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Abstract

Existing proofs that deduce BPP = P from circuit lower bounds convert randomized
algorithms into deterministic algorithms with a large polynomial slowdown. We convert
randomized algorithms into deterministic ones with little slowdown. Specifically, assuming
exponential lower bounds against randomized single-valued nondeterministic (SVN) circuits,
we convert any randomized algorithm over inputs of length n running in time t ≥ n to a
deterministic one running in time t2+α for an arbitrarily small constant α > 0. Such a slowdown
is nearly optimal, as, under complexity-theoretic assumptions, there are problems with an
inherent quadratic derandomization slowdown. We also convert any randomized algorithm that
errs rarely into a deterministic algorithm having a similar running time (with pre-processing).
The latter derandomization result holds under weaker assumptions, of exponential lower
bounds against deterministic SVN circuits.

Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling
circuits of size s with seed length (1 + α) log s, under the assumption that there exists a function
f ∈ E that requires randomized SVN circuits of size at least 2(1−α

′)n, where α = O(α′). The
construction uses, among other ideas, a new connection between pseudoentropy generators
and locally list recoverable codes.
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1 Introduction

1.1 Pseudorandom Generators and Derandomization

Randomized algorithms can outperform deterministic algorithms. We know randomized poly-
nomial time algorithms for problems such as polynomial identity testing, factoring polynomials
over large fields, and approximating the number of perfect matchings, where the best known
deterministic algorithms take exponential time. For other problems such as primality testing and
univariate polynomial identity testing, randomized algorithms offer a polynomial speedup over
the best known deterministic ones. Finally, property testing has problems that admit incredi-
bly efficient randomized algorithms [GGR98], in fact sublinear, but provably require linear time
deterministically. Informally, randomization owes its success to the prevalence of a seemingly
paradoxical phenomenon: most courses of action for an algorithm may be good, yet it might be
hard to pinpoint one good course of action.

On the other hand, there are upper bounds on the power of randomization. Assuming plausible
circuit lower bounds, any randomized algorithm running in time t on inputs of length n can be
simulated deterministically by an algorithm running in time polynomial in t and n [NW94, IW97].1

In other words, under plausible assumptions, BPP = P. Concretely:

Theorem 1.1 (previously known derandomization [NW94, IW97]). Assume there exists a constant
α < 1 and a function f ∈ DTIME

(
2O(n)

)
such that f requires circuits of size 2αn for all sufficiently large

n. Let A be a bounded-error probabilistic algorithm, accepting a language2 L, that on inputs of length n runs
in time t = t(n). Then, there exists a deterministic algorithm that accepts L and runs in time poly(t, n).

Previous works [NW94, IW97, SU05, Uma03] proving Theorem 1.1 did not focus on optimizing
runtime of the resulting polynomial time deterministic algorithm. Thus for reasons inherent to the
proof techniques of the above works, the runtime of the deterministic algorithm of Theorem 1.1 is a
large polynomial. Indeed, to the best of our knowledge, the best known runtime of the resulting
deterministic algorithm is at least O(t8) [Uma03]. Our main theorem gives a derandomization
with running time t ·max {t, n}1+α for an arbitrarily small constant α > 0. However, our result
relies on a few changes to the statement of Theorem 1.1. The most significant change is that we
rely on a somewhat stronger assumption than that of Theorem 1.1, namely we require there are no
small randomized single-valued nondeterministic circuits for f . Our formal definition of randomized
single-value nondeterministic (SVN) circuits in Definition 2.4 has some technical subtleties, but for
now it suffices to view them as the nonuniform analogue of MA ∩ coMA: the circuit is allowed to
additionally take as input a nondeterministic witness and use randomness to verify the witness.
We note that the error of the randomized SVN circuit can be taken to be quasi-polynomially small
in n.

Theorem 1.2 (general derandomization, see Theorem 9.4). Assume there exists a small constant
0 < α < 1 and a function f ∈ DTIME

(
2(1+O(α))n

)
such that f requires randomized single-value

nondeterministic circuits of size 2(1−α)n for all sufficiently large n. Let A be a bounded-error probabilistic

1On first reading, it may be helpful to just consider the case t ≥ n.
2Here, and throughout the paper, languages (decision problems) can be replaced by other problems, e.g., promise

problems or functions with non-binary output. Also, note that we consider algorithms in the Turing machine model.
Running times in other models, such as the RAM model, may differ, but one can change the hardness assumptions
accordingly.
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algorithm, accepting a language L, that on inputs of length n runs in time t = t(n). Then, there exists a
deterministic algorithm that accepts L and runs in time t ·max {t, n}1+O(α).

There are two main differences between the statements of Theorem 1.1 and Theorem 1.2.

1. While Theorem 1.1 requires f ∈ DTIME
(
2O(n)

)
that is hard for circuits of size 2Ω(n), we

require f ∈ DTIME
(
2(1+O(α))n

)
that is hard for circuits of size 2(1−α)n. This type of strength-

ened, plausible, assumption is fundamentally necessary in the hardness vs. randomness
paradigm to achieve a low polynomial running time. Moreover, previous proof techniques
using our strengthened assumption would still inherently yield a large polynomial run-
ning time.

2. We require hardness against randomized single-value nondeterministic circuits, rather than
standard ones. The need for this stronger assumption stems from our techniques and will be
apparent later on. We discuss this in more detail in Section 1.7.

Our derandomized running time is nearly tight for some of the examples above, such as
those from property testing. To further illustrate the tightness, consider the problem of univariate
polynomial identity testing, in which we test the identity of two arithmetic circuits with one variable,
degree n, and O(n) wires, over a field of cardinality poly(n). Univariate polynomial identity testing
is solvable in Õ(n) randomized time and Õ(n2) deterministic time. Williams [Wil16] showed that
coming up with an n1.999-time algorithm, even a nondeterministic one, would refute NSETH3.
Interestingly, the problem of multivariate identity testing also admits a randomized Õ(n)-time
algorithm. Thus, under the complexity-theoretic assumption of Theorem 1.2, and assuming NSETH
holds, the time complexity of both univariate and multivariate identity testing is settled at roughly
quadratic.

While our hardness assumption is not ideal, related complexity-theoretic assumptions were
used before to derandomize both deterministic and nondeterministic classes, as well as to construct
various pseudorandomness primitives. Specifically, hardness against randomized SVN circuits was
used in [GSTS03, SU07], and against (deterministic) SVN circuits, which can be seen as the nonuni-
form analogue of NP ∩ coNP, in [SU05, MV05]. Hardness assumptions against nondeterministic
circuits were used in [AK97, MV05, SU06, SU07, BOV07, Dru13], against circuits with NP gates in
[KvM02, GW02] and even against circuits with PH gates in [TV00, AIKS16, AASY16, AS17].

Towards proving our main theorem, we first provide a derandomization of algorithms that err
rarely, a scenario known as quantified derandomization. First studied by Goldreich and Wigderson
[GW14], in quantified derandomization, the algorithm is assumed to err only on a small number of
the possible randomness strings (their error probability is extremely small). Our derandomization of
such algorithms produces deterministic algorithms whose running time is similar to the runtime of
the randomized algorithm, up to a quadratic preprocessing step.4

Theorem 1.3 (quantified derandomization, see Corollary 5.3). There exists a constant c ≥ 1 such that
the following holds. Assume there exists a constant α < 1 and a function f ∈ DTIME

(
2(1+O(α))n

)
such

that f requires requires SVN circuits of size 2(1−α)n for all sufficiently large n.

3The Nondeterministic Strong Exponential-Time Hypothesis asserts that refuting unsatisfiable k-CNFs requires
nondeterministic 2n−o(n) time for unbounded k.

4The preprocessing step involves encoding the truth table of f . Computing the truth table may take quadratic time,
but can be made efficient if f admits fast batch evaluation.
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Let A be a bounded-error probabilistic algorithm, accepting a language L, that on inputs of length n
runs in time t = t(n) and for every input, errs on at most 2t

1−cα randomness strings. Then, there exists a
deterministic algorithm that accepts L and runs in time t ·max {t, n}O(α) + tP , where the tP = t2+O(α)

term corresponds to a step that can be precomputed for all algorithms with running time t.

Unconditional quantified derandomization has been successful for restricted classes of com-
putation, and also sufficiently-good quantified derandomization has been shown to imply circuit
lower bounds [GW14, Tel18, Tel19, CT19]. We stress that for quantified derandomization, we only
assume hardness against (deterministic) SVN circuits, a seemingly much weaker class.

Like Theorem 1.1, we take the black-box approach for derandomization and prove Theorem 1.2
by constructing a pseudorandom generator. A pseudorandom generator (PRG) with error ε is a
function that maps a short seed to a t-bit string that is indistinguishable from uniform random
bits by any time-t algorithm, up to error ε. We can derandomize an algorithm using a PRG by
enumerating over all possible seeds, and running the randomized algorithm on the output of
the generator on each seed. The number of possible seeds determines the slowdown5 of the
deterministic algorithm, and this number was poly(t, n) for a large polynomial prior to this work.

Non-explicitly, there exists a pseudorandom generator against all algorithms running in time
t on inputs of length n that uses only O(max {t, n}) seeds, but it is not necessarily efficiently
computable. In this work we construct an explicit PRG with only max {t, n}1+O(α) seeds.

Theorem 1.4 (pseudorandom generator, see Theorem 10.4). Assume there exists a function f ∈
DTIME

(
2(1+O(α))n

)
that requires randomized SVN circuits of size 2(1−α)n for some constant α < 1 and

all sufficiently large n. Then, there exists an explicit PRG

G
f

: {0, 1}(1+O(α)) log s → {0, 1}s

with error ε = n−Ω(α), fooling circuits of size s = n1−O(α). The PRG is computable in time max {t, n}2+O(α).

We consider f on roughly log s bits of input, so the truth table of f consists of roughly s
bits. The pseudorandom generator converts those s bits of (worst-case) hardness into s bits of
pseudorandomness.

Let us compare the parameters of Theorem 1.4 to the prior state-of-the-art PRG given by Umans
[Uma03]. There, the seed is of length cU log n for a large constant cU > 1, and s = nγU for a small
constant γU < 1. Consequently, derandomization using Umans’ PRG would incur a slowdown of at
least scU/γU in the running time, whereas in this paper we bring this factor down to s1+O(α). Roughly
speaking, we manage to transform almost all the hardness to pseudorandom bits (s = n1−O(α)),
and we manage to do so using a short seed. The downside of Theorem 1.4 compared to previous
works is that we assume f is hard for a seemingly stronger class of circuits.

An important milestone in constructing our PRG G
f is the construction of a pseudoentropy gener-

ator (PEG) with an especially small seed, from which Theorem 1.3, our quantified derandomization,
follows. Informally, a distribution over {0, 1}n has pseudoentropy k if it is computationally-
indistinguishable, up to some error, from some high min-entropy distribution. Thus a PEG is a
function {0, 1}d → {0, 1}s such that the output distribution (when the input is uniform) has high
pseudoentropy.

5We say a derandomization has slowdown of S = S(n) if tdet/trand = S, where tdet = tdet(n) and trand = trand(n) are
the running times of the relevant deterministic and randomized algorithms on inputs of length n.
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Theorem 1.5 (pseudoentropy generator, see Corollary 10.3). Assume there exists a function f ∈
DTIME

(
2(1+O(α))n

)
that requires SVN circuits of size 2(1−α)n for some constantα ≤ 1

9 and all sufficiently
large n. Then, there is an explicit PEG

Gf : {0, 1}d → {0, 1}s

with error ε = n−Ω(α), d = 7α log n and s = Õ(n1−5α), outputting pseudoentropy k = n1−9α fooling
circuits of size s.

We mention that pseudoentropy generators are analogous to randomness condensers in roughly
the sense that pseudorandom generators are analogous to randomness extractors, where the hard
function plays the role of a high min-entropy source [Tre01, TZ04]. The notion of pseudoentropy
and pseudoentropy generators was first considered in [HILL99]. Sudan, Trevisan, and Vadhan
[STV01] also construct a pseudoentropy generator under the same notion as in [HILL99]. We
construct a pseudoentropy generator under a seemingly weaker definition of pseudoentropy
(following [BSW03]) that allows us to get a surprisingly short seed.6

In the remainder of the introduction we describe the ideas behind the proofs of Theorem 1.4
and Theorem 1.5.

1.2 Beating the Hybrid Argument

Existing proofs of Theorem 1.1 can be viewed as first constructing a pseudorandom generator that
extends its seed by a single bit, and then converting it into a pseudorandom generator that outputs
t bits. Interestingly, Sudan, Trevisan, and Vadhan [STV01] constructed PRGs with small seed as in
Theorem 1.4 for the single bit case. They did this by using binary locally decodable codes to encode
the truth table of f . The pseudorandom generator outputs a random bit of the encoding, and hence
the number of seeds corresponds to the length of the encoding. Since there are locally decodable
codes of linear length and a sub-linear number of queries (e.g., codes obtained from Reed-Muller
composed with Hadamard, or tensor codes [Yek12]), there are single bit PRGs with a small number
of seeds.

The large loss in time in Theorem 1.1 originates from the extension of a single bit output to t
bits of output. The loss has several manifestations in each of the existing proofs of Theorem 1.1.
The use of combinatorial designs in [NW94, IW97] inherently doubles the length of the seed. The
use of the Reed-Muller code in [SU05, Uma03] inherently limits the length of the generator’s
output. Moreover, the analyses of these constructions go through the infamously-hard-to-beat
hybrid argument [FSUV13]. For t bits to be indistinguishable from uniform, it must be that each bit
is unpredictable given the previous bits, and the prediction errors add up across the t bits.

More formally, suppose we wish to show that a distribution X on {0, 1}t is ε-indistinguishable
from uniform for circuits of size s via the hybrid argument. Proceeding with Yao’s next bit
predictability argument, we must show that for every i ∈ [t], no circuit C : {0, 1}i−1 → {0, 1} of size
roughly s can predict Xi with probability greater than 1

2 + ε
t when fed with x ∼ X[1,i−1]. Just as one

can bound the seed length of an optimal G : {0, 1}` → {0, 1}t that fools circuits of size s using the
probabilistic method, one can calculate the seed length of a nonexplicit G : {0, 1}` → {0, 1}t that is

6Indeed, our notion of computational entropy allows the high min-entropy distribution to depend on the distinguish-
ing algorithm. See Section 2.5 for the precise details.
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ε-unpredictable at all i-s. The calculation shows that such aG has seed length roughly log s+2 log 1
ε .

Thus, for next bit unpredictability error ε
t , the seed length requires at least an additional 2 log t bits.

Hence, in order to prove Theorem 1.4 we must beat the hybrid argument. We do that by first con-
structing a pseudoentropy generator as in Theorem 1.5, later to be transformed to a pseudorandom
generator. Since we no longer require uniform-looking bits, we no longer need an error of 1

t per bit.
Instead, we output a large number of (imperfect) bits with constant error, which can evidently be
done with a small number of seeds. Indeed, Barak, Shaltiel and Wigderson [BSW03] suggested that
paradigm, of achieving pseudoentropy as a stepping stone towards pseudorandomness as a way to
bypass the weakness of the hybrid argument, and here we fulfill this vision.

1.3 Locally Decodable Codes All the Way Down

As explained above, it was known that single bit pseudorandom generators follow from binary
locally decodable codes [STV01]. The construction for obtaining a single bit of pseudorandomness
is simple: apply the binary locally decodable code to the truth table of a hard function f , and output
a random coordinate of the codeword. However, as discussed above, the method of extending
single bit to many bit pseudorandom generators incurs inherent losses in the seed length. In
our work we propose a natural deviation from the above idea. We instead apply a code that has
large alphabet to f and output a random coordinate of this code. The hope is that the symbol at
this random coordinate (which, for a large alphabet, will be represented by a large number of
bits), will in fact have all the pseudorandom bits we need. However, we cannot guarantee that
the random symbol will have “perfect pseudorandomness”, i.e. will be computationally close to
uniform. Instead, we show that such a random coordinate will have high pseudoentropy, i.e will
be computationally close to a distribution with at least as much min-entropy as the number of
pseudorandom bits we wish to output. In fact, our technique shows that pseudoentropy generators
that output many bits follow from locally decodable codes over a large alphabet.

More accurately, we consider locally list recoverable codes. In a list recoverable code C ⊆ Σn for
agreement ε, we are given oracle access to lists S1, . . . , Sn ⊆ Σ for which

∑n
i=1 |Si| ≤ `, and we are

guaranteed that there are at most L codewords c ∈ C satisfying ci ∈ Si for at least ε-fraction of the
i-s. We say C admits local list recovery if there exist small circuits A1, . . . , AL with oracle access to
the lists S1, . . . , Sn, each Ai having at most Q oracle gates, such that for every codeword c = C(x)
satisfying ci ∈ Si for at least ε-fraction of the i-s, there exists j ∈ [L] such that x = Aj(·).7 Initially,
list recoverable codes were used as an intermediate step for constructing list decodable codes (e.g.,
in [GI01, GI02, GI03]) but have since gained independent interest, with several applications and
dedicated constructions (e.g., [HIOS15, HRZW19, HW18, RW18]). Moreover, many of the recent
list decoding algorithms are in fact algorithms for list recovery.

We prove that locally list recoverable codes give rise to pseudoentropy generators.

Theorem 1.6 (PEGs from locally list recoverable codes, see Theorem 3.1). Assume f ∈ {0, 1}t is a
truth table of a function requiring SVN circuits of size t1−α, and let α′ > α be any constant.

