This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Rescuing RRAM-based Computing from Static and
Dynamic Faults

Jilan Lin, Cheng-Da Wen, Xing Hu, Tianqgi Tang, Ing-Chao Lin, Senior Member, IEEE, Yu Wang, Senior
Member, IEEE, and Yuan Xie, Fellow, IEEE

Abstract—Emerging Resistive Random Access Memory
(RRAM) has shown the great potential of in-memory processing
capability, and thus attracts considerable research interests
in accelerating memory-intensive applications, such as neural
networks. However, the accuracy of RRAM-based NN computing
can degrade significantly, due to the intrinsic statistical variations
of the resistance of RRAM cells. In this paper, we propose SIGHT,
a Synerglstic alGorithm-arcHitecture fault-Tolerant framework,
to holistically address this issue. Specifically, we consider three
major types of faults for RRAM computing: non-linear resistance
distribution, static variation, and dynamic variation. From the
algorithm level, we propose a resistance-aware quantization to
compel the neural network parameters to follow the exact non-
linear resistance distribution as RRAM, and introduce an input
regulation technique to compensate for RRAM variations. We
also propose a selective weight refreshing scheme to address
the dynamic variation issue that occurs at run-time. From the
architecture level, we propose a general and low-cost architec-
ture accordingly for supporting our fault-tolerant scheme. Our
evaluation demonstrates almost no accuracy loss for our three
fault-tolerant algorithms, and the proposed SIGHT architecture
incurs performance overhead as little as 7.14%.

Index Terms—RRAM, Reliability, Neural Network

I. INTRODUCTION

EURAL network (NN) is now at the core of the artificial

intelligence community, given its excellent performance
on various machine learning topics, including image recogni-
tion [1], object detection [2], natural language processing [3]
and so on. However, the inference of neural networks is
typically considered memory-intensive, as a high volume of
memory bandwidth is usually required. This large amount of
data movement would lead to numerous energy consumption,
which appears to be unacceptable in edge devices. As such
“memory wall” becomes the chock-point and degrades the per-
formance in traditional von-Neumann architectures, RRAM-
based accelerators attract considerable research interests in ac-

Manuscript received XX XX, XXXX; revised XX XX, XXXX; accepted
XX, XX, XXXX. Date of publication XX, XX, XXXX. This work is supported
in part by the NSF 1816833, 1725447, and 1719160, and in part by the
Ministry of Science and Technology under grant MOST 106-222-E-006-027-
MY3 and 109-2628-E-006-012-MY3 and in part supported by the Intelligent
Manufacturing Research Center (iMRC) from the Featured Areas Research
Center Program by the Ministry of Education, Taiwan (ROC).

J. Lin, X. Hu, T. Tang, and Y. Xie are with the Department of
Electrical and Computer Engineering, the University of California at
Santa Barbara, Santa Barbara (e-mail: jilan@ucsb.edu; huxing@ece.ucsb.edu;
tianqi_tang @ucsb.edu; yuanxie @ucsb.edu).

C. Wen and I. Lin are with the Department of Computer Science and
Information Engineering, National Cheng Kung University, Tainan (e-mail:
p76071145@gs.ncku.edu.tw, iclin@mail.ncku.edu.tw).

Y. Wang is with the Department of Electronic Engineering, Tsinghua
University, Beijing (e-mail: yu-wang@tsinghua.edu.cn).

Jilan Lin and Cheng-Da Wen contributed equally to this work.

celerating NN workloads [4], [5]. With the unique resistance-
switching character and crossbar structure, RRAM is able to
perform matrix multiplications, which is the key operation
in NN models, inside the memory array and reduces half of
the data fetching [6], [7]. Beyond the in-memory processing
capability, RRAM also provides O(1) computation complexity
and ultra-low power consumption [8], [9], making itself a com-
petitive candidate for the next-generation computing platform.

Unfortunately, previous studies on RRAM characterizations
have revealed that current RRAM devices exhibit several
reliability issues and non-ideal faults, and we hardly have
the RRAM resistance being the exact value expected [10]-
[13]. Different from using RRAM as a memory device, such
faults can lead to severe accuracy loss when using RRAM for
computation [14], [15]. In this paper, we pay special attention
to three types of faults that are commonly seen in RRAM
devices. (1) Non-linear Resistance Distribution: Multi-level
cell (MLC) has been broadly leveraged in RRAM-based accel-
erators as it significantly increases the data density and saves
the design budget. It has been indicated that the resistance in
MLC is not continuously tunable and there may be resistance
gaps between different resistance levels [16], [17]. However,
prior work simply applied linear quantization to the NN mod-
els assuming that an n-bit fix-pointing value can be mapped to
an n-bit cell, which actually does not seem to hold for all the
RRAM cells. For example, we found that different resistance
states in some RRAM models are exponentially increased [13].
The non-linear resistance distribution exposes a challenge that
mapping traditional NN to such RRAM may not work and
novel quantization algorithms specialized for RRAM-based
computing are demanded. (2) Static Variation: It has been
widely known that RRAM exhibits serious variations, meaning
that the actual value we write into one cell can deviate a lot
from the expected one [18]-[20]. There are mainly two types
of static variations in the current RRAM technology: device-
to-device variation and write-to-write variation. The device-to-
device variation makes it difficult to generate a unified solution
for a single RRAM crossbar array since different cells deviate
differently from each other. The write-to-write variation results
in the huge overhead in the conventional re-write scheme
to address the variation issue, as we may need to re-write
multiple times until getting the correct value. (3) Dynamic
Variation: As the static variation refers to the variation caused
by programming the RRAM cell, the dynamic variation means
that the cell resistance keeps changing over time [21]-[23].
This issue is particularly concerning because it could get worse
in the NN acceleration scenario where those read operations

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

SW/HW Synergistic Fault-Tolerant Framework

Resistance Aware Quantization Input Regulation Selective Restoration

Quantization &
Finetuning

Weight Significance

Algorithm
Evaluation

Input Map Training I
Streaming Input
Regulation

Non-linear Weight

Row-wise Weight
Refreshing

Architecture

Mapping

RRAM Device

NDﬂ'lll?eaI" Re;lstance Static Variation
Distribution

RRAM Reliability Issues

Dynamic Variation

Fig. 1. An overview of SIGHT, a SW/HW synergistic fault-tolerant frame-
work. We leverage algorithm-architecture co-design to address three reliability
issues in RRAM-based computing.

need to charge the RRAM crossbar much more frequently and
thus degrade the performance in NN workloads.

Prior work has made efforts on addressing such reliability
issues on both hardware and software sides. From the hard-
ware side, Li proposed a verify-after-write approach to tune
the RRAM cell more accurately against the variation [24]
while Cheng further improved the energy efficiency of this
solution with a RESET-free approach [25]. From the software
side, Chen proposed a mapping scheme for NN parameters
to avoid important weights being in the variation-affected
RRAM cells [14]. NN training techniques have also been
explored to enhance the model robustness against variations
and non-linear resistance distribution [15], [26]. Lammiel
proposed a variation-aware CNN architecture that is specific
for RRAM to solve the variation problem [27]. However,
as these studies only touched only one or two reliability
issues at a time, there lacks a systematic and unified solution
to tackle all three faults. Therefore, we present SIGHT, a
Synerglstic alGorithm-arcHitecture fault-Tolerant framework,
to holistically address those problems. As shown in Fig. 1,
SIGHT leverages algorithm-architecture co-optimizing, which
trains and maps NN models with the awareness of RRAM
faults and facilitate the processing with dedicated architectural
support. We summarize our key contributions as follows:

o« We propose a resistance-aware NN quantization algo-
rithm, which forces the weights in the NN model to
follow the resistance distribution as RRAM and tackle the
non-linearity issue. Compared with prior work [26], we
extend and evaluate our technique to various resistance
distributions and demonstrate no accuracy loss.

o We introduce an input regulation method to avoid the
accuracy degradation incurred by the static variation. We
compensate for the error caused by variation through an
integrated input map to regulate input vectors. Compared
with prior work [15], the input regulation could resume
the accuracy under much larger static variation.

¢ We propose an RRAM refreshing scheme to resolve
the dynamic variation issue. We define the significance
of each cell by its weight, and selectively refresh the
important RRAM cells at run-time.

o We architect general and low-cost hardware based on
existing RRAM-based accelerator [5] for supporting our
fault-tolerant techniques above. The hardware simulation
reveals that SIGHT introduces 7.14% performance over-
head on average for various NN workloads.

Our paper is then organized as follows: We introduce
preliminaries of NN and RRAM in Section II and present the
detailed models of the three RRAM fault types in Section III.
We introduce our fault-tolerant scheme in Section IV and
the architectural support in Section V. The evaluation is in
Section VI and we summarize the related work in Section VIIL

II. PRELIMINARIES
In this section, we introduce the background on neural

network, RRAM device and RRAM-based computing for
further discussion.

A. Neural Network Basis

Neural networks (NNs) origins from mimicking the neuron
system in humans [28]. The architecture of an NN often
consists of artificial neurons and synapses between them. The
neurons are organized layer by layer. The neurons in one layer
receive the outputs from the previous layer and then propagate
their outputs to the next layer.

yll
[

H ®

N Input [B Kernel1 [H] Output Feature Map 1

Feature Maps [H Kernel2 [Output Feature Map 2
Fig. 2. An illustration of a CNN layer, which is composed of N (N = 4 in
the figure) input feature maps convoluted by 2 kernels.

