2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 978-1-6654-2235-2/20/$31.00 ©2021 IEEE | DOI: 10.1109/HPCA51647.2021.00055

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

SpaceA: Sparse Matrix Vector Multiplication on
Processing-in-Memory Accelerator

Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu, Yuan Xie
Department of Electrical and Computer Engineering, UCSB, Santa Barbara, USA
Email: {xinfeng, liangzheng, peng_gu, abasak, leideng,
lingliang, xinghu, yuanxie}@ucsb.edu

Abstract—Sparse matrix-vector multiplication (SpMYV) is an
important primitive across a wide range of application domains
such as scientific computing and graph analytics. Due to its intrin-
sic memory-bound characteristics, the performance of SpMV on
throughput-oriented architectures such as GPU is bounded by the
limited bandwidth between processors and memory. Processing-
in-memory (PIM) architectures, made feasible by advances in
3D stacking, provide new opportunities to utilize ultra-high
bandwidth by integrating compute-logic into memory.

In this paper, we develop an SpMV accelerator, named as
SpaceA, based on PIM architectures. SpaceA integrates compute-
logic near memory banks to exploit bank-level bandwidth.
SpaceA contains both hardware and data-mapping design fea-
tures to alleviate irregular memory access patterns which hinder
full utilization of high memory bandwidth. In terms of hardware
design features, SpaceA consists of two unique features: (1) it
utilizes the capability of outstanding memory requests to hide
the memory access latency to data located in non-local memory
banks; (2) it integrates Content Addressable Memory (CAM)
at the bank level to exploit data reuse of the input vectors. In
addition, we develop a mapping scheme that partitions the sparse
matrix into different memory banks, to maximize the data locality
of the input vector and to achieve workload balance among
processing elements (PEs) near each bank. Overall, SpaceA
together with the proposed mapping method achieves 13.54x
speedup and 87.49% energy saving on average over the GPU
baseline on SpMV computation. In addition to SpMV primitives,
we conduct a case study on graph analytics to demonstrate the
benefits of SpaceA for applications built on SpMV. Compared
to Tesseract and GraphP, state-of-the-art graph accelerators,
SpaceA obtains better performance due to its higher effective
bandwidth provided by near-bank integration.

Keywords—SpMYV, Accelerator, Processing-in-memory

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is a special
case of matrix-vector multiplication, where the input matrix
contains a large number of zero elements. In many real-
world application domains such as scientific computing [19],
[51] and graph analytics [14], [72], [74], algorithms can
be formulated as iterations of matrix-vector multiplication

This work was supported in part by NSF 1725447 and 1719160.

Copyright and Reprint Permission: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy beyond the limit of U.S.
copyright law for private use of patrons those articles in this volume that carry
a code at the bottom of the first page, provided the per-copy fee indicated
in the code is paid through Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923. For reprint or republication permission, email to
IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved.
Copyright ©2021 by IEEE.

where the matrix is sparse and is reused across multiple
runs. Multiple iterations of SpMV run until the convergence
of the output vector form the primary bottleneck in these
algorithms. The zero elements in the sparse matrix provide
new opportunities for efficient storage and computation by
skipping them, allowing them to overcome the bottleneck in
these algorithms.

Because of the importance of SpMV across these applica-
tion domains, efficient SpMV computing has been well-studied
in traditional multi-core and many-core architectures over the
last several decades. These studies mainly focus on efficient
sparse matrix storage methods and corresponding parallel
algorithm designs to balance workloads across processors, to
exploit the locality of the input vector, and to reduce atomic
operation overheads in output vector [47], [59], [60], [71]. In
addition, several offline preprocessing techniques [37], [38],
[54] have been developed to improve the performance of
SpMV through optimized storage formats and partitioning
methods. In the application scenario where the same sparse
matrix is reused over multiple iterations, the overhead of
offline preprocessing is well-amortized. In this paper, we first
study state-of-the-art SpMV implementations in the vendor-
provided library on NVIDIA GPU. Our profiling results reveal
a high DRAM utilization, which indicates that SpMV has been
well-optimized on GPU and the memory bandwidth becomes
the bottleneck.

To provide a higher effective memory bandwidth, processing
in memory (PIM) and near data processing (NDP) architec-
tures introduce new opportunities by integrating compute-logic
near memory. The recent advancement in integrated circuit
(IC) process technology makes these architectures feasible, es-
pecially 3D stacking process technology [65]. Hybrid memory
cube (HMC) [1] and high bandwidth memory (HBM) [2] are
two promising memory designs that leverage the benefits of 3D
stacking. Memory banks are stacked onto layers above the base
logic die where memory control logic is fabricated, and dif-
ferent layers communicate using through-silicon vias (TSV).
Such a stacked memory organization presents opportunities
for PIM at two levels: 1) base logic die level and 2) memory
bank level with minimal changes to the circuit design of
bank groups. In comparison with the integration of compute-
logic on the base die, compute-logic near memory banks is
closer to data. Thus, access to local data has lower latency,
higher bandwidth, and higher energy efficiency. Therefore,

978-1-6654-2235-2/21/$31.00 ©2021 IEEE 570
DOI 10.1109/HPCA51647.2021.00055

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

PIM architectures, especially bank-level logic integration, are

promising for designing SpMV accelerators to overcome the

bandwidth bottleneck in traditional multi-core and many-core
designs. In this work, we develop SpaceA, an accelerator for

SpMV based on near bank data processing. In SpaceA, we

distribute the non-zero elements across the memory banks

and operate on them using processing elements (PEs) near
the banks.

Although PIM architectures provide higher effective band-
width compared to the traditional memory interface between
processors and memory, there are several challenges in ac-
celerator designs. First, the memory latency to access data in
other banks is much higher than in the local bank. The PE
design should hide such a high latency for fully utilizing the
bank level bandwidth. Second, since interconnect bandwidth
is much smaller than that of the memory bank, memory access
should be kept as local as possible to ease the burden on
the interconnect. Third, PEs near the memory banks have a
strict area budget, which requires the compute logic to remain
fairly simple, but effective. In addition, challenges of workload
balancing and locality exploitation of the input vector also
exist when distributing non-zero elements across PEs.

Our accelerator, SpaceA, is designed to overcome these
challenges. To overcome the first challenge, each PE near the
memory bank possesses a queue to hold the non-zero elements
for processing and memory requests to input vector according
to the column index of non-zero elements in this queue.
Memory requests are non-blocking to hide the memory access
latency to other banks by exploiting memory-level parallelism
(MLP). To address the second challenge, content addressable
memory (CAM) is integrated at the bank level to cache
elements from the input vector so that the amount of memory
access to other banks is reduced by exploiting the locality.
This helps alleviate the bandwidth pressure on the TSVs. The
third challenge related to the strict area budget is tackled
by the fact that our PE design only includes a queue and a
floating-point unit (FPU). Therefore, our PE occupies a very
small area overhead, which makes it practical to be integrated
near the memory banks. In addition to these design options to
overcome hardware challenges, we develop a mapping scheme
for SpaceA to distribute the non-zero elements of the sparse
matrix across different memory banks to achieve workload
balance among PEs and to exploit the locality of data from
the input vector.

In summary, our contributions are as follows:

e We design an accelerator, named SpaceA, to leverage
outstanding memory requests to hide the memory access
latency to non-local banks. To reduce the memory traffic to
non-local banks, we integrate CAM buffers in SpaceA to
exploit the locality of input vectors.

o We develop a mapping scheme for SpaceA to distribute
the non-zero elements across different banks to achieve
workload balance among PEs and to exploit the data locality
of the input vector.

e Our evaluation of SpaceA with the proposed mapping
scheme on matrices [19] from real-world applications re-

571

Coordinate List (CO0)

Row idx eee (L, (Rl o203, (il [AR [i+1, i+1, *v i+l oo
H |

Colidx = | ColidxinRowi-1 | ColidxinRowi | ColidxinRowi1 | +ee
| |

Vals eee Values in Row i-1 | Values in Row i | Values in Row i+1 | oo

Compressed Sparse Row (CSR)
/ S~ T
Colidx = [*Colidxin Rowi-1 % Colidx in Rowi™~1> Colid in Row i+1 | ==+

Vals Values in Row i-1 | Values in Row i | Values in Row i+1

Fig. 1. The compressed sparse row (CSR) format of a sparse matrix.

veals 13.5x speedup and 87.49% energy saving on average
over the GPU baseline with only 4.86% area overhead.
Additionally, our case study on graph applications demon-
strates a better performance than state-of-the-art graph ac-
celerators, Tesseract [4] and GraphP [76], because of the
higher effective bandwidth provided by near-bank integra-
tion instead of placing compute-logic on the base die.