Let C : {0, 1}t → Σm be a locally list recoverable code for agreement ε and input lists size `, for which
each decoding circuit has size sC ≤ t1−α

′ and makes at mostQ oracle queries to the lists. Then,Gf : [m]→ Σ

7Unlike in standard literature, where algorithmic aspects are crucial, we do not require (and will not achieve) uniform
generation of the Ai-s. Also, each query we make to a list Si gives us a single element of Si, and we do not get to iterate
over the entire list. For the exact definition, refer to Section 2.2.
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defined by
Gf (z) = C(f)z,

is a PEG with error ε, outputting k = log `
2 pseudoentropy fooling circuits of size t1−α

′

Q .

In order to get a good PEG, the alphabet Σ of the list recoverable code C must be large, and the
lists size ` must be large as well. In fact, they both need to be exponential in t, while the decoder
should run in time smaller than t. It is atypical to require such a large `, and in standard literature,
where the decoder typically iterates over the lists, one requires `� m in order to get a satisfactory
bound on L. We will soon briefly discuss the construction of C and how we facilitate efficient access
to the lists.

We work with multiple definitions of pseudoentropy, which we now discuss. First, we show
a close relation between locally list recoverable codes and Yao pseudoentropy. Roughly, a random
variable X ∼ {0, 1}n has high Yao pseudoentropy if there is no small, computationally enumerable
subset A of {0, 1}n that “explains” too much of X , i.e., Pr[X ∈ A] is significant. (See Section 2.5.1
for the formal definition.) Now, if we apply a locally list recoverable code with large alphabet to
a hard function f and pick a random coordinate, then this random variable must have high Yao
pseudoentropy. Otherwise, there would be a small, efficiently computable subset of {0, 1}n that
explains a significant fraction of the codeword. This roughly corresponds to a small list S1∪ . . .∪Sn
that contains many symbols of the codeword. Hence, f can be efficiently recovered from this list,
which is a contradiction.

For the purposes of converting pseudoentropy to pseudorandomness, and other applications,
it is convenient to consider other notions of pseudoentropy. The notion of metric pseudoentropy
was first studied by Barak et al. [BSW03] and later in various works in cryptography [DP08,
CKLR11, FR12, Wic13, Sko15, FOR15, SGP15]. We say a random variable X ∼ {0, 1}n has k metric
pseudoentropy fooling circuits of size s, up to ε error, if for every circuit D : {0, 1}n → {0, 1} of
size s there exists Y ∼ {0, 1}n with min-entropy k such that |E[D(X)] − E[D(Y )]| ≤ ε.8 Metric
pseudoentropy differs from the widely-used notion of HILL pseudoentropy [HILL99] where
the high min-entropy random variable does not depend on the distinguishing circuit. Although
seemingly weaker, as an additional application, this definition allows us to derandomize algorithms
that err rarely, as random variables with high metric pseudoentropy cannot have large weight on
small sets (see Section 5 for the details).

We prove Theorem 1.6 by formalizing the above connection between locally list recoverable
codes and Yao pseudoentropy [Yao82]. We then utilize the fact that one can get the (more conve-
nient) metric pseudoentropy from Yao pseudoentropy if we allow the enumeration circuit to be an
SVN circuit (see Section 2.5.1). As a brief sketch of how to do so, we first mention that if a random
variable X has high metric pseudoentropy, then for any efficient distinguisher D, the support of
D cannot disproportionately explain X (namely, Pr[D(X) = 1] is bounded). This is quite close to
the definition of Yao pseudoentropy; however, we must give a computationally efficient way to
enumerate the support of D. To do so, we follow [BSW03] and hash the support of D onto a smaller
universe. The preimage of the hash function is an enumeration of the support of D, provided we
can use nondeterminism to guess a preimage (and use D itself to verify whether that preimage is
correct). By assuming a function f that is hard for SVN circuits, we get a metric pseudoentropy
generator. The rest of the details are given in Section 3. We stress that in our analysis of the PEG,
nondeterminism is used only to convert Yao pseudoentropy to metric pseudoentropy. Indeed, our

8A random variable Y ∼ {0, 1}n has min-entropy k if for every y ∈ Supp(Y ), Pr[Y = y] ≤ 2−k.

7



PEG outputs high Yao pseudoentropy even under the assumption that f is only hard for standard
circuits.

It is interesting to draw an analogy between Theorem 1.6 and its information-theoretic coun-
terparts (which we formally define in Section 2.4). The work of Ta-Shma and Zuckerman [TZ04],
following Trevisan [Tre01], shows the equivalence between extractors with multiple output bits
and soft-decision decoding, which we will not define here. Roughly speaking, if such codes are
equipped with an efficient local decoding procedure, they give rise to PRGs. Soft-decision decoding
generalizes list recoverable codes, and so every extractor can be used to construct a list recoverable
code with suitable parameters. We argue that this result interpolates for lower min-entropies too.
As already observed in [GUV09] under a somewhat different terminology, every list recoverable
code for agreement ε gives rise to a condenser condensing k = log L

ε min-entropy to k′ = log `
m

min-entropy with error O(ε), and each such k → k′ condenser with error ε implies a list recoverable
code for agreement O(ε) with ` = O(εm2k

′
) and L = 2k. For the formal statement and its proof, see

Appendix A. Thus, in a way, Theorem 1.6 is a computational manifestation of these connections.

1.3.1 Constructing the List Recoverable Code C

We construct our locally list recoverable code C : {0, 1}t → Σm over a large alphabet from locally
decodable codes over a small alphabet via folding. Specifically, let

CLDC : {0, 1}t → Ft̄q

be some locally list decodable code having relatively high rate. We partition the t̄ coordinates of
CLDC into m disjoint, contiguous blocks of size a so that m · a = t̄ for carefully chosen m and a.
Namely, we pick a = t1−O(α). For our final code C, we consider each block of a symbols as a single
large symbol. We note that this construction gives a large alphabet size, and also implies that m can
be very small, roughly tO(α), which in turn implies that the seed length of our PEG Gf is very small.
But why does this construction admit a local list recovery procedure for exponential-sized lists?

Consider the task of decoding some entry x ∈ [t] of f given lists S1, . . . , Sm, where we are
guaranteed that C(f)z ∈ Sz for at least ε-fraction of the z-s. Recall that CLDC is itself equipped with
a local list decoding procedure, so in particular there exists a randomized circuit ALDC that locally
decodes f from a noisy version of it. How do we mimic a good enough noisy version of f?

• Run ALDC on the input x.

• Whenever ALDC wishes to query a certain coordinate of CLDC(f), say coordinate i ∈ [t̄], find
the index z of the block that i is contained in.

• We now want to query the list Sz for the correct value of CLDC(f)i, and we use a hardwired
advice string to pinpoint the specific entry in Sz to be read. From the list’s entry we can deduce
a guess for CLDC(f)i, i.e., a coordinate in the noisy version of f .

• There are at least ε-fraction of good lists for which the advice can point to the the correct
symbol C(f)z . Since a folded symbol in the code C is correct if and only if every symbol in the
block is a correct symbol of CLDC, we have that ALDC must essentially be making queries to a
string with at least ε agreement with CLDC(f).
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For complete details, see Section 4. We stress that nonuniformity plays a crucial role here, through-
out the analysis. Also, since the lists S1, . . . , Sm are fixed (and in fact, determined by Gf ), and
Q ≈ m� t, we are allowed to fix the advice describing the pointers to all lists, each pointer is of
length roughly log `, and we do not have to worry about the possibly different query indices for
different x-s and different randomness strings. As our only bound on ` stems from the bound on
the decoding circuit size, m log ` ≈ t and so ` can be exponentially large.

The above construction works for a large agreement ε (say, a constant or 1/ polylog(n)), which
due to Theorem 1.6 implies that our resulting PEG has constant error. The reason is that we inherit
the agreement parameter from the locally decodable code, and there ε must be rather high in order
for the other parameters of CLDC to be small enough for our setting. In Section 1.5 we discuss how
we get the lower error stated in Theorem 1.4 and Theorem 1.5.

1.4 From Pseudoentropy to Pseudorandom Bits

We construct our pseudorandom generator Gf from Theorem 1.4 by composing the pseudoentropy
generator Gf of Theorem 1.5 with a new construction of an extractor with seed length close to log n,
supporting n1−α min-entropy for any α < 1

2 .

Theorem 1.7 (short-seed extractor, see Theorem 7.4). There exists a constant c ≥ 1 such that the
following holds. For any positive integer n, α < 1

2 , and every ε ≥ cn−
1
2

+α, there exists an explicit
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with error ε, supporting min-entropy k ≥ n1−α, where
d = (1 + cα) log n+ c log 1

ε and m = 1
cn

1−2α.

This adds to the short list of extractors with almost the right dependence on n, currently
including [TZS06, Zuc07] and one-bit extractors coming from good list decodable codes. Our
construction essentially follows a construction given in [TZS06]; however, there it was analyzed for
smaller min-entropies. The construction and its analysis are given in Section 7.

The seed of the pseudorandom generator consists of the (very short) seed of the pseudoentropy
generator, as well as the seed of the extractor, which still gives us (1 + O(α)) log t. It is not
immediately clear why such a composition works, and indeed we make quite a few modifications
for our argument to go through, which we will discuss shortly.

Theorem 1.8 (composition, see Lemma 6.3). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be an extractor with
error ε supporting min-entropy k − log 1

ε , computable by a circuit of size sExt.
Let X ∼ {0, 1}n be a random variable with pseudoentropy k fooling circuits of size s′ = O(s+ sExt),

up to ε error, where we allow the circuits to have oracle gates to the problem of additively approximating
the acceptance probability of a given circuit to within some fixed constant accuracy. Then, Ext(X,Ud) fools
(deterministic) circuits of size s, up to error O(ε).

Note that as is typical with this type of argument, we require the PEG output distribution X to
fool circuits larger than s to conclude that the extracted output fools size s.

Previously, composition was known to work when the output of the PEG was indistinguishable
from a universal distribution with high min entropy. i.e., had high HILL pseudoentropy [BSW03].9

However, the definition of PEGs that we use allows for the high min-entropy random variable to

9A notable example is [STV01], where they show that the Nisan-Wigderson PRG [NW94] outputs pseudoentropy
when f is only mildly hard.
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depend on the distinguisher, and the natural distinguisher for the composed construction invokes
the extractor. In this case, the high min-entropy random variable may depend on a specific seed of
the extractor, and some of the seeds of the extractors are destined to fail!

The above obstacle is where our stronger class of distinguishers enters the picture. Barak
et al. [BSW03] showed that one can move from HILL pseudoentropy to metric pseudoentropy
for real-valued distinguishers. Unfortunately, their argument suffers from a considerable loss in
circuits size which we cannot afford, and seems inherent.

The idea to overcome this loss is to use an oracle to approximate some averaging of the extractor
on all possible seeds. To be a bit more specific, assume towards a contradiction that Ext(X,Ud) is
distinguishable from the uniform distribution by a small circuit C. We show that in such a case,
there exists a large set B of x-s for which px = E[C(Ext(x, Ud))] is far from p = E[C(Um)]. The
value p can be hardwired. Using our oracle, px can be approximated. Thus, B can be recognized
by a small circuit. Setting the parameters accordingly, this contradicts the fact that X has high
pseudoentropy. We defer the rest of the details to Section 6. In Section 9, we show how the above
assumption, of having oracle gates to a density approximation problem, can be replaced with
randomized SVN circuits.

1.5 Reducing the Error

Recall that the construction presented in Section 1.3 supported high error. Indeed, for deran-
domizing BPP and for quantified derandomization, a constant error ε for our PEGs and PRGs
suffice. Nevertheless, there are several reasons to reduce the error. First, a small error PRG can be
used to derandomize algorithms with error approaching 1

2 . Second, often when PRGs are used as
components in other pseudorandomness constructions, it is necessary to have small error because
of other error losses. Third, it is a natural question on its own, and significant research effort has
been devoted to reducing the error in other PRGs. The best error we can hope for is ε = n−Ω(1),
since we wish to keep the seed length (1 +O(α)) log n. We manage to obtain this.

To get a PEG with a better dependence on ε, we improve the construction of our locally
list recoverable code C to support ε-fraction of good lists even when the underlying locally list
decodable code CLDC supports only a constant fraction ε0 � ε of agreement. This is done via an
expander-based transformation, and the details are given in Section 10. Getting a PRG with ε error
almost readily follows, since the extractor of Theorem 1.7 works for such an error.

1.6 Better Derandomization Overhead from Stronger Assumptions

Can we get a better derandomization overhead for the very high end hardness assumption, namely
2(1−α)n for subconstant α? We show that by using better locally list-decodable codes in the con-
struction presented in Section 1.3.1, we can construct PEGs having seed length O(α) log n for

α ≈
(

log log n

log n

) 1
4

.

In our general paradigm for constructing PEGs, given a function f that is hard for circuits of
size s? and a locally list-decodable code using Q queries, we get a pseudoentropy generator for
circuits of size s as long as Q · s < s?. When α is constant, we can use any list-decodable code that
supports Q = nα queries, say a Reed-Muller code [STV01]. When α = o(1), we utilize a locally
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list-decodable code that indeed uses nα queries for subconstant α [KRZSW18]. This allows us to
get a pseudoentropy generator for circuits of size n1−O(α) = n1−o(1), and consequently PRGs with
seed length (1 + o(1)) log n (see Sections 5.1 and 9.1 for the complete details).

1.7 On Our Hardness Assumption

Finally, we discuss our hardness assumption. In order to obtain our result, there are two ways our
assumption is stronger than in previous works. First, we require that f must be hard for circuits
of size at least 2(1−α)n for some small α, whereas previous constructions only required hardness
at least 2βn for some β < 1 (and generally β is thought of as small). The first strengthening of the
assumption seems necessary for a derandomization as efficient as ours since the hardness should
be comparable to the size of circuits we wish to fool.

Second, we require a function f that is hard to compute for circuits that are allowed to use both
nondeterminism and randomness. One might argue that in the non-uniform model of circuits, one
can convert randomness into advice using an Adleman type argument and incur only a minor loss
in circuit size. However, the size blowup of Adleman’s theorem in the case of nondeterministic
circuits is larger. This, combined with the fact that we require the size of our hardness to be
2(1−α)n makes such an argument impossible. Indeed, in order to convert a randomized SVN
circuit into an SVN circuit, one must union bound over all possible inputs and all possible witness
strings. Generally, the witness length can be nearly as large as the circuit itself. In other words,
we would need an error probability close to 2−s where s is the size of the circuit. Achieving that
requires repeating the circuit nearly s times, incurring a quadratic blowup and making our hardness
assumption infeasible as we initially assume hardness against randomized SVN circuits of size
2(1−α)n. In summary, previous works have similarly used assumptions in which the function f
is hard against models of computation that use nondeterminism and randomness. However, we
work on the very “high-end” of the hardness assumptions, i.e., assume hardness for very large
circuits, and this seems necessary for our proof.

We now discuss the plausibility of our assumption. Our result relies on the assumption that
there exists a function f satisfying two competing properties. First, it should be computable
by a deterministic TM in time 2(1+α)n, for some small constant α. Second, it should also be
hard for circuits of size 2(1−α)n that use nondeterminism, as well as randomness, to verify the
nondeterministic witness. We hence need a function that resides in E but is still “difficult enough”
for a non-uniform Merlin-Arthur proof system to verify (i.e., requiring Arthur to run in time at
least 2(1−α)n). Thus, our assumption is plausible if random verification doesn’t always achieve
significant savings.

Sometimes, random verification does yield savings. For example, Williams [Wil16] proved that
a variety of #P-complete problems have MA proof systems that run in time 2cn for various c < 1,
whereas the best known deterministic algorithms solving these problems take time O(2n). He also
gave a 3-round interactive proof system running in time 2.67n time for QBF, a PSPACE-complete
problem. Even if these results make one worry about finding our desired f in PSPACE, it is
widely believed that there exists problems computable in time 2(1+α)n that require exponential
space. Given that such problems lack the structure that Williams exploits, it is plausible that there
is such an f where random verification doesn’t achieve significant savings, making our hardness
assumption true.
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1.8 Followup Work and Open Problems

Following our work, Chen and Tell [CT21] continued the study of fast derandomization and
addressed a few open questions that arose from this work. Chen and Tell’s work achieves black-box
derandomization in time n · t1+α and in some settings n1+α · t, which is especially significant in
the t � n regime, for complexity-theoretic applications. They also show, that under a counting
version of the non-deterministic strong exponential-time hypothesis, a multiplicative factor of n is
essential. While their complexity-theoretic assumptions are somewhat milder than ours, they also
use standard cryptographic assumptions to obtain their derandomization results.

Some challenges remain to be tackled. We list only a few of them.

1. Can we achieve similar results assuming f is exponentially-hard for SVN – rather than
randomized SVN – circuits?

2. Can we achieve a nearly linear time quantified derandomization without any preprocessing?

3. Can we get even better derandomization slowdown (say, matching [CT21]) without resorting
to cryptographic assumptions? Derandomizing in time tn would match the runtime of
Adleman’s nonuniform derandomization [Adl78]. Also note that for every fixed algorithm on
input size n, independent of its runtime, there exists a pseudorandom generator against this
algorithm that has only O(n) seeds.

2 Preliminaries

The density of a set B ⊆ A is µA(B) = |B|
|A| (when A is clear from context, we shall omit it).

For a positive integer A, we denote by [A] the set {1, . . . , A}. For a set A, by x ∼ A we mean
x is drawn uniformly at random from the uniform distribution over the elements of A. For a
function f : Ω1 → Ω2, we say f is explicit if there exists a deterministic procedure that runs in time
poly(log |Ω1|) and computes f . Finally, for f, g : N→ N, we say that f(n) = Õ(g(n)) if there exists a
constant k such that f(n) = O(g(n) logk g(n)). All the logarithms are in base 2.