Convolutional Neural Network (CNN) is an important
branch of the NN family that mainly targets computer vision
tasks. As shown in Fig. 2, the inputs for a convolutional layer
are a bunch of 2-D images, which are called feature maps. A
group of 3-D convolutional kernels (shown as blue and red)
then filter the feature maps with a fixed-size sliding window.
Since each kernel generates one output feature map, we finally
get 3-D output for the next layer. The computation in the
convolutional layer can be expressed in Eq. 1:

N'-1R-15-1
= f(Z Z Z dfc-&-r,y-{-s,nl X wi‘,s,nl,’n,l‘*'l) (1)
nl=0 r=0 s=0
where d is a 3-D tensor representing the feature map and
w is a 4-D tensor representing the convolutional kernels. The
superscript [denotes the [-th layer. Therefore, d' has the shape
of X xY x N! (4 x 4 x 4 as shown in Fig. 2) and represents
the input feature map, while d'*! represents the out feature
map. w' has the shape of R x S x N/ x N+ (3 x 3 x4 x2
as shown in Fig. 2) and represents the convolutional kernels.
f is an activation function that aims to add non-linearity into
the neural network.

B. RRAM Basis

Resistive Random Access Memory (RRAM) is one of the
emerging non-volatile memories, which is also known as the
memristor [20], [29]. As shown in Fig. 3(a), the RRAM cell
is a passive bipolar device and usually applies the metal-
insulator-metal structure. The middle insulator showing resis-
tive switching characteristics can be made of various materials
such as H fO, [17], TiO, [30], NiO [31] and so on.

I+1
z,y,nltt

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

The attractive resistive switching property usually comes
from the conductive filament between two electrodes [31],
[32]. When applying a certain programming voltage to the cell,
the filament grows up and connect two electrodes together,
which then reduces the cell resistance and make it conductive.
This process is called a SET operation where it tunes the
RRAM cell from the high resistance state (HRS, representing
”0”) to the low resistance state (LRS, representing ”1”). The
reversed operation which destroys the filament between two
electrodes is thus called a RESET operation. Both SET and
RESET are considered as write operations to the RRAM.

Top Electrode

— : Bit Line
e : Word Line

Bottom Electrode : Sensing Amplifier

(@) (b)
Fig. 3. (a) An RRAM cell with the metal-insulator-metal structure. The top
and bottom electrodes are made of metal and the middle insulator shows
resistance switching character. (b) The structure of an RRAM crossbar. The
input voltage opens one word line and data are read from bit lines.

RRAM cells can be organized in a crossbar structure for
higher area-efficiency, as shown in Fig. 3(b). When using
as a memory device, the row decoder opens one word line
according to the address and sends a read voltage, and data
are read from selected bit lines through sensing amplifiers. To
further improve the density and save the hardware cost, multi-
level cell (MLC) is broadly considered, where one RRAM cell
can store several bits of information by tuning it to multiple
resistance states [16], [17]. In that case, higher resolution for
analog-to-digital interfaces is then required to decode the data.

C. RRAM-based Computing System

With the crossbar structure and resistive switching character,
researchers have explored RRAM’s potential of in-memory
computing [4], [5]. First, we can store an n. X7 matrix in an n x
n crossbar. Then, all the word lines are opened simultaneously
and we set input voltages with respect to a vector. Therefore,
we have the output currents from bit lines being the result
of matrix-vector multiplication. The scalar multiplication is
done by voltage-conductance multiplication, and the result is
accumulated by all the currents within a bit line. Assume that
the input voltage vector is (V*) and the output is (V°), the
computation can then be expressed as in Eq. 2:

Ve C1,1 C1,N Vl2
: = : : : 2)

%7 cM,1 CM,N Vi
Cij = —Yij/9s 3)

where ¢; ; is the matrix parameter, which depends on the
RRAM conductance in the corresponding position (¢,5) and
the reference conductance g, in sensing amplifiers as shown
in Eq. 3. Since RRAM conductance can only be positive, two
crossbars are needed to represent an application matrix with
both positive and negative parameters [33].

Voltage Vector RRAM Crossbar

R/ 4

a) Unrolled Mapping

Kernel 1

Kernel 2

(b) Overlapped Mapping

Fig. 4. An illustration of mapping a CNN layer to RRAM crossbars. (a) A
CNN layer with two convolutional kernels. Brown pixels are reused by two
adjacent sliding windows. (b) Direct mapping: Unfold inputs and kernels into
vectors and conduct vector multiplication, where kernel vectors are mapped to
RRAM directly. (c) Overlapped mapping: Duplicate kernel vectors in RRAM
crossbars and concatenate feature map vectors together to reduce the latency.

As this computing mechanism significantly reduces the
complexity of matrix-vector multiplication from O(n?) to
O(1), previous work has intensively studied how to leverage
it for NN acceleration [4], [34].

One challenge here is to map the convolution onto RRAM
crossbar. Fig. 4 presents two methods to map a convolutional
layer [35]. The first way is to unroll both weight kernels
and feature maps into matrices and complete the convolution
in a General Matrix Multiplication (GEMM) manner. As
shown in Fig. 4(a), we use an RRAM column to store an
unrolled convolution kernel, and the feature maps are tiled
into vectors and sent to the crossbar as input voltages. Then,
we receive each output pixel cycle by cycle. This method is
quite straightforward and leveraged by many accelerator de-
signs [5], [27]. Fig. 4(b) demonstrates another way to improve
the computation throughput by reusing input data in feature
maps [36]. As shown, we duplicate weight kernels twice and
put them into two RRAM columns in an overlapped manner.
Then, we concatenate the two input vectors in Fig. 4(a) into
one vector, and the overlapped RRAM rows can share and
reuse the same input voltages. Thus, we could get 2 output
pixels in a single cycle. This reduces the inference latency and
increases the computation throughput by trading-off RRAM
resources.

III. RRAM FAULTS MODELING

In this section, we introduce the fault models we wish to
address in RRAM-based computing. We analyze the faults
under three categories: non-linear resistance distribution, static
variation, and dynamic variation.

A. Non-linear Resistance Distribution

As mentioned, MLC helps us gain more data density and
provides considerable savings under the limited hardware
budget. Since the parameter ¢; ; in a matrix should be linearly
mapped into the corresponding RRAM’s conductance g; ; ac-
cording to Eq. (3), the conductance/resistance distribution must
be exactly the same as the distribution of matrix parameters.
However, we find that as the RRAM processing technology has
not converged and various types of RRAM based on different
materials exist, the distributions of multiple resistance states
in MLC are quite diverse.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Here we show in Fig. 5 two cases of resistance distribu-
tion. Both of them are 2-bit cells from existing work, with
WO, [12] and HfO- [16] based RRAM respectively. To
distinguish the non-linear distribution (among all resistance
states) and the static variation (for one particular resistance
state), we here only consider the mean value for each state.
As seen, we hardly expect the resistance distribution to be per-
fectly linear. For the distribution illustrated in Fig. 5(a) (where
it shows the number of cells measured in different resistances),
four different resistance levels appear to be linear. However,
some deviations are making the resistance gaps between them
not strictly the same. For the distribution illustrated in Fig. 5
(b), we find four resistance levels exponentially increased
under the logarithmic axis, where the highest resistance state
is about 1000x larger than the lowest one.

50 State 00 ——State 01 ——State 10 ——State 11
z 40
o
s 30
2 2
[S
2 10
0
0 2 4 6 8
Resistance (kQ)
(a)
20 —o—Level-1 Level-2 Level-3 Level-4
~ 16
®
> 12
% 8
s
L 4
0
1 10 100 1000 10000 100000
Resistance (kQ)
(b)

Fig. 5. The multi-state resistance distribution in MLC for (a) W O-based
RRAM [12] and (b) H fO2-based RRAM [16].

To mathematically analyze the non-linear resistance distri-
bution for further discussion, we propose three fitting functions
to model the various resistance distribution: (a) Deviated
Linear Model: For the case shown in Fig. 5(a), we apply
a deviated linear model where the conductance states are
approximately linear and we add random noise J; to them,
as expressed in Eq. 4(a) where k£ means the k-th conduc-
tance state. (b) Exponential Model: For the case shown in
Fig. 5(b), we fit the conductance states with a exponentially
increased function. As expressed in Eq. 4(b), the base [in the
exponential function will reflect how the conductance grows.
(c) Power Model: For other cases that can be seen in other
work [16], [17], [37] where either the linear or exponential
function may not be proper to represent them, we propose a
power model that has a moderate growth speed between the
linear and exponential model, as shown in Eq. 4(c) where the
« is the exponent/index.

g = Ck + 0y, (a)
gk = Cp" (b) “)
gk = Ck® (c)

To decide the parameters 9, § and «, one can simply apply

a minimal square root error (MSE) based fitting algorithm.

B. Static Variation

Unlike the binary cell that only stores O or 1, RRAM as
an analog device exhibits serious uncertainty regarding the
resistance value, as we observed in Fig. 5. Here we call such
uncertainty static variation since the variation is fixed after
setting or unsetting it. This variation is usually caused by
the non-uniformity when forming the filament between two
electrodes as it is very difficult to control two filaments to be
exactly the same, either for two RRAM cells or for two SET
operations. Therefore, there are conventionally two types of
static variations: device-to-device variation and write-to-write
variation, referring to the resistance difference between two
RRAM cells and two SET operations respectively.

When used as a memory device, the static variation seems
not troubling because we do not necessarily require the RRAM
cell to be precise, as long as two different resistance states
are distinguishable. However, it surely becomes a huge threat
to the performance when using RRAM for computing, since
any change to the operators may lead to incorrect results.
Therefore, this RRAM characteristic must be taken into con-
sideration. Here we assume that the higher resistance level
suffers from more serious variation, which is indicated in
Fig. 5 and other previous work [16], [20], [38]. As expressed
in Eq. 5, we add a stochastic noise to the ideal resistance to
model the static variation, which obeys the standard normal
distribution. The variance of the distribution is linearly related
to the resistance itself with a coefficient .