II. BACKGROUND AND MOTIVATION
A. SpMV Workloads

SpMV is a widely used operation in many applications that
use algorithms based on a large amount iterations of matrix-
vector multiplication in which the coefficient matrix is sparse.
We denote an SpMV operation as ¥ =Y + AX where X is
the input vector, A is the input matrix, and Y is the output
vector. We denote the dimensions of the input matrix as m
and n, which indicate that the matrix has m rows and n
columns. Additionally, we denote nnz as the number of non-
zero elements. Each component of the output vector can be
computed as Y; = Y; + Z?:o A;;X; where Y; is the i-th
component of vector Y, X; is the j-th component of vector
X, and A;; is the element located in i-th row and j-th column
of matrix A. For a sparse matrix, the computation of A;;X;
can be skipped for locations where A;; = 0.

For highly sparse matrices, compressed storage formats such
as Coordinate List (COO) and Compressed Sparse Row (CSR)
store the non-zero elements efficiently and remove ineffective
computation for the zero elements. The COO format is com-
posed of three lists of length nnz. These three lists store the
row index, the column index, and the value, respectively, for
each non-zero element. The CSR format, on the other hand,
consists of three arrays: 1) row ptr, 2) col idx, and 3) vals.
Each entry in the row ptr array points to an entry in the
col ids array which represents the beginning of the list of
column ids containing non-zero elements in that row. The row
ptr entry simultaneously points to the entry in the vals array
which records the value of the non-zero elements. Figure 1
demonstrates how non-zero elements of i-th row are stored.

Compared to COO, CSR is more compact since it saves
the memory space of row index array from the length of nnz
to the length of m + 1. Therefore, CSR is the most widely
used sparse matrix format and csrmuw() [3] is supported in
almost all libraries on multi-core and many-core architectures

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

to compute SpMV. SpaceA is designed to perform SpMV
based on the CSR format.

B. SpMV on GPU

The poor reuse opportunity in the sparse matrix and irreg-
ular memory access patterns make SpMV memory-bound on
multi-core and many-core processors. Compared to the CPU,
GPU provides higher memory bandwidth through the GDDR
memory bus and exploits memory-level parallelism to hide
long memory access latency. To understand the state-of-the-
art implementation of SpMV on GPU, we profiled SpMV
computation with a collection of real-world matrices from the
University of Florida sparse matrix collection [19]. The names,
application domains, and characteristics of these matrices are
elaborated upon Table I. For the implementation of SpMV
on GPU, we use the library routine csrmuv() from the vendor-
provided library cuSPARSE [3], which is a library optimized
for sparse linear algebra operations on NVIDIA GPU. We
measured the performance and profiled the DRAM metrics of
SpMV on NVIDIA GPU, Titan Xp. DRAM read throughput
is collected by nvprof. In addition, we measured effective
read throughput which is computed as nnz times the size
of a non-zero element over the measured execution time.
Moreover, we compute the achieved GFLOPs of SpMV as
nnz over the execution time, and the ALU utilization as the
achieved GFLOPs over the maximum GFLOPs provided by
GPU. Compared to the maximum DRAM bandwidth of Titan
Xp, which is 547.8 GB/s, Figure 2 shows that the current
average bandwidth utilization (as represented by the mean
orange bar) of SpMV on GPU is 27.08% and 43.39% when
excluding matrices 12, 13, and 14!, In addition, Figure 2 shows
that the ALU utilization is only 2.68%. Figure 2 provides two
important starting points for our work. First, the small ALU
utilization compared to the much larger DRAM bandwidth uti-
lization demonstrates the memory-bound behavior of SpMV,
motivating our PIM-based architecture. Second, the effective
bandwidth utilization (represented by the blue bar) is close
to the actual bandwidth utilization (represented by the orange
bar), which indicates that actual hardware innovation (rather
than algorithmic innovation to eliminate redundant DRAM
accesses) is required for higher performance SpMV.

C. 3D Memory

3D stacked memory such as HMC (the focus of this paper)
and HBM are promising in terms of PIM architectures [65].
As shown in Figure 3(b), 3D stacking involves a base logic
die with layers of DRAM dies stacked on top of it. A memory
cube can be partitioned into vertical slices called vaults, each
with private vertical connections through all layers physically
realized with TSVs. Memory banks on a given layer are
partitioned into bank groups (usually one bank group per
vault per layer), and each bank group shares the same TSVs

'Exceptions represent social networks and web graphs which show rela-
tively poorer utilization of the DRAM bandwidth, in agreement with prior
studies [9], [10], [12].

572

[| DRAM Read Throughput —&— ALU Utilization (%),

m [| Effective Read Throughput ;\?
& 300 65

2
S 200 r4
g =
=)] [9 =
g 100 2 g
£ 0= R LA B s s s e e s ol | |
- 1 2 3 456 7 8 9 10111213 14 15Geo. <

Mean

Matrix ID

Fig. 2. Profiling results of SpMV on GPU (The details of each matrix are
listed in Table I).

allowing them to communicate among the vault layers. Intra-
vault communication occurs through the TSVs, and inter-
vault communication occurs through Network-on-Chip (NoC)
routers. The external interface for a memory cube is composed
of four SerDes links.

In a typical HMC specification [1], there are 1024 TSVs
in the same memory cube running at the bit rate of 2Gbps.
Thus the TSVs of a cube provide bandwidth up to 256 GB/s.
Bank-level bandwidth offers greater potential than the TSV
bandwidth. Each memory bank has the interface to read or
write 256 bits when data is in the row buffer for tccop cycles.
Without bus turn-around overhead, tc¢cp can be as small as 4
cycles. Therefore, 8 GB/s bandwidth with a 1 GHz clock can
be provided per bank-level interface. A memory cube with
16 vaults where each vault controls a stack of memory banks
with 8 layers and 2 banks in a bank group has 256 memory
banks. Thus, this memory cube can provide 2 TB/s internal
bandwidth at the bank-level, which is 8 times than the internal
bandwidth provided by TSV.

III. SPACEA ARCHITECTURE
A. Overview

The architecture design of SpaceA is demonstrated in Fig-
ure 3. As shown in Figure 3(a) and 3(b), SpaceA is composed
of several 3D stacked memory cubes connected in a memory
network. To exploit bank-level memory bandwidth, SpaceA
integrates a PE near every memory bank. The input/output
vectors are evenly partitioned and stored in memory banks on
the DRAM layer just above the base logic die, whereas the
sparse matrix is statically distributed by the mapping algorithm
(Section IV) on all the other DRAM layers. The separation
of the storage allows each PE to process the sparse matrix
in a streaming manner to maximize the read bandwidth. In
addition, on the DRAM die for vectors, the elements with the
same index from input and output vectors are stored in the
same memory bank. This is because, in an iteration of SpMV,
the output of i-th iteration is the input of 7 + 1-th iteration.
Therefore, this storage scheme can eliminate data movement
between iterations for input and output vectors.

B. PE Design

In SpaceA design, there is a PE dedicated for each memory
bank. Since matrix and vector data are separated into memory

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

Row Buffer

\ DRAM Die

| for \leéctors

\\ s :
%ault /" Logic Die

Fig. 3. SapceA architecture design: (a) memory cubes connected through memory network, (b) the overview of a cube, (c) components in a bank group, and

(d) components in a vault controller.

banks on different dies, PEs attached to these memory banks
have different functionalities. The PE of memory banks storing
the sparse matrix computes partial dot-product results, while
the PE of memory banks storing vectors accumulates the
partial results which is finally stored into the output vector.
We denote the first type of PE as Product-PE and the second
type of PE as Accumulation-PE. Although these two types of
PEs have different functionalities, they can be realized by the
same set of hardware components. The hardware components
of a bank group are shown in Figure 3(c). Following is the
description of how these components are designed for the
Product-PE and how they are used for the Accumulation-PE.

Product-PE: Product-PE is responsible for processing non-
zero elements of the sparse matrix in its local memory bank.
After tras cycles, a DRAM row will be loaded into the
row buffer of the memory bank (Figure 3(c)-@). Using the
similar idea of CSR matrix format, when distributing non-zero
elements into memory banks, the mapping algorithm aligns
the number of non-zero elements of a row into the size of a
DRAM row. This alignment causes non-zero elements of the
same DRAM row to end in the same row index in the original
sparse matrix. As a result, when storing non-zero elements in
a DRAM row, the leading 4 bytes are used to indicate the row
index of non-zero elements in this DRAM row, and the rest
of the space is used to store pairs of column index and value.

As shown in Figure 3(c)-@, non-zero elements from a
DRAM row buffer are pushed into a PE queue if the PE
queue is not full. The PE queue is physically realized with
scratchpad memory while the control logic in Product-PE
accesses elements inside it as a logical cyclic queue. For each
non-zero element in the PE queue, it needs to compute the
partial result A;; X; where the row index ¢, column index j,
and value A;; are already known. The control unit scans the
PE queue in a cyclic manner when it is not empty, and then
processes a non-zero element every L, cycle (Figure 3(c)-@).
For each unprocessed non-zero element, it will check whether

573

X is ready in the register file.