2.1 Circuits, Nondeterministic Circuits and Worst-Case Hardness

The size of a Boolean circuit is the number of its wires. We will extensively use the fact that
DTIME(t(n)) ⊆ SIZE(O(t(n) log t(n))), where SIZE(t(n)) is the set of languages L ⊆ {0, 1}n for
which there exists a circuit family {Cn}n, such that each Cn is of size t(n), and for every x ∈ {0, 1}n
it holds that x ∈ L if and only if Cn(x) = 1 [PF79]. For a Boolean-valued circuit C we denote by
Supp(C) the set of all inputs x for which C(x) = 1.

We first define the notion of SVN circuits, where a circuit is allowed to use nondeterminism.
However, we allow for the possibility that for some inputs, there are no “good” witnesses that
can allow the circuit to compute a “correct answer”, i.e. we allow the circuit to compute partial
functions.

Definition 2.1 (partial function). A partial function mapping n bits tom bits is a function f : {0, 1}n →
{0, 1}m ∪ {⊥}. We say f is total if there is no input x ∈ {0, 1}n for which f(x) = ⊥.

We will most often work with total functions. For the rest of this paper, a function f : {0, 1}n →
{0, 1}m with ⊥ omitted from the range denotes a total function.
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Definition 2.2 (SVN circuit, [SU05]). Let f : {0, 1}n → {0, 1}m ∪ {⊥} be a partial function. A single-
valued nondeterministic (SVN) circuit computing f is a pair of circuitsC : {0, 1}n×{0, 1}w → {0, 1}m
and Ccheck : {0, 1}n × {0, 1}w → {0, 1} such that for input string x ∈ {0, 1}n and witness string
y ∈ {0, 1}w, the following holds.

1. For every x ∈ {0, 1}n, f(x) 6= ⊥ if and only if there exists y ∈ {0, 1}w such that Ccheck(x, y) = 1.

2. For every x ∈ {0, 1}n and y ∈ {0, 1}w such that Ccheck(x, y) = 1, it holds that C(x, y) = f(x).

The size of an SVN circuit is the sum of the sizes of C and Ccheck.

When only considering SVN circuits that compute total functions with a single bit of output,
the above definition can be viewed as the non-uniform analogue of NP ∩ coNP. We often refer
to Ccheck(x, y) as the checking phase, or witness verification circuit, and refer to C(x, y) as the
computing circuit. Additionally, we often think of an SVN circuit as a single circuit combining both
C and Ccheck (with m+ 1 output bits).

Definition 2.3 (hardness against SVN circuits). Let f : {0, 1}n → {0, 1}. We let sizeSV N (f) denote
the size of the smallest SVN circuit that computes f . We say f requires exponential-size SVN circuits if
sizeSV N (f) > 2δn for some constant δ > 0.

Note that if f : {0, 1}n → {0, 1} is computable by an SVN circuit then ¬f is computable by an
SVN circuit of the same size.

We also consider SVN circuits where the checking phase may use randomness. When consider-
ing total functions with a single bit output, this model can be seen as the nonuniform analogue of
MA ∩ coMA.10

Definition 2.4 (randomized SVN circuits). Let f : {0, 1}n → {0, 1}m ∪ {⊥} be a partial function. A
randomized SVN circuit computing f with error 0 ≤ δ < 1

2 is a pair of circuits C : {0, 1}n×{0, 1}w →
{0, 1}m and Ccheck : {0, 1}n × {0, 1}w × {0, 1}d → {0, 1} such that for input string x ∈ {0, 1}n, witness
string y ∈ {0, 1}w and randomness string r ∈ {0, 1}d, the following holds.

1. For every x ∈ {0, 1}n, f(x) 6= ⊥ if and only if there exists y ∈ {0, 1}w such that

Pr
r∼Ud

[Ccheck(x, y, r) = 1] ≥ 1− δ.

2. For every x ∈ {0, 1}n such that f(x) 6= ⊥, and y ∈ {0, 1}w, either Prr∼Ud [Ccheck(x, y, r) = 1] ≥
1− δ or Prr∼Ud [Ccheck(x, y, r) = 1] ≤ δ.

3. For every x ∈ {0, 1}n and y ∈ {0, 1}w such that Prr∼Ud [Ccheck(x, y, r) = 1] ≥ 1− δ, it holds that
C(x, y) = f(x).

The size of a randomized SVN circuit is the sum of the sizes of C and Ccheck.

We can now define hardness for randomized SVN circuits in the natural way.

10An alternative definition for randomized SVN circuits was given in [GSTS03, SU07], corresponding to the nonuni-
form analogue of AM ∩ coAM. Although one can suspect these models to be equivalent, there are some subtleties that
arise when one cares about polynomial blowups in size.
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Definition 2.5 (hardness for randomized SVN circuits). We say f : {0, 1}n → {0, 1} requires random-
ized SVN circuits for error δ = δ(n) > 0 of size s = s(n) if the smallest randomized SVN circuit that
computes f with error δ has size at least s.

It will be useful to consider a related model where the checking phase is deterministic but has
access to an oracle that gets a circuit and approximates the fraction of inputs the circuit accepts.

Definition 2.6 (DensityApproxη gates). For a fixed error parameter η > 0, a DensityApproxη oracle gate

takes as input an encoding of a circuit C and outputs p ∈ {0, 1}dlog 1
η
e, such that |E[C]− p| ≤ η. In words,

the gate outputs an additive η-approximation to the fraction of accepting inputs to C.

Definition 2.7 (DensityApproxη SVN circuits). Let f : {0, 1}n → {0, 1}m ∪ {⊥} be a partial function.
For fixed error parameter η, a DensityApproxη SVN circuit computing f is a pair of circuits C : {0, 1}n×
{0, 1}w → {0, 1}m and CDA

check : {0, 1}n × {0, 1}w → {0, 1} (with the superscript denoting access to
DensityApproxη gates) such that the following holds.

1. For every x ∈ {0, 1}n, f(x) 6= ⊥ if and only if there exists y ∈ {0, 1}w such that CDA
check(x, y) = 1.

2. For every x ∈ {0, 1}n and y ∈ {0, 1}w such that CDA
check(x, y) = 1, it holds that C(x, y) = f(x).

The superscript in CDA
check will be omitted when it is clear from context. The size of a DensityApproxη SVN

circuit is the sum of the sizes of C and CDA
check.

Again we can define hardness against DensityApproxη SVN circuits in a natural way.

Definition 2.8 (hardness against DensityApproxη SVN circuits). Let f : {0, 1}n → {0, 1}. We let
sizeSV N?

η
(f) denote the size of the smallest DensityApproxη SVN circuit that computes f . We say f

requires exponential-size DensityApproxη SVN circuits if sizeSV N?
η
(f) > 2δn for some constant δ > 0.

In Section 9 we prove the equivalence between this model and the randomized SVN model of
Definition 2.4.

2.2 Error Correcting Codes

Error correcting codes are families of well-separated strings in Σn, called codewords. If one corrupts
a codeword in some (bounded number) of its coordinates, the codeword is still the closest to the
corrupted string. This allows decoding of the original codeword.

Definition 2.9 (relative distance). For some alphabet Σ, let x, y ∈ Σn. The relative distance of x, y,
denoted δ(x, y), is the fraction of coordinates on which x, y differ. That is, δ(x, y) = Pri∼[n][xi 6= yi].

In a linear code the codewords form a linear subspace, which is a useful structure.

Definition 2.10 (linear code). Let n, k, q be positive integers with q a prime power and 0 ≤ δ ≤ 1. We say
that C : Fkq → Fnq is an [n, k, δ]q code if C is a linear transformation and for all x, y ∈ Fkq , δ(C(x), C(y)) ≥ δ.
By abuse of notation, we often use C to denote Im(C) ⊆ Σn.

List decoding is the idea of decoding after a large number of corruptions (close to the distance of
the code). In this case there can be many, but not too many, codewords closest to the corrupted
string. In this work we consider codes over a large alphabet in which the relative distance is close
to 1.
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Definition 2.11 (list decodable codes). A code C ⊆ Σn is (τ, L) list decodable if for every w ∈ Σn,
| {c ∈ C : δ(w, c) ≤ τ} | ≤ L.

Next we think of codes as encoding x ∈ Σk using a codeword in Σn (which can be done if there
are |Σ|k codewords in the code). The local decoding problem asks to only decode xi for i ∈ [k] given
as input (as opposed to x ∈ Σk in its entirety). It should be possible to do that while only inspecting
a small number Q of symbols of the corrupted codeword.

Definition 2.12 (locally list decodable code). Let C : Σk → Σn. Let Q,L, s be positive integers and
0 < ε, ζ < 1. We say that C is (Q, ε, ζ, s, L) locally list decodable if there exist randomized circuits
A1, . . . , AL, each of size s that satisfy the following.

• Each Aj has oracle access to a received word r ∈ Σn, and makes at most Q oracle queries to coordinates
in r.

• For every codeword c = C(x) such that c agrees with r in at least ε fraction of the coordinates, there
exists j ∈ [L] such that for every i ∈ [k], we have Aj(i) 6= xi with probability at most ζ over the
randomness of Aj .

For convenience, we often say in words that C is an LLDC using Q queries, handling agreement of at least ε,
with failure probability ζ, circuit size s, and output list size L.

In list recoverable codes, a variant of list decoding, the decoder is given a list of symbols for every
coordinate where at least ε fraction of the lists contain the symbol of the encoded message (locally
decodable codes correspond to lists of size 1).

Definition 2.13 (list recoverable code). Let C : Σk → Σn. For positive integers `, L and ε > 0 we say
that C is (ε, `, L) list recoverable if the following holds. For every sequence of sets S1, . . . , Sn ⊆ Σ so that∑n

i=1 |Si| ≤ ` there are at most L codewords c ∈ C satisfying ci ∈ Si for at least ε fraction of the i-s.

Locally list recoverable codes are analogous to locally list decodable codes. There is a variety of
ways to define them, and here we choose a form that is convenient for us.

First, we assume an oracle that given a coordinate i ∈ [n] and an identifier j returns a unique
member of the list of the i-th coordinate identified by j. The oracle may return ⊥ if the element is
undefined. Note that this definition is intended to assert that no matter what indexing scheme one
uses to access the lists, the decoder can correctly decode the message using that oracle. When the
lists are short, the decoder may read the lists in their entirety, however in our context the lists are
huge and the decoder can only access individual entries in the lists.

Second, the decoder may depend on the lists. In particular, the sizes of the lists, or an identifier of
a member of each list, may be hard-wired into the decoder. Such unusual definition is common in the
context of PRGs [STV01], whereas in standard coding definitions, the same decoder should work
for all lists. This definition allows us to assume that the decoder does not make queries whose
answer is⊥. It also allows us to assume that the decoder is deterministic! This is because the number
of inputs to the decoder is k, the number of indices in [k] one may wish to decode. By repeating
the randomized decoder O(log k) times, it is possible to decrease the error probability below 1

k ,
and therefore there exists a fixed randomness string that leads to correct decoding for all i ∈ [k]
(see [Adl78, STV01] for a more detailed argument). Note that the actual queries the decoder makes
depend on i, and vary across [n] when i varies across [k].
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Definition 2.14 (locally list recoverable code). Let C : Σk → Σn. For positive integers `, L,Q, and
0 < ε < 1 we say that C is (Q, ε, `, s) locally list recoverable if the following holds. Let S̄ = (S1, . . . , Sn)
be any list of subsets, where each Sz ⊆ Σ and

∑n
z=1 |Sz| ≤ `, and let OS̄ be any oracle to S̄ satisfying the

following properties:

• OS̄ takes as input y ∈ {0, 1}log ` and outputs an element of Σ ∪ {⊥}.

• For every z ∈ [n] and every v ∈ Sz , there exists a y(z,v) ∈ {0, 1}log ` such that OS̄(y(z,v)) = v.
Furthermore, each y(z,v) is unique. That is, y(z,v) 6= y(z′,v′) if (z, v) 6= (z′, v′).

Then there exist circuits A1, . . . , AL for some arbitrary L, each of size s, that satisfy the following.

• Each Aj takes as input i ∈ [k] and uses at most Q oracle gates to OS̄ .

• For every codeword c = C(x) satisfying cz ∈ Sz for at least ε fraction of the i-s, there exists j ∈ [L]
such that for every i ∈ [k], we have Aj(i) = xi. Moreover, Aj never queries OS̄ on an input that
yields ⊥.

For convenience, we often say in words that C is a LLRC using Q queries, handling agreement at least ε,
with circuit size s and input list size `.

2.3 Random Variables, Min-Entropy

The support of a random variable X distributed over some domain Ω is the set of x ∈ Ω for which
Pr[X = x] 6= 0, which we denote by Supp(X).

The statistical distance between two random variables X and Y on the same domain Ω is defined
as |X − Y | = maxA⊆Ω(Pr[X ∈ A]−Pr[Y ∈ A]). If |X − Y | ≤ ε we say X is ε-close to Y and denote
it by X ≈ε Y . We denote by Un the random variable distributed uniformly over {0, 1}n. We say a
random variable is flat if it is uniform over its support.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the random
variable distributed over Ω2 obtained by choosing x according to X and computing f(x). For a
set A ⊆ Ω1, f(A) = {f(x) : x ∈ A}. For every f : Ω1 → Ω2 and two random variables X and Y
distributed over Ω1 it holds that |f(X)− f(Y )| ≤ |X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]

For some ε > 0, we define the smooth min-entropy of X by

Hε
∞(X) = max

X′:X′≈εX
H∞(X ′).

A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy
at least k. When n is clear from the context we sometimes omit it and simply say that X is a
k-source. Every k-source X can be expressed as a convex combination of flat distributions each
with min-entropy at least k.

Definition 2.15 (average conditional min-entropy). Let X,Y be two random variables. The average
conditional min-entropy is defined by

H̃∞(X|Y ) = − log
(
Ey∼Y

[
2−H∞(X|Y=y)

])
.

16



Lemma 2.16. LetX,Y be two random variables such that |Supp(Y )| ≤ 2`. Then, H̃∞(X|Y ) ≥ H∞(X)−
`.

2.4 Condensers, Extractors, Samplers, and Expanders

Definition 2.17 (extractor). A function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε) seeded extractor if the following holds. For every (n, k) source X , Ext(X,Y ) ≈ε Um, where Y is
uniformly distributed over {0, 1}d and is independent of X . We say Ext is a strong (k, ε) seeded extractor if
(Ext(X,Y ), Y ) ≈ε (Um, Y ).

Indeed, whenever a source X has sufficient min-entropy and is independent of the seed Y ,
we are guaranteed that a strong seeded extractor Ext gives us (Ext(X,Y ), Y ) ≈ε (Um, Y ). The
following lemma shows that (Ext(X,Y ), Y ) is nearly independent of any random variableH, such
that X,Y are independent conditioned onH and X|H has sufficient min-entropy.

Lemma 2.18 ([DORS08, CS16]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, ε) extractor. Let
X be distributed over {0, 1}n and letH be some random variable such that H̃∞(X|H) ≥ k + log 1

ε . Let Y
be uniformly distributed over {0, 1}d, independent of X conditioned onH. Then,

(Ext(X,Y ), Y,H) ≈2ε (Um, Y,H).

Definition 2.19 (condenser). A function

Cond : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, k′, ε) condenser if the following holds. For every (n, k) source X , Hε
∞(Cond(X,Y )) ≥ k′, where Y

is uniformly distributed over {0, 1}d and is independent of X . We say Cond is a strong (k, k′, ε) condenser
if (Cond(X,Y ), Y ) is ε-close to some (D,Y ) having min-entropy d+ k′.

We proceed by defining density samplers.

Definition 2.20 (sampler). Let Γ: [N ]× [D]→ [M ].

• We say x ∈ [N ] is ε-bad for B ⊆ [M ] if∣∣∣∣ Pr
y∼U[D]

[Γ(x, y) ∈ B]− µ(B)

∣∣∣∣ > ε.

• We say Γ is a (δ, ε) sampler if for every B ⊆ [M ] we have that

|{x ∈ [N ] : x is ε-bad for B}| < δN.

Lemma 2.21 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) extractor. Then, Ext is also a
(δ = 2k−n, ε) sampler.

Definition 2.22 (expander graph). We say that an undirected regular graph G is a λ-expander if all
eigenvalues of the normalized adjacency matrix of G other than 1 are at most λ in absolute value.
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The following theorem is implied by the constructions of [GG81, RVW02, MRSV19].

Theorem 2.23. For every constant 0 < λ < 1 there exists a constant integer d = d(λ) such that the
following holds. For every positive integer n there exists a connected d-regular undirected graph which is a
λ-expander. Given a vertex x ∈ [n] and an edge label i ∈ [d], the i-th neighbor of x can be computed in time
polylog(n).

2.5 Pseudoentropy

Next, we discuss computational notions of min-entropy, or, (min-) pseudoentropy. We start with the
standard, widely used, notion of pseudoentropy due to Håstad et al. [HILL99].

Definition 2.24 (HILL pseudoentropy). Let X be a random variable distributed over {0, 1}n, an integer
s and ε > 0. We say that HHILL

s,ε (X) ≥ k if there exists a random variable Y ∼ {0, 1}n with H∞(Y ) ≥ k
such that for every circuit D : {0, 1}n → {0, 1} of size s, |E[D(X)]− E[D(Y )]| ≤ ε.

A weaker notion, given by Reingold [Rei03] and by Barak, Shaltiel and Wigderson [BSW03]
allows the random variable having true min-entropy to depend on the distinguisher itself.

Definition 2.25 (metric pseudoentropy). Let X be a random variable distributed over {0, 1}n, let s be a
positive integer, and ε > 0. We say that Hmetric

s,ε (X) ≥ k if for every circuit D : {0, 1}n → {0, 1} of size s
there exists Y ∼ {0, 1}n such that H∞(Y ) ≥ k and |E[D(X)]− E[D(Y )]| ≤ ε.