Tactual = Tideal + A7 A~ N(Oa /\Tideal))
——LRS HRS

104 r pa—
z T
$ 100n
3 10n
®
9 1n

100p

0.01 0.1 1 10 100 1000

Retention Time (h)

Fig. 6. The resistance drifting for both HRS and LRS in an HfOg2-based
RRAM [23] baking at 200°C. The y-axis represents the read current, and the
median value is shown. The x-axis represents the time in logarithmic unit.

C. Dynamic Variation

Both the non-linear resistance distribution and static vari-
ation are statically fixed after mapping a NN model. On the
other hand, researchers also observed the RRAM resistance
may drift over time, as the formation of filament is not stable
and can be easily affected by the temperature, read current or
other environmental factors [39]-[42]. This issue is also known
as the retention problem describing how long an RRAM device
would keep its data. When using RRAM for accelerators,
the resistance may drift even worse as the number of reads
increases and multiple rows are opened simultaneously.

Fig. 6 presents how two resistance states drift over time for
an HfO5-based RRAM [23]. We find that different from the
static variation, the dynamic variation tends to increase the cell
resistance as the formed filament tends to be narrowed instead
of keeping growing. Therefore, here we use a simplified
model and make the assumption that the dynamic variation

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

:08:28 UTC from IEEE Xplore. Restrictions apply.

is single-directional, meaning the resistance keeps increasing
over time. Since the dynamic variation also shows stochasticity
and Fig. 6 presents only median values, we still use noises with
standard normal distribution to model the dynamic variation.
As expressed in Eq. 6, we apply a similar model as static
variations but take the absolute value of the noise instead.

Tdrifted = Toriginal + |A|; A~ N(07 >\Tideal) (6)

IV. FAULT-TOLERANT SCHEME

In this section, we discuss how to address the three types
of RRAM faults mentioned above in the algorithm level.

-
1 1
c |1 !
o | !
—> 2| —> :
Input EA 1 Output
Feature —>| & | 1 > 1
o |1 !
S |, I
—> ,Q:' 1 —> 1
oy 1
Q| I
: NN Model 1

@ Non-linearity - _T _____ -T __________

Static Variati : . s
g Dynamic variation | | © Selective Weight Restoration
Insignificant Weight

— Significant Weight

Fig. 7. The workflow for the proposed fault-tolerant scheme, where three
techniques are proposed to address three types of faults respectively.

A. Overview

Fig. 7 shows an overview of our scheme workflow, where
we propose three dedicated techniques to tackle the three types
of RRAM faults respectively. First, given an RRAM-based NN
accelerator, we derive the resistance/conductance distribution
according to the specific RRAM technology, which indicates
the values we can map to the RRAM crossbar. With this
distribution information, we quantize the NN models with
our proposed @ resistance-aware quantization algorithm. The
technique is performed offline and forces the NN parameters to
follow the exact distribution as RRAM. Second, after mapping
the NN model to RRAM successfully, we read the static
variation of each cell from RRAM crossbars and train an
input map offline with our @ input regulation technique. The
input map regulates the input during inference to compensate
for the known variations in RRAM crossbars. Finally, before
online execution, we extract significant weights in the NN
model under an RRAM-friendly pattern. We determine the
significance of weight with respect to a whole RRAM row.
After the accelerator starts to execute the inference, we ©
periodically refresh the resistance of such significant cells in
selected rows to resist against dynamic variations.

B. Resistance-Aware Quantization

The non-linear distribution in RRAM devices makes it
difficult to map the NN models, because existing quantization
algorithms are mostly linear quantization [43]-[45]. Some
research proposed non-linear quantizing the NN model using
{1, 2, 4, 8, ...}, facilitating the NN inference in CMOS-based
platforms by switching multiplication to bit operation, since
multiplying the input by 4 means shifting left by 2 bits [46],

[47]. However, there is very little work offering an RRAM-
aware quantization and tackling the non-linear problem in
RRAM-based NN accelerators [26].

Algorithm 1 Resistance-Aware Quantization

Require: Positive weight tensor WW; Quantization width n; Conduc-
tance list G = [g1, g2, ..., g2]; Base 3 (for exponential) or Index
« (for power)

: Initialize:

Quantization level L = 2";

Decision boundaries B = [bg, b1, b2, ...,br], bo = 0, by, = o0;

Quantized weight Wyyan = zero_tensor (VV.shape);

Weight scale v = W.max / gr,

. if Deviated Linear then B = boundary_decision_linear(G)
. else if Exponential then B = boundary_decision_exp([3)

. else if Power then B = boundary_decision_power(c)

: end if

A S ol

—_— =
N = O 0

cfor k=1;k < L; ++k do

Wy = ((Wk > bkfl) & Wy < bk)) X gk X 7y
unan += Wk

: end for

: Return Wguan

—_
AN A

. ******************Decision Functions kst sk skeosteoste skesteoske stk sk skeokokoskosk
: function BOUNDARY_DECISION_LINEAR(G)
for k =1;k < L;++k do
by =y % (g + gr+1)/2
end for
: end function

DN NN = —
NRWYD oo X

: function BOUNDARY_DECISION_EXP(/3)
for k =1,k < L; ++k do
be = x B505 x (gx/B%)
end for
: end function

W W NN NN
TP XeID

: function BOUNDARY_DECISION_POWER(«)
for k =1;k < L;++k do

by = v X (k + 0'5)04 X (gk/ko‘)
end for
: end function

W W W W
hn B W

Therefore, we propose a resistance-aware quantization al-
gorithm to make NN parameters aligned with the RRAM
resistance/conductance distribution, which is presented in Al-
gorithm 1. First, the algorithm receives a positive weight tensor
as input since an RRAM crossbar can only represent positive
values. So, we need to extract the positive and negative parts
of a weight tensor and quantize them separately. Other inputs
include the quantization width, and conductance distribution
information as discussed in Section III. Second, we initialize a
quantized weight tensor and derive a scale factor y between the
max value of VW and the highest conductance state. Then, we
calculate the decision boundaries that decide what a particular
weight value should be quantized to. For the deviated linear
model, we follow the traditional quantization approach and
take the midpoint (mean value) of two quantization intervals
as the decision boundary, as shown in Lines 19-23. But for the
exponential model and power model, such a choice does not
make too much sense because the distribution of quantization
intervals is not uniform. Therefore, we here apply the midpoint
of exponents (for the exponential model) and bases (for the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

power model) as the decision boundary. That is, 3*+°-5 and
(k-+0.5)* respectively. Finally, with these decision boundaries,
we can decide which quantization interval a weight locates
at and combine them together to form the quantized weight
tensor according to Lines 12-15, which can be mapped to the
RRAM crossbar array favorably.

Note that the quantization algorithm does not work alone,
as the model accuracy may degrade after pure quantization.
Therefore, we take a finetune process for the quantized NN
model as described in [44]. Therefore, we keep quantizing and
re-training the model iteratively until the accuracy converges.
The quantization algorithm is applied before both the inference
and the forward stage in the training.

C. Input Regulation

After mapping the quantized model to RRAM crossbar
arrays, we may still encounter the static variation in RRAM
that severely hurts the performance. Previous work on tack-
ling the RRAM variation mostly relies on RRAM cell re-
writing [24], [25] or NN parameter re-mapping [14]. However,
these methods may cause large hardware overheads due to
the write-to-write variation. On the other hand, some work
leverages NN training to make the model more robustness
against variation [15], [48] by injecting stochastic variation
into the training process. We will show in the experiment
regarding comparison to such technique.

Output Affected O.
112(3 0.9|2.3]3.6 I
4|56 = 3.85.36.5)(:
71819 7.4(8.4]9.4
Original Variation Affected
Regulation Map

0.92.3[3.6

3.8]5.3[6.5 X . = Resumed Output

7.4|8.4|9.4 I

Input Regulated
Fig. 8. An illustration of the input regulation technique. We show on the top
that variation-affected weights lead to incorrect output, where all the outputs
are rounded to integers. The bottom figure shows how the input regulation
map works to resume the output.

To tackle the static variation, we leverage the opportunity
that such variations are fixed and can be known immediately
after mapping. Therefore, we propose to regulate the input
and compensate the known variations instead of pursuing a
perfectly correct RRAM cell. As the output relies on both
weight and input, we slightly adjust the input voltage to keep
the final results correct under the variation-affected weight. As
shown in Fig. 8, we take a matrix-vector multiplication as an
example. The original computation is Wx = y. After we map
the WV onto the RRAM crossbar, we get a variation-affected
weight matrix W,,piseq, Which would lead to an incorrect
output shown as purple. Then, we add an input map M to the
input = accordingly, where element-wise multiplication will
be performed over M and z. This process will scale the input
a little to compensate for the certain variation pattern. Finally,
we resume the output more accurately to the original one.

So, our goal is to search for an optimal input map M that
best resists against the static variation. This problem can be

formulated mathematically to an optimization problem, where
we wish to minimize the computation error under the matrix-
vector multiplication constraint, as expressed in Eq. 7:

H.Bln Error(y7ynoised) =V Hy - ynoisedHZ
st. y=Wz (7

Ynoised = Wnoised X (M . .13)

However, the input z in the equation above remains un-
known. Our opportunity is that since the neural network itself
is trained over a specific dataset, for a particular piece of
weight, the input may thus follow some specific patterns. For
example, the input in the corner of an image may have more
white pixels. Therefore, we propose to obtain the M through
the same training procedure as to train the neural network.
First, we initialize the M to an all-1 tensor, meaning that the
x remains unchanged after getting multiplied by 1. Second,
we can approximate the optimal M using common training
techniques such as stochastic gradient decent. In this step, we
fix the weight matrix and update the input map only. Through
going over all training images, we finetune the input map
iteratively until convergence.

