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Abstract

Reducing a failure-inducing input to a smaller one is chal-
lenging for input with internal dependencies because most
sub-inputs are invalid. Kalhauge and Palsberg made progress
on this problem by mapping the task to a reduction prob-
lem for dependency graphs that avoids invalid inputs en-
tirely. Their tool J-Reduce efficiently reduces Java bytecode
to 24% of its original size, which made it the most effective
tool until now. However, the output from their tool is of-
ten too large to be helpful in a bug report. In this paper,
we show that more fine-grained modeling of dependencies
leads to much more reduction. Specifically, we use proposi-
tional logic for specifying dependencies and we show how
this works for Java bytecode. Once we have a propositional
formula that specifies all valid sub-inputs, we run an algo-
rithm that finds a small, valid, failure-inducing input. Our
algorithm interleaves runs of the buggy program and calls
to a procedure that finds a minimal satisfying assignment.
Our experiments show that we can reduce Java bytecode
to 4.6% of its original size, which is 5.3 times better than
the 24.3% achieved by J-Reduce. The much smaller output is
more suitable for bug reports.

CCS Concepts: « Software and its engineering — Soft-
ware testing and debugging; - Theory of computation
— Logic.
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1 Introduction

We have an input to a program that makes the program fail.
The input is valid so the program should handle it; however,
the input is so massive that we cannot determine the nature
of the bug. The process of input reduction, first introduced
by Zeller and Hildebrandt [28], addresses this problem by
finding a small input that reproduces the failure. Their algo-
rithm, ddmin, produces a sub-input (the original input with
pieces removed) that reproduces the failure. They found that
running on a sub-input can have three outcomes: the failure
still happens, the failure is gone, and don’t know. The “don’t
know” outcome happens when the sub-input is invalid, de-
spite that the original input was valid. An invalid sub-input
is of no help with finding the bug, as noted by Regehr et al.
[22] who coined the term the test-case validity problem.

The test-case validity problem can arise for multiple rea-
sons. In the context of finding bugs in C compilers, Regehr
et al. [22] noted that C programs can be both statically in-
valid and dynamically invalid. In particular, they defined a
dynamically invalid program to be one that executes “an op-
eration with undefined behavior or rely on unspecified be-
havior” [22]. Their widely used tool C-Reduce [22] reduces
large C programs to programs that are two orders of mag-
nitude smaller and fit for inclusion in bug reports. In the
context of finding bugs in tools that process Java bytecode,
Kalhauge and Palsberg [13] noted that Java bytecode has
many internal dependencies. For example, if a Java method
constructs an object from a class, then it depends on that
class: without the class, the method no longer type-checks.
Their tool J-Reduce [13] reduces large Java bytecode pro-
grams to programs that are four times smaller but often still
too large for the reader of a bug report.

Is reduction inherently harder for Java bytecode? For C,
the most challenging component of the test-case validity
problem is dynamically invalid programs. C-Reduce solves
this by using a semantics-checking C interpreter to detect
dynamically invalid input. For Java bytecode, the biggest
challenge is the many internal dependencies. J-Reduce solves
this by creating a dependency graph that avoids statically
invalid inputs entirely. Thus, the reduction challenges for
C and Java are different, and so far, C reduction has been
more successful. We will show that more detailed modeling
of internal dependencies can bring the effectiveness of Java
bytecode reduction much closer to that of C reduction.
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class A implements I {
String m(){ /* bug */ }

}

class B implements I {
String m(){ ... }

}

interface I { String m();

B nO{

B nO{
B nO; 3

(a) The input program.

class A implements I {
String m() { /* bug */ }
}

interface I { String m(); }

(b) The optimal reduction.

class M {
String x(I a) { return a.m();
String main() {
return new M().x(new A(Q));

/* bug */ }

/* bug x/ }

(c) Shared by both (a) and (b).

Figure 1. The example input program which produces an
bug in a tool when the body of M.x(),M.main(), and A.m()
are present at the same time. The second sub-figure is the
optimal reduction that preserves the bug. We exclude the
codein ... for brevity.

We build on a long tradition of gradually modeling more
and more of the internal dependencies of the input to avoid
invalid sub-inputs. In Misherghi and Su [17]’s paper on hier-
archical delta debugging (HDD), they avoided many invalid
inputs by exploiting the syntax tree of the inputs. Sun et al.
[25] took this a step further and used a syntax tree as the
model in their tool Perses, which enabled the tool to avoid
all syntactically invalid sub-inputs. Beyond models of syn-
tax, Kalhauge and Palsberg [13] used a dependency graph
to model semantic dependencies.

In this paper, we introduce a new model of dependen-
cies that goes beyond dependency graphs. Consider, for ex-
ample, the Java program in Figure 1a, which is the input
to a tool and makes the tool crash. While a programmer
quickly can reduce Figure 1a to Figure 1b, automatic reduc-
tion based on a dependency graph produces suboptimal re-
ductions. The reason is that dependency edges cannot ex-
press, for example, that if we want to preserve that A imple-
ments I and that I has a signature m, then we must also pre-
serve that A implements m. Note that because the example
is small, line-oriented reduction techniques such as ddmin
may well able to reduce Figure 1a to Figure 1b. For larger
examples with many internal dependencies, ddmin tends to
produce disappointing results [13].
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In this paper, we solve the underlying problem of mod-
eling dependencies by using the full power of propositional
Boolean logic. We use the model to search through valid sub-
inputs efficiently while avoiding invalid sub-inputs, and to
produce the result in Figure 1b. The claim of our paper is:

The use of propositional logic for modeling internal
dependencies leads to an effective and efficient
reduction of complex inputs.

In a typical case from Kalhauge and Palsberg [13], ]-Reduce
reduces the number of lines in the decompiled program from
7,661 to 6,918, while our tool reduces it to 815. This is a dif-
ference of almost an order of magnitude.

After a dive into the example in Figure 1 which illustrates
why previous techniques are unable to model all dependen-
cies (Section 2), we have structured the rest of this paper
after our contributions.

e We have built a model of internal dependencies for

a modest extension of Featherweight Java, which we

call Featherweight Java with Interfaces (FJI). We prove

that if a program type checks, then every sub-input

that satisfies the dependencies also type checks. This

is a sound dependency model of a complex input which
previous techniques are unable to model. We then dis-
cuss the extensions needed to model Java bytecode

(Section 3).