We record the following standard fact in pseudorandomness.

Claim 2.26. If X ∼ {0, 1}n is a random variable such that Hε
∞(X) ≥ k then for every set D ⊆ {0, 1}n it

holds that Pr[X ∈ D] ≤ |D|
2k

+ ε.

Barak et al. also give such a result in the computational world, when we use metric pseudoen-
tropy.

Lemma 2.27 ([BSW03]). Let X be a random variable distributed over {0, 1}n, let s be a positive integer,
and ε > 0. Then, Hmetric

s,ε (X) ≥ k if and only if for every circuit D : {0, 1}n → {0, 1} of size s it holds that
Pr[D(X) = 1] ≤ |Supp(D)|

2k
+ ε. The same statement holds when we let D to come from a class of circuits

closed under complement, including circuits using DensityApproxη oracle gates.

2.5.1 Yao Pseudoentropy

A different definition for computational entropy was given by Yao [Yao82] who used compression
rather than indistinguishability.

Definition 2.28 (Yao set). For some positive integers s, n, ` and A ⊆ {0, 1}n, we say that A ∈ CYao
`,s if

there exist circuits c : {0, 1}n → {0, 1}` and d : {0, 1}` → {0, 1}n, each of size s, such that

A = {x : d(c(x)) = x} .

We refer to c as the compressing circuit and to d as the decompressing one. We may refer to A in words as
the set of properly compressible strings for c and d.

We extend Yao’s definition to circuits where the decompressor can be an SVN circuit.

18



Definition 2.29 (NYao set). For some positive integers s, n, ` and A ⊆ {0, 1}n, we say that A ∈ CNYao
`,s if

there exists a circuit c : {0, 1}n → {0, 1}` and an SVN circuit d : {0, 1}` × {0, 1}w
′
→ {0, 1}` computing

a partial function fd : {0, 1}` → {0, 1}n ∪ {⊥}, both of size s, such that

A = {x : fd(c(x)) = x} .

We refer to c as the compressing circuit and to d as the decompressing one.

Definition 2.30 (Yao pseudoentropy and NYao pseudoentropy). LetX be a random variable distributed
over {0, 1}n, let s be a positive integer, and ε > 0. We say that HYao

s,ε (X) ≥ k if for every ` < k and
A ∈ CYao

`,s it holds that Pr[X ∈ A] ≤ 2`−k + ε.
We say that HNYao

s,ε (X) ≥ k if we allow A ∈ CNYao
`,s in the above.

It is not clear whether HYao
s,ε (X) ≥ k implies HHILL

s′,ε′ (X) ≥ k′ for some suitable k′, s′, ε′.11

However, Barak et al. [BSW03] showed that if one is considering hardness against polynomial-
sized circuits with NP gates, Yao pseudoentropy does imply metric pseudoentropy. We reprove
their result, and here we do it for SVN circuits.

Lemma 2.31 (following [BSW03]). There exists a constant 0 < γ < 1 such that the following holds. Let
X be a random variable distributed over {0, 1}n and ε > 0. There exists s0 = Õ(n) such that for every
s ≥ s0, HNYao

s,ε (X) ≥ k implies Hmetric
γs,ε (X) ≥ k

2 .

Proof: Assume towards a contradiction that Hmetric
γs,ε (X) < k

2 for some universal constant γ < 1 to
be determined later. Thus, by Lemma 2.27, there exists a circuit D : {0, 1}n → {0, 1} of size γs, with
|Supp(D)| < 2k/2, for which

Pr[D(X) = 1] >
|Supp(D)|

2k/2
+ ε. (1)

Denote t = log |Supp(D)|, and note that t < k
2 . Let H ⊆ {0, 1}n → {0, 1}2t be a two-universal

family of hash functions. We recall that a two-universal family of hash functionsH satisfies that for
every distinct x, y ∈ {0, 1}n and every σ1, σ2 ∈ {0, 1}2t, we have

Pr
h∼H

[h(x) = σ1 ∧ h(y) = σ2] =

(
1

22t

)2

.

For an efficient implementation of H, we can take it to be the set of all affine functions over
F = GF(2n), and so h(x) amounts to computing ax+b over F for some fixed a, b ∈ F and truncating
the last n− 2t digits (see, e.g., [Vad12, Theorem 3.26]). Arithmetics in F can be done by circuits of
size s0 = Õ(n).

For a random h ∼ H and distinct x, y ∈ {0, 1}n, let Ix,y be the indicator random variable which
is 1 if and only if h(x) = h(y). By the properties ofH,

E

 ∑
{x,y}⊆D

Ix,y

 ≤ (2t

2

)
Pr[Ix,y = 1] ≤

(
2t

2

)
2−2t < 1,

11Hsiao, Lu and Reyzin [HLR07] studied conditional versions of HILL and Yao pseudoentropies and proved that under
these definitions the above implication does not hold. Furthermore, they managed to extract more pseudorandom bits
using Yao pseudoentropy based techniques than seems possible from HILL pseudoentropy. Wee gave an oracle under
which the Yao pseudoentropy is larger than the HILL pseudoentropy by a factor of roughly 2 [Wee04].
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so there exists some h? ∈ H which is one to one on Supp(D).
Set ` = 2t, and consider the following compressing circuit and decompressing SVN circuit.

First, we let c : {0, 1}n → {0, 1}` simply compute h?. For the decompressing circuit, we aim for the
SVN circuit d : {0, 1}` × {0, 1}n → {0, 1}n to compute the partial function that maps every element
in the image of Supp(D) under h∗ to its unique preimage in Supp(D) (and maps everything else to
⊥). This can be done by the circuit that simply computes d(z, x) = x and outputs dcheck(z, x) = 1 if
and only if both D(x) = 1 and h?(x) = z.12 Evaluating c simply requires evaluating h?(x) which
can be done by a circuit of size s0 = Õ(n). Evaluating d requires both computing h?(x) and D(x),
and so the size of d is s0 + γs. Now observe that

Supp(D) = {x : ∃y ∈ {0, 1}n s.t. dcheck(c(x), y) = 1 and d(c(x), y) = x} ∈ CNYao
`,s0+γs.

Moreover, recall from Equation (1) that

Pr
x∼X

[x ∈ Supp(D)] > 2t−
k
2 + ε > 2`−k + ε.

Since the constant γ can be set so that both c and d are of size s, this contradicts the fact that
HNYao
s,ε (X) ≥ k.

2.6 Pseudoentropy Generators and Pseudorandom Generators

We say that a distribution X ∼ {0, 1}n ε-fools a circuit D with n inputs if D(X) ≈ε D(Un). A
pseudorandom generator against a class C is a function whose output distribution fools any
function from C.

Definition 2.32 (PRG). Let C ⊆ {0, 1}n → {0, 1} be a class of functions. We say thatG : {0, 1}n → {0, 1}
ε-fools C (or, is an ε-PRG against C) if for every C ∈ C,

|E[C(G(Ud))]− E[C(Un)]| ≤ ε.

When C is the class of functions computable by circuits of size s, we say that G ε-fools circuits of size s.

In this work, we will also construct weaker variants. When the output of a generator is not pseu-
dorandom but does have high pseudoentropy, we say that the generator is a pseudoentropy generator.
Our pseudoentropy generators will output random variables having high metric pseudoentropy.

Definition 2.33 (metric PEG). We say that G : {0, 1}d → {0, 1}n is a (k, s, ε) metric pseudoentropy
generator (PEG) if

Hmetric
s,ε (G(Y )) ≥ k,

where Y is the uniform distribution over d bits. We say that G is a strong (k, s, ε) metric pseudoentropy
generator if Hmetric

s,ε (Y ◦G(Y )) ≥ k.

One can show that for k = n the above definition coincides with the standard definition of
PRGs [BRSW12].

12The definition of SVN circuits computing partial functions seems crucial here to make the argument from [BSW03]
complete. We wish for d to only output elements of Supp(D). However, since Supp(D) is of size 2t, and the input space
for d is of larger size, there are inputs with no well defined answer.
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3 A Pseudoentropy Generator From Worst-Case Hardness

In this section we show how to construct a metric pseudoentropy generator from a function f that
is hard for SVN circuits. The idea is to show that if a code C is locally list recoverable, then the
symbol at a random coordinate of C(f) has high Yao pseudoentropy, where we identify f with
its truth table in {0, 1}n. This then implies that it must also have high metric pseudoentropy by
Lemma 2.31.

Let f : {0, 1}logn → {0, 1} be such that every SVN circuit computing f has size at least n1−α0 for
some constant α0 <

1
6 . That is, sizeSV N (f) ≥ n1−α0 . Let

C : {0, 1}n → Σm

be some error correcting code. Define Gf : [m]→ Σ ≡ {0, 1}log |Σ| so that

Gf (z) = C(f)z.

Theorem 3.1. Keeping the above notation, let ε, α be constants such that ε > 0 and α0 < α ≤ 1
6 . Assume

C is (Q, ε, `, sC) locally list recoverable so that sC = O(n1−α), and n1−α

Q ≥ s0 for some s0 = Õ(log |Σ|),
where the precise Õ(·) dependence is determined by Lemma 2.31. Then Gf is a strong (k, s, ε) metric PEG
for k = log `

2 and s = O
(
n1−α

Q

)
.

Proof: Let Z be the uniform distribution over [m]. We first show that

HNYao
s′,ε

(
Z ◦Gf (Z)

)
≥ k′

for s′ = n1−α

Q and k′ = log `.
Assume towards a contradiction thatHNYao

s′,ε (Z◦Gf (Z)) < k′. Then there exists a setA ⊆ [m]×Σ,
with A ∈ CNYao

k′,s′ , such that
Pr[Z ◦Gf (Z) ∈ A] > ε.

As A ∈ CNYao
k′,s′ , there exist a compressing circuit and a decompressing SVN circuit c : [m] × Σ →

{0, 1}k
′

and d : {0, 1}k
′
× {0, 1}w → [m] × Σ of size s′, with d computing a partial function

fd : {0, 1}k
′
→ ([m] × Σ) ∪ {⊥} such that for every (z, σ) ∈ A we have that fd(c(z, σ)) 6= ⊥

and fd(c(z, σ)) = (z, σ).
Consider the sets S1, . . . , Sm ⊆ Σ defined as follows:

Sz = {σ ∈ Σ : (z, σ) ∈ A}.

Notice that
∑

z∈[m] |Sz| ≤ 2k
′

= `. Let f ′d : {0, 1}k
′
→ Σ ∪ {⊥} be the partial function that computes

fd but omits the element of [m] from the output. We claim that f ′d behaves exactly like an oracle
for S̄ = (S1, . . . , Sm) as in Definition 2.14. This is because for every (z, σ) ∈ A, we know that
f ′d(c(z, σ)) = σ. Furthermore, every c(z, σ) is unique since c is one to one on A.

Moreover, for at least ε fraction of z-s we know that C(f)z ∈ Sz . Thus, by considering f ′d as
an oracle gate for S̄, our definition of locally list recoverable codes implies there exists a circuit A
computing f that is of size at most sC , and uses at most Q oracle queries to f ′d.
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We can replace each oracle query in A with a circuit that computes the SVN decompressor
circuit d on the appropriate witness string in {0, 1}w, and outputs the resulting symbol in Σ. In all,
the final SVN circuit will use a witness string in {0, 1}wQ, where each block of w bits serves as the
witness to d for one of the Q oracle queries. The resulting circuit will output 1 as the check bit if
and only if the check bits of all Q copies of the decompressing circuit d is 1. Since the size of the
decompressing circuit is at most s′, we have a final circuit of size

O(sC +Q · s′) = O(n1−α)

that computes f , which is a contradiction of the hardness of f .
Knowing that HNYao

s′,ε

(
Z ◦Gf (Z)

)
≥ k′, and s′ = Ω̃(log |Σ|), applying Lemma 2.31 proves the

theorem.

4 A Locally List Recoverable Code From Local List Decoding

In this section, we construct locally recoverable codes useful for constructing a pseudoentropy
generator. Theorem 3.1 suggests that in order to construct a metric pseudoentropy generator as
in Theorem 1.6, we must construct, for sufficiently small constant α, a locally list recoverable
code C : {0, 1}n → Σm with alphabet size |Σ| = 2n

1−O(α)
, that can recover from ε agreement using

roughly nα queries. This gives pseudoentropy against circuits of size s = n1−O(α).
For our ultimate goal of constructing a PRG, we would like the number of pseudorandom bits

obtained after extraction to be comparable to the hardness s, and so we would also like the input
lists size ` to be approximately 2n

1−O(α)
. Expecting the extractor to use (1 +O(α)) log n bits for its

seed, we can only afford the seed of the PEG to be of length O(α) log n, i.e., m = nO(α).
One way to achieve these parameters is to take a locally list decodable code having relatively

large rate, namely having blocklength Õ(n). Dividing the codeword into roughly nβ blocks of n1−β

symbols each, for β = O(α), and treating each block as a single symbol yields the right parameters
for m and |Σ|. We show that such a construction in fact yields the locally list recoverable code we
need.13

Towards proving correctness of such an approach to construct locally list recoverable codes,
we utilize our nonuniform definition of list recovery. Specifically, we construct a circuit that takes
as advice a pointer for each list S1, . . . , Sm, as these are independent of the specific coordinate we
wish to decode. These pointers then naturally induce a string for the original locally list decodable
code, to which the circuit has oracle access. Thus, the circuit we construct need to only efficiently
list decode the induced string.14 Let y be an upper bound on the length of the advice pointer for a
given list Sz . To address the fact that the size of the decoding circuit sC must be at most n1−α, we
need to satisfy m · y < n1−α. This puts an upper bound on y, which implies that we can handle
lists of size ` = 2n

1−O(α)
.

Following [STV01], we employ the list decoding properties of the Reed-Muller code. More
specifically, we use the following theorem.

13We note that in order to use Theorem 3.1, we need the hardness s to satisfy s = Ω̃(log |Σ|). We choose our constants
below carefully (hidden in the β = O(α) above) in order to address this issue.

14In the uniform setting, this amount to “trying all possible `m options”. We leave it as an open problem whether we
can do substantially better in our regime of parameters.
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Theorem 4.1 ([STV01]). Let CRM denote the
[
qt,
(
t+d
d

)
, 1− d

q

]
q

Reed-Muller code. That is, the code

consisting of all t-variate polynomials of total degree d over Fq. Then for any constant 1 > ζ > 0, CRM
is locally list decodable using Q = Oζ(q

2) queries, handling 2
√

2
√

d
q fraction of agreement, with failure

probability ζ, circuit size s = poly(t, q), and output list size L = O(qt). For a constant t, one can achieve
s = Õt(q

4).

To see why one can achieve s = Õt(q
4), we briefly touch upon the details in [STV01]. The decod-

ing circuit for the Reed-Muller code works by performing list decoding for univariate polynomials
along q lines in Ftq. The latter can be done by first solving a system of at most O(q) linear equations
in O(q) unknowns over Fq (which takes time O(q3)) to find a certain bivariate polynomial over Fq.
Next, the algorithm finds roots of the bivariate polynomial [Sud97]. Finding such roots requires
at most O(q) applications of factoring univariate polynomials, which takes time at most O(q2) by
fastest known results [KU11, ALRS98]. Thus overall, for constant t, the size of the decoding circuit
s is at most Õ(q(q3 + q3)) = Õ(q4).

4.1 The Construction

Our construction is a simple “folding” of the Reed-Muller code, where we increase the alphabet size
by concatenating the symbols of multiple coordinates into larger symbols. (The folding technique
has been widely used in coding theory, ever since Guruswami and Rudra’s capacity-achieving
list-decoding algorithm for folded Reed-Solomon codes [GR08].)

Given a positive integer n and constants 0 < ε < 1 and 0 < α < 1
6 , we construct C : {0, 1}n → Σm

that is locally list recoverable by a small circuit using nO(α) queries, with input lists size ` = 2n
1−O(α)

.
The construction goes as follows.

• In Theorem 4.1, set ζ = 1
3 , t = 1

α and q = 8
ε2
· d with d chosen so that n =

(
t+d
d

)
log q. Working

out the parameters, one can see that d = Õε,α(nα) and q = Õε,α(nα) (here, the ε, α subscripts
hide a 1

α and 1
ε2

factor respectively). The resulting code

CRM : {0, 1}n → Fn̄=cn
q

is a (
Q = Õε,α(n2α), ε, ζ =

1

3
, sRM = Õ(n4α), L = O(n)

)
locally list decodable code for c =

(
8
ε2α

) 1
α log n.

• Set a = n1−5α, let m = n̄
a = Õε,α(n5α), and define

C : {0, 1}n → Σm,

where Σ = Faq , so that for every f ∈ {0, 1}n and z ∈ {0, . . . ,m− 1},

C(f)z = CRM(f)az ◦ . . . ◦ CRM(f)az+a−1.
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Above, for convenience, indices for C(f) start at 0. In words, we simply divide the codeword
CRM(f) into m contiguous blocks of size a, and treat each block as a single symbol.15 Note that the
rate of C is n

n̄ log q = Ωε,α

(
1

log2 n

)
, and is equivalent to the rate of CRM as indeed folding preserves

rate.
We note that we do not make use of any special property of the Reed-Muller code, and in fact

any efficient locally list decodable code that has relatively high rate and handles arbitrarily small
fraction of agreement will work just as well. In particular, we made no further attempt to reduce
the alphabet size q or the decoding runtime, which dictates how small we must take α to be and
may improve the constant terms in O(α). Moreover, improving the dependence of Q on ε may lead
to better results for nonconstant ε. We discuss it further below in Section 4.4.

