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The axion insulator is a higher-order topological insulator protected by inversion symmetry. We show
that, under quenched disorder respecting inversion symmetry on average, the topology of the axion
insulator stays robust, and an intermediate metallic phase in which states are delocalized is unavoidable at
the transition from an axion insulator to a trivial insulator. We derive this conclusion from general
arguments, from classical percolation theory, and from the numerical study of a 3D quantum network
model simulating a disordered axion insulator through a layer construction. We find the localization length
critical exponent near the delocalization transition to be ν ¼ 1.42� 0.12. We further show that this
delocalization transition is stable even to weak breaking of the average inversion symmetry, up to a critical
strength. We also quantitatively map our quantum network model to an effective Hamiltonian and we find
its low-energy k · p expansion.
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Introduction.—Localization of electronic states in dis-
ordered systems has been extensively studied in the past
decades [1,2]. In particular, studies on the quantum Hall
states reveal a profound relation between delocalization and
the topology of the electronic state [3–6]. Hence an
interesting question is how the localization interplays with
the full range of band topologies discovered in the past two
decades. For topological insulators [7–13] protected by
nonspatial symmetries [14,15], it has been shown that the
gapless boundary states are stable against symmetry-
respecting disorder [13,16–20], and the phase transition
point between phases of different bulk topological numbers
has protected extended bulk states at the chemical potential
[6,21,22]. Topological states protected by translation
[23,24] or mirror [21,25] symmetries are shown to have
stable gapless surface states if the crystalline symmetries
are respected on average by the disorder. However, such
analyses do not explore the effect of disorder on bulk states
and do not generalize to the topological states protected by
generic crystalline symmetries [26–31], such as higher-
order topological insulators [32–39]. Very recently, some
numerical studies have shown the robustness of the higher-
order topological insulators [40–43], but an understanding
of this robustness and of the delocalization transitions of
these insulators is still lacking.
In this Letter, we focus on bulk delocalization transitions

of a disordered axion insulator [28,44–46], which has been
recently identified as a higher-order topological insulator
protected by inversion symmetry [32,47–51]. We show that
a 3D delocalized metallic phase necessarily arises during

the transition from an axion insulator to a trivial insulator as
long as the inversion symmetry is respected (or broken
weakly enough) on average. Such a delocalization tran-
sition manifests the robustness of the axion insulator
topology against disorder.
Layer construction argument.—We consider a 3D

crystal with inversion symmetry that maps ðx; y; zÞ →
ð−x;−y;−zÞ and translation symmetry that maps
ðx; y; zÞ → ðxþ tx; yþ ty; zþ tzÞ, with tx;y;z ∈ Z
[Fig. 1(c)]. A shifted inversion operation centered at
ðtx=2; ty=2; tz=2Þ consists of the combination of inversion
and translation. There are eight shifted inversion centers in
each unit cell, corresponding to tx;y;z ¼ f0; 1g, respectively.
Reference [52] shows that the axion insulator state can be
constructed from weakly coupled Chern insulators
sublayers [53–56] occupying the inversion centers, where
for the A sublayers at z ¼ 0;�1;… the Chern number is
C ¼ 1 and for the B sublayers at z ¼ �ð1=2Þ;�ð3=2Þ;…,
it is C ¼ −1 [Fig. 1(c)]. The net Chern number in each unit
cell is zero. The topology of the axion insulator relies on the
fact that one cannot trivialize the construction without
breaking inversion symmetry. For example, dimerizing
each sublayer A at z ∈ Z with the sublayer B at either
zþ 1