Case I: X is not ready: When X is not ready, the Product-
PE needs to read it from other memory banks because vectors
are stored separately from the matrix. The access latency to a
remote bank is significantly larger than the access to its local
memory. To exploit the locality of the input vector, SpaceA
integrates an L1 CAM for PEs in the same bank group. This L1
CAM provides a key-value store so that it can help to search
the value X; according to the column index j (Figure 3(c)-@).
When the access to L1 CAM misses, it will return a miss signal
which indicates that the remote access is unavoidable. To hide
the latency of remote access, the control unit will continue to
process the next element in the PE queue instead of waiting for
the value X;. Since this is a logical cyclic queue, the control
unit will access this non-zero element again after scanning
the rest of non-zero elements in the PE queue. Meanwhile,
L1 CAM will send the requested column index j to the load
queue (LDQ) (Figure 3-@) to remove the duplication of data
requests. If this column index has not been requested yet, it
will send out the request through TSV (Figure 3(c)-@®). When
the requested value X; comes back, it will be written into both
L1 CAM and register file. The corresponding load request j
will be removed from the load queue. Since the control unit
repeatedly iterates through all elements in the PE queue, X;
will become ready when the control unit accesses it again after
the requested value comes back.

Case II: X; is ready: When X is ready in the register file, it
will send Aij, X, and the current partial result Y; to Floating-
point Unit (FPU) for computing Y; = Y;+A;; X; (Figure 3(c)-
@). After accumulating the partial result into Y;, the non-
zero element is labelled as processed. When all of non-zero
elements from the same DRAM row in the front of the PE
queue are processed, they are popped out of the queue and
the control unit moves the front pointer of the queue. The
granularity for popping non-zero elements is the same size of
a DRAM row buffer so that the whole row buffer of new data

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

can be pushed into the PE queue, and checked as to whether
the row index of this new row is different from the existing
row index. The partial result Y; is flushed out through TSV
when the new row index is different from the existing row
index.

Accumulation-PE: Bank groups with Accumulation PE
serve two purposes. First, since the memory banks of this
bank group store some elements of the input vector, it will
respond the value X; according to the requested column index
7. For this purpose, the request first goes to L1 CAM, and then
goes to the memory bank if X is not in the L1 CAM (CAM
miss). This part only needs the help of the memory bank, L1
CAM, and control unit. Second, since the memory banks of
this bank group store some elements of the output vector, they
need to accumulate partial results Y;. To achieve this purpose,
the SRAM of the PE queue is used to realize an update buffer
where the elements of the output buffer are stored. When Y;
comes, it will first look up the output buffer by the row index
stored in the register file. If corresponding output elements are
not in the update buffer, it will be loaded into the update buffer
from the memory bank. Then existing Y; and new partial result
Y; will be accumulated with the help of the FPU. When the
update buffer is full, it will write the logical first row back to
the memory bank, and load a new row containing Y; from the
memory bank.

C. Vault Controller

The components of a vault controller on the base die are
shown in Figure 3(d). In addition to the existing NoC router
for inter-vault communication and the memory controller to
read and write memory banks attached to the same TSVs,
SpaceA integrates a L2 CAM and a corresponding load queue
to exploit the locality of the input vector in the communication
path between bank groups. There are three types of packets a
vault controller could potentially process.

Type I: X; request. When the vault controller receives the
request for the value of X, it will first look up the L2 CAM
according to the column index j. If X; exists in L2 CAM, the
vault controller will generate a response packet with the value
of X, and send it back to the source of the request packet,
either by NoC router to other vaults or TSV to bank groups
attached to the same TSV. If X; does not exist in L2 CAM,
it will look up the load queue (LDQ) to remove duplicated
requests for X;. The vault controller will forward this request
to the bank group storing X; according to the column index
j by either the NoC router or the TSV.

Type II: X; response. When the vault controller receives the
response for the value of X, the vault controller will have
the same logic as the Product-PE hearing back the value of
X ;. Besides forwarding this packet to its destination, the vault
controller will write the value X; into its L2 CAM and remove
the corresponding entry in the load queue.

Type 1II: Y; partial result: The vault controller for partial re-
sult Y; will forward it to the corresponding vault storing Y;
according to the row index ¢. If Y; is stored in the same vault,
it will forward it to the bank groups on the bottom of DRAM

574

Algorithm 1 Row assignment to logical PEs.

nnz

Init K, = a large constant value
for pid =0 to #PFEs do
Init the set of assigned rows, Ry;q = ()
Init the set of unique column indexes, COLy;q = 0
Init the number of assigned non-zero elements, Wy;q = 0
end for
for : =0 to m do
N;: the number of non-zero elements in i-th row
C;: the set of column indexes in i-th row
for pid =0 to #PEs do
if Wpia + N; > nnZz then
Scorepiqg = —(Wyia + N; —mnz) x K,
else
Overlap = |C; (N COLp;4

_ Overlap 1
Scorepig = maz{ =5 F, m}
end if
end for

maxlD = the pid with highest Scorey;q
RmawID = RmawID U{Z}
COLmazID = COLmazID U Oz
Wma,mID = WmamID + Nv

end for

dies by TSVs so that the partial result of Y; can be accumulated
with the help of the Accumulation-PE.

IV. MAPPING METHOD

A. Overview

The proposed mapping method distributes the non-zero
elements of a sparse matrix into the memory banks of SpaceA
for Product-PE to process. There are two overall metrics to
efficiently use SpaceA hardware: 1) workload balance and
2) locality. First, since all PEs process non-zero elements in
parallel, the performance is bounded by the slowest PE, which
requires workload balance among PEs. Second, since SpaceA
integrates L1 CAM at the bank group level and L2 CAM at
the base die of each vault to mitigate the latency of accessing
the data of input vector, non-zero elements assignment should
consider the column index locality of non-zero elements to
leverage L1 and L2 CAM for keeping access local.

To achieve workload balance and leverage the locality of the
input vector, we design the overall mapping pipeline shown in
Figure 4, which takes the hardware configuration of SpaceA
and the sparse matrix as the input. As shown in Figure 4, the
first phase assigns different rows to PEs, which are logical
PEs without any physical location information. In this phase,
we exploit the intra-PE locality by assigning the rows of non-
zero elements with similar column index pattern to the same
PE. Meanwhile, this phase also balances the number of non-
zero elements assigned to PEs. The algorithm used in this
phase is further introduced in Section IV-B. In the second
phase, we place all logical PEs into the physical location in
SpaceA. This phase clusters PE workloads with similar sets
of column index from the non-zero elements, and minimizes

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

HW Config. <= | Sparse Matrix

=>

=>

Phase I @MS&E'SF
N

col
row

12345678 910

N\
|
|

Row Assignment (Algorithm 1)

R¢={1,2}, W1=9
Col1=C; U C,={1,2,3,4,5,6,8}

R»={3,5}, W,=8
Col,=C3 U Cs={1,2,4,7,8,10}

R;={4,6,10}, W5=9
Colg=C4 U Cs U C10={3,4,6,7,9}

Rq={7,16}, W.=9
Col,=C7 U C46=(1,2,4,5,6,7,8,10}

PE Placement

PE1 & PE4

I 3BC1 Col, U Cole=(1,2,3,4,5,6,7,8,10)

PE3 & PE7
Col3 U Col={3,4,6,7,9}

1 N;=5, C1={1,3,4,6,8} >
] PE1

2 N,=4, C,={2,4,5,6}

3 EE = BHE B Ns6C=(12478100 |

4] | | N4=3, C4=(3,6,9}

5 [| [| Ns=2, C5={2,8}

6 H EE B Ne=4, Cs={4,6,7,9}

70 HEBEBENE B N=7C-14567810}

8 Ng=4, Cs={3,5,7,9}

OMME H H H N Ne=6Cs{1246810

10 . . N10=2, C10={3,9}

11 | B N:=3, Cii={1,6,10}

12 Ni,=4, C1,={2,4,7,8}

13 N13=3, C15={4,6,9}

14HEE BEEBENE B N8 Cu=(123567810

15 Nis=4, C15={3,4,6,7} ¥

16 W [| N1g=2, C16={2,6}

Colg=Cg U C11={1,2,4,6,8,10}

Col;=C43 U C15={3,4,6,7,9}

PE5 & PE8

Rs=(8,12}, W5=8 Cols U Colg={1,2,3,4,5,6,7,8,9,10}

Cols=Cg U C1,={2,3,4,5,7,8,9}

Bank Group Placement
'
| 1| BG4
|
|
I 1 | BG3
|

Rs={9,11}, We=9

Coly U Cols U Cols U Colg

R;={13,15}, W;=7 ={1,2,3,4,5,6,7,8,9,10}

Col U Cols U Colg U Col,
={1,2,3,4,6,7,8,9,10}

Fig. 4. The flow of our mapping algorithm which is composed of two phases: row assignment to logical PEs (Phase I) and PE placement to bank groups

and vaults (Phase II).

the maximal number of unique column indexes across bank
groups and vaults to achieve workload balance. The formulated
optimization problem is detailed in Section IV-C.

