure 6). In
general it is impractical to search for a perfect λ for a specific
OBS/PBS. The simple method introduced above usually
effectively eliminates the oscillations.
Null-Space Correction. When using TSVD, it is possible that

there is not a single clear edge and cutting at one edge does not
lead to a smooth result. Also, cutting a Hessian matrix in this way
“wastes” the large PBS selected. Instead of λ-regularization, a
correction to the Hessian matrix can be defined based on an
Unsöld approximation91 (this follows the derivation given by
Gidopoulos and Lathiotakis37 for OEP):

Hmn
i

i m n i
i p i a

i m p p n i
, 0

∑ ∑ ∑ψ ϕ ϕ ψ ψ ϕ ψ ψ ϕ ϕ̃ = ⟨ | | ⟩− ⟨ | | ⟩⟨ | | ⟩
={ }

(22)

where the subscript i denotes the occupied KS orbitals and a0
denotes the finite set of unoccupied KS orbitals. The correction
potential on PBS can be defined and derived as

Ub V A U g HV U Hb( ( ) )T T T1 1
0̅ = ̃ − ̃ ̃μ μ μ μ μ− −

(23)

A detailed derivation and the definition for each term can be
found in the Supporting Information. This correction fixes
unphysical oscillations well, as shown in Figure 7.
Optimization Methods. The choice of optimization methods

can also be important. Even for the WY method, which is
concave, the optimized results can be very different with similar
Ts and density error (eq 24) as we mentioned above. Here, we
compare the performance of some of the most widely used
methods that are available from the Scipy.optimize library:92

quasi-Newton (BFGS83 and L-BFGS-B90) and trust-region
methods (exact93 and Krylov89). We also implement Newton
with TSVD regularization manually. As Wu and Yang pointed
out,69 the BFGS does not require TSVD and can often give a
better convergence regarding W[Ψdet[vKS], vKS], though more
iterations are required.

We consider four different criteria including W[Ψdet[vKS],
vKS], Ts[Ψdet], the gradient (eq 13a) norm ∥grad∥, and density
error

N n nr r rd ( ) ( )error in∫= | − |
(24)

The gradient norm ∥grad∥ can be understood as metrics of
optimization on a given PBS. The density error is more general
and unlimited by the PBS. The gradient norm optimization is a
necessary but insufficient condition for density error optimiza-
tion because of the limitation of finite PBS (Table 3). The
gradient norm is the main criterion used by optimizers for
convergence.
Table 4 and Figure 8 illustrate the performance of these

different methods on the Ne atom. Trust-exact can still converge
to a very overfitted potential when the PBS is not balanced.
BFGS does not overcome the ill-condition of the accurate
Hessian matrix in extreme cases. L-BFGS-B, originally
developed to save the memory for the Hessian matrices and
maintaining a lower-rank approximated Hessian matrix, has a
better performance than BFGS. Trust region methods and
Newton’s method are more efficient than BFGS and L-BFGS-B
as one can expect. In all the systems we tested, trust-Krylov is the
most robust method. Also, the results suggest severe ill-
conditioning problems. Note that PDE-CO has similar levels
of accuracy as WY, which is about 1 order of magnitude worse
than those achieved by PDE-CO implemented on a finite-
element basis.60 This confirms again the limitation of finite basis
sets and the advantage of using systematically improvable
basis.60,84,85

Inverse Crimes. An “inverse crime” occurs when the methods
used to calculate the input data are the same as those used to
perform the inversion. For example, an inverse crime is
committed when one calculates the PBE vxc(r) by inverting a
PBE density that has been obtained by solving the forward PBE
problem on, e.g., the same grid.59 Inverse crimes should be dealt
with to avoid trivial results.95 This is not a prevalent problem in
KS inversions because the input densities are often taken from
wave function-based calculations. Nevertheless, we compare the
results from a PBE density inversion and a CCSD density
inversion as an illustration in Figure 9 for the FC2Cl molecule.