D. Selective Weight Restoration

The resistance-aware quantization and input regulation help
tolerate the static faults which can be detected at the mapping
stage. However, the reliability issue also occurs at the inference
state when we keep running the RRAM-based accelerator.
As we discussed in Section III-C, the resistance of RRAM
may drift over time. Previous work mainly focused on the
endurance problem [49] to protect RRAM cells from frequent
writing, but the retention problem in the NN acceleration
scenario has been rarely touched.

To address this problem, we propose a selective weight
restoration method which determines the significant weights in
an NN model and restores them from dynamic variation. The
idea origins from the observation that only a small fraction of
weights show the importance to NN models and slight changes
to the insignificant weight will not hurt the accuracy due to
the intrinsic robustness of NN [44]. Therefore, we can back
up these significant weights and restore them when they suffer
from the resistance drifting/dynamic variation.

However, the challenge is that the significant weights are
in fact randomly distributed among RRAM crossbars, and
thus it would take a long time to re-write all these weights.
To overcome the writing overhead, we then introduce an
RRAM-friendly weight restoration method, which leverages
the RRAM crossbar’s nature that it is possible to write one row
in the RRAM crossbar simultaneously to reduce the latency
[49]. So, after we map the NN model to RRAM, we detect the
weight significance in a row-wise manner for each crossbar.
First, we sum up the weight within a whole row as expressed
in Eq. 8, which indicates the significance of this row. Since we
already separate the positive and negative weights, we do not
need to take the absolute value. Second, we select a number
of rows with the largest significance and back up them in the
main memory. Every crossbar selects the same number of rows
to avoid the restoration imbalance. Finally, we periodically

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

Off-chip Memory (HEEN EEEN ... EE=N

__________ [-_—=1
M»l Exec. Scheduler |

SIGHT Architecture

[GlobalBuffer T+
N

|

|

|

1

|

|

SO

AN
~

?
|Inference Controller” Refresh Scheduler I —
Q Q Q Q
/f _______
C[PE]:[PE]Z{PE]:[PE]D/,’I
T T T | .’/ %_%
=
C[PE]:[PE]:{PE}:{PE]D

Selective Row-Wise Refreshing

Row Bitmap: 1010

X-bar X-bar
MAC MAC

1
1
1
1
1
1
1
ol X-bar X-bar
18] mac MAC
1
1
1

Regulated

Non-linear Unit

Fig. 9. The SIGHT architecture overview. We mainly design (a) the input regulation unit for each PE to execute the NN inference and (b) the weight refreshing

scheduler to restore the significant weights in RRAM crossbars.

refresh these rows in RRAM crossbars to ensure the accuracy
performance.

H
S;= wi, ®)
i=0

Note that to avoid the contradiction to input regulation
that has fixed input maps for the static variation, we need
to write the cell precisely during refreshing RRAM crossbars.
We consider this overhead very small because we only re-write
a small portion in an RRAM crossbar and the refreshing is
conducted after a period of time. We will quantitively evaluate
the overhead in Section VI.

V. ARCHITECTURE DESIGN

In this section, we discuss how we architect the RRAM-
based accelerator and equip it with the fault-tolerant capability
according to the techniques proposed in Section IV.

A. Overview

As RRAM reliability issues broadly exist in various ac-
celerators, our design principle is to make our design (1)
unified, where we address all the reliability issues in one
framework; (2) general, meaning it applies to various RRAM-
based accelerators; (3) low-cost, as negligible performance and
hardware overhead would be introduced. For these purposes,
we architect add-on hardware in the existing RRAM-based
accelerator to support our fault-tolerant scheme.

Fig. 9 gives an overview of the SIGHT, which is based on
the ISAAC-like [5] processing flow. The SIGHT consists of
two parts, the NN inference accelerator and fault-tolerant units.
To process the NN inference, SIGHT distributes the workload
to a number of RRAM-based processing elements (PEs). Each
PE tile is mainly composed of the input/output buffer, RRAM
crossbar arrays for matrix multiplication, registers for result
aggregating and non-linear units for activation functions. The
PEs are organized in a mesh manner, for better reconfiguring
with various NN workloads. Beyond the functional modules
for NN executions, we design fault-tolerant units to resist
the RRAM faults. First, we add a multiplier array beside the
RRAM crossbar, which regulates the input voltage to resist
the static variation. Second, we design a weight refreshing

scheduler. The scheduler issues interrupt signals periodically
or on-demand to NN executions, and then refreshes the sig-
nificant weights to recover the accuracy loss caused by the
dynamic variation.

B. Hardware Design

RRAM-based PE is similar to the tile design in ISAAC.
Multiple RRAM crossbar arrays are used to compute the ma-
trix multiplication. The crossbars are interfaced by the digital-
to-analog converter (DAC) and analog-to-digital converter
(ADC). As the area overhead of ADC is usually considerably
larger than DAC [5], we make each crossbar have its own
DAC arrays but share the ADC arrays with other crossbars
within the PE. We use SRAM to buffer the input and output
activations. A PE’s input/output buffers are interconnected
with adjacent PEs for the convenience of layer propagation.
We also use aggregation registers to aggregate the partial sums
of (1) split matrix and (2) split precision from different RRAM
crossbars. The latter one is for the reconfigurable precision
purpose. Since the RRAM, DAC and ADC are fixed-precision
and some NN workloads demand higher precision, splitting
most significant bits (MSBs) and least significant bits (LSBs)
thus becomes a common technique used in RRAM-based
computing [4], [5]. Finally, we put a non-linear unit to support
activation functions and pooling operations in an NN model.

Input Regulation Unit is to adjust the input voltage accord-
ing to the fault-tolerant scheme presented in Section IV-C. This
unit is composed of a multiplier array, which locates right
beside RRAM crossbar arrays. We also put an extra buffer
within the PE to store the input map M. Then, the multiplier
array receives operators from the input buffer and map buffer
and sends the regulated data to DACs. This only incurs very
little performance overhead of one multiplier cycle, which we
will discuss in detail in Section VI.

Refreshing Scheduler is a separate piece of control logic
that aims to refresh the RRAM crossbars affected by the
dynamic variation. The scheduler decides to refresh according
to an internal counter, which records the time interval from
the last refreshing. Whenever the counter exceeds the pre-set
threshold, the scheduler issues an interrupt signal and starts
to refresh the RRAM crossbars. As all the backup weights
are stored offline, the significant weights will be read from

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

off-chip memory and written to crossbars row-wisely. For
each crossbar, we use a bitmap to decide which rows are
going to refresh and put a dedicated decoder to decode the
bitmap (searching for non-zero positions) and process the rows

of the fault-tolerant scheme by the accuracy results from
different neural network benchmarks. For the hardware aspect,
we evaluate our architecture design by simulations, showing
the performance, energy breakdown, and area overhead.

sequentially.
Interconnection & Controller: The PEs are organized as

a 2-D mesh, where one PE can receive the input activations SIGHT Configuration @ 1.2 GHz, 32 nm Technology
from others or route its output to adjacent PEs. The RRAM Component Parameters Spec
crossbars within a PE are connected with a shared bus. Once Precision 2-bit
an NN model is mapped, all the data paths for execution are RRAM Crossbar Size 128128
fixed offline. The execution controller then runs a finite state Nunsﬂ?erlp E 8?{2B
. . . . 1Z€
machine aqd takes cbarge of al.l the pipelines according to the Input/Output Buffer # Banks 4
control registers, which determines how the results are routed. Data Rate 64B/cycle
C. Execution Flow Size 4KB
. . Input Map Buffer # Banks 4
Mapping: Similar to the ISAAC and other RRA.M—bas.ed Data Rate 32B/eycle
accelerators, SIGHT puts all NN parameters on-chip, which ADC Precision 3
are distributed over all the RC tiles. This assumption holds Number/PE 32
because the RRAM itself is a memory device and writing DAC Precision 1
RRAM repeatedly will significantly reduce its endurance [49]. . Number/PE 32*128
Therefore, we first map the model to the accelerator offline, Regulation Array | # Multipliers 32
PE Number 256
and one layer could be mapped to one or several PEs. After Size KB
mapping, we read actual weight values from RRAM crossbars Global Buffer # Banks 8
that are affected by static variations. Then, we train the input Data Rate 128B/cycle
map M offline and write the map to each regulation buffer. o Config. PCle 4.0%4
Finally, we program the control registers in the execution Bandwidth 16GB/s

controller with respect to the data flow fixed by the mapping.

Execution: After we start the execution controller, the
global buffer loads the image from the off-chip memory and
sends it to PEs that process layer 0. The input will first be
regulated by multiplying with the input map and then sent to
the corresponding RRAM crossbars. The computation results
are temporarily stored at the aggregation registers, where the
partial sums are accumulated. Finally, after going through the
non-linear function unit, the output of this layer is then stored
in the output buffer and waiting for routing to the next PE.

Refreshing: The RRAM crossbars refresh themselves with
a pre-set time interval. When it is time for refreshing, the
refreshing scheduler first sends an interrupt to the execution
controller and suspends the inference processing. As backup
weights are stored offline, the scheduler then issues memory
requests to the I/O interface and reads the row-wise significant
weight and the bit map. To reduce the overhead, we wish all
crossbars to refresh simultaneously. Therefore, we make the
weight reading and crossbar refreshing in pipeline. First, one
significant row is read for each crossbar at a time. Second, the
crossbar refreshes this row with the address decoded from the
bit map. Meanwhile, the scheduler starts to read the next row
to hide the I/O latency. Since we restore a certain percentage
of rows for every crossbar, no refreshing imbalance would be
introduced consequently.