We introduce the Generalized Binary Reduction algo-
rithm, which given a model of the internal dependen-
cies of a failure-inducing input, finds a valid failure-
inducing sub-input in polynomial time. Our algorithm
interleaves runs of the buggy program and calls to a
procedure that finds a minimal satisfying assignment.
We have proved the correctness, polynomial time com-
plexity, and an optimality property of the algorithm
(Section 4).

We have implemented our approach and evaluated it

on the benchmarks from the J-Reduce paper. Our tool
reduces to 4.6% of the original size, while J-Reduce

only reduces to 24.3%. This is 5.3x more reduction than
J-Reduce (Section 5).

Finally, we go over related work in Section 6 and conclude
in Section 7.

Most of our proofs are in supplementary material. Our
implementation and benchmarks are available [14].

2 Example

This section illustrates that the previous graph-based ap-
proach does not extend to a more fine-grained reduction of
Java bytecode and what we have done to solve it. Consider
the example in Figure 1a. It contains a Java source program,
which, when compiled, functions as an input to a tool. When
we run the tool, we get an error. The error is produced by
a combination of the code in the body of A.m() and M. x(),
but we don’t know that. We do know, from the tool, that it
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Variables:

In A: [A] [A < I] [A.m()] [A.m()!code] [A.n

In L[] [Ln()] [L.n()].  In M:[M] Mx

0] [A.n()!code].

In B: [B] [B < I] [B.m()] [B.m()!code] [B.n

0] B.n()!code].

0] M.x()!code] [M.main()] [M.main()!code]

Syntactic Dependencies:

[A.n()!code] = [A.n()] [An()] = [A] [A.m()!code] = [A.m()] [Am()] = [A]
[B.n()!code] = [B.n()] [B.n()] = [B] [B.m()!code] = [B.m()] [B.m()] = [B]
[A<TI]=[A [B<I]= [B] [T.m()] = [1] [1.n(O] = [1]
[M.x()!code] = [M.x()] Mx()] = M M.main()!code] = [M.main()] [M.main()] = M|
Referential Semantic Dependencies:
[A<1]= 1] B <I]= 1] [An()] = [B] [B.n()] = [B]
[I.n()] = [B] M.x()] = [1] [M.x()!code] = [I.m()] [M.x()!code] = [I]
[M.main()!code] = [M.x()] [M.main()!code] = [A] [M.main()!code] = [M]
Non-Referential Semantic Dependencies:
A<QIIA[Im()]=[Am()] [A<I]AINn)]=[An)] B<IA[Im()] = [Bm)] [B<I]A[I.n()]= [B.n()]
[M.main()!code] = [A < I] [M.main()!code]

Figure 2. The variables (20) and dependency constraints (32 + 1 duplicate (gray)). The constraints is conjoined.

always requires M.main() to run at all. We want to reduce
the input program while preserving the error.

Kalhauge and Palsberg [13] described an approach to re-
duce Java bytecode. Their tool, J-Reduce, models the depen-
dencies between classes using a graph, which allows them to
produce smaller results an order-of-magnitude faster than
ddmin [28]. The modeling language is a conjunction of re-
quired classes [A] and dependencies between classes [A] =
[B]. Every transitive closure in the graph (henceforth called
simply a closure) corresponds to a valid sub-input. Their al-
gorithm proceeds in five steps, which we quote from [13]:

1. “Map the input to its dependency graph.

2. Compute the closure of each node.

3. Form a list of the closures.

4. Run a reduction algorithm on the list of closures.

5. Output the union of the reduced list of closures”

In step (1), the algorithm derives dependencies from the pro-
gram: if a class A mentions a class B, then we have a depen-
dency from A to B. In step (4), the reduction algorithm can
be ddmin [28], binary reduction [13], etc. For the example
in Figure 1a, the class dependencies are: [M], ([M] = [A]),
(M = [1]), (Al = [1]). ((A] = [B]). ([B] = [1]), and
([I] = [B]). Or in a graph:

(1] T~
e \\ 8]
M] - /’
[Al

Since we want to preserve the code of M.main() we re-
quire [M]. However, the result is disappointing: the graph
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only have one closure that contains [M]: the one that con-
tains all classes. So, we cannot reduce the input using the
technique from Kalhauge and Palsberg [13].

Going Beyond Classes. But all is not lost. We can inspect
the program and see that if we are allowed to remove items
within the classes, we can reduce the program. If we re-
duce the program by hand, we could get the program, which
we show in Figure 1b. We can remove four different kinds
of items: classes ([A]), implementations ([A <1 I]), methods
([A.m()]), and the code associated with the methods
([A.m()!code]). In this example, we have a total of 20 separate
items, which we have listed in Figure 2, under the heading
Variables.

When we generate constraints beyond the class level, we
can reuse some of the ideas from previous work, but not
all. Kalhauge and Palsberg [13] exclusively modeled referen-
tial dependencies: one item depends on another if the item
refers to it. We can transfer this idea directly to items within
classes, and we have added a list of Referential Semantic De-
pendencies to fig. 2. In summary, both of the implements
statements mentions the interface I, the code of main men-
tions I, A, and the methods I.m(), and all the n methods
mentions B. The m methods mention String, but since we
do not try to remove this class, there is no reason to model
dependencies to it.

Differently from the previous work on graphs, items are
nested. The nested structure of the items means that we can-
not remove an item before we have removed all its children.
Otherwise, we might find us in a situation where we want to
keep a method, but we have removed its enclosing class. We
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can fix this by adding dependencies from children to their
parents. We call these Syntactic Dependencies, and we list
them in fig. 2.

Additional Dependencies. The syntactic and referential
dependencies by themselves are not enough to model valid
inputs correctly. We can see this in Figure 3, which is the de-
pendency graph created from the syntactic and referential
dependencies. This graph contains closures that are invalid
inputs. For example, the closure of variables in M (shaded
gray) is not a valid input! In [M.main()!code]| we cast A to I
before we call I.m() on A. We are simply not allowed to cast
Ato I, unless that A is a subtype of I.In our case, we can see
that we needed to preserve [A < I]. So we know that there
exist dependencies that we have not encoded. Referential de-
pendencies alone are not enough to define all dependencies.
Also, there exist references that does not generate depen-
dencies. For example, in Java, we can refer to methods that
are defined in a superclass. Assume we have a class C which
extends A, then we are allowed to call (new C()).m(), be-
cause C inherits A’s methods. The bytecode would refer to a
C.m(). We need a more general concept for defining depen-
dencies.