4.2 Analysis

We can now prove that our code is locally list recoverable. As mentioned above, we construct a
circuit that takes as advice a pointer for each list S1, . . . , Sm and the pointers then induce a string in
Σm to which the circuit has oracle access. Thus, given oracle access to S̄ = (S1, . . . , Sm), we run
the local decoder for the Reed-Muller code, and answer its queries by querying the appropriate Sz
using the advice pointer. We also need to show that the induced codeword for the Reed-Muller code
has at least ε-fraction of correct symbols, which would arise from the fact that we have ε-fraction of
good lists for which the advice can point to the correct folded symbol.

Theorem 4.2. For any positive integer n and any constants 0 < ε < 1 and 0 < α ≤ 1
6 , the code C

constructed above is (Q, ε, `, sC) locally list recoverable for Q = Õ(n2α), ` = 2n
1−8α and sC = n1−α.

Proof: To describe our local list recovery algorithm, we give a family of circuits with oracle access
to S̄, indexed by advice, one of which successfully decodes the desired codeword. We describe
our decoding algorithm when given the correct advice, which shows that one circuit successfully
decodes f .

Towards this end, fix any codeword C(f) for f ∈ {0, 1}n satisfying C(f)z ∈ Sz for at least
ε-fraction of z ∈ [m]. We begin by describing a randomized circuit for computing C(f). Consider

A
OS̄
adv(x, r)

which takes as input x ∈ [n], uses randomness string r, has access to some fixed oracle OS̄ for
lists S̄ = S1, . . . , Sm, and aims to compute fx. The decoder circuit AOS̄adv implements the following
procedure.

1. We first set up some preliminaries.

• AOS̄adv is hardwired with advice adv = (y1, . . . , ym,RM), where each yz ∈ {0, 1}log ` points
to some list entry in the z-th list. We assume the correct advice is given. Specifically, for
each z such that C(f)z ∈ Sz , let the correct yz be such that OS̄(yz) = C(f)z , otherwise
let yz be an arbitrary string such that OS̄(yz) 6= ⊥. Note that the size of the advice is
m log ` = Õ(n1−2α), and only depends on f and S̄ and not on the input x.

15 For simplicity, we assume that n̄ is divisible by a. To address this issue in full technicality, we can simply add at
most a− 1 dummy symbols to CRM(f). This will have negligible effect on the parameters of our list recoverable code.
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• The rest of the advice RM points to a decoding circuit for the Reed-Muller code, and
we assume the correct circuit is given. That is, let ARM be the randomized circuit that
computes fx for every x, with probability at least 2

3 when given oracle access to a word
in Fn̄q with at most 1− ε fraction of errors from CRM(f).

2. Let r be the number of random bits required by ARM. Run the decoding circuit ARM(x, r). For
every j ∈ [Q], supply the answer to the j-th oracle query that ARM makes to some coordinate
i ∈ [n̄] as follows:

(a) Let z =
⌊
i
a

⌋
, observing that the i-th coordinate of CRM is a part of the z-th of C.

(b) Use the advice string yz and the oracle access to S̄ to query the element ṽ = OS̄(yz) ∈ Faq .

(c) Return the appropriate symbol ṽh ∈ Fq (for h ∈ [a]) that corresponds to the symbol for
the i-th coordinate of ARM. That is, return ṽh for h = i (mod a).

3. Return the output of ARM(x, r).

First, we claim:

Claim 4.3. AOS̄adv can be computed by a circuit of size

Õ(n1−2α)

which makes at most Q = Õ(n2α) oracle queries to OS̄ .

Proof: First, the number of queries is at most the number of queries of the local decoding algorithm
ARM.

The inputs to the circuit are x ∈ {0, 1}logn and the randomness r. Since Reed-Muller decoding
is the only place our algorithm uses randomness, the size r is subsumed by the size of ARM. The
advice that we hardwire to the circuit has length Õ(n1−2α).

Next, the size of ARM itself is Õ(n4α), and for each of the Q = Õ(n2α) queries, we perform some
simple modular arithmetic to compute the appropriate indices of C and ṽ. Such arithmetic can be
done in Õ(a) = Õ(n1−5α). Overall, the total size of the circuit is

log n+ Õ(n1−2α) + Õ(n4α) + Õ(n1−5α) = Õ(n1−2α)

where we used the fact that α ≤ 1
6 .

We shall now prove the correctness of AOS̄adv.

Lemma 4.4. Fix f and oracle OS̄ for S̄ = S1, . . . , Sm as above. Then for every x ∈ [n],

Pr
r∼R

[
A
OS̄
adv (x, r) = f(x)

]
≥ 2

3
.

Proof: We show that the queries performed by ARM are essentially queries to a word with agree-
ment at least ε with CRM(f). Define w ∈ Fn̄q as follows:

wi = OS̄
(
ybi/ac

)
i (mod a)

25



Note that since all advice points to a symbol that is not ⊥, we indeed have w ∈ Fn̄q . In words, w is
simply the “unfolded” version of the concatenation of all the oracle calls to the y-s. Observe that by
construction, ARM essentially queries symbols from w. Let GRM be the set of all i ∈ [n̄] such that
wi = CRM(f)i.

Now, by assumption, for at least ε fraction of z ∈ [m], we have OS̄(yz) = C(f)z . Let G denote
the set of all such z-s. For every z ∈ G, and every h ∈ [a], we know that

wa·z+h = CRM(f)a·z+h,

thus since |G|m ≥ ε, we have that |GRM|
n̄ ≥ |G|·am·a ≥ ε.

So far we constructed a randomized circuit that computes C(f) with high probability, so what
remains is constructing a deterministic counterpart. This follows from a standard amplification
argument. Lemma 4.4 tells us that the randomized circuit AOS̄adv is incorrect with probability at
most 1

3 . We can thus construct a new circuit that makes M = O(log n) repeated runs of AOS̄adv with
independent randomness and takes the majority vote. By Chernoff, the error probability of the new
amplified circuit is at most 1

2n and so there is a fixing of the randomness string so that the amplified
circuit computes f on all indices. Since the size of the unamplified circuit was Õ(n1−2α), the final
circuit is of size Õ(n1−2α ·M) ≤ n1−α. Moreover, the number of queries is Õ(n2α ·M) = Õ(n2α).

We finish this section with a calculation of the time required to compute a given coordinate of
our code C, which relates directly to the runtime of our final PRGs.

Claim 4.5. Given z ∈ [m] and f ∈ {0, 1}n, computing C(f)z can be done in time Õ(n). Moreover, given
f ∈ {0, 1}n, computing the entire codeword C(f) can be done in time Õ(n) as well.

Proof: For any z, computing C(f)z (as well as computing all of C(f)) only requires computing the
Reed-Muller encoding CRM(f) at multiple points. To do so, we utilize the following result on fast
multivariate interpolation and multipoint evaluation due to van der Hoeven and Schost.

Theorem 4.6 ([VDHS13]). For a t-variate polynomial P over field F, and the values of P on I ⊆ Ft, one
can interpolate a representation of P (coefficients in a monomial basis) in time

O(t|I| log2 |I| log log |I|).

Moreover, given such a representation of P , we can evaluate the values of P on arbitrary I in the same
amount of time.

Recall that in our setting, t = 1
α . To compute both C(f)z for fixed z (and all of C(f)), we first

interpolate the message f to a representation of a polynomial. The interpolation set I is of size
O(n). By the above theorem this takes time Õ(n). Next, we compute the values of the polynomial
on n1−5α points (for fixed z), or Õ(n) points (to compute the entire support). In either case, this
again requires time Õ(n).
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4.3 Applying Our Code for Pseudoentropy Generators

Combining Theorem 4.2 with Theorem 3.1 gives the following.

Theorem 4.7. For any constant ε > 0 and every positive integer n the following holds. Assume

f : {0, 1}logn → {0, 1}

is such that sizeSV N (f) > n1−α0 for some constant α0 <
1
7 . Let α be any constant such that α0 < α < 1

7 .
Then, there exists a function

Gf : {0, 1}d → {0, 1}a

that is a (k, s, ε) SVN metric PEG for k = n1−7α

2 , s ≥ n1−4α, d = 5α log n + O(log log n) and a =

Õ(n1−5α).
Given oracle access to f , the support of Gf takes Õ(n) time to compute. Moreover, if f ∈ DTIME(ncf )

for some cf ≥ 1, the support of Gf can be computed in time Õ(ncf+1).

Proof: Let C : {0, 1}n → Σm with Σ = Fn1−5α

q , q = Õ(nα) and m = Õ(n5α), be the (Q, ε, `, sC)

locally list recoverable for Q = Õ(n2α), ` = 2n
1−7α

and sC = O(n1−α) that is guaranteed to us by
Theorem 4.2. We note that n1−α

Q = Ω(n1−4α) ≥ Õ(log |Σ|) = Õ(n1−5α) for a large enough n. Thus,
by applying Theorem 3.1, we get that

Gf : {0, 1}d → {0, 1}a

is a (k, s, ε) metric PEG with d = logm = 5α log n + O(log log n) and a = log |Σ| = Õ(n1−5α) for
k = Ω(n1−7α) and s = n1−α

Q ≥ n1−4α.
Finally, to compute the support of the PEG, we can first compute f at every point in time

O(ncf+1). We then essentially have oracle access to f , and so by Claim 4.5 we can compute the
support in time Õ(n). Thus, overall the time to compute the support is Õ(ncf+1).

Note that an SVN metric PEG is also a metric PEG with the same parameters.

4.4 General Application of Our Paradigm

To conclude this section, we lay out possible settings of parameters for our paradigm for pseudoen-
tropy via list recovery. In the construction of our code we take a locally list decodable code using Q
queries and divide it into m blocks of size a so that m · a = n̄. Denoting s? as the hardness of f ,
then using the idea of decoding via advice pointers, we get that the amount of pseudoentropy is
roughly log ` = s?

m and the pseudoentropy is for circuits of size roughly s?

Q . The seed length of a
PEG constructed this way is logm, and the output length is a. We chose our specific m and a along
with the Reed-Muller code for convenience in nailing down specific details (s? slightly larger than
a, linear encoding time, efficient decoding time as a specific polynomial in Q, etc.). We note that
the entropy rate of our PEG, log `

a , is roughly s?

ma = s?

n̄ . This means that the pseudoentropy rate is
governed by the rate of the LDC, and its relation to the hardness of the message (the hardness of
the pseudoentropy, on the other hand, is governed by the number of queries of the LDC).

Other regimes of m and a may also be of interest. We record the following theorem relating all
the parameters above.
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Theorem 4.8. For a positive integer n, let C : {0, 1}n → (ΣLDC)n be a code that is(
Q, ε, ζ =

1

3
, sLDC, L = O(n)

)
locally list decodable. That is, it is decodable from ε agreement, with error probability 1

3 , using Q queries. Let
s? = s?(n) be some function of n such that for every n, there exists a function f : {0, 1}logn → {0, 1} with
sizeSV N (f) > s?. Finally, let m, a be positive integers.

There exists s0, with s0 = Õ(a · log |ΣLDC|), such that if the following conditions hold,

• m ≥ 1
ε ,

• m · a = n̄,

• s0 ≤ s?

2Q , and

• sLDC ≤ s?

4 ,

then there exists a function
Gf : {0, 1}logm → {0, 1}a·log |ΣLDC|

that is a (k, s, ε) SVN metric PEG for k = Θ
(
s?

m

)
and s = Θ

(
s0

logn

)
= Θ

(
s?

Q logn

)
.16

In Section 5.1 we discuss an instantiation of the above theorem with parameters for improved
quantified derandomization.

To understand the limits of the above theorem, we consider some extreme settings of parameters.
In our general paradigm of splitting an LDC into m blocks of size a, we see that the seed length
of the resulting generator is logm, and that the pseudoentropy is k = Θ

(
s?

m

)
. This suggests that

decreasing m can only improve our result. In the extreme case, we may try to set m = 1. This
would yield a PEG that requires no seed, and outputs Θ(s?) bits of pseudoentropy. However,
examining the analysis, we see this means that for decoding f , we must hardwire as advice a single
compressed string that correctly decompresses via some circuit to all of C(f). In other words, we
get a list recoverable code that can only handle 100% agreement. This yields a trivial error of ε = 1,
and indeed, such a choice does not satisfy the conditions of the above theorem. The slightly less
extreme example of setting m = 1/ε is also problematic, but for a different reason. In this case,
we would supposedly get a seed length of log 1

ε , and about ε · s? bits of metric pseudoentropy.
However, here the third condition of the theorem, namely that s0 ≤ s?

2Q , cannot be satisfied. This is

because we have a = εn̄, and so we require Õ(εn̄ · log |ΣLDC|) ≤ s?

2Q . At the very least, this would
require the hardness s? to be at least Ω(n), and any function can be computed by circuits of that
size.

5 Derandomizing Algorithms That Err Rarely

In Theorem 4.7 we proved that Gf is a metric PEG. This is already useful by itself, e.g., since it
allows us to derandomize algorithms that err rarely.

16The log n factor loss in hardness here comes from the fact that we derandomize the original decoding circuit via an
Adleman-type argument as seen in the proof of Theorem 4.2.
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Claim 5.1. Let C : {0, 1}n → {0, 1} be a circuit of size s for which there exists b ∈ {0, 1} such that C
evaluates to b on at most B = B(n) of its possible inputs. Let X ∼ {0, 1}n be such that Hmetric

s,ε=1/8(X) ≥ k
for k ≥ logB + 3. Then,

Pr[C(X) = 1− b] > 1

2
.

Proof: By Lemma 2.27,

Pr[C(X) = b] ≤ B

2k
+

1

8
≤ 1

4
,

so the claim follows immediately.

Quite surprisingly, since our PEG has a very short seed, we are able to derandomize with almost
no slowdown.

Lemma 5.2. There exists a constant c ≥ 1 such that the following holds. For positive integers n and
t ≥ n,17 let L ⊆ {0, 1}n and let A : {0, 1}n×{0, 1}t → {0, 1} be a probabilistic algorithm running in time
t for which there exists B = B(t) such that for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] ≤ B

2t
.

Let G : {0, 1}d → {0, 1}t be a (k, s, ε = 1/8) metric PEG for s = ct log t and k ≥ logB + 3.
Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time

2dt+ tP , where tP is for computing Supp(G) and can be precomputed for all algorithms with running time
t.

Proof: Fix some x ∈ {0, 1}n and let Cx : {0, 1}t → {0, 1} be the circuit that computes A(x, ·), of size
s. By our assumption on A, Cx outputs 1− L(x) on at most B of its inputs. By Claim 5.1, we know
that

Pr[Cx(G(U)) = L(x)] >
1

2
.

Hence, the standard way of constructing AD would be to first compute the set

I =
{
G(z) : z ∈ {0, 1}d

}
,

which is independent of C so can be though of as a preprocessing step for all circuits of a certain
size, and then run A(x, y) for every y ∈ I . AD would then return the majority vote.

Combining Lemma 5.2 and Theorem 4.7, we get the following corollary.

Corollary 5.3. There exists a constant c̃ ≥ 1 such that the following holds for all positive integers n and
t ≥ n. Assume that for every positive integer w there exists a function f : {0, 1}w → {0, 1} computable
in deterministic time 2cfw for some cf ≥ 1, for which sizeSV N (f) > 2(1−α0)w for some universal constant
α0 <

1
c̃ . Fix any α such that α0 < α ≤ 1

c̃ .

17From here onwards, we assume t ≥ n only for simplicity. When t < n, the circuit that computes A(x, ·) is of size
O(n log n) rather than O(t log t) and s is chosen accordingly.
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Let L ⊆ {0, 1}n and let A : {0, 1}n × {0, 1}t → {0, 1} be a probabilistic algorithm running in time t
such that for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] ≤ 2−t+t
1−c̃α

.

Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time
t1+c̃α + tP , where the tP = t1+cf+O(α) term corresponds to a step that can be precomputed for all algorithms
with running time t.

That is, the derandomization slowdown of every randomized algorithm running in time t which errs with
probability at most 2−t+t

1−O(α) , under our complexity-theoretic assumptions, is at most tO(α).

Proof: Set w = log(t1+cα) for c ≥ 1 soon to be determined, W = 2w, and let f : {0, 1}w → {0, 1} be
the guaranteed hard function. Let

Gf : {0, 1}d → {0, 1}t

be the (k, s, ε = 1/8) metric PEG given in Theorem 4.7 with d ≤ 6α log n. By Theorem 4.7, we know
the output of the PEG is of length Õ(W 1−5α), so we set c such that Õ(W 1−5α) = t which gives
5 < 5

1−5α < c < 6
1−6α , where we assume α < 1

6 . Set c̃ = 8c and set B = 2t
1−c̃α

. Note that

k =
W 1−7α

2
=

1

2
t7cα

2 · t1−(c+7)α + 3 ≥ logB + 3.

Also,
s = W 1−4α ≥ t1+(c−4)α−4cα2 ≥ t1+α−4cα2

= ω(t log t),

since 4cα2 = c̃α2

2 ≤ α
2 . Finally, observe that d ≤ c̃α log n and so the corollary follows from

Lemma 5.2.

5.1 Improved Results from Better Codes and Stronger Assumptions

As mentioned in Section 4.4, our general paradigm allows us to use different LDCs and parameters
for stronger results. We show here that a constant rate LDC that uses no(1) queries, together with
an even stronger hardness assumption can give improved results for quantified derandomization.
Specifically, we assume a function that is hard for randomized SVN circuits of size n1−o(1) and use
the code below due to Kopparty et al., based on multivariate multiplicity codes.