VI. EVALUATION
In this section, we provide the experiment results of our
proposals and analyze the insight from them.
A. Methodology

We evaluate our proposal from both software and hardware
aspects. For the software aspect, we demonstrate the efficacy

TABLE I

THE SIGHT CONFIGURATION

Evaluation Tools: We implement our fault-tolerant schemes
with PyTorch, a commonly-used python-based NN framework.
We also build up an in-house simulator to evaluate the
hardware performance. The RRAM parameters including area,
energy, and latency, are derived from NVSim [50], while the
SRAM are simulated by CACTI [51]. We also implement other
digital components, such as activation units and multipliers, in
Verilog and synthesize them with Synopsys Design Compiler
to estimate their performance.

Accelerator Configuration: The system is configured to
1.2GHz and simulated under 32nm technology. For each PE,
we use 32 RRAM crossbar arrays with a size of 128x128.
We assume 2-bit precision for each RRAM cell. We use 1-bit
DAC and 8-bit ADC as described in [5], where each RRAM
crossbar has 128 DACs and shares one ADC. The regulation
array is set to 8-bit precision where it has 32 multipliers. We
apply 8KB SRAM for input and output buffer within one PE,
and each buffer has 4 banks contributing to a data rate of
64B/cycle. The input map buffer is a 4KB SRAM separately
whose data rate is 32B/cycle. We equipped SIGHT with 256
PEs in total, and there is a 32KB global buffer with 128B/cycle
data rate. We use four PCle 4.0 lanes to connect the accelerator
and the host, providing 16GB/s off-chip bandwidth in total.

Benchmarks: For better understanding how the model struc-
ture and complexity are sensitive to our fault-tolerant scheme,
we consider two typical types of CNN, VGG and ResNet, for
evaluation, where VGG stands for a plain and straightforward
network and ResNet has a residual structure [1], [52]. We also
choose models with different depths, including VGG-11/16
and ResNet-18/34. We apply the public implementations from
GitHub as baselines [53], [54]. The dataset we use is CIFAR-
10, which consists of 60000 3232 color images in 10 classes.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE I
THE ACCURACY RESULTS OF THE RESISTANCE-AWARE QUANTIZATION. MODELS ARE QUANTIZED INTO DIFFERENT PRECISION FOR DIFFERENT TYPES
OF RESISTANCE DISTRIBUTION. FOR POWER AND EXPONENTIAL DISTRIBUTION, DIFFERENT PARAMETERS ARE CHOSEN.

ResNet-18 ResNet-34 VGG-11 VGG-16
Accuracy w/ Full Precision 94.78 94.74 92.23 93.58
Quantization Bit 2-bit 3-bit 4-bit | 2-bit 3-bit 4-bit | 2-bit 3-bit 4-bit | 2-bit 3-bit 4-bit
Deviated Linear §=0.10 | 93.47 94.68 94.82 | 93.39 94.37 94.65 | 85.94 91.21 91.86 | 89.23 93.03 93.38
B=v2 | 94.36 94.60 94.73 | 94.40 94.48 94.59 | 90.63 91.89 92.15 | 92.80 93.27 93.48
Power £=2 94.38 94.67 94.79 | 94.14 94.57 94.66 | 90.64 91.98 92.14 | 92.72 93.29 93.46
£=3 9431 94.51 94.68 | 94.19 94.56 94.54 | 90.35 91.34 91.97 | 92.43 93.11 93.52
a=v2 | 93.40 94.71 94.69 | 93.36 94.59 94.61 | 85.18 91.91 91.92 | 88.09 93.30 93.38
Exponential a=2 94.66 94.67 94.72 | 94.27 94.45 94.52 | 90.86 91.52 91.55 | 93.04 93.14 93.24
a=3 94.45 94.38 94.39 | 94.14 94.14 94.09 | 90.15 90.11 90.06 | 92.81 92.83 92.81
-&-.DVA —+—Input Regulation
100 100 100 100
—— =z ———r———— | eee———e— |
_ 80 - 80 R 80 e 80 e
B3 “w So--a. N ‘\—*\
Deviated z 60 BRLNY 60 “Seel 60 \ 60 Y
Linear g 40 \'\ 40 “\ 40 P SN 40 : oo
< 2 B) 20 20 7
0 0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
100 100 100 100
80 | = 80 ._:_‘_,:__:TM B0 [T g | ° e
< 60 Fomseel 60 | el TNl 60 LN 60 e
< -~ Sea .. LI
Exponential 3 40 S N 40 Ssal 40 ~e, 40 ~d
2 2 - 20 M 20 T 2
g 4
0 0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Static Variation A (%) Static Variation A (%) Static Variation A (%) Static Variation A (%)
VGG-11 VGG-16 ResNet-18 ResNet-34

Fig. 10. The efficacy of input regulation against the static variations, compared with device-variation-aware (DVA) training [15]. Deviated-linear and exponential
quantization are shown. The x-axis represents the variance of variations, and the bigger the worse. The y-axis represents the accuracy.

Among them, 50000 images are used for training and 10000
images are used for testing [55].

B. Accuracy Results

1) Resistance-Aware Quantization: We quantize and fine-
tune the four pre-trained models with the three mentioned
resistance distributions. For a better sensitivity study, we quan-
tize them into 2, 3, and 4 bits as current RRAM devices are
unlikely to have very high precision. We also select different
parameters for different distributions and choose the base of
power distribution and the index of exponential distribution to
be v/2.2.3.

As shown in TABLE II, the accuracy result under full
precision can be found in the top line while the accuracy
after quantization is below them. We find that: (a) For most
cases, we achieve no accuracy loss or insignificant accuracy
loss (~1%), demonstrating the efficacy of our resistance-aware
quantization; (b) The overall results for ResNet models are
better than VGG ones. We resume the accuracy of ResNet
models back to 94% as original for almost all the cases, except
for exponential quantization to 2 bits where the accuracy is
93%. Meanwhile, VGG models suffer more accuracy loss as
usually 1-2% degradation is introduced, especially for VGG-
11. This tells the ResNet structure is more robust than a VGG-
like plain network when applying the non-linear quantization;
(c) The exponential distribution with a small index plus low
quantization width will degrade the performance noticeably.
As shown, when using parameter a=v/2 and quantizing the
model with 2-bit precision, the accuracy of ResNet models
drops 1% while the accuracy of VGG-11/VGG-16 decreases to

85.18% and 88.09%. This is because in such cases, the quan-
tized values have a smaller range and thus are not enough to
represent the NN models. Also, higher quantization precision
generally makes quantized values more representative, which
explains that it basically occurs at the low-bit quantization.
2) Input Regulation: To evaluate the efficacy of input
regulation, we inject variations with increasing variances to see
how models get affected by static variations, where a larger
variance indicates a worse variation. We take the deviated-
linear and exponential quantization methods for all the four
models and recover the accuracy by regulating the input.
The results are shown in Fig. 10, where we compare
the accuracy between the device-variation-aware (DVA) train-
ing [15] (shown as dotted lines) and our proposed input
regulation (shown as solid lines). We observe that: (a) With
the input regulation, we keep the accuracy against dropping
from variations. Even when injecting the variation as large
as 100%, the model delivers less than 10% accuracy loss
most of the time; (b) The input regulation outperforms the
DVA with an average accuracy gain of 25.2%. The DVA
appears effective in a smaller variation range when A < 50%,
but the accuracy degrades significantly after that. Specifically,
our input regulation achieves an accuracy gain of 13.0%
when 0 < A < 50% and an accuracy gain of 43.7% when
50 < X\ < 100%, compared with the DVA. (c) The DVA shows
stochastic characteristics, as in some cases such as the VGG-
16, smaller variation may cause larger accuracy loss. This is
because the real variation scenario is unpredictable. Although
the model is trained to be more robust, the later injected
variation could cause huge accuracy loss. On the opposite, our

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

:08:28 UTC from IEEE Xplore. Restrictions apply.

- o =Original Restore 10% —w—Restore30% ——g=—Restore 50%

g
Deviated &
: Il
Linear 5
3
<

= 8
&

Z 6
Exponential &

g

<0

0

0 2
Dynamic Variation A (%) Dynamic Variation A (%) Dynamic Variation A (%) Dynamic Variation A (%)
VGG-11 VGG-16 ResNet-18 ResNet-34
Fig. 11. The efficacy of selective weight restoration against the dynamic variations. Deviated-linear and exponential quantization are shown. The z-axis

represents the variance of variations, and the bigger the worse. The y-axis represents the accuracy.

input regulation is obtained for a specific variation distribution
and thus achieves better performance.

3) Run-Time Weight Restoration: Similar to the static varia-
tion, we inject dynamic variations with increasing variances to
the model and evaluate the deviated-linearly and exponentially
quantized models. We also restore different percentages of
weights to see the trade-off between the restoration overhead
and model accuracy.

As shown in Fig. 11, the dotted line presents how the
accuracy drops as we injected larger dynamic variations, and
three solid lines with different markers present the recovery
of accuracy after the weight restoration. From the results we
find that: (a) As a larger dynamic variation leads to lower
model accuracy, the ResNet models suffer more from the
dynamic variation. For the deviated linear model with an
8% dynamic variation, the accuracy of ResNet-18/34 drops
rapidly to 17.47%/10.43%, while the VGG-11/16 only drops to
54.05%/46.86%. This may be caused by the single-directional
drifting for dynamic variations, meaning the weight drifting
will accumulate layer by layer. Therefore, deeper networks
with more complex structures may have worse accuracy. This
hypothesis also stands for the same model with different
depths, as VGG-11 and ResNet-18 appear to perform better
than VGG-16 and ResNet-34; (b) The weight restoration
notably improves the accuracy under dynamic variations. For
VGG models, we notice that restoring 30% weight recover 30-
50% accuracy when injecting 8% dynamic variations, while
further restoring 50% weight would almost resume the whole
accuracy. Meanwhile, restoring 10% weight seems not that
helpful as it only recovers 10% accuracy. Besides, for ResNet
models, it seems that we need to restore about half of
the weights to fully recover the accuracy. This can also be
explained by the variation accumulating in the NN model since
ResNet is much deeper than others. (c) As we take a look into
the results for deviated-linear and exponential quantization,
there is no much difference between them, implying that
quantization methods are not affecting the model accuracy as
much as the model itself.