Our First Contribution. In our example, the input has
to type-check before we can run the tool on it. The prob-
lem is that referential semantic dependencies are not the
only kind of semantic dependencies. By inspecting the type-
checking rules, we can see that the code of M.main() casts A
to I and therefore depends on that A implements I. We can
model this like this:

[M.main()!code] = [A < I].

We also have to model the inheritance laws. If [I.m()]
should be preserved then A has to implement [A.m()]. This
is true because A implements I and I.m() is an abstract
method. However, this constraint depends on [A <1 I], be-
cause if [A <1 I] has been removed we can safely remove
[A.m()] without removing [I.m()]. In other words, if we pre-
serve that A implements I and I.m() we must also preserve
A.m():

I.m()] A A< I]= [Am()].

Finally, we also include [M.main()!code], because, as de-
scribed earlier, we know the tool does not work without it.
We add the last six dependencies in Figure 2. The dependen-
cies, now, precisely model the semantics of both the class
hierarchy and the type system. A key part of our first con-
tribution is to model the internal dependencies of the type-
system of Java using propositional Boolean logic. We will de-
scribe a full dependency model of Featherweight Java with
Interfaces, which we prove only can produce sub-inputs that
type-check. We present this in Section 3.

Our Second Contribution. We have shown that we must
go beyond dependency graphs to get better reduction than
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in previous work. Instead we use propositional Boolean logic.
In our formulation, [x] is a variable that indicates whether
a construct x remains in the sub-input or is removed. In
a sound model, a valid truth assignment corresponds to a
valid sub-input of the original input. We can represent a de-
pendency graph as a conjunction of implications and vari-
ables, as we saw above; from now on we will refer to such a
constraint as a graph constraint. A graph constraint can be
converted to the grammar above by converting each edge
x] = [y] to ~(1x] A = [y]).

We can iterate through all satisfying truth assignments
to the constraints in Figure 2 and see that not only are they
all valid sub-inputs that type-check but they also contain
the truth assignment that constitutes the minimal sub-input
in Figure 1b:

[A < I],[Am()], [A.m()!code], [A], [I.m()], [I],
M.x()!code], [M.x()], [M.main()!code], [M.main()], M]

The original input, with no knowledge of the internal de-
pendencies, has 220 = 1,048, 576 sub-inputs. Far from all
of these inputs are valid. Using our new constraints, we can
count the number of valid truth assignments with a tool
like sharpSAT [26]. Since a satisfying truth assignment cor-
responds to a valid input, we can see that there are 6,766
valid programs left. While it is possible to run 6,766 different
sub-inputs to find the smallest one, this number scales expo-
nentially with the input’s size. Additionally, any attempt to
decrease the number of runs is hampered by the fact that
the union of two satisfying truth assignments is not always
a satisfying truth assignment. Our Generalized Binary Re-
duction algorithm (Section 4) finds the optimal solution by
checking only 11 inputs.

3 Modeling Dependencies

We will formalize how we model dependencies and we will
discuss aspect of our implementation that go beyond the
formal model.

Featherweight Java with Interfaces. Featherweight Java
with Interfaces (FJI) is a modest extension of Featherweight
Java [9]: each class implements a single interface. An in-
terface consists of a collection of signatures. While we can
model the dependencies of Featherweight Java with graph
constraints, we need the full power of propositional logic
for FJL

FJlis a convenient setting in which to show that reduced
programs type check. We will define the syntax and type
system for FJI, along with a reducer. From a program, we
generate constraints that model the internal dependencies,
then we solve the constraints, and finally we feed the so-
lution to a reducer. The idea is that for any solution, the
reduced program type checks (Theorem 3.1).

For examples in FJI, our formalization generates the same
constraints as our implementation. In particular, the core of
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M I RS cW .08

4 VA NTC P 5. A
amain(], Mx0), [Ln0) (a0} A< 1) [AmO) [AnO] [BaO] [Bn0] [B< 1)
[codéj:/[cod'ej, [code] [code] [code] [code]

Figure 3. The dependency graph containing syntactic (solid, black) and referential (dashed, gray) dependencies. We have
abbreviated the code variables to [code]. We have shaded the variables part of the minimal closure from M.

the example in Section 2 is an FJI program, and our formal-
ization generates the constraints listed in Section 2, as we
will show in Section 3.

Syntax. Figure 4 shows the grammar of FJI. Our metan-
otation for Featherweight Java is similar to the one used in
the original paper on Featherweight Java [9]; we refer the
reader to that paper for details.

Figures 6 and 7 show the helper rules and type rules of FJL
In the type rules, we use I to range over type environments,
that is, mappings from identifiers to types. We use 7, ¢ to
range over logical formulas. We use the abbreviation 7 =
1 A ... A m,. We use P(C) to denote the class in P with
name C, and we use P(I) to denote the interface in P with
name I. For every P we assume:

P(EmptyInterface) = interface EmptyInterface { }.

The type rules specify the conditions under which a pro-
gram P type checks. When P satisfies those conditions, we
write + P | . We explain the role of 7 below.

Boolean Variables and a Program Reducer. For a given
program, we define a set of Boolean variables that will be
used by the constraints. Then we define a reducer that given
a solution to the constraints will map a program to a reduced
program.

From a program P, we derive a set of Boolean variables
that we denote V(P). We use ¢ as a truth assignment of
the variables to range over V(P) — Bool. The idea is that
¢([C]) = 1, then the reducer should keep class C and other-
wise remove it. We have six kinds of variables: [C] toggles
the class C, [I] toggles the interface I, [C.m()] toggles the
method C.m in C and [I.m()] toggles the signature I.m in I.
The variable [C < I] signals if we should keep C implements
I or we can change it to C implements EmptyInterface. Fi-
nally, the variable [C.m()!code] signals if we should keep the
body of method C.m(). Otherwise, we can replace it with a
trivial body.

The reducer in Figure 5 implements the idea of the Boolean
variables explained above. The reducer forms the core of
our implementation for Java bytecode. For any mapping ¢ :
V(P) — Bool, we construct a reduced program reduce(P, ¢).
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Generating Type-checking Constraints. Figures 6 and
7 show the type rules. For a program P, we write - P | 7 to
denote that we simultaneously type check P and generate a
propositional formula 7 that uses variables in V(P). We use
the notation ¢ |= 7 to denote that ¢ satisfies 7.