2
or z − 1

2
leads to a trivial insulator, but breaks the

inversion symmetry [Fig. 1(d)].
Our analysis starts from 2D.We consider a slab made of a

finite odd number of layersNz ≫ 1 and a very large number
of unit cells in the x, y directions,Nx;y ≫ Nz. Topologically
the slab is a 2D Chern insulator, say of C ¼ 1. Hence the
x − z and y − z sides host chiral modes. Weak disorder
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localizes all bulk states except states close to two critical
energies Ec;1; Ec;2, one per band. The delocalized states
couple the chiral modes on opposite sides, thus allowing a
transition between different values of the Chern number.
Assuming that the disorder is uniformly distributed within
the system, we conclude that the delocalized bulk states are
delocalized in all three dimensions in the slab. As disorder
gets stronger, Ec;1 and Ec;2 get closer to one another, until at
some critical disorder they become equal, and the system
turns trivial at all energies [3–6]. (See Supplemental
Material [57] for more discussions.)
Nowwe approach the 3D limit, makingNx,Ny, andNz all

very large and comparable to one another. As long as Nz is
odd (required by inversion symmetry) and the chemical
potential is tuned properly, theChern number isC ¼ 1, there
still is a chiral gaplessmode encircling the sample on the side
surfaces, and there would still be bulk delocalization
transition as a function of energy and disorder. We expect
that the critical energies Ec;1 and Ec;2 develop into two
energy regions of extended states, as shown in Fig. 1(b).
This analysis relies on inversion symmetry: If the

inversion is broken, e.g., two layers within each unit cell
are dimerized, each dimerized pair becomes a trivial
insulator, in which disorder localizes all states. The
Chern transition is then confined to one unpaired 2D layer.

While this analysis is based on the Chern number that the
system carries for an odd Nz, the thermodynamic 3D limit
should not depend on the parity of Nz. Adding an addi-
tional C ¼ −1 layer to the system will not change the
localization properties, because the extra layer applies a
local perturbation, while the delocalized states are exten-
sive. Thus, the delocalized states occurring at the band gap
at a critical disorder strength will remain even in the
absence of a Chern number and will signify the transition
from an axion to a trivial insulator.
In order to form a physical picture of this transition, we

define two inversion-breaking dimerized phases [Fig. 1(d)]:
(I) where sublayer A at z ∈ Z couples with sublayer B at
z − 1

2
, and (II) where sublayer A at z ∈ Z couples with

sublayer B at zþ 1
2
. Phase I and phase II are inversion

partners, and the domain wall between them is a Chern
insulator layer. The domain wall does not have to be
perpendicular to the z direction [see Supplemental Material
[57] and Fig. 1(e)]. Inversion-breaking disorders can then
be simulated by placing random dimerizations in the 3D
bulk, so that the bulk randomly forms phase I and phase II
in different regions [Fig. 1(e)]. When the volume fractions
of phase I and phase II are equal, we say inversion
symmetry is respected on average. We have only consid-
ered dimerization disorder for simplicity. More compli-
cated disorder configurations do not change the
conclusion [57].
Since each domain wall hosts a 2D Chern insulator with

C ¼ �1, it must host 2D delocalized states at the energy of
a delocalization transition. If the domain walls form an
infinitely large cluster, the extended states extend over the
3D bulk. Then, when the chemical potential is at the
energies of these extended states, a 3D delocalization
transition happens to a trivial insulator phase. On the
contrary, if the domain walls do not extend to infinity,
the disordered axion insulator and trivial insulator would be
connected without phase transition. By the classical 3D
continuum percolation theory [65], the domain walls
extend to infinity if the volume fraction p1 of phase I
(or p2 ¼ 1 − p1 of phase II) is between 0.17 and 0.83.
Therefore, we expect 3D delocalization transition to exist if
inversion symmetry is respected on average (p1 ¼ 0.5) or
broken weakly enough (0.17 < p1 < 0.83).
Quantum network model.—Our classical percolation

argument neglects quantum tunneling between neighboring
domain walls. To verify the existence of delocalization
transition, we study a disordered 3D quantum network
model for the layer-constructed axion insulator, which
describes Anderson transition with respect to changing
chemical potential. The model includes only one band for
each layer and is thus suitable for a transition taking place
within that band [Fig. 1(b)]. Its analysis also demonstrates
the effect of inversion symmetry breaking on this transition.
In the decoupled layers limit, each sublayer forms a 2D