C. Hardware Results

As our fault-tolerant framework is built on top of existing
RRAM-based accelerators, we mainly discuss the overhead

introduced by SIGHT in the hardware evaluation. We first
provide baseline results and present the performance overhead,
including inference latency and energy consumption. Then we
show the area and power breakdown of SIGHT. Finally, we
do a sensitivity study on how the performance of SIGHT is
affected by various hardware configurations.

TABLE III
THE BASELINE RESULTS INCLUDING THE LATENCY, ENERGY
CONSUMPTION, AND RUN-TIME PERFORMANCE FOR FOUR NN MODELS.
THE RESULTS OF ONE IMAGE IS SHOWN.

Model | # Active Xbar L?ﬁ?;y El(lg)gy P‘erfgr;“/sé‘)ce
VGG-11 1164 0.18 | 3.883 27.03
VGG-16 1840 035 | 8243 24.18

ResNet-18 1392 0.86 | 15,766 3523
ResNet-34 2636 134 | 29,531 19.63

1) Performance: TABLE III shows the baseline results for
the four models where our fault-tolerant framework is not
enabled. We present the number of active crossbars, latency,
energy consumption and run-time performance. Besides, we
set 2-bit weight and 8-bit activation for inference and directly
map the model with a batch size equal to 1. We first find
that ResNet-34 consumes most crossbar resources and other
models are using a comparative number of crossbars. Also,
the two ResNet models take a much longer time for execution
and consume more energy than VGG models. This is because
ResNet models have more convolutional layers that require
long repeated computation over them. Finally, the run-time
performance of the four models is about 20-30 TOP/W.

SIGHT Performance
30%

20%

10%

ResNet-18 ResNet-34
Energy Overhead

Fig. 12. The performance of SIGHT. The blue bar shows the execution
latency while the yellow bar shows the energy consumption, and the dotted
line represents the performance.

We show the results of SIGHT in Fig. 12, which are
represented by the percentage of overhead compared with the

GM
Performance Loss

VGG-11 VGG-16
mmmm Latency Overhead

0%

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

baseline. We set the weight refreshing frequency to 4 images
as the weight would be re-loaded every 4 images. First, SIGHT
causes a small amount of overhead which is typically less than
10%. The average latency overhead is 5.23%, which is mainly
introduced by the regulation array and weight refreshing.
The geometric mean of energy overhead is 7.75%, which is
slightly larger than latency overhead due to a large amount
of RRAM writing, and the overall performance overhead is
7.14%. Second, from the NN model perspective, we find that
VGG models have larger energy overhead but smaller latency
overhead than ResNet models. This is because VGG models
have three large FC layers, and they require more RRAM
crossbars but essentially perform less computation, compared
with convolutional layers. Therefore, the energy overhead
comes from refreshing FC layers in VGG, which is relatively
larger than ResNet. On the other hand, as convolutional layers
require more computation, its latency suffers more from the
regulation array as the array increases data loading latency, so
the ResNet appears to have a larger latency overhead.

Peak Power Breakdown
(Total = 48.96W)

3.14 1.51

Area Breakdown
(Total = 53.26mm?2)

4.10

0.05
0.01
0.01

= Input/Output Buffer
= Input/Output Reg
= Global Buffer

Fig. 13. The area and power breakdown of SIGHT.

Input Map Buffer ADC
= Aggr. & Non-Linear Array = xbar array
= Tile Interconnection = Sample & Hold

Regulation Array
= DAC

2) Area/Power Analysis: We present the area and power
breakdown in Fig. 13. As shown, the total area of SIGHT
is 53.26 mm? and the peak power is 48.96 W. The largest
components include the SRAM buffer and ADC, where the
input/output buffer takes 24.74 mm?, the input map buffer
takes 11.13 mm?, and ADC takes 9.83 mm?2. Our add-on
components of regulation arrays introduce 3.52 mm? area
overhead, which is 6.6% of the whole area. The input/output
registers for DAC/ADC take 2.94 mm? area while other
components including RRAM itself, logic unit, DAC and so
on occupy a negligible area in the whole architecture.

From the peak power perspective, the SRAM buffer and
ADC still consume the most power, where the input/output
buffer takes 15.26 W, the input map buffer takes 5.64 W, and
ADC takes 16.38 W. The regulation array consumes 3.14 W
peak power, which is 6.4% of the whole system. The DAC and
RRAM crossbar take another noticeable fraction with 4.10 W
and 2.46 W peak power, respectively.

3) Sensitivity Study: To better understand the trade-off in
hardware configuration, we also change the design parameters
in SIGHT to see how its performance is sensitive to different
architecture settings.

Sensitive to Input/Weight Resolution: As shown in Fig. 14,
we fix the model to 2-bit weight/8-bit activation, and tune
the activation/weight precision respectively to see how the
performance overhead changes. First, from the left part where
the weight is fixed to 2-bit, we find that with higher activation

11

Sensitivity to Input/Weight Precision

« 30%

w

S 2-bit Weight 8-bit Input

$20%

c

©

£ 10%

Nl 1 1

o

£ | O B
VGG-11 VGG-16 ResNet-18ResNet-34 VGG-11 VGG-16 ResNet-18 ResNet-34
m 8-bit Input = 16-bit Input = 32-bit Input | m2-bit Weight = 4-bit Weight = 8-bit Weight

Fig. 14. The performance sensitivity to input and weight precision. The left
part fixes weight to 2-bit while the right part fixes input to 8-bit.

precision, the performance overhead is actually reducing. This
is because when increasing the activation precision, we do
not necessarily need more RRAM crossbars but perform
computation over the same RRAM crossbar repeatedly. Then,
the proportion of energy consumption in weight refreshing is
then decreased relatively, so we have less overall performance
loss. On the other hand, when fixing the input precision to
8-bit, higher weight precision would increase the performance
loss, as observed in the right part of Fig. 14. Because more
RRAM crossbars are needed in such a case and thus more
energy overhead is introduced when refreshing the weight.

Sensitivity to Refreshing Interval

30%
A «
§ 25% N
g M >3
& 15% ~
£ ~ ~
S 10% I . ~
= & J & -
o - ~
e - 8= —1——.—".--1---‘
0% —r . .
1 2 4 8 16 32 64
Refreshing Interval
= 4= VGG-11-VFTS VGG-16-VFTS ResNet-18-VFTS == 8= ResNet-34-VFTS
—— VGG 1-SWR e VGG -1 6-SWR ResNet-18-SWR =—#=— ResNet-34-SWR

Fig. 15. The performance sensitivity of selective weight restoration (SWR)
to different refreshing intervals from refreshing per 1 image to per 64 images,
compared with variation-free tuning scheme (VFTS) [25].

Sensitive to Refreshing Interval: Since various RRAM
devices emerge based on different materials, they may exhibit
unique retention character and thus require different refreshing
frequency. As shown in Fig. 15, we present the performance
loss of selective weight restoration (SWR, solid lines) when
ranging the refreshing interval from every 1 image to every 64
images, with the comparison to variation-free tuning scheme
(VFTS, dotted lines) [25]. Our SWR causes much less perfor-
mance degradation that is less than 10%, compared with VFTS
that could lead to near 30% performance loss when refreshing
the weight frequently. Also, the performance loss can be
reduced significantly by increasing the refreshing interval,
especially when the interval is less than 8. The benefit mainly
comes from the reduction of relative energy consumption of
weight refreshing. These observations demonstrate that the
proposed SWR enjoys more benefits when the RRAM device
is more vulnerable to dynamic variations.

VII. DISCUSSION

A. Other Emerging Non-Volatile Memories

Many other non-volatile memory technologies emerge be-
sides RRAM, such as Phase Change Memory (PCM) and
magnetoresistive random access memory (MRAM).MRAM

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/;ublicationsﬁstandards/Eublications/ri hts/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

uses Magnetic Tunnel Junction (MTJ) to store the binary
information with low and high cell resistance shown in dif-
ferent ferromagnetic directions [56], while PCM leverages the
large resistance gap between crystalline (low resistance) and
amorphous (high resistance) phases of the phase change ma-
terial [57]. We mostly focus on the metal-oxide RRAM [20]
because it generally shows longer endurance of 10'? [58],
[59] than PCM whose endurance is about 106-10° [60], and
MRAM used to have binary states instead of multiple states
with higher density [56]. Besides, researchers also found that
PCM may also exhibit similar non-ideal issues like variation
as RRAM [57], and our techniques can also be applied in a
PCM-based architecture.

B. Non-ideal Factors in Other Components

Our SIGHT architecture consists of not only the RRAM but
also other components which may also introduce computation
error caused by the nonideality, such as the ADC and non-
linear logic. For the ADC, based on the mature CMOS pro-
cessing technology, recent work has achieved the resolution of
12-14 bits and a high SNR of more than 70dB [61], [62]. This
indicates that the noise inside the ADC is negligible compared
with the large variation that exists in RRAM as shown in
Fig. 10. For the non-linear activation in the SIGHT, since
current CNNs mostly use ReLU as the activation function
that simply turns negative values to zeros [63], it would not
introduce any nonideality in the digital side.

VIII. RELATED WORK

RRAM-based NN Accelerator: ISAAC [5] is a memristor-
based CNN accelerator that uses RRAM crossbar to complete
multiplying and accumulating. PRIME [4] is an RRAM-based
main memory architecture that we can use for both data
storage and NN inference. PipeLayer [64] is an accelerator
targeting both the inference and training which improves
the pipeline design. Ji proposed a programmable RRAM-
based accelerator and designed a system stack including the
compiler and programming model [65]. Ankit proposed an NN
training architecture with RRAM-based outer product [66].
Meanwhile, various simulation tools are also proposed for
RRAM-based architecture, such as MemTorch [67].