B. Logical PE Workload

The first phase assigns multiple rows of the sparse matrix
into PEs, each of which is considered equivalent. In this phase,
we balance the workload among PEs and maximize the intra-
PE locality. Algorithm 1 shows the scheme, which iterates
through all rows and determines which PE is the best to be
assigned for a specific row according to the current assignment
of previous rows. The metric used to determine the best PE for
processing this row is designed according to the following two
principles. First, if the current row ¢ assigned to the current
PE pid makes the current PE process the number of elements
larger than nnz, we add a penalty for the number of elements
exceeding this budget. The budget mnz is computed as nnz
over the total number of logical PEs. When each PE processes
mnz elements, the workloads of PEs are perfectly balanced.
Second, the column index overlap between non-zero elements
of the current row ¢ and the non-zero elements of existing
rows assigned to the current PE pid is computed. In case of
an overlap, the overlap ratio is taken as the score, which is
the number of overlap non-zero elements over the number of
non-zero elements of row i. When there is no overlap, the
factor one over the number of non-zero elements assigned to
the current PE is taken as the score. This score rating metric
means we optimize locality first and the workload balance
when the number of non-zero elements does not exceed the
given budget nnz. After computing the score of each PE, the
row ¢ is assigned to the PE with the highest score.

Although mapping the sparse matrix optimally to logi-
cal PEs is an NP-hard problem, our mapping heuristic is

575

feasible in terms of time complexity. We denote P as the
number of PEs, W,;q as the number of non-zero elements
assigned to PE pid, and N; as the number of non-zero
elements in the row 7. Each row needs the time complexity
of O(N; szzl logWyiq). Since W4 is always smaller than
nnz (the total number of non-zero elements), the upper bound
of the time complexity of a row assignment can be simplified
as O(N;Plognnz). Summing up the time complexity of
assigning all rows, since ZZL N; = nnz, the time com-
plexity for finishing all row assignments has an upper bound
O(P x nnzlognnz). This time complexity is scalable in terms
of the number of PEs and the number of non-zero elements.
Therefore, the algorithm of this phase is practical enough, and
its effectiveness is further demonstrated in Section V-C.

C. Logical PE Placement

In this phase, each logical PE is placed into the position
of a physical PE. We decouple this phase into two stages.
First, logical PEs are clustered into bank groups. Second,
bank groups are clustered into vaults. To achieve locality and
workload balance, this phase minimizes the maximal number
of unique column indexes across bank groups and vaults when
clustering banks and bank groups. Both stages, clustering
logical PEs and bank groups, represent similar problems in
terms of problem structure and optimization target. Therefore,
we abstract the problem of both stages as follows. Given p
sets S1, S, ..., Sp, we divide them evenly into ¢ groups, and
each group has the same number of sets k where p = kq.
Therefore, we denote Cy,, as the w-th set assigned to the group
g. The value of Cy,, should be one of the values between
1 and p. To optimize locality, we want sets assigned to the
same group to have a larger overlap. Locality indicates the
preference to assign sets with a larger number of overlap while

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

workload balance implies that the maximal number of unique
elements should be minimized. The problem is formulated as
Formula 1 where F(C) stands for the maximum number of
unique elements across all groups under the assignment C'.

F(0)

minimize
C

subject to F(C) = max

k
S,
1595‘7{‘1191 Coulhs

Cguw € {1,2,...,p}, V1< g<q, 1Sw<k
Cgrwy # Cgywa, V(g1,w1) # (92, w2)

In the first stage, p equals the number of logical PEs and ¢
equals the number of bank groups while in the second stage, p
equals the number of bank groups and ¢ equals the number of
vaults. The formulated problem is also an NP-hard problem,
thus we use a heuristic algorithm similar to Algorithm 1
to solve it. The effectiveness of the mapping algorithm is
quantitatively shown in Section V-C.

@

V. EVALUATION

In this section, we first introduce the experimental setup
in Section V-A. Next, we detail the overall performance,
power, and area results of our design compared to state-
of-the-art SpMV implementations on GPU in Section V-B.
Section V-C demonstrates the advantages of our proposed
mapping methods. Section V-D shows the sensitivity studies of
SpaceA performance to hardware configurations. Section V-E
studies the scalability of SpaceA design. Finally, we conduct
a case study of using SpaceA to accelerate graph analytics to
show its potential for benefiting applications built on SpMV.

A. Evaluation Methodology

Workload. We evaluate SpaceA by executing SpMV using
fifteen real-world matrices from various application domains
including scientific computing and graph analytics. These
matrices come from the University of Florida collection [19],
and they are used in prior studies for accelerating SpMV on
GPU [60] and Intel Xeon Phi processors [61]. In terms of the
distribution of non-zeros, these matrices cover both structural
patterns (i.e. a smaller standard deviation of the number of
non-zeros in each row) and non-structural patterns (i.e. a larger
standard deviation of the number of non-zeros in each row).
The details of these matrices are listed in Table L.

Hardware Configuration. We adopt an HMC-like [1]
design to realize the architecture design of SpaceA. The
rest of the evaluation results assume an HMC-like architec-
ture, a detailed further discussion between HMC and HBM
technology can be found in Section VII. We use an HMC
configuration specified in the prior HMC characterization
study [28]. Specifically, a memory cube has 16 vaults that use
1024 TSVs running at the bit rate of 2 Gbps to communicate
with 8 stacked DRAM die layers. Each bank group has 2
banks; each bank has a capacity of 128 Mb with a 2 Kb row
buffer. Therefore, there are 256 memory banks in a memory
cube with a total of 4 GB capacity, and a memory cube
has a footprint of 48mm?. We use NVIDIA Titan Xp as a

576

representative of GPU architecture for comparison which has
processors with a die size 471 mm?, an area equivalent to
that of 10 cubes. We assume that the area of GPU DRAM
dies is comparable to processors in Titan Xp, thus the default
configuration of SpaceA uses 16 cubes, occupying 768 mm?
— a similar area footprint as Titan Xp. Inside each PE, there is
a 16 Kb scratchpad memory for the PE queue, which enables
the PE to process non-zero elements from 8 DRAM rows
concurrently. Register file has the same size as the number of
non-zero elements stored in a PE queue. To support double-
precision SpMV in scientific computing, each PE includes a
floating-point unit (FPU). PEs from the same bank group share
an L1 CAM with 32 sets and 4 ways per set. Each way in L1
CAM has 32 bytes, which is equivalent to the size of 4 input
vector elements. The configuration of the number of ways per
set and the size of each way in L2 CAM is the same as L1
CAM for simplicity, whereas L2 CAM has a larger number
of sets, which is 2048 by default. The size of L1 and L2
CAM are 4 KB and 256 KB respectively. The load queues
for L1 and L2 CAM are used to remove duplicate requests,
and they are realized with fully associated CAM which have
the sizes of 512 and 8192 elements respectively. The default
configuration of L1 and L2 CAM is an intuitive design point; a
detailed sensitivity for L1 and L2 CAM will be demonstrated
in Section V-D to further justify our design point.

Simulation Method. We develop an event-based in-house
simulator for the performance and power simulation. The per-
formance simulation is based on triggering events according
to the behavior of each hardware component described in
Section III. The triggered events are simulated to happen after
a deterministic latency of the event triggering it which is based
on the latency model of each hardware component. The events
in the performance simulator cover FPU computation, the
read/write to DRAM banks, on-chip SRAM (register file, PE
queue, L1 CAM, L1 load queue, L2 CAM, and L2 load queue),
TSV, and NoC packet transfer. Additionally, our simulator
maintains a data structure tracking values stored in DRAM
banks and on-chip SRAM when simulating each event, and
some events will modify this data structure. At the end of the
simulation, the correctness of the event triggering mechanism
is validated by the values of the output vector.

After validating the event triggering mechanism, the fidelity
of our performance simulation relies on the latency of each
event. Therefore, we use an existing well-validated simulator
CACIT-3DD [15] and tape-out FPU design [23] to provide
the latency model of each hardware component. Specifically,
CACTI-3DD provides the access latency for DRAM banks,
on-chip SRAM, and data transfer via TSV. Prior work [23]
provides the latency of the FPU design.

Our event-based simulator logs a detailed event trace in-
cluding read/write transactions to DRAM banks and on-chip
SRAM, TSV data transfer, and FPU computation. Mean-
while, CACTI-3DD provides the energy consumption for each
read/write transaction, TSV data transfer, and the static power
of these components. FPU design [23] provides both dynamic
and static power. Finally, we estimate the total energy con-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

TABLE I
THE INFORMATION OF SPARSE MATRICES USED TO EVALUATE SPMV ON GPU AND SPACEA. THE NUMBER OF NON-ZERO ELEMENTS (nnz), AVERAGE
NUMBER OF NON-ZERO ELEMENTS PER ROW (1), AND THE STANDARD DEVIATION OF THE NUMBER OF NON-ZERO ELEMENTS IN EACH ROW (o) ARE
SHOWN TO REFLECT THE PATTERN OF NON-ZERO ELEMENTS DISTRIBUTION.