Chalker-Coddington quantum Hall network model [5]
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FIG. 1. Localization and band topology. (a),(b) Localized
(gray) and delocalized (yellow) regions in the spectrum as a
function of disorder for 3D trivial and axion insulators, respec-
tively. (c) Layer construction for the axion insulator, where the
black box denotes the 3D unit cell. Sublayers A (blue) and B
(orange) are decorated by 2D Chern insulators with Chern
numbers C ¼ 1;−1, respectively. Each unit cell has eight
inversion centers ðtx=2; ty; tzÞ (tx;y;z ¼ 0, 1), all of which lie in
a Chern layer. (d) Two possible inversion-breaking dimerized
phases (I and II), which are inversion partners. (e) Side view of
the domain wall in the xz direction. (f) A disordered axion
insulator with random dimerizations, where the red and blue
regions represent phases I and II, respectively. The domain walls
between phases I and II are Chern layers and host extended states.
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[Figs. 2(a) and 2(b)]. For convenience, here we shift the
inversion centers to ðtx=2; ty=2; ð1=4Þ þ tz=2Þ (tx;y;z ¼ 0,
1) such that the Chern layers are in the z ¼ 1=4 and
z ¼ 3=4 planes. The blue (orange) and empty regions in
sublayer A (B) have C ¼ 1 (C ¼ −1) and C ¼ 0, respec-
tively, while the red lines represent the chiral edge modes.
The amplitude ψ i of a chiral mode propagating through a
bond i gains a (quenched) random propagation phase eiϕi .
Two chiral modes are coupled by tunneling at the crossings
of the red lines. As shown in Fig. 2(b), the two outgoing
modes (ψ2, ψ4) are scattered from the two incoming modes
(ψ1, ψ3) as

ψ2 ¼ −tA;Bψ1 þ rA;Bψ3; ψ4 ¼ rA;Bψ1 þ tA;Bψ3; ð1Þ

where tA;B ¼ cos θA;B and rA;B ¼ sin θA;B are referred to as
the transmission and reflection amplitudes in sublayer A
and B, respectively, which we assume are spatially uniform.
We choose tA;B and rA;B as real numbers because we can
absorb their phases into the propagating phases ϕi. The
sublayers go through a phase transition from C ¼ �1 at
π=4 < θA;B ≤ π=2 to C ¼ 0 at 0 ≤ θA;B < π=4 [5,57]. At
the single-energy θA;B ¼ π=4, states in each layer are
delocalized.
The decoupled layers limit is inversion symmetric with-

out disorder, i.e., with spatially uniform propagation phases
ϕi. Looking at the system as 3D, the pillars [Fig. 2(c)]
containing the colored regions of sublayers A or B are
regions of axion insulators, while the complementary
empty regions are trivial insulator regions. We emphasize
that there is no explicit relation between the axion or trivial
regions and the phase I or phase II shown in Fig. 1. Both the
axion regions and trivial regions are centrosymmetric by
themselves, while phase I and phase II transform to each
other under the inversion. Turning on the disorder (random-
ness in phases ϕi) breaks inversion symmetry, but preserves
it on average when the ϕi are uniformly random.
We introduce interlayer scattering nodes at the midpoints

of each square, halfway between the intralayer ones,
represented by blue vertical lines in Figs. 2(c)–2(e). On
each square, there are four scattering nodes. Nodes of theC,
D types couple blue layer edge modes to the orange layer
edge modes in the layer above, while E, F types couple the
blue layer edge modes to the layer below. We parametrize
the transmission and reflection amplitudes in the nodes
tI ¼ cos θI and rI ¼ sin θI (I ¼ C, D, E, F), respectively.
More details of the scattering parameters are given in
Fig. S1 in the Supplemental Material [57]. We use four
variables μ, γ, η, and δ to parametrize the angles

θA ¼ π

4
þ μ − η; θB ¼ π

4
þ μþ η; ð2Þ

θC ¼ θD ¼ γð1 − δÞ; θE ¼ θF ¼ γð1 − δÞ þ δ
π

2
;