The helper rules for FJI in Figure 6 are much like in Feath-
erweight Java, there are, however two differences. The first
is that we extended method type lookup to apply to inter-
faces, and that now the subtyping rules generate constraints
that model the connection between a class and its interface.
The second is a new group of rules for method choice. For
a class C and a method m in a program P, the constraint
mAny(P, m,C) is a disjunction of variables that all are of
the form [C.m()]. If we need C to implement a method m
in the reduced program, then we can require mAny(P, m,C)
to be true. This will ensure that the reducer will preserve at
least one such method m.

The type rules for FJI in Figure 7 are like the type rules
for Featherweight Java except for new rules related to inter-
faces and signatures, plus the generation of constraints.

e In the rule for class typing, the constraints says that
if we preserve class C, then we also need to preserve
class D plus the types of the fields. Additionally, if we
preserve that class C implements interface I, then we
need to preserve both C and I.

In the rule for method typing, the constraints say that
if we preserve method m, then we also need to pre-
serve the enclosing class C and the parameter types
and the return type. Additionally, if we preserve the
method body, then we need to preserve the enclosing
method.

In the rule for signature typing, the constraints say
that if we preserve a signature, then we must preserve
the enclosing interface as well as the parameter types
and the return type.

In the rule for signature typing relative to a class C,
the constraints say that if we preserve that C imple-
ments interface I and we preserve that I has a signa-
ture m, then C needs to implement a method m in the
reduced program.
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P == Re programs

R == L |Q type declarations
.U == C |1 type names

L == «classCextends D implements I f]_‘ K M} classes

Q == interfacel (S} interfaces

K == C(T f) { super(f); this.f = f; } constructors

M == Tm(TX){returne; } methods

S == Tm(Tx); signatures

e == x| ef | em()]| newC(e) | (T)e expressions

Figure 4. The syntax of Featherweight Java with Interfaces (FJI).

reduce(R e, p) = reduceR(R, ¢)
reduceR class C extends D
(class C extends D implements reducel(C, I, ¢) ifo([C]) =1
implements I {T?; K M} Tf K reduceM(C, M, ¢)}
. 0) . o/w
reducel(C, 1, ¢) = I ife(Cal))=1
e o EmptyInterface o/w
reduceR(interface I {S}, ¢) { interface I {reduceS(1.5, ¢)) o) =1
o/w
re(dgceM m(T X) { returne; } if p([C.m()!code]) = 1
,Tm(T%) (returne; ) m(T X) { return this.m(x); }  ife([C.m()]) =1 A @([C.m()!code]) = 0
,0) o/w
=_ m(T %) ifo(Im()]) =1
reduceS(I, T m(T %), ¢) { o/w

Figure 5. Our reduce function of FJI.

e In the rules for expressions, the constraints ensure
that the result type is preserved in the reduced pro-
gram. Additionally, the constraint for method calls en-

sures that at least one appropriate method is preserved.

We also require that the dispatch type exist, for com-
patibility with our implementation for full Java.

Reduction is Type-Safe. Our main theorem is that a re-
duced program type checks. This means that reduction with
any solution to the constraints preserves typability.

Theorem 3.1. If + P | o and ¢ |= o, then o’ such that
+ reduce(P, ¢) | o’

We leave to future work to settle whether the converse
of Theorem 3.1 holds. For example, the converse statement
could read: if + P | o and + reduce(P,¢) | o', then¢ |= o
Such a result would indicate that the constraint matches the
type system.
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Generating the Constraints in the Example. The code
in Figure 1a is FJI if we assume that every class extends Ob-
ject, that its constructor is implicit, and that M implicitly
implements EmptyInterface. Finally, we assume that there
exists a class String, which we preserve while reducing the
program. Now we show highlights of how we generate the
constraints in Figure 2.

From the program typing rules (Figure 7), we can see that
we can process the classes in parallel and then conjoin the
results. Let’s start with A. We first look at the class typing
rule in fig. 7. We can see that we have to generate the depen-
dencies for the superclass and the constructor, the construc-
tor has no parameters so our constraint is [A] = [Object].
The second conjunct generates the constraints for the im-
plements statement ([A < I] = ([A] A [I])) AT A T. Now
let’s focus on the methods requirements 7. There are two
methods in A, String m() {...}andB n () {...}. For
m we use the method typing rule to see that: ([A.m()] =
([A] A[String])) and ([A.m()!code] = [A.m()] A 71 A 72) For
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Field lookup
fields(P,0bject) = o

P(C) = class C extends D implements I {T f; K M}

fields(P,D) =U g
fields(P,C) = LTf
Method type lookup

P(C) = class C extends D implements I {T f; K M}
Um(UX){returne; } € M

mtype(P,m,C) = (U — U)

Tf;

P(C) = class C extends D implements I { K M)

Um(UX){returne; } ¢ M
mtype(P, m,C) = mtype(P, m, D)

P(I) = interface I {S} €s

mtype(P,m,I) =

U m(U )
(U - U)

Method choice
mAny(P, m,0bject) =0

P(C) = class C extends D implements I {T f; K M}
Um(UX){returne; } € M
mAny(P, m,C) = [C.m()] V mAny (P, m,

D)

Tf;

P(C) = class C extends D implements I { K M}

Um(UX){returne; } ¢ M
mAny(P,m,C) =

mAny (P, m, D)
P(I) = interface I {S} Um{Ux)eS
mAny(P,m,I) = [I.m()]

Subtyping

PI—TST’|7T1 PI—T’ST"|7T2
PrT<T | 1

PrT<T' | m Amy

P(C) = class C extends D implements I {T f; K M}
PrC<D | 1

P(C) = class C extends D implements I {T f; K M}
PrC<I|[c<I]

Valid method overriding
=U > UimpliesU =TandU =T
override(P, m, D, T — T)

mtype(P, m, D)

Figure 6. FJI helper rules.
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Program typing
P=(Re) ROKinP | 7 POre:T |«
FP | TAT
Class typing
fields(P,D) =U g PrSOKinIforC | T
K =C(Ug.T f) { super(g); this.f = f; }
PrMOKinC | 7 P(I) = interface I {S}

class C extends D implements I {T ]_‘; KM} OKin P |

([c]= (D] A [0] A [T])) A

(C<QI]=(CIAI)) AT AT

Interface typing
P+rSOKinl | 7@
interface I {S})OKinP | 7

Method typing
P(C) = class C extends D implements I ({U f; K M}
override(P,m,D,T — T)
P,(x:T,this:C)re:U | m PrUZSLT | mo