ID | Matrix Domain Dimensions nnz o o

1 besstk32 Structural Problem 44609 x 44609 2014701 45.16 15.48

2 | cant 2D/3D Problem 62451 x 62451 4007383 64.17 14.06

3 | consph 2D/3D Problem 83334 x 83334 6010480 72.13 19.08

4 | crankseg_2 Structural Problem 63838 x 63838 14148858 | 221.64 | 95.88

5 | ct20stif Structural Problem 52329 x 52329 2600295 51.57 16.98

6 Thr71 Chemical Process Simulation Problem 70304 x 70304 1494006 21.74 26.32

7 ohne2 Semiconductor Device Problem 181343 x 181343 6869939 61.01 21.09

8 | pdblHYS Weighted Undirected Graph 36417 x 36417 4344765 119.31 31.86

9 | pwtk Structural Problem 217918 x 217918 11524432 | 53.39 4.74

10 | rmal0O Computational Fluid Dynamics Problem 46835 x 46835 2329092 50.69 27.78

11 | shipsecl Structural Problem 140874 x 140874 3568176 55.46 11.07

12 | soc-sign-epinions | Directed Weighted Graph 131828 x 131828 841372 6.38 32.95

13 | Stanford Directed Graph 281903 x 281903 2312497 8.20 166.33

14 | webbase-1M Weighted Directed Graph 1000005 x 1000005 | 3105536 3.11 25.35

15 | xenon2 Materials Problem 157464 x 157464 3866688 24.56 4.07
] SpaceA Speedup [SpaceA+Proposed Mapping Speedup TABLE II

SpaceA Energy Saving —=— SpaceA+Proposed Mapping Energy Saving THE AREA AND POWER DENSITY OF COMPONENTS IN A BANK GROUP.
25 100
a = Component Area Power Density
EXh 80 & PE Queue (x2) | 0.0048 mm?2 | 43.75 mW/mm?
o - oy Register File (x2) | 0.0058 mm? | 49.66 mW/mm?
= 15 M 1 — 60 B PE Logic (x2) 0.0994 mm?2 | 2821 mW/mm?
o 4] | [40] L1 CAM (4 KB) | 0.0286 mm?2 | 66.56 mW/mm?
8 3 L1 Load Queve | 0.0072 mm? | 56.29 mW/mm?
® 5. Lo @ Total / Peak 0.1458 mm? | 66.56 mW/mm?
£ T w
2 o 1O Hia e S
L " 8 QID"’ 112 13 1418 eeo. CACTI-3DD [15] and an existing FPU design [23]. These
atrix

Fig. 5. Overall speedup and energy savings w.r.t GPU.

sumption by accumulating the energy needed for each activity
and the energy spent in the static power.

B. Overall Performance, Power, and Area

Figure 5 shows the performance and energy efficiency for
both our architecture design and the proposed mapping algo-
rithm. As shown in Figure 5, the architecture design of SpaceA
obtains 6.22x speedup and reduces the energy consumption
by 4.89x (79.55% energy saving) on average compared to
the GPU baseline. The results of SpaceA shown in Figure 5
uses a naive mapping which randomly assigns rows from the
sparse matrix to PEs, so the performance and energy efficiency
benefits mainly come from the advance of the architecture
design. Figure 5 also demonstrates the overall performance
energy efficiency with the proposed mapping method. SpaceA
with the proposed mapping achieves 13.54x speedup and
reduces 7.99x energy consumption (87.49% energy saving)
on average compared to the GPU baseline. The comparison
between the results of SpaceA using two mapping methods
reveals that our proposed mapping method contributes 2.18x
speedup and saves 1.63x energy consumption over the naive
mapping method.

We estimate the area of the hardware components needed
by SpaceA in addition to the existing HMC memory with

577

hardware components are assumed to be fabricated in the 22
nm technology. According to prior studies [73], the area of
compute-logic fabricated in the DRAM process could be up
to 2x larger than the one fabricated in the CMOS process due
to the less number of metal layers. Thus we multiply all area
results from CACTI-3DD and existing FPU design by 2x to
estimate the area of these components in the DRAM process.
The area of hardware components in a bank group is shown
in Table II. As shown in Table II, SpaceA only has an area
overhead of 0.1458 mm? on the bank group level, which is
only 4.86% of the area of a bank group and 5.96% of the area
of memory banks. Thus the design of SpaceA has very little
area overheads when integrating PE with memory banks. We
estimate the area of L2 CAM and L2 load queue which reside
on the base die in a similar way. In the default configuration,
the area of an L2 CAM is 0.1898 mm? and the area of an L2
load queue is 0.0760 mm?2. The area of these two components
is 0.2658 mm? in total, which is 8.86% area of a vault. The
base die in the vanilla HMC memory has 10% to 30% area
budget where other prior work integrates compute-logic [4],
[24]. As long as the area of components on the base die does
not exceed this budget, these components do not introduce any
area overhead. In our work, we conservatively assume that the
area budget on the base die is only 10%, thus the area of our
L2 CAM and load queue is still within such a conservative
area budget.

Recent research studies [73] and industrial prototypes [62]

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

[Naive mapping []Naive mapping [Naive mapping I TSV Traffic
] Proposed mapping] Proposed mapping] Proposed mapping [INOC Traffic
10 — = _ 100 — 100 10
— —_ —_ o
- X X =
508 | < 8 < 5 = Sos 7
aN’ © Q @ d &
= Oos —— o 60 o S0 E © 0.6
€ = 04 o 40 [:4 %0 N] 04
£ oY = = % P
[} I X - 2
P B - P 20 W = Soz
0.0 JHLE PP = o HEREARAT AL L L - ol PEA AP AL il Z 0
12345678 91011121314 15Geo. 12345678 910111213 14156Geo. 1 34567 8 91011121314 15Geo. 234567 8 91011121314 15Geo.
. ean . ean) ean . Mean
@) Matrix ID (b) Matrix ID ©) Matrix ID (d) Matrix ID

Fig. 6. Performance metric comparisons between the naive mapping and our proposed mapping: (a) normalized workload, (b) L1 CAM hit rate, (c) L2 CAM
hit rate, and (d) traffic between bank groups and vaults (TSV and NoC) with respect to that of the naive mapping.

have demonstrated the feasibility of fabricating compute-logic
in the DRAM process. However, the thermal issue is still
a well-known challenge for PIM architecture based on 3D
memory [20], [34]. We demonstrate the power density of
components on DRAM dies in Table II. As shown in Table II,
the peak power density per footprint is 532.48 mW/mm?
(66.56 mW/ mm? x 8 layers), which is under the constraint of
power density from both commodity server active cooling [46]
(706 mW/mm?) and high-end server active cooling [20]
(1214 mW/mm?).

C. Mapping

In this section, we discuss performance metrics and power
breakdown in detail in order to gain a better understanding of
the source of these performance and energy efficiency benefits
from our proposed mapping method.

Workload Balance. Since the performance of SpMV in
SpaceA is bounded by the slowest PE, one goal of the
proposed mapping method is to balance workloads among
PEs. To quantify the workload balance, we do the following.
First, we define the amount of work done by a PE to be
the number of non-zero elements processed by it. Next, we
define normalized workload, which indicates the ratio of the
average amount of work done across all the PEs and the
maximum amount of work done by any single PE. We use
the normalized workload to represent the quantitative metric
for workload balance (higher the better). The choice of the
denominator in this ratio calculation is explained by the fact
that workload balance is bottlenecked by the slowest PE, i.e.,
the PE which does the largest amount of work. In the ideal case
where non-zero elements are evenly distributed among PEs,
the normalized workload should equal one due to the equiv-
alence between the average and the maximum PE workloads.
The difference of normalized workload between the naive
mapping and the proposed mapping is shown in Figure 6(a).
Figure 6(a) shows that the normalized workload of the naive
mapping is only 81% of that of the proposed mapping on
average, which indicates that the maximum PE workload in the
proposed mapping is only 81% of that in the naive mapping.
The smaller maximum PE workload demonstrates a better
workload balance in the proposed mapping.

Locality Improvement. In the flow of our proposed map-
ping method, we consider locality optimization. To demon-
strate the locality improvement in the proposed mapping,

578

we profile the hit rate of both L1 CAM and L2 CAM,
the traffic on TSV for intra-vault communication, and the
traffic on NoC for inter-vault communication. Since intra-vault
communication through TSVs has a uniform latency while
inter-vault communication through NoC has non-deterministic
latency, we define the traffic of TSV as the amount of data
transferred through TSVs and the traffic of NoC as the size
of a packet multiplied by the distance between the source and
the destination of the packet. Figure 6(b)-(d) demonstrate these
profiling results. Overall, Figure 6(d) shows that the traffic on
TSV and NoC is only 33.11% and 38.89% with respect to that
of the naive mapping, which indicates a significant amount
of communication savings resulted from the improvement of
the locality. In details, Figure 6(b) shows that the proposed
mapping improves the average L1 CAM hit rate of all L1
CAMs significantly from 18% and 78% on average while
Figure 6(c) shows that the L2 CAM hit rate decreases in the
proposed mapping from 47.09% to 31.93%. The main reason
for the decreasing L2 CAM hit rate comes from the reduction
of requests to L2 CAM with the same amount of cold miss.
As a result, the saving of NoC traffic is less than the saving
of TSV traffic.