Theorem 5.4 ([KRZSW18], Theorem 6.1). For any constant ε > 0, there exists a code C : {0, 1}W →
(ΣLDC)W=cW with |ΣLDC| = Oε(1) and c = Oε(1) that is(

Q = exp
(
Oε

(
log

3
4 (W )(log log(W ))

1
4

))
, ε, ζ =

1

3
, sLDC = poly(Q), L = O(W )

)
locally list decodable. That is, it is decodable from ε agreement, with error probability 1

3 , using Q = W o(1)

queries. Moreover, C can be encoded in time O(W 2)
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Remark 5.5. In [KRZSW18, Theorem 6.1], the encoding time is stated to be polynomial in W . A close
inspection of their construction gives a runtime of O(W 2), which is useful for an improved derandomization
under stronger assumptions (see Theorem 9.5). Indeed, their construction involves concatenating several
constant rate folded Reed-Solomon codes, a constant rate multivariate multiplicity code, and some codes
found via brute force. Their setting of parameters make the brute force step takes O(W 2) time. One can also
verify that encoding both constant rate folded Reed-Solomon codes and constant rate multivariate multiplicity
codes (with parameters set as in [KRZSW18]) can be done in O(n2) time, for n being the respective code’s
message length. Overall, the concatenation of these codes can be computed in time O(W 2).

Using the above code, and Theorem 4.8 we can get for any W , a new PEG with W 1−o(1) bits of
pseudoentropy against circuits of size W 1−o(1), using only o(1) · logW bits of seed. We can use this
PEG for a stronger quantified derandomization.

Theorem 5.6. Let ε > 0 and let w be a positive integer and set W = 2w. Let Q and c be as in Theorem 5.4.
Set α = α(w) to be such that Wα = Q. That is,

α = Θε

(
logw

w

) 1
4

� logw

w
.

Set m = Q4 and a = W
m = cW

m .
Assume that for every w there exists a function f : {0, 1}w → {0, 1} computable in deterministic time

2cfw for some cf ≥ 1, for which sizeSV N (f) > 2(1−α)w. Then, there exists a function

Gf : {0, 1}logm → {0, 1}a·log |ΣLDC|

that is a (k, s, ε) SVN metric PEG for k = Θ
(
W 1−α

m

)
= Θ

(
W 1−5α

)
= W 1−o(1) and s = Θ

(
W 1−α

Qw

)
=

Θ
(
W 1−2α

w

)
= W 1−o(1).

Proof: Let W be the length of a truth table of a function that is hard for randomized SVN circuits
of size W 1−α for α = α(W ) > 0 for α soon to be determined. Our general paradigm (see Theo-
rem 4.8) of splitting the LDC into m blocks of size a (for m soon to be determined) gives a metric
pseudoentropy generator with

• Pseudoentropy Θ
(
W 1−α

m

)
,

• Hardness Θ
(
W 1−α

Qw

)
, and,

• Output length (in bits) a′ = W
m · log |ΣLDC|.18

Recall that Theorem 4.8 only holds if the hardness is at least Õ(a′). Thus we get the constraint
W 1−α

Qw ≥ W
m log |ΣLDC| ·polylog

(
W
m log |ΣLDC|

)
. The constraint is satisfied if W

1−α

Qw ≥ W
m log |ΣLDC|wc

for some constant c. In other words, we need m ≥ Oε(1) ·QWαwc. Since α is such that Wα = Q,
and m = Q4, the constraint is satisfied.19

18The size of the decoding circuit must also be smaller than W 1−α. Since the size of the decoding circuit is poly(Q),
and Q = W o(1), the condition is met as long as if α is also subconstant.

19We note that smaller m such as Q3 also suffices, however we take Q4 here for convenience in the following corollary.
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Using this PEG, we immediately get an analogue of Corollary 5.3.

Corollary 5.7. Let W,w,α be as in Theorem 5.6. Assume for every w there exists a function f : {0, 1}w →
{0, 1} computable in deterministic time 2cfw for some cf ≥ 1, for which sizeSV N (f) > 2(1−α)w.

For positive integers n and t ≥ n, let L ⊆ {0, 1}n and let A : {0, 1}n × {0, 1}t → {0, 1} be a
probabilistic algorithm running in time t such that for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] ≤ 2−t+t
1−6α

.

Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time
t1+o(1) + tP , where the tP term corresponds to a step that can be precomputed for all algorithms with running
time t.

Proof (sketch): Just as in Corollary 5.3, in order to fool a circuit Cx : {0, 1}t → {0, 1} of size
O(t log t) that errs only on some small set B, we first set W such that t = W 1−4α (note that α is o(1)
both as a function of W and as a function of t). This ensures that the output length of the PEG (with
error ε = 1/8) is

W

Q4
log |ΣLDC| ≤W 1−4α = t.

Padding the length so that it is exactly t yields a distribution with pseudoentropy

W 1−α

Q4
≥W 1−6α = t

1−6α
1−3α ≥ t1−6α

fooling circuits of size

W 1−α

Qw
= W 1−3α = t

1−3α
1−4α ≥ t(1−3α)(1+4α) ≥ t1+O(α) ≥ ω(t log t),

where the last inequality follows from the fact that Q ≥ log t. Thus, we can in indeed fool the circuit
Cx provided the set B is such that logB + 3 ≤ t1−o(1).

As a final note, we mention that we can also use multiplicity codes in our original construction,
however, no parameters besides the hardness of the PEG output will improve unless we also
assume a function which is hard for circuits of size n1−o(1) as above. We used Reed-Muller mainly
for simplicity.

6 Extracting Randomness from Pseudoentropy

To derandomize general algorithms, and not just algorithms that err rarely, we need to convert
pseudoentropy to pseudorandomness (i.e., to bits that are indistinguishable from uniform). When
the pseudoentropy is HILL pseudoentropy one can do this conversion using an extractor [BSW03].
In this section we show how to use an extractor even when the pseudoentropy is metric, by requiring in-
distinguishability by DensityApproxη SVN circuits (see Definition 2.7). A more detailed explanation
follows.

Let X be a distribution over {0, 1}n whose pseudoentropy is at least k. Let Ext : {0, 1}n ×
{0, 1}d → {0, 1}m be an extractor, and let y ∈ {0, 1}d be a typical seed for the extractor. If X has
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high HILL pseudoentropy then there exists a random variableX0 over {0, 1}n whose min entropy is
at least k, andX0 is indistinguishable fromX . If Ext(X, y) were not indistinguishable from uniform,
then there would have been a distinguisher C : {0, 1}m → {0, 1} that distinguishes Ext(X, y) from
uniform. But then D(x) = C(Ext(x, y)) is a distinguisher that distinguishes X from X0 (because
Ext(X0, y) is nearly uniform for almost all y-s). Hence, Ext(X, y) must be pseudorandom when X
has HILL pseudoentropy.

If X only has metric pseudoentropy, there no longer exists a canonical X0. Instead, for every
distinguisher D : {0, 1}n → {0, 1} for X , there is a different variable XD of min entropy k that is
indistinguishable for D. When D(x) = C(Ext(x, y)), the distinguisher, and hence the source of the
extractor, depend on the seed y, and so we have no guarantee on the output of the extractor.

To circumvent this problem, we give a different distinguisher that estimates E[C(Ext(x, Ud))]
rather than use the actual seed y. We remark that this yields a real-valued (rather than Boolean)
distinguisher. However, we can in fact still use a simple Boolean distinguisher: hard-wire E[C(Um)]
and output 1 iff E[C(Ext(x, Ud))] deviates from E[C(Um)] (using DensityApproxη to estimate the
former).

Several comments are due:

• Barak et al. [BSW03] show how one can get high HILL pseudoentropy from a random
variable having high metric pseudoentropy, but their argument has two disadvantages. First,
it loses quite a bit in parameters, which we cannot afford here. Second, it implicitly assumes
metric pseudoentropy for real-valued distinguishers. Unlike HILL pseudoentropy, different
notions of metric pseudoentropy (randomized/deterministic distinguishers, {0, 1}/[0, 1]-
valued distinguishers) do not seem to be equivalent. A number of works address this
issue explicitly and distinguish between each notion of metric pseudoentropy (see, e.g.,
[CKLR11, FR12, FOR15, SGP15]).

• Barak et al. also show how to extract from Yao pseudoentropy, but only if the extractor is
reconstructive. Although our pseudoentropy generator from Section 3 does output bits with
high Yao pseudoentropy, we do not know of a construction of a reconstructive extractor
having nearly-optimal seed length.

Recall the definition of DensityApproxη gates from Definition 2.6. We now formally define
metric? pseudoentropy.

Definition 6.1 (metric? pseudoentropy). Let X be a random variable distributed over {0, 1}n, let s be
a positive integer and η, ε > 0. We say that H

metric?η
s,ε (X) ≥ k if for every circuit D of size s over inputs

of length n, having oracle gates to DensityApproxη, there exists Y ∼ {0, 1}n such that H∞(Y ) ≥ k and
|E[D(X)]− E[D(Y )]| ≤ ε.

For our purposes, taking η = ε will suffice, in which case we denote Hmetric?ε
s,ε (X) = Hmetric?

s,ε (X).

We can then naturally define the notion of a metric? pseudoentropy generator.

Definition 6.2 (metric? PEG). For integers k, s, and error parameters ε, η, we say that G : {0, 1}d →
{0, 1}n is a (k, s, ε) metric?η pseudoentropy generator (PEG) if

H
metric?η
s,ε (G(Y )) ≥ k,
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where Y is the uniform distribution over d bits. We say that G is a strong (k, s, ε) metric?η pseudoentropy

generator if H
metric?η
s,ε (Y ◦G(Y )) ≥ k.

For our purposes, taking η = ε will suffice, in which case we simply say G is a (k, s, ε) metric?

pseudoentropy generator (PEG).

We now prove that one can extract pseudorandomness from metric? pseudoentropy.

Lemma 6.3. For all positive integers s, t, n, k, d,m and a constant ε > 0 the following holds. Suppose
Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k − log 1

ε , ε) extractor so that for every x ∈ {0, 1}n, Ext(x, ·) is
computable by a circuit of size t. LetX be a random variable distributed over {0, 1}n so thatHmetric?

s′,ε (X) ≥ k
for s′ = Õ(s+ t). Then, Ext(X,Ud) 10ε-fools circuits of size s.

Proof: Towards a contradiction, assume there exists a distinguisher C : {0, 1}m → {0, 1} of size s
so that

|E[C(Ext(X,Ud))]− E[C(Um)]| > 10ε.

We define DC : {0, 1}n → {0, 1}, a circuit having a single DensityApproxε gate as follows:

• DC is hardwired with p = E[C(Um)], truncated to
⌈
log 1

ε

⌉
bits, denoted by p̃.

• On input x, DC computes the description of the circuit for C(Ext(x, ·)), having size s+ t.

• The latter description is fed to the DensityApproxε gate, let p̃x be the gate’s output.

• DC returns 1 iff |p̃− p̃x| > 3ε.

The size of DC is Õ(s+ t).
Let px = E[C(Ext(x, Ud))]. By our assumption on C, we have that Ex∼X |px − p| > 10ε, so there

exists a set B ⊆ {0, 1}n satisfying Pr[X ∈ B] > 5ε so that for every x ∈ B it holds that |px − p| > 5ε,
and so also |p̃x − p̃| > 5ε− 2ε = 3ε (where we have 2ε instead of ε due to the truncation of p̃ above).
Hence, E[DC(X)] > 5ε.

Now, by Lemma 2.21, we know that

|{x ∈ {0, 1}n : |px − p| > ε}| < ε · 2k

and so |Supp(DC)| < ε · 2k. Altogether,

Pr[DC(X) = 1]− |Supp(DC)|
2k

> ε,

contradicting the fact that Hmetric?

s′,ε (X) ≥ k.

7 Extractors With Near-Optimal Seed Length

We give an explicit strong seeded extractor with near-optimal (in n) seed that supports min-entropy
n1−α for every α < 1

2 . Specifically, for ε = n−o(1), our seed length is (1 +O(α)) log n, which gives a
left-degree of n1+O(α). A very similar construction was given in [TZS06], but there the analysis was
only done for a constant entropy rate. For our construction we will use three ingredients given in
the following theorems.

The first theorem, due to Ta-Shma, Zuckerman and Safra gives an extractor that achieves seed
length very close to log n; however, it only outputs a small portion of the min-entropy.
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Theorem 7.1 ([TZS06]). For all positive integers n, k, m and ε ≤ 1
2 such that 3m

√
n log n

ε ≤ k ≤ n, there
exists an explicit strong (k, ε) extractor TZS : {0, 1}n × {0, 1}d → {0, 1}Ω(m) for d = log n+O(log 1

ε ) +
O(logm).

The next extractor is Trevisan’s, with improved analysis due to Raz, Reingold and Vadhan. We
use it to output a constant fraction of the min-entropy.

Theorem 7.2 ([Tre01, RRV02]). There exists a constant cTre ≥ 1 such that following holds. For all positive
integers n, k and ε > 0 there exists an explicit strong (k, ε) extractor Tre : {0, 1}n × {0, 1}d → {0, 1}m
for d = cTre log2 n

ε and m = k
4 .

Lastly, we will need the following condenser by Reingold, Shaltiel and Wigderson whose
purpose is to output a shorter string than the input source with the same entropy rate, using a very
short seed.

Theorem 7.3 ([RSW06]). There exist constants cRSW ≥ 1 and 0 < γRSW < 1 such that the following
holds. For all positive integers n, k, r and ε ≥ cRSW

√
r
k there exists an explicit strong (k, k′ = γRSW

k
r , ε)

condenser RSW : {0, 1}n × {0, 1}d → {0, 1}m for d = cRSW(log log n+ log r + log 1
ε ) and m = n

r .

Our construction, following [TZS06], proceeds along a familiar paradigm. The extractor TZS
uses a short seed but extracts relatively few bits, whereas the extractor Tre outputs a constant
fraction of the min-entropy but requires a long seed. We are able to utilize both advantages without
suffering the drawbacks by using RSW, with a very short seed, to condense the source X . The out-
put length of RSW will be only half the min-entropy, enabling us to use TZS to extract (from the same
X) a seed for Tre. Namely, our extractor outputs Ext(X,Y1 ◦ Y2) = Tre(RSW(X,Y1),TZS(X,Y2)),
where Y1 and Y2 are independent uniform seeds. Note that RSW(X,Y1) and TZS(X,Y2) can be
dependent, however we will argue that they are close to being independent, and therefore we can
apply Tre.

We are now ready for the details. We are given a positive integer n, ε > 0, α < 1
2 , and k ≥ n1−α.

As promised, we will make use of the following ingredients.

• The strong (k, γRSW
k
r , ε) condenser RSW : {0, 1}n × {0, 1}d1 → {0, 1}m1 for r = 2nα, where

m1 = 1
2n

1−α and d1 = cRSW(log log n+log(2nα)+log 1
ε ). We require ε ≥ cRSW

√
r
k = Ω

(
1

n
1
2−α

)
.

• The strong (k′, ε) extractor TZS : {0, 1}n × {0, 1}d2 → {0, 1}d3 where k′ = 1
4n

1−α, d3 =
cTre log2 m1

ε = O(log2 n
ε ) and d2 = log n + O(log 1

ε ) + O(log d3). Note that indeed k′ is large
enough.

• The strong (k′′, ε) extractor Tre : {0, 1}m1 × {0, 1}d3 → {0, 1}m for k′′ = γRSW
2 n1−2α and m =

k′′

4 = γRSW
8 n1−2α.

Given x ∈ {0, 1}n, y1 ∈ {0, 1}d1 and y2 ∈ {0, 1}d2 , we output

Ext(x, y1 ◦ y2) = Tre(RSW(x, y1),TZS(x, y2)).

Theorem 7.4. There exists a constant c ≥ 1 such that the following holds. The function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m above is an explicit strong (k, ε) extractor for any positive integer n, 0 < α < 1

2 ,
k ≥ n1−α, and ε ≥ cn−

1
2

+α, where d = (1 + cα) log n+ c log(1
ε ) and m = 1

cn
1−2α.

35



Proof: The proof will mimic block-source extraction techniques, but is self-contained. Denote
A = RSW(X,Y1) and B = TZS(X,Y2). By the properties of TZS, we know that

(B, Y2) ≈ε Ud3 × Y2.

By the properties of RSW, there exists A′, which is ε-close to A, for which H∞(Y1 ◦ A′) ≥ k′′ + d1

(note that A′ depends on Y1). By Lemma 2.16, and since X and Y1 are independent,

H̃∞(X|Y1 ◦A′) ≥ H∞(X)−m1 =
1

2
n1−α ≥ 1

4
n1−α + log

1

ε
.

Since X and Y2 are independent of each other and of Y1, and since A′ is independent of Y2, we
know that X , Y2 are also independent conditioned on Y1 ◦A′. Applying Lemma 2.18 on the strong
extractor TZS we get that

(A′, B, Y1, Y2) ≈2ε (A′, Ud3 , Y1, Y2).

Applying Tre, we deduce that

(Tre(A′, B), Y1, Y2) ≈2ε (Tre(A′, Ud3), Y1, Y2).

Now, Tre(A′, Ud3) ≈ε Um so by the triangle inequality,

(Tre(A′, B), Y1, Y2) ≈3ε (Um, Y1, Y2).

Accounting for the distance between A and A′, we finally get that

(Ext(X,Y1 ◦ Y2), Y ) ≈4ε (Um, Y ),

as desired. To conclude, observe that

d = d1 + d2 = (1 +O(α)) log n+O

(
log

1

ε

)
.

The explicitness follows from the explicitness of each component.

7.1 Computing the Extractor by a Small Circuit

Usually, when constructing extractors, we require the computation to be done in polynomial time
or in linear space. In this work, we must exercise a more fine-grained analysis, since the size it takes
to compute Ext corresponds to the minimal circuit size we will be able to fool with a nearly-optimal
small slowdown (see Lemma 6.3 for the precise parameters). We prove that there exists a circuit of
nearly-linear size that computes Ext. But before doing so, we will need to argue that a few basic
pseudorandomness primitives are also computable in nearly-linear size.