PrTm(Tx){ return e, }OKin C |
([cmO] = ([c] A ]
([C.m()!code] ([c m()] ATy A )

Signature typing
P+Tm(Tx)OKinI | [Lm()] = (1] A [T] A [T])

Signature typing relative to a class
mtype(P,m,C) =T — T

PrTm(Tx)OKinlIforC |
([c < Il A[I.m()]) = mAny(P,m,C)

Expression typing

PTre:C | n fields(P,C)
P,I're.f;:

:T_
PTrx:D(x) | 1 f

Tilﬂ'

PItre:
PI'tre:

P,T+emf(e):

mtype(P,m,T) =U — U
PI—TSﬁ | 7o

[T] A mp A mAny(P,m,T) AT A o

T
T

| =
|ﬁ
U |

fields(P,C) =T f P Tvre:U |7 PrU<T
AT A

P, TrnewC(e):C | [C]

| 7=

Pl'vre:U | n
PT+(T)e:T | [TIAR

Figure 7. FJI type rules.
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n we can see: ([A.n()] = ([A] A [B])) and ([A.n()!code] =
[A.n()] AW/ 5 AN 71'2)

We assume for these two methods that the expression
(1), and the return cast (72) create no constraints. With
that out of the way, we create the constraints 7 from the
interfaces. Here we use the “Signature typing relative to a
class” rules, where we generate constraints that require all
the signatures of a class to be implemented by one of its
superclasses.

([A < I] AI.m()]) = mAny(P, m, A)
] A mAny(P, m,0bject))

The same happens for n: ([A < I] A [I.n()]) = [A.n()].

Since we do not reduce String and Object we replace
their variables with true, furthermore we expand all the im-
plications so that they become clauses.

We can generate constraints for B, I, and M in a similar
fashion.

Altogether, we have generated 31 of the 32 constraints
from Figure 2. We add the last constraint ([M.main()!code])
after constraint generation because we know that the tool
will not work without the body of [M.main()].

Java Bytecode. We have implemented a reducer and a
constraint generator for Java bytecode for which our model
of FJI is the core. We have a total of 11 kinds of items that can
be removed, including constructors, fields, and super-class
relations. Constructs that require special attention during
constraint generation include abstract classes, interfaces ex-
tending other interfaces, classes implementing multiple in-
terfaces, and type casts. Additionally, we have to model Java
generics and type inference. Type checking with Java gener-
ics is undecidable [6] and our approach approximates the
type checking problem as part of the constraints so the un-
decidability is a limiting factor for us. We have designed an
approximation that has worked well in our experiments. In
particular, the model of Java generics has so far never led
our tool to produce an invalid sub-input.

For example, consider the following source-level declara-
tion of a local variable and the corresponding bytecode:

Class<? extends B> a = A.class
ldc [class A]

—

When we compile the source code, we get a load-constant
instruction (1dc) and none of the generic-type information.
For the source code, we could have generated a constraint
that preserves that A extends B, but in the bytecode we have
to approximate it. We do that by making all method bodies
that do reflection on the class A depend on that A extends all
its superclasses.
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4 Logical Reduction

In this section, we will restate the “Input Reduction Prob-
lem” using logic and show how the Generalized Binary Re-
duction algorithm enables us to efficiently reduce the input.

4.1 Notation

We use small letters to refer to variables v, capital letters to
refer to sets L, and the calligraphic letters D, L to reference
to sets of sets. 2% indicates the power set of a set X. In lists
we can access the nth element with a subscript D,,.

A solution M is a satisfying assignment to a logical state-
ment R, which we write R(M). We write solutions as the set
of true variables. For example (x A =y)({x}) is true and (x A
=y)({x, y}) is false. We can also get the variables VARS(R) of
alogical statement. We can also condition, or update, logical
expressions (R | x = 1,y = 1), which effectively substitutes
x = 1and y = 1 in R. This also works for sets (R | X = 1).

A conjunctive normal form (CNF) is a representation of a
logical expression using a conjunction of clauses. A clause is
a disjunction of literals and a term is a conjunction of literals.
A literal is a normal or negated variable. Furthermore, we

define the following shorthands:
v _
L= \/IELI

DU - UDED b

4.2 Formalizing the Problem

DY, = D;

Jj<r

Our formalization of the input reduction problem is akin
to the formalizations in [13, 17], as we explain below. First,
we represent an input as a set of variables I and we repre-
sent sub-inputs as subsets of I. In Section 3, this set I was
called V(P), and each sub-input was represented by a truth
assignment ¢ defined on V(P). We represent the program
that may have a bug as a black-box predicate P that is true
on a sub-input if and only if that sub-input induces a bug in
the tool. The notion of black-box means that we can invoke
% on subsets of I but we cannot inspect # in any other way.
The notion of a black-box predicate models that we have to
run the tool to know anything about it. Finally, we have a
propositional Boolean formula R; over I. In Section 3, this
formula R; was called o and was generated from the input.

Definition 4.1 (Input Reduction Problem). Instance:

(I, P,Ry, k), where I is a set of variables, P is a black-box
predicate on subsets of I, and R; is a Boolean formula in
CNF over I, and k is an integer representing a maximum cost.
Assumptions: P can be evaluated in polynomial time, both
P(I) and R;(I) are true, and # is monotonic on valid sub-
inputs: if X € Y and Ry(X) and R;(Y), then P(X) = P(Y).
Problem: decide S C I: P(S) A R;(S) A|S| < k.

Our input reduction problem differs from the one of Mish-
erghi and Su [17] in that we model input validity and we
require P to be monotonic on valid sub-inputs. Our input
reduction problem also differs from the one of Kalhauge and
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Palsberg [13] in that we have no cost function on the sub-
inputs. However, all three input reduction problems are NP-
complete and for the same reason: we can easily reduce the
Hitting Set Problem (which is NP-complete [15]) to each of
the input reduction problems.

Theorem 4.2. The Input Reduction Problem is NP-complete.

In the remainder of this section, we will focus on the op-
timization version of the Input Reduction Problem. Specifi-
cally, we will present polynomial-time algorithms that each
finds a small solution to (I, P, Ry).