Energy Breakdown. To understand the energy efficiency
between the naive mapping and the proposed mapping method,
we demonstrate the energy consumption breakdown for these
two mapping methods. We normalize the energy consumption
of different parts into the energy consumption of DRAM
dynamic power mapped by the naive mapping. We divide the
overall energy consumption into four parts. The first part is the
DRAM dynamic power. The second part is the dynamic power
of PE, L1 CAM with its load queue, and L2 CAM with its load
queue. The third part is the dynamic power of interconnect,
which includes TSV and NoC. The last part is the static power
of the whole chip. The energy breakdown of these four parts
for the naive mapping and the proposed mapping is shown in
Figure 8. We have several observations from Figure 8. First,
the dynamic power of hardware components added by SpaceA
design is negligible (PE & L1 & L2 dynamic). Second, 65.55%
on average of the dynamic power of interconnect is saved by
the proposed mapping, which is the result of a reduced traffic
amount on TSV and NoC shown in Figure 6(d). Finally, the
proposed mapping method saves 54.05% energy consumption
of the static power part: the result of improved performance.
The static power dominates the overall energy consumption in

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

T
128

Number of L1 Sets

32 1024

2048
Number of L2 Sets

]] I] ‘
\ \ \ \ = |
I I | | B |

813 "

i]] T a1 g

| | | | i
!

1‘ 2 4 8
Number of L1 Ways

16 32 1 2

(d)

4

Number of L2 Ways

H O Naive X Proposed |
16 -] . X
1 x
14 l
4096 a1 % !
é %m ' Our Design Point
9 10 |
] =3 !
9 g | Area Budget
1
o
6 ° oo :
4 Ow
T T T
8 0.0 0.2 0.4 0.6 08
(e) Area(mm?)

Fig. 7. The sensitivity of performance to (a) the number of L1 sets, (b) the number of L1 ways, (c) the number of L2 sets, and (d) the number of L2 ways.

(e) The trade-off between performance and area in L2 CAM design.

> —

2 101 [[__] Total static

3 = .

c [|Interconnect dynamic

W 81 ™1PE & L1 & L2 dynamic

E 61 | DRAM dynamic — M

T 4 H

Z ZEHH:_H
NP NP NP NP NP NP NP NP NP NP NP NP NP NP NP NP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Geo

Matrix ID Mean

Fig. 8. The energy consumption breakdown of SpaceA for the naive mapping
(denoted as N) and our proposed mapping (denoted as P).

matrix 7, 12, and 13. The energy consumption of static power
is saved in the proposed mapping method of the matrix 7 due
to a 3.87x speedup over the naive mapping. Matrix 12 and
13 have a relatively poor access pattern, thus pushing heavy
traffic in the interconnect and resulting in a long execution
time while DRAM banks and PEs are idle in most of the
cycles.

D. Sensitivity Study

We conduct sensitivity studies for L1 CAM, L2 CAM, and
TSV transfer latency to justify the selected design points in
SpaceA architecture.

L1 and L2 CAM Sensitivity Study. We study the perfor-
mance sensitivity of L1 and L2 CAM by varying either the
number of sets or the number of ways. The average speedups
compared to GPU for different numbers of sets and different
numbers of ways in L1 and L2 CAM are shown in Figure 7(a)-
(d). As shown in Figure 7(a) and (b), the performance of
SpaceA is not sensitive to the size of L1 CAM. Although
varying the number of ways could help the average speedup
from 13.43 to 13.80, the benefit from such a large number of
ways is relatively insignificant. Therefore, we keep the number
of sets as small and the number of ways as large, resulting in
the design with an L1 CAM composed of 32 sets and 4 ways
per set. As shown in Figure 7(c) and (d), the performance
is moderately sensitive to L2 CAM settings. Although the
changes of speedup are not significant, these speedup changes
are still noticeable, from 11x to 15x, among different CAM
settings. Since L2 CAM can be as large as within the area
budget, we study the trade-off between the performance and

Normalized

579

Latency=1 [| Latency=2 [[_] Latency=4
Latency=8 [l Latency=16

-

o
£ 20/
Eddd
c 1.5
I FEEFFEIREN
E 1.0] .
]
Cos
ww

0.0

y

14 15 Geo.

Mean

2 3 4 5 6 7 8 9
Matrix ID

10 1 12 13

Fig. 9. The sensitivity of performance to TSV transfer latency.

L2 CAM area as shown in Figure 7(e). Figure 7(e) shows
that a larger L2 CAM usually result in a better speedup. Thus
we select the largest one under our area budget, 10% area of
a vault. Figure 7(e) also shows that our proposed mapping
algorithm can leverage a smaller L2 CAM while achieving a
better performance compared to the naive mapping. The naive
mapping with an L2 CAM as large as 0.76 mm? achieves
only a 68.61% speedup of the proposed mapping with an L2
CAM as small as 0.09 mm?2. The results further demonstrate
the advantage of our proposed mapping method in terms of
efficient hardware resource usage.

TSV Sensitivity Study. Most of PIM architecture design
based on 3D memory technology leverages the low latency
of TSV data transfer. We conduct a sensitivity study for
TSV latency by varying the latency setting in our perfor-
mance simulator. Figure 9 shows the performance slowdown
of different TSV data transfer latency. Figure 9 shows that
there is little difference between the latency of 1 cycle or
2 cycles for most of matrices. For the scenario where TSV
transfer is 4 cycles, some matrices are not affected significantly
(within 10% performance slowdown) while some matrices
exhibit significant performance slowdown up to 2x. Thus the
average slowdown of the performance is 1.3x, a factor which
can hardly be ignored. When the TSV transfer latency is
increased to 16 cycles, the performance incurs a 2x slowdown
on average. In summary, our design is not sensitive to the TSV
latency when it is low enough while the performance of design
will start to degrade when the TSV latency is large enough,
which justifies the reason for a design based on 3D memory
technology bringing the low latency of TSV transfers.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

[J#cubes=16 ||| #cubes=32 [l #cubes=64

2 3 4 5 6 7 8

9 10 11 12 13 14 15 Geo.
. Mean
Matrix ID

Normalized

Fig. 10. The scalability of SpaceA with the increase of the number of cubes.

TABLE III
THE SPEEDUP COMPARISON AMONG TESSERACT, GRAPHP, AND SPACEA
FOR PAGERANK (PR) AND SINGLE-SOURCE SHORTEST PATH (SSSP)
ALGORITHMS ON WIKI (WK) AND LIVEJOURNAL (LJ) DATASETS OVER
CPU BASELINE.

Tesseract | GraphP | SpaceA

PR + WK 18.19 22.58 29.73
SSSP + WK 43.70 52.17 103.57
PR + LJ 21.09 34.08 58.34
SSSP + LJ 40.10 42.83 51.47

E. Scalability

We show the scalability of SpaceA by increasing the num-
ber of cubes in Figure 10. Figure 10 shows that SpaceA
with 32 cubes achieves 1.42x speedup and SpaceA with 64
cubes achieves 1.8x speedup on average compared to the
default configuration. These results reveal moderate scalability
where overheads come from a more expensive inter-vault
communication with an increase of cube amount. Although
the scalability of SpaceA is moderate, the memory capacity
of baseline design (64 GB) is able to accommodate most of
the matrices from the University of Florida collection (max
size about 50 GB) [19]. When the number of cubes increases,
the latency of memory access to other cubes becomes larger,
which makes the size of the current PE queue not large enough
to hide the latency of remote memory access. Using a larger
PE queue and L1 load queue to exploit larger memory-level
parallelism (MLP) will introduce a larger area overhead in the
bank group level.