ð3Þ

where μ can be interpreted as the chemical potential, η
tunes the potential energy difference between two sub-
layers, and γ and δ determine the interlayer couplings.
Inversion transforms the nodes C, D to E, F, respectively
(Fig. 2); therefore inversion symmetry is broken on average
when δ is nonzero. We set γ ¼ π=8 in the rest of this Letter
such that the interlayer coupling is weak compared to the
intralayer couplings. As explained in the following para-
graphs, the insulating limits are independent with γ, hence
the choice of γ does not qualitatively change the phase
diagram of the quantum network model.
We now study the delocalization transitions with respect

to the chemical potential (μ), the potential difference
between two layers (η), and the inversion symmetry
breaking (δ). For an inversion symmetric (on average)
system η ¼ δ ¼ 0. The sublayers are either both trivial or
both topological. When μ ¼ −π=4, one has tA;B ¼ 1, and
the chiral modes surrounding the C ¼ �1 regions are
closed in each layer but are vertically connected to the
closed chiral modes in the nearby layers [Fig. 2(d)]. The
axion regions can then be adiabatically shrank to zero, so
the 3D bulk is in the trivial insulator phase. When μ ¼ π=4,
the chiral modes flow surrounding the trivial regions
(tA;B ¼ 0) as shown in Fig. 2(e), so the 3D bulk is in
the axion insulator phase. In this case, each Chern layer
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FIG. 2. The quantum network model for the axion insulator.
(a) A side view of the 3D system. The blue (orange) regions have
a Chern number 1 (−1). The gray box represents the repeating
unit. The inversion centers are at ðtx=2; ty=2; 1=4þ tz=2Þ for
tx;y;z ¼ 0, 1. The red lines with arrows are the chiral modes
surrounding the Chern regions. (b) Scatterings at the single-layer
level. Here tA;B and rA;B are the transmission and reflection
amplitudes of the scattering, respectively. (c) Introducing inter-
layer scatterings. The nodes C, D (E, F) scatter the edge states in
the blue layer to the edge states in the orange layer in the above
(below). (d),(e) The localized edge states of the Chern regions in
the trivial (tA;B ¼ 1) and axion insulator (tA;B ¼ 0) limits,
respectively.
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contributes to a chiral mode on the side surface of the
system. Therefore, tuning μ from −π=4 to π=4 tunes the
chemical potential from the bottom to the top of the
topological bands of the axion insulator [Fig. 1(b)]. In
particular, when μ ¼ 0, θA;B are equal to π=4 and the 3D
bulk must be delocalized because the chiral modes form a
connected network, corresponding to the region of delo-
calized states in Fig. 1(b).
In contrast, varying η from 0 to π=4 for μ ¼ δ ¼ 0, each

sublayer A becomes a trivial insulator (θA ¼ 0), while each
sublayer B becomes a Chern insulator with C ¼ −1
(θB ¼ π=2). Therefore, η drives the system into a 3D
quantum anomalous Hall (QAH) insulator.
Finally, we consider strong inversion symmetry break-

ing. When δ ¼ 1, there is tC ¼ tD ¼ 1, tE ¼ tF ¼ 0, and
hence a blue layer is decoupled from the orange layer above
it, but is fully coupled to the orange layer below it. The 3D
network decomposes into disconnected 2D slices in the z
direction. Since each slice has a vanishing Chern number,
there is no guaranteed delocalized state. Therefore, no
delocalization transition with respect to μ is expected if
δ ¼ 1. See the Supplemental Material [57] for more details.
Numerical results.—The localization length of the net-

work model can be computed with a quasi-1D geometry
[5,58,59]. Technical details are in the Supplemental
Material [57]. A quasi-1D system is always localized, with
the localization length depending on the transverse dimen-
sion L. The object of interest is the normalized localization
length Λ ¼ λ=L [58,59]. When Λ is finite or divergent in
the L → ∞ limit, the 3D states are delocalized.
We start with inversion symmetry satisfied on average,

i.e., δ ¼ 0 [δ is defined in Eq. (3)]. For η ¼ 0, Fig. 3(a)
shows Λðμ; LÞ as a function of μ and L. At μ ¼ 0, Λðμ; LÞ
increases with L, which implies 3D delocalized states. In
contrast, at μ ¼ �π=4, Λðμ; LÞ decreases with L and