4.3 Lossy Encodings into Graph Constraints

For our benchmarks, 97.5% of the clauses are graph con-
straints (see Section 5). We know that the binary reduction
algorithm [13] relies on that all the constraints are graph
constraints. Can we give a lossy encoding of the remain-
ing 2.5% of the clauses as graph constraints and then ap-
ply the binary reduction algorithm? Yes we can, as follows.
Those other 2.5% of the clauses are of the form (A]_,a;) =
(VIL,bj), where n > 1V m > 1. For any i’,j’, where 1 <
i” <nand1 < j’ < m, we can approximate such a clause by
the graph constraint ay = bj. This is because

(ar = by) = [(Aia) = (Viiib))]

Thus, if we have a solution to (ay = by ), then it is also
a solution to (Af_;a;) = (VjL,b;). This means that if we
replace (A a;) = (ViL,b;) with (ay = by) and apply
binary reduction, we will get a valid result. In Section 5 we
show experiments with two variations of the lossy encoding:
one where we pick (i’ = 1,j/ = 1) in all cases, and one
where we pick (i’ = n,j° = m). Both of them give much
better results than J-Reduce [13].

For example, consider Figure 2, which has four clauses
that go beyond graph constraints:

A<IIAIm)] = [Am()] [A<I]AI.n0)] = [An()]
B<IA[I.m()]= Bm()] [B<I]A[I.n()]= [B.n()]

If we pick (i’ = 1,j” = 1) in all cases, we replace the above
clauses with these ones:

A <1 = [Am()]
B <1 I] = [B.m()]

A< 1] = [An()]
B<1I]= [B.n()]

If we add these graph constraints to the other graph con-
straints in Figure 2, then running binary reduction will pre-
serve both [B] and [A.m()], which is nonoptimal.

The lossy encodings ignore important elements of the con-
straints, which raises the question of whether we can do bet-
ter. For example, we might use a SAT-solver to produce a
minimal satisfying assignment. But, we also have to run the
black-box predicate, preferably at most a polynomial num-
ber of times, which cannot be guaranteed by a SAT-solver.
Now we present a new algorithm that both does better than
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Algorithm 1: Generalized Binary Reduction
Input: (I, P, R;) where P(I) and R;(I).
Output: Dy C I, where P(Dy) and R;(Dy).
Data: The variable order < (a total order of I).
Data: The learned sets £ C 2 and the current

progression D € List(2!).

L0
D « PROGRESSIONg, (L, 1)
while =P (D) do

r « min, P(DY,)

L« LU{D,}

D « PROGRESSIONg, (L, DY)
end
return D,

PROGRESSIONg, (£, J) calculates (Do, D1, . .
Dy=MSA(RT)
Dit1=MSA_(R" Ax | DZ=1) if Ix € min_ J\DY;

):

RT™ =Ry A Apes LY with vars not in J set to 0

the lossy encodings and runs the black-box predicate a poly-
nomial number of times.

4.4 Generalized Binary Reduction

Generalized Binary Reduction (GBR, Algorithm 1) solves the
Input Reduction Problem approximately in polynomial time.
GBR uses two building blocks: evaluation of the black-box
predicate  and computation of an approximate minimal
satisfying assignment (MSA). We define minimal to mean
that the MSA assigns true to as few variables as possible [21],
which is an NP-complete problem so we settle for an approx-
imate solution. GBR learns from the outcomes of calls to P
and MSA, which enables it to pick good inputs to later calls.

The Main Algorithm. GBR extends Binary Reduction
[13] with a subroutine PROGRESSION that produces a pro-
gression of valid inputs. A progression is a list where ev-
ery prefix represents a valid input (INV-PRO). GBR applies
the black-box predicate  to only prefixes of progressions,
hence only to valid inputs.

GBR maintains three data structures. First, the variable
order < (a total order of I) helps the main loop terminate in
polynomial time; it also helps us design MSA < that runs in
polynomial time (see the appendix). Second, the current pro-
gression D represents the current search space. The search
space satisfies the black-box predicate $, and D divides
the search space into a non-empty list of disjoint subsets
(INV-D). Third, the learned sets in L represent the growing
knowledge about #. The main loop maintains that every
learned set both overlaps with every valid sub-input that
satisfies P (INV-L), and overlaps with every prefix of the
progression (INV-PRO).
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Lemma 4.3 (Invariant). The main loop of GBR on (I, P, R;)
has the invariant Inv(L, D):

P(DY) ADI>0 A DYCI
/\(Vi,j.i#jﬁ@iﬂﬂj:@)
(VT € DY P(T) AR(T) = VLe L. TNL#0)
(INV-£)
(Vr 2 0. R(DZ) A YLe L DY NL#0) (INV-PRO)

(INV-D)

The idea of the main loop is that the more we learn about
P, the better chance we have of finding a valid input that
satisfies . The main loop checks whether the first set D
in the progression satisfies . If Dy does satisfy #, then the
main loop returns it, and otherwise, the main loop executes
three steps.

First, the main loop finds the minimal prefix DY, of the
progression that satisfies . Such a prefix exists because the
entire progression satisfies , and we can find it efficiently
by binary search.

Second, the main loop adds the prefix’ last set D, to L.
Since # is monotone and D, is the shortest prefix of D
that satisfies P, at least one element in D, must be part
of any solution within the current search space. So, adding
D, to L maintains (INV-L). This set D, is new to L, which
we can see after a few steps of reasoning, as follows. No-
tice that since =P (Dy) and P(DY,), we have r # 0, hence
D, N Dy = O (INV-D). From this and that Dy overlaps
with all sets in £ (INV-PRO), D, must be missing at least
one element in each of the sets in £. So, D, ¢ L.

Third, we build a new progression using £ and D%,.

The Progression Subroutine. If J C I, then the call
PROGRESSIONg, (£, J) produces a non-empty list of dis-
joint subsets of J whose union is J.

The first step is to map R; to a stronger constraint R", by
conjoining it with a clause for each set in £, and limiting R*
to only have variables in J, by setting all other variables to
false. Now, every satisfying assignment to R is a solution
to Ry and overlaps with all sets in L.

The second step is to build the progression recursively.
The first entry of the progression is an approximate MSA of
R™. The k + 1’th entry is constructed by picking a variable
that doesn’t occur in the earlier entries and then construct-
ing an approximate MSA of (R* A x), while setting all the
variables used in the earlier entries to true. The recursion
ends when we run out of variables.