FE Case Study: Graph Analytics

Since SpMV is a building primitive in many application
domains, such as scientific computing and graph analytics,
SpaceA can be used to accelerate these applications. In order
to study the performance benefits of SpaceA for these appli-
cations, we conduct a case study of running graph workloads
on SpaceA, and compare the performance with state-of-the-
art graph accelerators, Tesseract [4] and GraphP [76]. For
comparing both Tesseract and GraphP, we use algorithms and
input graphs evaluated in both of them. As a result, we use
PageRank (PR) and Single-Source Shortest Path (SSSP) algo-
rithms and Wiki (WK) and LiveJournal (LJ) input graphs [36]
in this case study. Then, we run the implementation of these
two algorithms from the GAP benchmark [11] on NVIDIA
DGX-1 server (Intel Xeon CPU E5-2698 x2) as the baseline.
To obtain the performance on SpaceA, we rewrite SSSP and

580

PR algorithms into iterations of SpMV [33], and run them on
SpaceA under the same number of cubes, vaults, and memory
banks as the Tesseract configuration. We assume Tesseract and
GraphP can obtain the same speedup as claimed in their paper,
and the speedup of Tesseract, GraphP, and SpaceA over CPU
is summarized as Table III. This assumption overestimates
the performance of Tesseract and GraphP because our CPU
baseline is more performant than theirs. Specifically, the CPU
in our baseline has more cores (40 vs. 32), the same L1
and L2 cache per core while larger L3 cache in total (100
MB vs. 32 MB), and higher memory bandwidth (153.6 GB/s
vs. 102.4 GB/s). Moreover, we use a well-optimized GAP
benchmark as the CPU baseline instead of in-house C++
implementations used in Tesseract [4]. The results in Table III
show that SpaceA obtains better performance than Tesseract
and GraphP despite the overestimation of their speedups.
The performance improvement of SpaceA mainly comes from
the higher bandwidth provided by the near-bank integration
instead of placing compute-logic on the base die. In summary,
SpaceA can significantly accelerate graph analytics and it
has the potentials to benefit other workloads built on SpMV
computation.

VI. RELATED WORK

SpMV workloads. The study on efficient SpMV imple-
mentation starts from the CPU platform where the explo-
ration of the locality of SpMV computations to efficiently
use the memory bandwidth plays a major role [31], [44],
[49], [66]. GPU provides massive memory-level parallelism
and high memory bandwidth, which makes it a promising
solution when it comes to accelerating SpMV workloads [13].
Although existing studies develop efficient implementations
for the widely used compressed sparse row (CSR) format
on GPUs [25], [45], new matrix compression formats, such
as AMB [47], BRO [60], Cocktail [59], BCSC [69], and
BCCOQO [71], are proposed to address the challenges of irreg-
ular memory access and workload imbalance across different
processing units in more efficient and scalable manners. The
road-map for SpMV on other many-core architectures, such
as Intel Xeon Phi and Intel Knight Landing, is similar to
GPGPU where customized matrix compression formats [43],
[61], [68] are designed together with the parallel algorithms
SpMV to partition workloads across cores. Although these
studies exploit existing memory bandwidth very well, they
can not overcome the problem of limited memory bandwidth.
Unlike these prior works optimizing SpMV on multi-core
(CPU) or many-core processors (GPU), we exploit PIM-based
architecture for superior bandwidth to overcome the bandwidth
problem in multi-core and many-core processors.

PIM and NDP accelerators. There are several studies
for PIM and NDP architectures in recent years for general
purpose programs on different memory technologies, such
as non-volatile memory (NVM) [22], [40] and DRAM [5],
[39], [56], [73], [75]. These architectures are usually equipped
with compute logic designed for basic arithmetic primitives
to support general purpose programs. Meanwhile, PIM ar-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

chitectures are also very promising in accelerator designs,
which are customized for specific application domains, such as
neural networks, block-chain [67], and image processing [26]
workloads. In particular, many neural network workloads
are memory intensive [70], thus prior studies exploit PIM
architectures for different application phases: both training [8],
[16], [27], [41], [53], [57] and inference phases [6], [17],
[24], [32], [35], [55], [63]. Among these application domains
prior work studied for exploiting PIM architectures, graph
analytics is the closest to SpMV workloads. In the vertex-
centric programming model, a graph algorithm is equivalent
to multiple iterations of SpMV when edges are stored in
an adjacency matrix. Prior work studied graph workloads in
PIM architectures for various memory technologies [4], [18],
[48], [58] and efficient graph data partition methods [76]. Our
case study in Section V-F shows that SpaceA achieves higher
performance than prior designs placing compute-logic on the
base die because of higher effective bandwidth exploited at the
memory bank level. Prior studies have also exploited similar
sparse linear algebra primitives, such as sparse matrix-matrix
multiplication (SpGEMM) [79]. However, SpGEMM is very
different from SpMV because of its poor data reuse opportu-
nity. Other research discussing in-memory computing for the
scientific workloads [21] has also been conducted. However,
these studies do not use compact sparse formats leading to both
storage and performance overheads. Overall, different from
all of these PIM accelerators, SpaceA is the first to design
lightweight compute-logic near DRAM banks for irregular
workloads whose memory access pattern is highly irregular
thus introducing challenges for increasing the utilization of
bank-level memory bandwidth.

Sparse linear algebra primitive accelerators. There are
prior studies designing accelerators for SpMV [52] or other
sparse linear algebra primitives [7], [30]. In particular, because
of the model compression techniques for neural network
applications, such as weight pruning [29] and weight quan-
tization [64], a lot of dense linear algebra primitives are trans-
formed to sparse ones. As a result, these sparse neural network
training and inference workloads attract intensive attention to
accelerator designs for sparse linear algebra primitives [42],
[50], [77], [78]. Although these studies optimize SpMV for
better locality or workload balance for on-chip computation,
these compute-centric hardware designs have limited memory
bandwidth. SpaceA exploits a PIM-based architecture superior
bandwidth to overcome the bandwidth problem in CPU, GPU,
and compute-centric accelerators.

VII. DI1SCUSSION

System and programming interface: Since SpaceA is
designed as a standalone accelerator attached to the PCle bus,
it copies the sparse matrix and input vector from the CPU,
offloads the computation of SpMYV, and finally copies the out-
put vector back to the CPU. The software support of SpaceA
needs to provide APIs for memory allocation, data transfer,
and SpMV computation invocation so that CPU programs
can offload SpMV computation to SpaceA. Because the data

581

format is different between sparse matrices and vectors, these
two data structures need different driver APIs to support data
allocation and transfer. Additionally, the sparse matrix needs
to be pre-processed on the CPU for assigning different rows
across PEs before it is transferred to SpaceA. This execution
model has been proven practical by prior studies offloading
SpMYV into GPU [47], [59], [60], [71].

HMC vs. HBM: Although our architecture design of
SpaceA is demonstrated and evaluated based on HMC-like
configuration, SpaceA can also be realized by HBM [2]
achieving similar performance and power under an equivalent
configuration. The effectiveness of SpaceA architecture design
mainly relies on two perspectives, near-bank logic integration
and low latency communications for banks within the same
channel. Although memory banks are grouped into the same
channel horizontally in HBM while vertically in HMC, both
of these two architectures have low latency TSV for com-
munications among banks in the same channel. Therefore, the
proposed approach would be applicable to HBM with a similar
conclusion on performance and energy improvement.

VIII. CONCLUSION

In this paper, we design an accelerator, SpaceA, based on
PIM architecture by integrating compute-logic at the memory
bank level to provide orders of magnitude higher effective
bandwidth than GPU for SpMV computation. To exploit such
a high bandwidth, our PE design is composed of a queue that
holds memory requests to hide the latency of memory access to
data in other memory banks. To exploit locality and to reduce
traffic among memory banks, we integrate CAM buffers in
SpaceA to cache data from the input vector. In addition to
the architecture design, we develop a mapping scheme for
SpaceA to balance workload and exploit locality among PEs.
Our evaluation of 15 real-world matrices shows that SpaceA
is highly competitive in terms of performance and energy-
efficiency compared to the state-of-the-art GPU baseline.

REFERENCES

] “HMC Specification 2.1,” http://hybridmemorycube.org/, 2014.
“JEDEC Standard. High Bandwidth Memory (HBM) DRAM.
JESD25A,” https://www.jedec.org/standards-documents/docs/jesd235a,
2015.

“NVIDIA cuSPARSE library,” https://docs.nvidia.com/cuda/cusparse/in-
dex.html, 2018.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105-117, 2016.

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: a low-
overhead, locality-aware processing-in-memory architecture,” in Com-
puter Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. 1EEE, 2015, pp. 336-348.

S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: an energy-efficient
comparator-based processing-in-memory neural network accelerator,” in
Proceedings of the 55th Annual Design Automation Conference. ACM,
2018, p. 105.

B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Al-
rescha: A lightweight reconfigurable sparse-computation accelerator,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 249-260.

E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable
and energy efficient deep learning with smart memory cubes,” IEEE
Transactions on Parallel & Distributed Systems, no. 1, pp. 1-1, 2018.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

[9]

(10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for graph
processing workloads,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Feb 2019, pp. 373-386.
A. Basak, J. Lin, R. Lorica, X. Xie, Z. Chishti, A. Alameldeen, and
Y. Xie, “Saga-bench: Software and hardware characterization of stream-
ing graph analytics workloads,” in 2020 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE,
2020, pp. 12-23.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in 2015
IEEE International Symposium on Workload Characterization. 1EEE,
2015, pp. 56-65.

N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
conference on high performance computing networking, storage and
analysis. ACM, 2009, p. 18.

E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix
computations on large scale-free graphs using 2d graph partitioning,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. 1EEE, 2013, pp. 1-12.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked dram
main memory,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2012, pp. 33-38.