Enhancing RRAM’s Reliability: Li introduced a verify-
after-write approach to address the variation problem that tunes
the RRAM cell more accurately against the variation [24].
Cheng further improved this solution with a RESET-free
approach [25]. Chen proposed a mapping scheme for NN
parameters to avoid important weights being in the variation-
affected RRAM cells [14]. Yun proposed training the NN
model with injected noise to enhance the robustness to RRAM
variations [15]. For the endurance problem, Cai presented a
row-wise update scheme and reduced the number of writes
for RRAM-based training [49]. Also, researchers have made
lots of efforts on hard errors [68], [69], which mainly refers
to the stuck-at-fault where the resistance of one RRAM cell
gets stuck and cannot be tuned anymore. For example, Xia
proposed a matrix remapping scheme that leverages redundant
RRAM crossbars to avoid the stuck cells [68]. Liu proposed a
NN retraining algorithm with the awareness of RRAM defects
to solve the problem of stuck-at-faults [69].

12

IX. CONCLUSION

In this paper, we present SIGHT, a Synerglstic alGorithm-
arcHitecture fault-Tolerant framework, to holistically address
the reliability issues in RRAM devices. Specifically, we con-
sider three major types of faults for RRAM computing: non-
linear resistance distribution, static variation, and dynamic
variation. From the algorithm level, we propose a resistance-
aware quantization to compel the neural network parameters
to follow the exact non-linear resistance distribution as RRAM
and introduce an input regulation technique to compensate
for RRAM variations. We also propose a selective weight
refreshing scheme to address the dynamic variation issue that
occurs at run-time. Finally, we propose a general and low-
cost architecture accordingly for supporting our fault-tolerant
scheme. Our evaluation demonstrates almost no accuracy loss
for our fault-tolerant algorithms, and the SIGHT architecture
incurs performance overhead as little as 7.14%.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580-587.

[3] M. Sundermeyer, R. Schliiter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27-39, 2016.

[5] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, pp. 14-26, 2016.

[6] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based
analog approximate computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2015.

[71 X. Hong, D. J. Loy, P. A. Dananjaya, F. Tan, C. Ng, and W. Lew,
“Oxide-based rram materials for neuromorphic computing,” Journal of
materials science, vol. 53, no. 12, pp. 8720-8746, 2018.

[8] Y. Wu, B. Lee, and H.-S. P. Wong, “Ultra-low power al 2 o 3-based rram
with 1pa reset current,” in Proceedings of 2010 International Symposium
on VLSI Technology, System and Application. 1EEE, 2010, pp. 136-137.

[91 Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue,

S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya et al., “High speed

unipolar switching resistance ram (rram) technology,” in 2006 Interna-

tional Electron Devices Meeting. 1EEE, 2006, pp. 1-4.

C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu,

and F. T. Chen, “Rram defect modeling and failure analysis based on

march test and a novel squeeze-search scheme,” IEEE Transactions on

Computers, vol. 64, no. 1, pp. 180-190, 2014.

B. Traoré, P. Blaise, E. Vianello, L. Perniola, B. De Salvo, and

Y. Nishi, “Hfo 2-based rram: Electrode effects, ti/hfo 2 interface, charge

injection, and oxygen (o) defects diffusion through experiment andab

initiocalculations,” IEEE Transactions on Electron Devices, 2015.

W. Chien, Y. Chen, K. Chang, E. Lai, Y. Yao, P. Lin, J. Gong,

S. Tsai, S. Hsieh, C. Chen et al., “Multi-level operation of fully cmos

compatible wox resistive random access memory (rram),” in 2009 IEEE

International Memory Workshop. 1EEE, 2009, pp. 1-2.

S. R. Lee, Y.-B. Kim, M. Chang, K. M. Kim, C. B. Lee, J. H. Hur,

G.-S. Park, D. Lee, M.-J. Lee, C. J. Kim et al., “Multi-level switching

of triple-layered taox rram with excellent reliability for storage class

memory,” in 2012 Symposium on VLSI Technology. 1EEE, 2012.

L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,

“Accelerator-friendly neural-network training: Learning variations and

defects in rram crossbar,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017. 1EEE, 2017, pp. 19-24.

(10]

(1]

[12]

[13]

[14]

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorgl;)ublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorgl;)ublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable dnn
accelerator with un-reliable reram,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 1769-1774.
S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, Y.-S. Chen, P.-F. Chiu,
C.-C. Kuo, Y.-S. Yang, P.-C. Chiang, W.-P. Lin et al., “A 4mb embedded
slc resistive-ram macro with 7.2 ns read-write random-access time and
160ns mlc-access capability,” in 2011 IEEE International Solid-State
Circuits Conference. 1EEE, 2011, pp. 200-202.

J. Woo, K. Moon, J. Song, M. Kwak, J. Park, and H. Hwang, “Optimized
programming scheme enabling linear potentiation in filamentary hfo 2
rram synapse for neuromorphic systems,” IEEE Transactions on Electron
Devices, vol. 63, no. 12, pp. 5064-5067, 2016.

X. Guan, S. Yu, and H.-S. P. Wong, “On the switching parameter
variation of metal-oxide rram—part i: Physical modeling and simulation
methodology,” IEEE Transactions on electron devices, 2012.

X. Guan, S. Yu, and H. P. Wong, “On the variability of hfox rram:
From numerical simulation to compact modeling,” in Proc. Workshop
Compact Models, 2012, pp. 815-820.

H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P--S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal-oxide rram,” Proceedings of the
IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.

Y. Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G. S.
Kar, A. Fantini, G. Groeseneken, D. J. Wouters, and M. Jurczak,
“Endurance/retention trade-off on hfos metal cap 1tlr bipolar rram,”
IEEE Transactions on electron devices, pp. 1114-1121, 2013.

C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, “Evidence for threshold
switching in the set process of nio-based rram and physical modeling for
set, reset, retention and disturb prediction,” in 2008 IEEE International
Electron Devices Meeting. 1EEE, 2008, pp. 1-4.

Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fan-
tini, N. Raghavan, S. Clima, L. Zhang, A. Belmonte et al., “Improvement
of data retention in hfo 2/hf 1t1r rram cell under low operating current,”
in [EEE International Electron Devices Meeting. 1EEE, 2013, pp. 10-1.
B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based
analog approximate computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1905-1917, 2015.

M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“Time: A training-in-memory architecture for rram-based deep neural
networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 5, pp. 834-847, 2018.

J. Lin, L. Xia, Z. Zhu, H. Sun, Y. Cai, H. Gao, M. Cheng, X. Chen,
Y. Wang, and H. Yang, “Rescuing memristor-based computing with non-
linear resistance levels,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2018, pp. 407-412.

C. Lammie, O. Krestinskaya, A. James, and M. R. Azghadi, “Variation-
aware binarized memristive networks,” in 26th IEEE International
Conference on Electronics, Circuits and Systems, 2019, pp. 490—493.
H. D. Beale, H. B. Demuth, and M. Hagan, “Neural network design,”
Pws, Boston, 1996.

W. Zhao, M. Moreau, E. Deng, Y. Zhang, J.-M. Portal, J.-O. Klein,
M. Bocquet, H. Aziza, D. Deleruyelle, C. Muller et al., “Synchronous
non-volatile logic gate design based on resistive switching memories,”
IEEE Transactions on Circuits and Systems, no. 2, pp. 443-454, 2013.
L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, and Y.-K. Choi, “Structure
effects on resistive switching of al/tio/al devices for rram applications,”
IEEE electron device letters, vol. 29, no. 4, pp. 331-333, 2008.

U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction
and reset mechanism in nio-based resistive-switching memory (rram)
devices,” IEEE Transactions on Electron Devices, pp. 186-192, 2009.
D. Ielmini, “Modeling the universal set/reset characteristics of bipolar
rram by field-and temperature-driven filament growth,” IEEE Transac-
tions on Electron Devices, vol. 58, no. 12, pp. 4309-4317, 2011.

L. Xia, P. Gu, B. Li, T. Tang, X. Yin, W. Huangfu, S. Yu, Y. Cao,
Y. Wang, and H. Yang, “Technological exploration of rram crossbar
array for matrix-vector multiplication,” Journal of Computer Science
and Technology, vol. 31, no. 1, pp. 3-19, 2016.

D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 1-14, 2018.

J. Lin, S. Li, X. Hu, L. Deng, and Y. Xie, “Cnnwire: Boosting convo-
lutional neural network with winograd on reram based accelerators,” in
Proceedings of the Great Lakes Symposium on VLSI, 2019, pp. 283-286.
Z. Zhu, J. Lin, M. Cheng, L. Xia, H. Sun, X. Chen, Y. Wang,
and H. Yang, “Mixed size crossbar based rram cnn accelerator with
overlapped mapping method,” in ICCAD, 2018.

F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, p. 075201, 2012.

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

13

C. Nail, G. Molas, P. Blaise, G. Piccolboni, B. Sklenard, C. Cagli,
M. Bernard, A. Roule, M. Azzaz, E. Vianello et al., “Understanding rram
endurance, retention and window margin trade-off using experimental
results and simulations,” in 2016 IEEE International Electron Devices
Meeting (IEDM). 1EEE, 2016, pp. 4-5.

D. Ielmini, F. Nardi, C. Cagli, and A. L. Lacaita, “Trade-off between data
retention and reset in nio rrams,” in 2010 IEEE International Reliability
Physics Symposium. 1EEE, 2010, pp. 620-626.