Correctness. When GBR returns Dy, we have P (D) and
Dy = MSAL(R™T), hence R;(Dy).

Execution time. We know that 9, contains an element
from every L € L. Indeed, as we prove in detail in the ap-
pendix, Dy contains the <-smallest variable in each setin L.
When the main loop adds D, to L, we know that D, is new
to L and that D, N Dy = 0. So, adding D, has a <-smallest
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variable that is different from the <-smallest variables in
the other sets in £. This means that the maximum number
of times we can add a set D, to L is equal to the number
of variables. So, the main loop terminates after at most |I
iterations.

Each iteration of the main loop evaluates # a polyno-
mial number of times, and each of those evaluations runs
in polynomial time, by assumption. Additionally, each iter-
ation computes MSA < a polynomial number of times, and
each of those computations takes polynomial time. So, the
grand total is that GBR does at most |I| iterations that each
runs in polynomial time, hence GBR runs in polynomial
time.

Theorem 4.4. GBR finds an approximate solution to the In-
put Reduction Problem in polynomial time.

Note that our use of < can make D larger than the small-
est possible solution. For example, consider (a A b = ¢) A
(¢ = b), in which (a A b = ¢) is not a graph constraint.
Define the predicate P to be true iff b is true; assume that
every subset of {a, b, ¢} is valid; and pick the variable order
(¢, b, a). The first progression is ({b, c}, {a}), so our algorithm
returns {b, c}. This is suboptimal: a smaller solution is {b}.

Minimality for graph constraints. In the appendix we
show that if all the clauses in R are graph constraints and
we pick < well, then GBR produces a solution that is locally
minimal. Here, locally minimal means that no proper subset
of the solution satisfies .

Theorem 4.5. If Ry consists of only graph constraints, then
GBR produces a locally minimal solution.

4.5 Running on the Example in Section 2

Now we show a run GBR on the example in Section 2. First
we compute a variable order and the initial progression. We
have £ = 0 and J = I, so RT = R}, and we get D:

1AL [A < 1 [T ML MxO)
[M.main()], [M.main()!code] }

The rest of the progression is calculated using MSA . on
RAx | D=1 with x € mingJ \ D%. For our first
choice after Dy, we choose x = [B], because it is the small-
est variable in ]\ Dy. [B] implies no new variables, so the set
D1 = MSAL(RAB] | Dy = 1) = {[B]}. We calculate the
rest of the progression in the same way. We have annotated
each set with the number it is in the progression:

D = Do, {[Bl}. {[B.n()]}2, {[B.n()!code]}s, {[B.m()] 14,
{[B < I}}5, {[B.m()!codel}s, {[A.n()]}7. {[T.n()]}s.
{{A.n()!codel}g, {[A-m()]}10. {{T-m()]} 11
{[M.x()!code]}1o, {[A.m()!code]} 5
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This progression is ideal, because the initial element is
minimal, and every element after the first have size one. Be-
fore entering the body of the loop, we run P for the first
time on Dy: no bug! Then we run a binary search over the
prefixes of the progression to find the shortest one that sat-
isfies P. First, we try the prefix DY;, which fails. So the
correct choice must be between 7 and 13. In binary-search
fashion, we cut the search space in half and try D¥;0, which
also fails. After two more tries, we conclude that the short-
est satisfying prefix is the full progression. While this didn’t
reduce the size of the search space, we learned something
important: [A.m()!code] has to be in the solution. So, we add
{[A.m()!code]} to L.

Now we compute the next progression D. We use dots
to differentiate the different progressions: Z) Z) and so on.
We can see that RT = Ry A [A.m()!code]. We start by com-
puting Dy = Dy U {[A.m()!code], [A.m()]} where we add
[A.m()!code] because it is in £ and we add [A.m()] because
we have [A.m()!code] = [A.m()] from the constraints. The
rest of the progression is straightforward:

D = Dy, {[B]}1, {[B-n()]}2, {[B-n()!code] )5, {[B.m()]},
{[B < I]}s, {[B.m()!code]}s, {[A.nO]}7, {[T.n()]}s,
{[A.n()!code]}g, {[I.m()]}10, {[M.x()!code]},.

We now start the second iteration of the algorithm. We
try P (D), which is false. This is our sixth invocation of P.
Now we run our second binary search over the prefixes of
the progression. Again we find that the entire progression
is needed to satisfy P, and we learn that [M.x()!code] has to
be part of the solution.

Now £ = {{[A.m()!code]}, {[M.x()!code]}} and
J = D% We compute another progression and we get
Do = Do U {{M.x()!code] , [I.m()]}

The rest of the progression is unimportant because we
run our eleventh (11) and last invocation of ? on Dy and
this time it succeeds. Indeed, Zjo is the optimal solution we
presented in Section 2. Finally, we run our reduce function
on it and produce the sub-input in Figure 1b. We can see
that all the variables in M are in the solution, so M remains
the same. We can remove B entirely because [B] is not in the
solution. Finally, we can see that [I.m()] and [A.m()] are not
in the solution, so we remove the m methods from both I
and A. The other variables in A and I are part of the solution,
so those items stay.

5 Experimental Evaluation

This section answers this research question:

Does the use of propositional logic for modeling internal
dependencies lead to an effective and efficient reduction of
complex inputs in practice?

To which the answer is: yes! Our tool reduces Java byte-
code to 4.6% of its original size, which is 5.3 times better than
the 24.3% achieved by J-Reduce. It does this while only being
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3.1 times slower. If we only want the amount of reduction
produced by J-Reduce, we can achieve that with our reducer
in only 6 minutes. This is below 10% of the total running
time of J-Reduce.

Implementation. Our implementation and evaluation are
written as an extension to the J-Reduce artifact [12, 13]. Our
logical model is built in a Haskell eDSL and is around 800
lines of code.

Benchmarks. We use the benchmarks from J-Reduce’s
artifact, which is a collection of 100 programs from the NJR
project [19], together with three decompilers. We have re-
moved four benchmarks from the benchmarks set. Three of
them because they did not type check. This was not a prob-
lem in the J-Reduce paper, because it did not type check the
programs. The fourth is a copy of the standard library, which
caused us problems.