M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“Time: A training-in-memory architecture for memristor-based deep
neural networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 26.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, no. 3. 1EEE Press, 2016, pp. 27—
39.

G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie,
and H. Yang, “Graphh: A processing-in-memory architecture for large-
scale graph processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2018.

T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-
stacked processing in memory,” 2014.

B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek,
“Enabling scientific computing on memristive accelerators,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), June 2018, pp. 367-382.

D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2018, pp. 1-14.

S. Galal, O. Shacham, J. S. Brunhaver II, J. Pu, A. Vassiliev, and
M. Horowitz, “Fpu generator for design space exploration,” in 2013
IEEE 21st Symposium on Computer Arithmetic. 1EEE, 2013, pp. 25—
34.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
ACM SIGOPS Operating Systems Review, vol. 51, no. 2, pp. 751-764,
2017.

J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multi-
plication on gpus using the csr storage format,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE Press, 2014, pp. 769-780.

P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “ipim:
Programmable in-memory image processing accelerator using near-bank
architecture,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). 1EEE, 2020, pp. 804-817.

P. Gu, X. Xie, S. Li, D. Niu, H. Zheng, K. T. Malladi, and Y. Xie,
“Dlux: a lut-based near-bank accelerator for data center deep learning
training workloads,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

582

[40]

[41]

[42]

[43]

(44

R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalaman-
chili, and H. Kim, “Demystifying the characteristics of 3d-stacked mem-
ories: A case study for hybrid memory cube,” in 2017 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2017, pp.
66-75.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 319-333.
E.-J. Im and K. A. Yelick, Optimizing the performance of sparse matrix-
vector multiplication. University of California, Berkeley, 2000.

Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and
Y. Xie, “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 733-747.

J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

M. J. Khurshid and M. Lipasti, “Data compression for thermal miti-
gation in the hybrid memory cube,” in 2013 IEEE 31st International
Conference on Computer Design (ICCD). 1EEE, 2013, pp. 185-192.
D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neu-
rocube: A programmable digital neuromorphic architecture with high-
density 3d memory,” in Computer Architecture (ISCA), 2016 ACM/IEEE
43rd Annual International Symposium on. 1EEE, 2016, pp. 380-392.
J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

J. Li, G. Tan, M. Chen, and N. Sun, “Smat: an input adaptive auto-tuner
for sparse matrix-vector multiplication,” in ACM SIGPLAN Notices,
vol. 48, no. 6. ACM, 2013, pp. 117-126.

K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for spmv on gpu using probabilistic modeling,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 1, pp. 196-205, 2015.
S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 288-301.

S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 173.

J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2018, pp. 656—669.

L. Liu, Z. Qu, L. Deng, F. Tu, S. Li, X. Hu, Z. Gu, Y. Ding, and
Y. Xie, “Duet: Boosting deep neural network efficiency on dual-module
architecture,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2020, pp. 738-750.

X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in
Proceedings of the 27th international ACM conference on International
conference on supercomputing. ACM, 2013, pp. 273-282.

J. Mellor-Crummey and J. Garvin, “Optimizing sparse matrix—vector
product computations using unroll and jam,” The International Journal
of High Performance Computing Applications, vol. 18, no. 2, pp. 225—
236, 2004.

D. Merrill and M. Garland, “Merge-based sparse matrix-vector multipli-
cation (spmv) using the csr storage format,” in ACM SIGPLAN Notices,
vol. 51, no. 8. ACM, 2016, p. 43.

D. Milojevic, S. Idgunji, D. Jevdjic, E. Ozer, P. Lotfi-Kamran, A. Panteli,
A. Prodromou, C. Nicopoulos, D. Hardy, B. Falsari et al., “Thermal
characterization of cloud workloads on a power-efficient server-on-
chip,” in 2012 IEEE 30th International Conference on Computer Design
(ICCD). 1EEE, 2012, pp. 175-182.

Y. Nagasaka, A. Nukada, and S. Matsuoka, “Adaptive multi-level
blocking optimization for sparse matrix vector multiplication on gpu,”
Procedia Computer Science, vol. 80, pp. 131-142, 2016.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

works,” in High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on. 1EEE, 2017, pp. 457-468.

A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing. ACM, 1999, p. 30.

E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 1EEE, 2020, pp. 58-70.

Y. Saad, Iterative methods for sparse linear systems.
Industrial and Applied Mathematics, 2003, vol. 82.

F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 347-358.

F. Schuiki, M. Schaffner, F. K. Giirkaynak, and L. Benini, “A scalable
near-memory architecture for training deep neural networks on large
in-memory datasets,” arXiv preprint arXiv:1803.04783, 2018.

N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayap-
pan, “Automatic selection of sparse matrix representation on gpus,” in
Proceedings of the 29th ACM on International Conference on Super-
computing. ACM, 2015, pp. 99-108.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14-26,
2016.

H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:
Low latency and energy-efficient matrix computations in dram,” /EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2613-2622, 2018.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. 1EEE,
2017, pp. 541-552.

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in High Performance Computer Archi-
tecture (HPCA), 2018 IEEE International Symposium on. IEEE, 2018,
pp. 531-543.

B.-Y. Su and K. Keutzer, “clspmv: A cross-platform opencl spmv
framework on gpus,” in Proceedings of the 26th ACM international
conference on Supercomputing. ACM, 2012, pp. 353-364.

W. T. Tang, W. J. Tan, R. Ray, Y. W. Wong, W. Chen, S.-h. Kuo,
R. S. M. Goh, S. J. Turner, and W.-F. Wong, “Accelerating sparse
matrix-vector multiplication on gpus using bit-representation-optimized
schemes,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM,
2013, p. 26.

W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huynh, X. Li, and
R. S. M. Goh, “Optimizing and auto-tuning scale-free sparse matrix-
vector multiplication on intel xeon phi,” in Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization. TEEE Computer Society, 2015, pp. 136-145.

UPMEM, “The true Processing-In-Memory
accelerator,” 2020. [Online]. Available:
https://www.hotchips.org/hc31/HC31_1.4_UPMEM.FabriceDevaux.v2_-
1.pdf

P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, “Snrram:
an efficient sparse neural network computation architecture based on
resistive random-access memory,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 106.

P. Wang, X. Xie, L. Deng, G. Li, D. Wang, and Y. Xie, “Hitnet: Hybrid
ternary recurrent neural network,” in Advances in Neural Information
Processing Systems, 2018, pp. 604-614.

C. Weis, N. Wehn, L. Igor, and L. Benini, “Design space exploration
for 3d-stacked drams,” in 2011 Design, Automation & Test in Europe.
IEEE, 2011, pp. 1-6.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Supercomputing, 2007. SC’07. Proceedings of the
2007 ACM/IEEE Conference on. 1EEE, 2007, pp. 1-12.

Society for

583

[67]

[68]

[69]

(70]

(711

[72]

(73]

(741

(751

[76]

(7]

(78]

[79]

K. Wu, G. Dai, X. Hu, S. Li, X. Xie, Y. Wang, and Y. Xie, “Memory-
bound proof-of-work acceleration for blockchain applications,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1-6.

B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “Cvr:
efficient vectorization of spmv on x86 processors,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization.
ACM, 2018, pp. 149-162.

X. Xie, D. Du, Q. Li, Y. Liang, W. T. Tang, Z. L. Ong, M. Lu,
H. P. Huynh, and R. S. M. Goh, “Exploiting sparsity to accelerate
fully connected layers of cnn-based applications on mobile socs,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 17, no. 2,
pp. 1-25, 2017.

X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, “Nnbench-x: Bench-
marking and understanding neural network workloads for accelerator
designs,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 38—
42, 2019.

S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaspmv: yet another spmv
framework on gpus,” in Acm Sigplan Notices, vol. 49, no. 8. ACM,
2014, pp. 107-118.

X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-vector
multiplication on gpus: implications for graph mining,” Proceedings of
the VLDB Endowment, vol. 4, no. 4, pp. 231-242, 2011.

A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,
and N. S. Kim, “In-dram near-data approximate acceleration for gpus,”
in Proceedings of the 27th International Conference on Parallel Archi-
tectures and Compilation Techniques, 2018, pp. 1-14.

A. Yoo, A. H. Baker, R. Pearce et al., “A scalable eigensolver for large
scale-free graphs using 2d graph partitioning,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 63.

D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: throughput-oriented programmable processing
in memory,” in Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing. ACM, 2014,
pp. 85-98.

M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in High Performance Computer
Architecture (HPCA), 2018 IEEE International Symposium on. 1EEE,
2018, pp. 544-557.

Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261-274.

M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
gpus,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 359-371.

Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Ac-
celerating sparse matrix-matrix multiplication with 3d-stacked logic-in-
memory hardware,” in High Performance Extreme Computing Confer-
ence (HPEC), 2013 IEEE. 1EEE, 2013, pp. 1-6.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 06:55:04 UTC from |IEEE Xplore. Restrictions apply.