7.1.1 Efficient Asymptotically-Good Codes

An asymptotically-good code is a family of binary codes having a constant rate and a constant
relative distance. An example is Justesen’s code [Jus72].
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Lemma 7.5 (following [Jus72]). There exists a constant 0 < δ < 1 such that the following holds. For
every positive integer n there exists an explicit [n̄, n, δ]2 code CJus : {0, 1}n → {0, 1}n̄ of rate n

n̄ ≥ δ.
Moreover, for every positive integer n there exists a circuit Cn of size Õ(n) so that for every x ∈ {0, 1}n,

Cn(x) computes CJus(x).

Proof: The code is constructed as follows. For some n̄ = O(n) and m = O(log n), let Fq be a finite
field of cardinality q = 2m. Set k = n

m , k̄ = n̄
2m and let {α1, . . . , αk̄} be some distinct elements of F?q .

Given x ∈ {0, 1}n ≡ Fkq , let px be the univariate polynomial px(α) =
∑k−1

i=0 xiα
i. Then, the encoding

is given by
CJus(x) = ((px(α1), α1px(α1)), . . . , (px(αn̄), αn̄px(αn̄))) ∈ {0, 1}k̄ ,

where we interpreted each element of F1 as a string in {0, 1}m. The fact that the Justesen’s code
is asymptotically good (i.e., that one can take such parameters and maintain a constant relative
distance) is by now standard [Jus72, GRS19], but we still need to justify that fact that the encoding
can be done via a small circuit.

For simplicity, consider hardwiring {α1, . . . , αk̄}, which takes mk̄ +O(1) = O(n) bits. Each bit
of CJus(x) is obtained by evaluating px on some αi, either multiplying by αi or not, and then taking
a specific coordinate in the resulting element’s binary encoding. For the evaluation step, we can use
fast univariate multi-point evaluation which can be done by a circuit of size k̄ · poly(log q) = Õ(n)
(see, e.g., [vzGG13, Section 10]). All other operations can be done, per output bit, by a circuit of
size poly(log q), so overall computing CJus(x) can be done by a circuit of size Õ(n).

7.1.2 Efficient List-Decodable Codes

Good binary list-decodable codes are implied by explicit construction of small ε-balanced codes
close to the Gilbert-Varshamov (GV) bound. We will not define these object explicitly, and just say
that they give rise to (1

2 − ε, ε
−2) list-decodable codes of length n

εc for some constant c ≥ 2. The
constant c, as well as achieving small rate with non-optimal dependence on n, has been subject to
an important research. Naor and Naor [NN93] obtain c = 3, and Ta-Shma [Ta-17] recently achieved
a near-optimal c = 2 + α for every constant α > 0. For our construction we use the following code
having c = 4 + α for every constant α > 0 (for simplicity, we state it for c = 5). The construction,
based on distance amplification via expander walks, is given in [Ta-17] and was inspired by an
unpublished result by Rozenman and Wigderson.

Lemma 7.6 (following [Ta-17]). For every positive integer n and ε = ε(n) there exists a binary error
correcting code C : {0, 1}n → {0, 1}n̄ which is (1

2 − ε, ε
−2) list-decodable, for n̄ = O( n

ε5
), computable by a

circuit Cn of size Õ(n̄).

Proof: Let CJus : {0, 1}n → {0, 1}cn be Justesen’s code, given to us in Lemma 7.5, for some constant
c > 1. Let G = (V = [cn], E) be a Ramanujan λ-expander of degree D, where we take D to be a
large enough constant so that λ is half the bias of CJus.20 We think of every vertex v ∈ V as being
labeled with some row of the cn× n generating matrix AJus of CJus. We refer to that labelling by
l(v) ∈ {0, 1}n.

20By Ramanujan here we mean that λ is optimally related to the degree D, i.e., λ ≈ 2√
D

. We do not insist on having

λ ≤ 2
√
D−1
D

and do allow some slackness, and such graphs exist for every n [F+03].
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We now describe how one obtains each row of the n̄ × n generating matrix A of C. For
t = 5 logD

1
ε , each such row is the sum, modulo 2, of the codewords that appear along a length-t

walk over G. That is, each row out of the n̄ = n ·Dt = n
ε5

possible rows is indexed by some path
pi = vi0 ∼ . . . ∼ vit in G and its value is

t∑
j=0

l(vij) ∈ {0, 1}
n .

Thus, given x ∈ {0, 1}n, computing C(x) is done by outputting

Ax =

P
†
1
...
P †n̄

 ·AJus · x,

where Pi is the vector of length cn in which Pi(v) = 1 wherever v ∈ pi and 0 elsewhere.
For simplicity, consider hardwiring the encoding of each of the n̄ possible paths. That is, for

every i ∈ [n̄] we keep a string of length (t+ 1) log(cn) storing the vertices along pi. This hardwiring
takes Õ(n̄) bits overall. Now, given x ∈ {0, 1}n, computing AJus · x = CJus(x) is done once, which
by Lemma 7.5 can be computed with a circuit of size Õ(n). To get C(x) from CJus(x) we need to
sum, for each i ∈ [n̄], the t+ 1 coordinates in CJus(x) that corresponds to the path pi. As we have
those coordinates hardwired, it takes only Õ(tn̄) = Õ(n̄) size, and overall the lemma follows.

We note that if we insist on a uniform computation of C we can still work with good enough
explicit expanders and compute the vectors pi instead of fixing them (see Theorem 2.23). This would
take Õ( nεc ) time and possibly deteriorate the constant c by a bit.

7.1.3 Almost k-wise Independent Sample Spaces

Definition 7.7 (almost k-wise distribution). A distribution (X1, . . . , Xn) over {0, 1}n is (k, ε, p) inde-
pendent if for every subset {i1, . . . , ik} ⊆ [n], (Xi1 , . . . , Xik) is ε-close to the distribution over k-bit strings
where all bits are independent and each of them takes the value 1 with probability p.

Constructing almost k-wise distribution with optimal support size, at least for the p = 1
2 case, is

well-known. In what follows, we argue that sampling from the support of such a distribution can
be done by a small circuit. For simplicity, we restrict ourselves to the case of k = 2.

Lemma 7.8. For every positive integer n, ε = ε(n) and q = q(n) the following holds. Set ` = 2q 4q2 log2(qn)
ε2

.
Then, there exists a circuit Cn : [`] → {0, 1}n of size Õ(qn + 2q logn

ε2
) such that for every y ∈ [`], Cn(y)

computes the y-th element of a (2, ε, 2−q) independent sample space in some fixed order.

Proof: Constructing almost k-wise sample spaces for p = 1
2 is done by combining truly k-wise

independence and small-bias sample spaces. Following, e.g., [RSW06], we unfold the extension to
a general p = 2−q and argue that it can be done efficiently. Set h = 2q log(qn), and so ` = ( hε′ )

2 for
ε′ = 2−q/2ε. We use the following two ingredients:
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• Let B ⊆ {0, 1}h be an ε′-biased sample space.21 Alon et al. [AGHP92] gives us a simple
construction with support size `.

• Let A be the nq × h generator matrix of a (2q, 0, 1
2) independent sample space. The matrix A

is some suitable Vandermonde matrix, converted to F2 in a canonical way.

Then, given y ∈ [`], we output the y-th element of the almost k-wise sample space as follows.

1. Let x ∈ {0, 1}h be the y-th element of B. As B is small (and of course, independent of y) we
can hardwire B into our circuit, and it takes only O(`h) bits.

2. Compute w = Ax ∈ {0, 1}nq. The matrix-vector multiplication can be done efficiently,
exploiting the special structure of A. Specifically, one can use discrete Fourier transform to
compute w by a circuit of size Õ(nq).

3. Partition w into n consecutive blocks W1, . . . ,Wn, each of length q. Output z ∈ {0, 1}n such
that zi = 1 if and only if all the bits in Wi are 1. This step can be implemented by a circuit of
size O(nq).

Overall, the three steps above can be implemented by a circuit of size Õ(nq) + O(`h) = Õ(qn +
2q logn

ε2
), as required.

Again, a note about uniform computation is in order. Here too we have an algorithm running
in time Õ(n+ 2q) · poly(1

ε ), by explicitly computing the y-th element of B. We skip the details.

7.1.4 Efficiently Computing Ext

Finally, we are ready to prove that Ext can be computed by a small circuit.

Lemma 7.9. There exists a constant c ≥ 1 such that the following holds. Let Ext : {0, 1}n × {0, 1}d →
{0, 1}m be the (k = n1−α, ε) strong extractor given in Theorem 7.4. For any fixed x ∈ {0, 1}n, the function

Ext(x, ·) : {0, 1}d → {0, 1}m

can be computed by a circuit Cx of size Õ( nεc ), and it takes a circuit of size Õ( nεc ) to compute the encoding of
Cx.

Proof: We keep the same notation as in our construction.

• The extractor TZS : {0, 1}n × {0, 1}d2 → {0, 1}d3 from Theorem 7.1 is computed as follows.
For x ∈ {0, 1}n and y2 ∈ {0, 1}d2 , we view x as a bivariate polynomial fx : F2 → F of total
degree h ≈

√
n where |F| = h · poly(d3/ε). Then, for each i ∈ [d3],

TZS(x, y2)i = C(fx(a1 + i, a2))j ,

where y2 is interpreted as (a1, a2, j) ∈ F2 × [`] and C : F→ [`] is (1
2 − ρ, ρ

−1) list decodable for
ρ = Ω(ε2/d2

3). Given x ∈ {0, 1}n, evaluating fx on d3 inputs can be naively done by a circuit
of size d3 ·h2 ·polylog(|F|) = Õ(n log 1

ε ). Applying C, by Lemma 7.6 takes size Õ( n
ρ5 ) = Õ( n

ε10 ).

Thus, Õ( n
ε10 ) is also the size it takes to prepare the encoding of the circuit that computes

TZS(x, ·).
21Namely, for any nonempty S ⊆ [h], we require that

∣∣Prb∼B [
⊕

i∈S bi = 1]− 1
2

∣∣ ≤ ε.
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• The condenser RSW : {0, 1}n × {0, 1}d1 → {0, 1}m1 from Theorem 7.3 can be computed as
follows. Let CJus : {0, 1}n → {0, 1}n̄=O(n) be Justesen’s code from Lemma 7.5. Let{

Sy ∈ {0, 1}n̄ : y ∈ {0, 1}d1

}
be a (2, ε, p) independent sample space for p = Θ(m1

n̄ ), where we identify each Sy as a
subset of [n̄]. We also require that |Sy| = pn for every y. Although it is not guaranteed by
the construction of Lemma 7.8, [RSW06] show that enforcing this constraint by adding or
removing arbitrary indices from each set is good enough. For x ∈ {0, 1}n and y1 ∈ {0, 1}d1 ,
the construction is given by

RSW(x, y1) = C(x)Sy1 .

Computing the encoding of a circuit that computes RSW(x, ·) starts by computing C(x),
which can be done in size Õ(n) using Lemma 7.5. On input y1, computing C(x)Sy1 can be
implemented in size Õ(n̄ log 1

p + log n̄
pε2

) = Õ( n
ε2

), by Lemma 7.8. Thus, it takes Õ( n
ε2

) size to
compute the encoding of the circuit RSW(x, ·), which is also an upper bound on its size.

• The extractor Tre : {0, 1}m1 × {0, 1}d3 → {0, 1}m goes as follows. Let C : {0, 1}m1 → {0, 1}m1

be a (1
2 − ρ, ρ

−2) list decodable code, for ρ = Ω(ε/m). Let

{Si ⊆ [d3] : i ∈ [m]}

be a weak design, wherein each |Si| = log(m1) and for all i 6= j,
∑

j<i 2|Si∩Sj | ≤ 2m. Then,
given x ∈ {0, 1}m1 and y ∈ {0, 1}d3 , for each i ∈ [m] we have that

Tre(x, y)i = x̂(y|Si),

where we denoted x̂ = C(x). Given x ∈ {0, 1}m1 and y ∈ {0, 1}d3 , a circuit outputting Tre(x, y)
can be constructed as follows. The sets S1, . . . , Sm can be hard-coded to the circuit, which
takes m · d3 = O(n) bits. As m1 is large, we should not compute x̂ in full, but rather compute
y|S1 , . . . , y|Sm at first, and then proceed to computing x̂(y|S1), . . . , x̂(y|Sm).

Computing y|S1 , . . . , y|Sm is immediate once we have S1, . . . , Sm and can be done in size
O(md3) = O(n). For computing x̂(y|S1), . . . , x̂(y|Sm), we revisit the proof of Lemma 7.6. We
see that we can first compute CJus(x), by a circuit of size Õ(m1) = O(n), and then for every
z = y|Si ∈ {0, 1}

log(m1), we interpret z as a walk pz of length t = O(log m
ε ) over an expander

with fully-explicit neighbourhood function (see Theorem 2.23). This takes size polylog(n, 1
ε ).

From pz we can compute x̂(z) as described in the proof of Lemma 7.6. We conclude that a
circuit of size O(n) suffices to compute Tre.

Overall, accumulating the sizes, the lemma follows.

Our extractor is also time-efficient.

Lemma 7.10. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be the (k = n1−α, ε) strong extractor given in
Theorem 7.4. Then, given x ∈ {0, 1}n and y ∈ {0, 1}d, Ext(x, y) is computable in time Õε(n).

We skip the details, and just note that to derive Lemma 7.10 from the above discussion, it
is left to verify that computing the weak design can be done efficiently. Indeed, inspecting the
construction of [RRV02], this can be done in time m · polylog(n) = O(n).
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8 PRGs With Nearly Optimal Slowdown

8.1 A Pseudoentropy Generator for Stronger Distinguishers

From Section 6, we see that in order to obtain pseudorandomness via extraction, we need pseu-
doentropy against a stronger model of circuits. Namely we need metric? pseudoentropy. We now
show that under a stronger hardness assumption on f (namely hardness against SVN circuits
with DensityApprox gates), we can construct a PEG for metric? pseudoentropy. Before, we showed
that we can generate a random variable with high metric pseudoentropy by first generating a
random variable with high NYao pseudoentropy and applying Lemma 2.31. We follow the same
framework of going through Yao pseudoentropy via list recoverable codes, and we slightly change
the hardness assumptions and definitions to handle SVN circuits with DensityApprox gates.

Definition 8.1. (NYao?η sets) For positive integers s, n and `, a constant 0 < η < 1, and A ⊆ {0, 1}n, we

say that A ∈ CNYao?η
`,s , if there exists a circuit c : {0, 1}n → {0, 1}` and a DensityApproxη SVN circuit

d : {0, 1}` × {0, 1}wd → {0, 1}n computing a partial function fd : {0, 1}` → {0, 1}n ∪ {⊥}, both c and d
are of size at most s, and

A = {x : fd(c(x)) = x} .

We refer to c as the compressing circuit and to d as the decompressing one.

Definition 8.2 (NYao?η pseudoentropy). Let X be a random variable distributed over {0, 1}n, a positive

integer s, and ε, η > 0. We say that H
NYao?η
s,ε (X) ≥ k if for every ` < k and A ∈ CNYao?η

`,s ,

Pr[X ∈ A] ≤ 2`−k + ε.

For our purposes, taking η = ε will suffice, in which case we denote H
NYao?η
s,ε (X) = HNYao?

s,ε (X).

It is easy to verify that, just as before, high NYao?η pseudoentropy still implies high metric?

pseudoentropy (with a nearly identical proof).

Lemma 8.3. There exists a constant 0 < γ < 1 such that the following holds. Let X be a random variable
distributed over {0, 1}n and ε > 0. There exists s0 = Õ(n) such that for every s ≥ s0, HNYao?

s,ε (X) ≥ k

implies Hmetric?
γs,ε (X) ≥ k

2 .

Proof: We only point out the slight changes to the proof of Lemma 2.31.
Assuming towards a contradiction that Hmetric?

γs,ε (X) < k
2 we invoke Lemma 2.27, to conclude

that there exists an SVN circuit using oracle gates to DensityApproxε, with small support, that
distinguishes X from uniform. Using the same hash function construction as in Lemma 2.31, this
implies that there exist compressor and decompressor circuits c, d, where c simply computes the
hash function, and d uses nondeterminism to guess the inverse of the hash function and then
uses D to check if the inverse is in Supp(D). Noting that d is a DensityApproxε SVN circuit gives
HNYao?
s,ε (X) < k.

We can now construct a PEG for metric? pseudoentropy by following the same steps as in
Section 3. For some fixed ε > 0, let f : {0, 1}logn → {0, 1} be such that every SVN circuit with oracle
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gates to DensityApproxε computing f has size at least n1−α0 for some constant α0 <
1
6 . That is,

sizeSV N?
ε
(f) ≥ n1−α0 . Let

C : {0, 1}n → Σm

be some error correcting code. Define Gf : [m]→ Σ ≡ {0, 1}log |Σ| so that

Gf (z) = C(f)z,

where we identify f by its truth-table in {0, 1}n.

Theorem 8.4. Keeping the above notation, let ε, α be constants such that ε > 0 and α0 < α ≤ 1
6 . Assume

C is (Q, ε, `, sC) locally list recoverable so that sC = O(n1−α), and n1−α

Q ≥ s0 for some s0 = Õ(log |Σ|),
where the precise Õ(·) dependence is determined by Lemma 2.31. Then, Gf is a strong (k, s, ε) metric? PEG
for k = log `

2 and s = O
(
n1−α

Q

)
.

The proof of the above theorem is identical to that of Theorem 3.1, but at the final step, we
invoke our newly proven Lemma 8.3 instead of Lemma 2.31. Again, combining Theorem 4.2 with
the above result gives the following.