Figure 6. Neon atom XC potentials from the PDE-constrained
optimization with λ-regularization. error(λ) is the density error
function defined in eq 7. L-BFGS is used on CD/C5.

Figure 7.Neon atom potentials in CD/CT (left) and CD/CQ (right).
TSVD and null-space corrected (NSC) XC potentials are compared. v0
is the original result, and v̅ is the correction term (i.e., NSC = v0 + v̅).
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One can see that the PBE density inversion is much more stable
than the CCSD inversion even when no regularization is used.
The CCSD inverted potential has unphysical features around
the nucleus. However, it clearly attempts to reproduce more
details of the reference calculation (mRKS), because CCSD
densities are generally more accurate than those of PBE. The
inversion from an approximate self-consistent KS density is
easier than from a wave function density.
A Final Piece of Advice. Generally (but not strictly), there is a

trade-off between accuracy and efficiency in iKS problems.
When implemented on finite PBS, with very desirable efficiency,
the results are more sensitive to all the factors discussed here.
Given our experience, some of which is shown in the Supporting
Information I: Example Calculations, we recommend using the
largest basis sets you can afford. Trust regionmethods, especially
trust-Krylov with λ-regularization, are usually more reliable (the
search for λ could start in a region [10−4, 10−6]). If a careful
tuning is preferred, the Newton method with the null-space
correction discussed in Supporting Information II: Null-Space
Correction can be considered. Our code with all of the methods
compared and discussed in this Perspective will be open-sourced
very soon, but a word of caution for the user is in order: pure iKS

problems, especially in finite basis sets and achieved by
constrained optimization, remain challenging. New ideas are
needed.
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Table 3. Two Different Norm Comparison at convergence

basis set CD/STO-3G CD/CD CD/CQ

∥grad∥ Nerror ∥grad∥ Nerror ∥grad∥ Nerror

Be 7.5 × 10−6 1.8 × 10−2 4.8 × 10−5 1.6 × 10−2 8.8 × 10−7 4.2 × 10−6

Ne 2.7 × 10−6 3.1 × 10−2 1.5 × 10−5 7.8 × 10−4 5.9 × 10−5 1.5 × 10−3

Ar 5.5 × 10−8 9.2 × 10−2 2.1 × 10−6 6.8 × 10−2 5.2 × 10−5 4.7 × 10−3

Table 4. Optimizer Performance for the Ne Atoma

method W[Ψdet, vKS] Ts[Ψdet] ∥grad∥b Nerror ϵhomo
c Nf

d

Newtone+TSVD 128.609986 128.597 2.4 × 10−2 4.9 × 10−3 −0.6280 42
BFGS 128.609810 128.615 1.6 × 10−3 8.1 × 10−3f −0.7452g 12
L-BFGS-B 128.609800 128.614 4.0 × 10−3 7.5 × 10−3h −0.7439i 10
trust-exact 128.609948 128.593 1.5 × 10−3 5.2 × 10−3 −0.7010 3
trust-Krylov 128.609926 128.609 6.6 × 10−5 3.0 × 10−3 −0.6988 4
Newton-CG 128.609823 128.605 2.2 × 10−2 4.2 × 10−3 −0.7408 5

aBasis Set: CT/C5. bL2. cThe experimental I is 0.7925.94 dThe number of function evaluations. eStrong Wolfe line search is used. PDE-CO: f3.5 ×
10−3; g−0.7460; h3.4 × 10−3; i−0.7377.

Figure 8.Neon atom XC potentials for common optimization methods
in CT/C5.

Figure 9. FC2Cl molecule XC potentials in CD/CQ. The three
potentials are mRKS XC potential inverted from a CISD96 density,
Wu−Yang XC potential inverted from the PBE density, and Wu−Yang
XC potential inverted from the CCSD density. The Wu−Yang method
with the BFGS optimizer is used for optimization.
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