In this evaluation, a decompiler is buggy if the output
does not compile. Each of a total of 94 input programs causes
at least one of the decompilers to produce an output that
does not compile. The goal of the evaluation is to reduce
the input program while preserving the full error message of
the compiler. A risk to validity is that multiple benchmarks
may lead to failure because of the same bug in a decompiler,
in which case the results may be skewed.

Statistics. In total, the benchmarks contain 227 instances
where the decompilers produce source-code that fails to com-
pile. A clause can be represented as an edge in a graph if
there exactly one positive and negative literal in the clause.
On average (geometric mean), those benchmarks have 184
classes, 285 KB, 9.2 errors produced by the compiler, 2.9k
reducible items, 8.7k clauses in the model, and 97.5% edges
among the clauses.

Running the Benchmarks. To support our findings, we
have evaluated four reduction strategies:

JF-Reduce: Our modification of the implementation of
J-Reduce, which writes the class-files instead of using
symbolic links.

Two Lossy Encodings: The model from Section 3, the two
lossy encodings from Section 4.3, and then our modi-
fication of J-Reduce.

Our Reducer with GBR: The model from Section 3 and our
GBR algorithm from Section 4.4.

We ran in parallel in batches of 8 on every benchmark.
We did this concurrently on three 24 Intel(R) Xeon(R) Silver
4116 CPU, 2.10 GHz core machines with 188 GB RAM. The
machines ran OpenJDK version 1.8.0_222.

Analysis. We first compare J-Reduce with our reducer.
We have plotted a cumulative frequency diagram of each of
the three metrics: time spent reducing, and the final relative
size in both number classes and bytes left, see Figure 8a. By
inspecting the first figure, we can see that J-Reduce finishes
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(a) Cumulative frequency diagrams of the time spent, and relative final size, both in term of number of classes and number of bytes. In all

figures, steeper is better. The dots represents the geometric mean.
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(b) The reduction over time. Shows the reduction on a linear scale of the number of times the item has gotten smaller.

Figure 8. Our results

running on all benchmarks within an hour, while for some
benchmarks, our reducer takes up to 10 hours. We can, how-
ever, see that it has finished on most (>95%) of the bench-
marks within two hours. For this extra running time, we get
much more reduction. We can see that we reduce half of the
benchmarks to below 10% in classes and 5% in bytes, where
J-Reduce only reduce to around 40%.

The long execution times stem from that decompilers take
time to execute and that some cases have many distinct bugs.
Each bug requires GBR to do an individual search. One of
our long-running cases leads to many distinct bugs and a
constraint with 9,207 variables, and we end up doing 73
searches with 13 steps each. In total, that case leads us to
run 951 decompilations and compilations in 8 hours, each
taking 33 seconds on average.

We can see that J-Reduce’s and our reducers geometric
mean running time is 218.6 s and 680.7 s, respectively, which
means that our reducer is 3.1 times slower than J-Reduce.
The reduction of our reducer is much better: for number of
classes, we can reduce to 8.4% while J-Reduce gets 22.8%,
and for bytes we reduce to 4.6% while J-Reduce gets 24.3%.
We perform 2.7 times better on classes, and 5.3 times better
on bytes.
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However, this comparison is only fair if we assume that
we have 10 hours to reduce. A much more likely scenario
is that we have a fixed time window, and we want the algo-
rithm to reduce as much as it can in that time frame. We can
stop both algorithms at any point in the execution and use
the smallest input until that point that preserves the error
message. To illustrate this, in fig. 8b, we have plotted the
mean reduction over time.

The two lossy encodings from Section 4.3 have execution
times that are similar to that of our reducer: the first one is
4% faster while the second is 2% slower. Additionally, they
are almost as good of our reducer: the first one produces 5%
more bytes while the second produces 8% more bytes. Simi-
larly, the first one produces 6% more lines than our reducer
while the second produces 8% more lines. Overall, our re-
ducer is strictly better than the first lossy encoding for 48%
of our benchmarks, and our reducer is stricly better than the
second lossy encoding for 51% of our benchmarks. Those
percentages increase to 79% and 84% for benchmarks with
at least 5% non-graph constraints.
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6 Related Work

Input Reduction. In Section 1 we discussed several tools
for input reduction. Additionally, Chisel is a tool that uses
machine learning to learn the underlying dependency graph
while reducing a C program [8]. Future work could address
whether a Chisel-like technique can learn dependencies ex-
pressed using propositional Boolean logic.

Internal Reduction. QuickCheck [4] randomly generates
input using a specification created by the user. When it finds
an input that produces a fault, it tries to reduce it. Hedgehog
[24] and Hypothesis [16] are successors to QuickCheck that
intelligently generate smaller inputs from scratch, instead
of reducing an existing input. This is known as internal test-
case reduction because the reduction is internal to the in-
put generation. Compared to these tools, our technique and
other input reducers work on any input and not only inputs
generated internally.

Debloating. We can use our tool as a debloater in the
following way. Given a test suite, we define the black-box
predicate in Definition 4.1 to be true if all tests pass. This
guarantees that the application preserves the behavior de-
scribed by the test-suite. We leave to future work to com-
pare such a debloater to tools such as the seminal Jax [27]
and more recent debloaters such as JShrink [2], TamiFlex
[1], ProGuard [7], JRed [10], and BlankIt [20].

Type-Safe Code Transformations. When the input it-
selfis a program, input reduction is an example of a program
transformation. In particular, our reducer for Java bytecode
is a type-safe program transformation (Theorem 3.1) that
may change the semantics of the program. This makes it
different from a long line of work on type-safe, semantics-
preserving program transformations [3, 5, 18]. On the tech-
nical side, our proof of type safety differs from the proofs
in the cited papers in the following way. While the cited pa-
pers prove that each typed program is transformed into one
typed program, we prove that a family of sub-programs all
type check.

7 Conclusion

We have shown that the use of propositional logic for mod-
eling internal dependencies leads to an effective and effi-
cient reduction of complex inputs. We did that by modeling
the type-system of Featherweight Java with Interfaces and
proving that a reduced program type checks. Additionally,
we have shown experimentally that the model extends to
full Java and models Java more closely than previous work.
Our polynomial time reduction algorithm, Generalized Bi-
nary Reduction, uses this model to get 5.3 times better re-
sults. Much of this improvement can be achieved with sim-
ple lossy encodings, yet we have found that completing “the
final mile” requires a powerful algorithm.
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