approaches zero as L → ∞, implying localized states.
As we discussed earlier in Fig. 2, μ ¼ −π=4 and
μ ¼ π=4 correspond to the trivial insulator and axion
insulator phases, respectively. Figure 3(a) indicates that
there is a delocalized metallic phase between them with
the two delocalization Anderson transitions happening
at μc ≈�0.56, where Λðμ; LÞ’s for different L’s cross each
other.
On the insulator side of the transitions, the 3D locali-

zation length diverges as ξ ∼ jμ − μcj−ν, with a universal
exponent ν > 0. For sufficiently large L, Λðμ; LÞ is subject
to the one-parameter scaling of the single-parameter L=ξ
[58,59]. When L is small, Λðμ; LÞ also contains L-depen-
dent irrelevant terms because of the finite-size effect and
assumes the following form [66]:

Λðμ; LÞ ¼ G0½ðμ − μcÞL1
ν� þ LyG1½ðμ − μcÞL1

ν�: ð4Þ

Here y < 0 is an irrelevant scaling exponent, and GiðxÞ
(i ¼ 0, 1) are undetermined functions that we keep up to the
third order. We fit the parameters by the least-square
method [57] for the data points in the dashed rectangular
in Fig. 3(a). Figure 3(b) shows the relevant part Λc ¼ G0 as
a function of Ljμ − μcjν. The universal exponent from our
fitting is ν ¼ 1.42� 0.12, which is close to that of the 3D
Anderson transition under magnetic field (where ν is found
1.3� 0.15 [67], 1.45� 0.25 [68], 1.43� 0.04 [69], and
1.443� 0.006 [70]).
We have theoretically presented arguments that strong

inversion symmetry breaking leads to localization and
showed that in the network model δ ¼ 1 corresponds to
an inversion-broken localized limit. By tuning δ in the
metal phase at μ ¼ η ¼ 0, we observe an Anderson
transition at δ ≈ 0.81 to the inversion-broken localized
phase [Fig. 3(c)].
Keeping δ ¼ 0 and applying finite-size scaling to non-

zero η, which represents the potential energy difference
between sublayers A and B, we obtain a phase diagram of
Fig. 4(a) in the parameter space of μ, η with inversion
symmetry respected on average. A new insulating phase
arises near μ ¼ 0, η ¼ π=4. For a clean system, at μ ¼ 0,

2

0.2

0.7

(c)(b)(a)

0 0.15 1

FIG. 3. Numerical results. (a) The normalized localization
length Λ of the quasi-1D system is plotted as a function of μ
at different system sizes (widths) L. The system is delocalized for
μ between the two Anderson transition points μc ≈�0.56.
(b) shows the one-parameter scaling of the relevant part of Λ
around μ ≈ 0.56. The two branches correspond to μ > 0.56 and
μ < 0.56, respectively. (c) The localization transition of Λ due to
the inversion symmetry breaking on average, where δ tunes the
symmetry-breaking strength.

(a) (b)

FIG. 4. Disordered topological phases. (a) Phase diagram in the
parameter space of μ and η:δ is set to zero. (b) Gap closing
transition from trivial insulator to axion insulator. The � symbols
represent the parities of the Bloch states.
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η ¼ π=4, sublayer A is at a C ¼ 0 state and sublayer B is at
C ¼ −1; hence this phase is a 3D QAH insulator [71].
Discussion.—We used here μ as the transition tuning

parameter (Fig. 1). Another possible tuning parameter is the
band gap, for which the transitions happen at gap closings
that change the topology of the bands [Fig. 4(b)]. We
quantitatively map the clean quantum network model to an
effective Hamiltonian, where the parameter μ plays the role
of gap and the diffusive metal in Fig. 4(a) is found to be
equivalent to the Weyl semimetal (WSM) [72–76] with
disorder [77–79]. See the Supplemental Material [57] for
more discussions. We expect the delocalization transitions
to be studied in the recently proposed axion insulator
materials [49–51,80–85] in the future.
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