A. Fantini, L. Goux, R. Degraeve, D. Wouters, N. Raghavan, G. Kar,
A. Belmonte, Y.-Y. Chen, B. Govoreanu, and M. Jurczak, “Intrinsic
switching variability in hfo 2 rram,” in 2013 5th IEEE International
Memory Workshop. 1EEE, 2013, pp. 30-33.

S. Ambrogio, S. Balatti, Z. Q. Wang, Y.-S. Chen, H.-Y. Lee, F. T. Chen,
and D. Ielmini, “Data retention statistics and modelling in hfo 2 resistive
switching memories,” in 2015 IEEE International Reliability Physics
Symposium. 1EEE, 2015, pp. MY-T7.

B. Gao, J. Kang, H. Zhang, B. Sun, B. Chen, L. Liu, X. Liu, R. Han,
Y. Wang, Z. Fang et al., “Oxide-based rram: Physical based retention
projection,” in 2010 Proceedings of the European Solid State Device
Research Conference. 1EEE, 2010, pp. 392-395.

Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong, “Deep neural network
compression with single and multiple level quantization,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers
in deep neural networks,” arXiv preprint arXiv:1802.04680, 2018.

E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “Lognet:
Energy-efficient neural networks using logarithmic computation,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2017, pp. 5900-5904.

D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “Rxnn: A framework
for evaluating deep neural networks on resistive crossbars,” IEEE TCAD,
2020.

Y. Cai, Y. Lin, L. Xia, X. Chen, S. Han, Y. Wang, and H. Yang,
“Long live time: improving lifetime for training-in-memory engines
by structured gradient sparsification,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). 1EEE, 2018, pp. 1-6.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti
5.1,” Technical Report HPL-2008-20, HP Labs, Tech. Rep., 2008.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

C.-Y. Fu, “pytorch-vgg-cifar10,” 2019. [Online]. Available: https:
//github.com/chengyangfu/pytorch-vgg-cifar10

K. Jordan, “PyTorch-ResNet-CIFAR10,” 2018. [Online]. Available:
https://github.com/KellerJordan/ResNet- Py Torch-CIFAR10

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
microarchitecture evaluation of 3d stacking magnetic ram (mram) as
a universal memory replacement,” in 2008 45th ACM/IEEE Design
Automation Conference. 1EEE, 2008, pp. 554-559.

H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.

M.-]J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim,
C.-J. Kim, D. H. Seo, S. Seo et al., “A fast, high-endurance and scalable
non-volatile memory device made from asymmetric ta 2 o 5- x/tao 2- x
bilayer structures,” Nature materials, vol. 10, no. 8, pp. 625-630, 2011.
C.-W. Hsu, L.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin,
and T.-H. Hou, “Self-rectifying bipolar tao x/tio 2 rram with superior
endurance over 10 12 cycles for 3d high-density storage-class memory,”
in 2013 Symposium on VLSI Technology. 1EEE, 2013, pp. T166-T167.
M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in 2009 42nd Annual IEEE/ACM
international symposium on microarchitecture, 2009, pp. 14-23.

:08:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3037316, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[61] A. Abumurad and K. Choi, “Increasing the adc precision with oversam-
pling in a flash adc,” in 2012 IEEE 11th International Conference on
Solid-State and Integrated Circuit Technology. 1EEE, 2012, pp. 1-4.
Y. Chiu, P. R. Gray, and B. Nikolic, “A 14-b 12-ms/s cmos pipeline adc
with over 100-db sfdr,” IEEE Journal of Solid-State Circuits, 2004.

R. Zaheer and H. Shaziya, “Gpu-based empirical evaluation of activation
functions in convolutional neural networks,” in 2018 International
Conference on Inventive Systems and Control. 1EEE, 2018.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International Sympo-
sium on High Performance Computer Architecture, 2017, pp. 541-552.
Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and
Y. Xie, “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 733-747.

A. Ankit, I. El Hajj, S. Agarwal, M. Marinella, M. Foltin, J.-P.
Strachan, D. S. Milojicic, W.-M. W. Hwu, K. Roy et al., “Panther:
A programmable architecture for neural network training harnessing
energy-efficient reram,” IEEE Transactions on Computers, 2020.

C. Lammie, W. Xiang, B. Linares-Barranco, and M. R. Azghadi,
“Memtorch: An open-source simulation framework for memristive deep
learning systems,” arXiv preprint arXiv:2004.10971, 2020.

L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang,
and H. Yang, “Stuck-at fault tolerance in rram computing systems,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2017.
C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based
neuromorphic design with high defects,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). 1EEE, 2017, pp. 1-6.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Jilan Lin Jilan Lin received his B.S. degree in
2018 from the Department of Electronic Engineering
at Tsinghua University, Beijing, China, and he is
currently a PhD student at UCSB supervised by
Prof. Yuan Xie. His research mainly focuses on
machine learning, domain-specific architectures, and
in-memory processing.

Cheng-Da Wen Cheng-Da Wen received the B.S.
in Economics from National Central University,
Taoyuan, Taiwan and he is currently a master student
in Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan.
His current research interests include the reliability
of resistive random access memory (RRAM) and
circuit design for artificial intelligence.

Xing Hu received the B.S. degree from Huazhong
University of Science and Technology, Wuhan,
China, and Ph.D. degree from University of Chinese
Academy of Sciences, Beijing, China, in 2009 and
2014, respectively. She is currently a Postdoc at the
Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, CA,
USA. Her current research interests include emerg-
ing memory system, and domain-specific hardware
computing. She publishes over 30 papers in major
conferences and journals including MICRO, HPCA,
ASPLOS, DAC, DATE, TCAD, TVLSI, TACO, etc. She serves as reviewer
for a number of journals and conferences.

Tianqi Tang Tianqi Tang received her B.S. degree
in 2014 and her M.S. degree in 2017 from the
Department of Electronic Engineering in Tsinghua
University, Beijing, China, and she is currently a
Ph.D. student in UCSB under the supervision of
Prof. Yuan Xie. Her research mainly focuses on
hardware modeling, domain specific accelerator, and
processing-in-memory.

14

Ing-Chao Lin Ing-Chao Lin (M’09-SM’14) re-
ceived the M.S. degree in computer science from
the National Taiwan University, Taipei, Taiwan, and
the Ph.D. degree from the Computer Science and
Engineering Department, Pennsylvania State Univer-
sity, State College, PA, USA, in 2007. From 2007
to 2009, he was with Real Intent, Inc., Sunnyvale,
CA, USA, and since 2009, he has been with the De-
partment of Computer Science and Information En-
gineering, National Cheng Kung University, Tainan,
Taiwan, where he is currently a Full Professor. He
was a visiting scholar at University of California, Santa Barbara in 2015, and
he was a visiting scholar at Academia Sinica in 2017. His current research
interests include very large-scale integration design and computer-aided design
for nanoscale silicon, energy-efficient reliable system design, and computer
architecture. He has authored or co-authored more than 50 in referred journals
and conference papers and he has served on the technical program committee
of many prestigious technical conferences, such as ASP-DAC, ICCAD, ICCD,
and GLSVLSI. He was the recipient of the 2015 Excellent Young Researcher
Award from the Chinese Institute of Electrical Engineering and the 2016 Best
Young Professional award (Formally GOLD) from the IEEE Tainan Section.
He was awarded the Humboldt Fellowship for Experienced Researcher by
the Alexander von Humboldt Foundation, Germany in 2019. He has been a
senior member of the IEEE since 2015, and he has been a senior member of
the ACM since 2016. He is the contest Chair of the 2020 CAD Contest at
ICCAD.

Yu Wang Yu Wang (S05-M07-SM14) received the
BS and PhD (with honor) degrees from Tsinghua
University, Beijing, in 2002 and 2007. He is cur-
rently a tenured professor with the Department of
Electronic Engineering, Tsinghua University. His
research interests include brain inspired computing,
application specific hardware computing, parallel
circuit analysis, and power/reliability aware system
design methodology. He has authored and coau-
thored more than 200 papers in refereed journals
and conferences. He has received Best Paper Award
in ASPDAC 2019, FPGA 2017, NVMSA 2017, ISVLSI 2012, and Best
Poster Award in HEART 2012 with 9 Best Paper Nominations (DATE18,
DAC17, ASPDAC16, ASPDAC14, ASPDAC12, 2 in ASPDAC10, ISLPED09,
CODESO09). He is a recipient of DAC under 40 innovator award (2018), IBM
X10 Faculty Award (2010). He served as TPC chair for ICFPT 2019 and
2011, ISVLSI2018, finance chair of ISLPED 2012-2016, track chair for DATE
2017-2019 and GLSVLSI 2018, and served as program committee member
for leading conferences in these areas, including top EDA conferences such
as DAC, DATE, ICCAD, ASP-DAC, and top FPGA conferences such as
FPGA and FPT. Currently, he serves as the associate editor of the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
the IEEE Transactions on Circuits and Systems for Video Technology, the
Journal of Circuits, Systems, and Computers, and Special Issue editor of
the Microelectronics Journal. He is now with ACM Distinguished Speaker
Program.

Yuan Xie Dr. Xie received B.S degree from Ts-
inghua University, MS and PhD degree from Prince-
ton University. He is IEEE Fellow, ACM Fellow, and
AAAS Fellow. He has published 3 books, 100+ jour-
nals, and more than 200 refereed conference papers,
and holds 6 patents. His research interests include
VLSI design, EDA, computer architecture, embed-
ded systems, with a focus on application-driven and
technology-driven novel circuits/architectures and
J design methodologies. He is a recipient of NSF
) Career award, IEEE Computer Society Edward J.
McCluskey Technical Achievement Award, and many best paper awards.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorgl;)ublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 19,2021 at

:08:28 UTC from IEEE Xplore. Restrictions apply.