Theorem 8.5. For a constant ε > 0 and every positive integer n the following holds. Assume

f : {0, 1}logn → {0, 1}

is such that sizeSV N?
ε
(f) > n1−α0 for some constant α0 <

1
6 . Let α be any constant such that α0 < α ≤ 1

6 .
Then, there exists a function

Gf : {0, 1}d → {0, 1}m

that is a (k, s, ε) metric? PEG for k = n1−7α

2 , s ≥ n1−4α, d = 5α log n+O(log log n) and m = Õ(n1−5α).
Given oracle access to f , the support of Gf takes Õ(n) time to compute. Moreover, if f ∈ DTIME(ncf )

for some cf ≥ 1, the support of Gf can be computed in time Õ(ncf+1).

8.2 Constructing the PRG

All ingredients are now in place for our PRG transforming almost all the hardness to pseudorandom
bits using a nearly optimal seed length.

Theorem 8.6. There exists a constant c ≥ 7 such that the following holds for every positive integer n and
a constant ε > 0. Assume f : {0, 1}logn → {0, 1} satisfies sizeSV N?

ε/10
(f) > n1−α0 for some universal

constant α0 <
1
c . Let α be any constant such that α0 < α ≤ 1

c . Then, there exists a function

G
f

: {0, 1}(1+cα) log s → {0, 1}s

which is an ε-PRG against circuits of size s = n1−cα.
The support of Gf can be computed in time s

2+cα
1−cα given oracle access to the truth table of f . Moreover,

if f ∈ DTIME(scf ) for some cf ≥ 1 then the support of Gf can be computed in time s
ζ

1−cα for ζ =
max{2 + cα, cf + 1}.

42



Proof: Set ε′ = ε
10 . Let

Gf : {0, 1}d1=6α(1+ 7
2
α) log s′ → {0, 1}m1

be the (k, s′, ε′) metric? PEG guaranteed by Theorem 8.5, where s′ = n1− 7
2
α, m1 = n1−4α and

k = n1−8α. Let
Ext : {0, 1}m1 × {0, 1}d2 → {0, 1}m

be the (k − log 1
ε′ , ε

′) extractor guaranteed to us by Theorem 7.4,22 so that for every x ∈ {0, 1}m1 ,
Ext(x, ·) is computable by a circuit of size t = Õε(m1) = o(s′). By Theorem 7.4, d2 = (1 +
c2α) logm1 +Oε(1) and m = m1−c2α

1 for some universal constant c2 ≥ 1. Let

G
f

: {0, 1}d=d1+d2 → {0, 1}m

be such that for (y1, y2) ∈ {0, 1}d1 × {0, 1}d2 ,

G
f
(y1, y2) = Ext(Gf (y1), y2).

Denote X = Gf (Ud1). By the properties of the PEG, Hmetric?

s′,ε′ (X) ≥ k. Thus by Lemma 6.3, there
exists a c′ = Õ(1) (where the Õ hides factors of log(s+ t)) such that Ext(X,Ud2) 10ε′-fools circuits
of size s = 1

c′ s
′ − t ≥ 1

2c′ s
′ ≥ 1

2n
1−( 7

2
+.001)α. Note that m = n(1−4α)(1−c2α) ≤ s, and that

d = d1 + d2

= 6α

(
1 +

7

2
α

)
log s′ + (1 + c2α) logm1 +Oε(1)

≤ 6α

(
1 +

7

2
α

)
log s+ (1 + c2α)

(
1− 7

2
α

)
(1− 4α)(1 + 7α) log s+Oε(1)

≤
(

6α+
6 · 7

2
α2

)
log s+ (1 + 3α+ 4αc2) log s+Oε(1)

≤ 10α log s+ (1 + 3α+ 4αc2) log s

≤ (1 + 13α+ 4αc2) log s,

where we use the fact that α ≤ 1
7 . The first part of the theorem then holds by taking c =

max
{

4c2 + 13, 7
2 + .001

}
= 4c2 + 13.

Finally, we address the time it takes to compute the support of Gf . If we are given oracle
access to f , it requires Õ(n) = Õ(s

1
1−cα ) time to compute the support of the PEG Gf . If we assume

f ∈ DTIME(scf ), then it takes time ncf+1 = s
cf+1

1−cα to compute f at every input and so overall it
takes time

Õ

(
s
cf+1

1−cα

)
to compute the support of the PEG. By Lemma 7.10, the extractor takes time Õε(m1) on a single
seed. To compute the support of Gf , we compute the support of the PEG, and for every element of
the support, we run the extractor on every seed. This takes time

Õ(n5α) · 2d2 · Õε(m1) = Õε

(
n5αm2+c2α

1

)
= Õε

(
n5α+(1−4α)(2+c2α)

)
≤ s

2+cα
1−cα .

22One can achieve this by invoking Theorem 7.4 with, for example, k′ = n1−(8.001)α
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Thus overall, if we have oracle access to f , computing the support of Gf takes time s
2+cα
1−cα . If we

assume f ∈ DTIME(scf ), then it takes time s
ζ

1−cα for ζ = max{2 + cα, cf + 1}.

Indeed, PRGs allow for a black-box derandomization, and ours allow for a black-box deran-
domization with only an almost linear slowdown.

Theorem 8.7. There exists a constant c̃ ≥ 1 such that the following holds. Let L ⊆ {0, 1}n and
A : {0, 1}n × {0, 1}t → {0, 1} be a probabilistic algorithm running in time t = t(n) ≥ n such that
for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] <
1

2
− ε

for some constant ε > 0. Assume for every positive integer m there exists a function f : {0, 1}m → {0, 1}
computable in deterministic time 2cfm for some cf , for which sizeSV N?

ε/10
(f) > 2(1−α0)m for some universal

constant α0 <
1
c̃ . Let α be such that α0 < α ≤ 1

c̃ .
Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time

t2+c̃α + tP ,

where the term tP = tγ(1+c̃α) for γ = max{2 + c̃α, cf + 1} corresponds to a step that can be precomputed
for all algorithms with running time t. That is, the slowdown of every randomized algorithm running in
time t, under our complexity-theoretic assumptions, is at most t1+O(α).

Proof: Let c be the constant guaranteed to us by Theorem 8.6 and set c′ = c+1
1−c2α > 0. Set m =

log(t1+c′α), M = 2m, and let f : {0, 1}log(t1+c′α) → {0, 1} be the guaranteed hard function. Let

G
f

: {0, 1}d=(1+cα) log s → {0, 1}s

be the ε-PRG fooling circuits of size s guaranteed to us by Theorem 8.6, with s = M1−cα. We
note that s ≥ t1+α = ω(t log t). Furthermore, we can see that d ≤ (1 + c′α) log t since d =
(1 + cα)(1− cα) logM < logM , and (1 + c′α) log t = logM .

Consider truncating the output length of Gf down to length t. Fix some x ∈ {0, 1}n and let
Cx : {0, 1}t → {0, 1} be the circuit that computes A(x, ·), of size s. By the properties of the PRG,∣∣∣Pr[Cx(Ut) = 1]− Pr[Cx(G

f
(Ud)) = 1]

∣∣∣ ≤ ε,
so for x ∈ L, Pr[Cx(G

f
(Ud)) = 1] > 1

2 and for x /∈ L, Pr[Cx(G
f
(Ud)) = 1] < 1

2 . Hence, the standard
way of constructing AD would be to first compute the set

I =
{
G
f
(z) : z ∈ {0, 1}d

}
,

which is independent of Cx so can be thought of as a preprocessing step for all circuits of a certain
size, and then run A(x, y) for every y ∈ I . AD would then accept if and only if the majority of runs
returned 1. The parameters immediately follow.

The time tP represents the time it takes to compute the support of the PRG. As Theorem 8.6

states, computing the support of the PRG takes time s
γ′

1−cα = tγ
′(1+c′α), for γ′ = {2 + cα, cf + 1}.

The theorem holds by setting c̃ = max{c2, c′, 7}.
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9 Assuming Hardness for Randomized SVN Circuits

Having access to true randomness, we can solve DensityApproxη efficiently by randomly sampling
inputs to the circuit whose density we wish to approximate. This motivates using a hardness
assumption for randomized SVN circuits (see Definition 2.4).

Lemma 9.1. Let f : {0, 1}n → {0, 1} be computable by an SVN circuit of size s = s(n) having oracle
gates to DensityApproxη for some fixed constant η > 0. Then, for any 0 < δ < 1

2 , f is computable by a
randomized SVN circuit with error δ, and size O(s log s log 1

δ ).

Proof: Let C : {0, 1}n × {0, 1}w → {0, 1} be the SVN circuit of size s that computes f and uses Q
oracle queries to DensityApproxη. Set d = c log(Q/δ)

η2 s for a constant c > 0 to be determined later, and

let C ′ : {0, 1}n × {0, 1}w × {0, 1}d → {0, 1} be the circuit that gets as input x ∈ {0, 1}n, y ∈ {0, 1}w

and r = (r1, . . . , rQ) ∈ {0, 1}d and is constructed as follows.
The circuit C ′ acts like C (both the check phase and the compute phase), however the i-th

DensityApproxε gate gi is replaced with the following circuit Gi. Let Zi be the input circuit to gi.
Notice that

∑
i∈[Q] size(Zi) ≤ s.

We let ri = (r1
i , . . . , r

T
i ) be the randomness to Gi, for T = c log(Q/δ)

η2 . Note each |rji | ≤ |zi|. On ri,

Gi computes Zi(rji ) for j ∈ [T ] and computes the average over outputs, truncated to dlog 1
ε + 1e bits.

Note that the size of Gi is at most T · size(Zi) + size(Zi) and so the size of C ′ is at most T · s + s.
Using the fact that Q ≤ s, we get that the total size of C ′ is at most O(s log s log 1

δ )
For correctness, fix some input x. As C is an SVN circuit, there exists some y ∈ {0, 1}m for

which C(x, y)check = 1, and whenever C(x, y)check = 1 it holds that C(x, y) = f(x). Fix any y such
that C(x, y)check = 1. By the Chernoff bound, there exists a constant c > 0 for which

Pr
ri∼U

∣∣∣∣∣∣ 1

T

T∑
j=1

Zi(r
j
i )− E(Zi)

∣∣∣∣∣∣ > η

2

 ≤ δ

Q

for every i ∈ [Q]. Thus, by a union bound, we are guaranteed that with probability at least 1− δ
over r ∼ Ud, all Gi-s return an η-approximation of E(Zi).

Let GC be the set of all y-s for which C(x, y)check = 1. Let GC′ be the set of all y-s for which
Prr∼Ud [C

′(x, y, r)check = 1] ≥ 1− δ. First, suppose y ∈ GC . Then we know that if all Gi-s return an
η-approximation of E(Zi), then C ′ must behave exactly like C. Therefore, Prr∼Ud [C

′(x, y, r)check =
1] ≥ 1−δ and so y ∈ GC′ . Next, suppose y 6∈ GC . ThenC(x, y)check = 0. Again, if all Gi-s return an η-
approximation of E(Zi), thenC ′ must also output 0 as the check flag. Thus, Prr∼Ud [C

′(x, y, r)check =
0] ≥ 1− δ. Since δ < 1

2 , this means that on witness y, the circuit C ′ cannot also output 1 as the check
flag with probability at least 1− δ, so y 6∈ GC′ .

The argument above shows that GC = GC′ . Moreover, it shows that for every x, y, either
Prr∼Ud [C

′(x, y, r)check = 1] ≥ 1− δ or Prr∼Ud [C
′(x, y, r)check = 1] ≤ δ. Thus C ′ is a proper random-

ized SVN circuit computing f(x).

Observing that our definition of randomized and DensityApprox SVN only has the checking
circuit use the randomness or oracle gates (with the compute phase only using the witness), we can
show that the converse also holds.

45



Lemma 9.2. Let η > 0 be any constant, and let 1
2 − η > δ > 0. Let f : {0, 1}n → {0, 1} be computable by

a randomized SVN circuit C of size s = s(n) with error δ. Then, f is also computable by a DensityApprox

SVN circuit of size Õ(s) using one DensityApproxη gate.

Proof: Consider the following DensityApprox SVN circuit C ′. The compute circuit of C ′ is identical
to that ofC. The check circuit ofC ′, on input x, y, computes a description ofC(x, y, ·)check, and feeds
that description into a DensityApproxη. The check outputs 1 if the output of the DensityApproxη
gate is at least 1

2 , and outputs 0 otherwise.
Since for every y we have Prr∼Ud [C(x, y, r)check = 1] ≥ 1− δ or Prr∼Ud [C(x, y, r)check = 1] < δ,

the DensityApproxη gate is accurate enough to distinguish between the two. Since the description
of C(x, y, ·)check is at most Õ(s), the overall size of C ′ is Õ(s).

Utilizing Lemma 9.1 we can rephrase Theorem 8.6 and Theorem 8.7 with our new hardness
assumption. Note that by inspecting Lemma 9.1 we can take the error of the randomized SVN

circuit to be quasi-polynomially small in the input length (e.g. δ = 2− logc
′
n for any constant c′).23

Theorem 9.3. There exists a constant c ≥ 7 such that the following holds for every positive integer n and
a constant ε > 0. Assume f : {0, 1}logn → {0, 1} requires randomized SVN circuits for error δ, of size
n1−α0 for some universal constant α0 <

1
c , and δ = 2− logc

′
n for an arbitrary constant c′. Let α be any

constant such that α0 < α ≤ 1
c . Then, there exists a function

G
f

: {0, 1}(1+cα) log s → {0, 1}s

which is an ε-PRG against circuits of size s = n1−cα.
The support of Gf can be computed in time s

2+cα
1−cα given oracle access to the truth table of f . Moreover,

if f ∈ DTIME(scf ) for some cf ≥ 1 then the support of Gf can be computed in time s
γ

1−cα for γ =
max{2 + cα, cf + 1}.
Theorem 9.4. There exists a constant c̃ ≥ 1 such that the following holds. For any n, let L ⊆ {0, 1}n and
A : {0, 1}n × {0, 1}t → {0, 1} be a probabilistic algorithm running in time t = t(n) ≥ n such that for
every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] <
1

2
− ε

for some constant ε > 0. Assume for every positive integer m there exists a function f : {0, 1}m → {0, 1}
such that:

• f is computable in deterministic time 2cfm for some cf , and,

• For δ = 2− logc
′
n for an arbitrary constant c′ > 0, f requires randomized SVN circuits for error δ of

size at least 2(1−α0)m, where α0 <
1
c̃ is some universal constant.

Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time

t2+c̃α + tP ,

where the term tP = tγ(1+c̃α) for γ = max{2 + c̃α, cf + 1} corresponds to a step that can be precomputed
for all algorithms with running time t. That is, the slowdown of every randomized algorithm running in
time t, under our complexity-theoretic assumptions, is at most t1+O(α).

23In fact, we can even choose δ to be 2−n
γ

for a small γ = γ(α), but for simplicity we state the theorem for δ = 2− logc
′
n

where c′ can be an arbitrary constant.
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9.1 A PRG from Better Codes and Stronger Assumptions

The results in Section 5.1 give a PEG using o(log n) seed that outputs n1−o(1) bits of metric pseu-
doentropy against circuits of size n1−o(1) assuming hardness against SVN circuits of size n1−o(1).
In the same way that we obtained Theorem 9.3 by strengthening the assumption to randomized
SVN circuits and applying the extractor from Theorem 7.4, we can get a PRG with seed length
(1 + o(1)) log n that outputs n1−o(1) bits of pseudorandomness against circuits of size n1−o(1).

Theorem 9.5. Let n be a positive integer n and let ε > 0 be constant. There exists a constant cε such that if

α = cε ·
(

log logn
logn

) 1
4 , then the following holds.

Assume for every n there exists f : {0, 1}logn → {0, 1} that requires randomized SVN circuits for error
δ, of size n1−α � n

logn , and δ = 2− logc
′
n for an arbitrary constant c′. Then, for some constant c, there

exists a function
G
f

: {0, 1}(1+cα) log s → {0, 1}s

which is an ε-PRG against circuits of size s = n1−cα.
The support of Gf can be computed in time O

(
s

2+cα
1−cα

)
given oracle access to the truth table of f .

Moreover, if f ∈ DTIME(scf ) for some cf ≥ 1 then the support of Gf can be computed in time s
γ

1−cα for
γ = max{2 + cα, cf + 1}.

10 Lower Error PEGs and PRGs

In this section, we show how to get PEGs and PRGs with error n−γ for a small constant γ. Overall,
our PEG and PRG have seed lengths O(γ) log n and (1 +O(γ)) log n, respectively. Such an error is
optimal, up to the constant multiplicative factors, as the seed length must be at least log(1/ε) (and
for PRGs, at least log(n/ε)).

As the extractor presented in Section 7 already achieves n−γ error for a sufficiently small γ, the
main challenge is to construct a list recoverable code that can handle n−γ agreement. As before,
we take the length-n truth table of a hard function f , encode it via a locally list decodable code,
and consolidate the symbols of the code into nO(α) larger symbols of size n1−O(α) each. Previously,
in Section 4, we showed that by simply concatenating consecutive symbols (or, “folding”), an
ε agreement in the consolidated symbols implies an ε agreement in the original LDC symbols.
The same technique does not work when ε = n−γ , as current locally decodable codes have bad
dependence on ε and so we incur a large blowup in parameters.

The idea is to instead consolidate symbols in such a manner that wherever the small n−γ fraction
of good larger symbols might be, at least 1/3 fraction of the original symbols are contained in at
least one of the good larger symbols. Samplers with n−γ error naturally satisfy such a requirement
(in fact, even their one-sided version, called hitters, suffices). For this to make sense, we need the
decoder circuit to be hardwired with information about which lists are good. This is yet another
place where we leverage the non-uniform nature of our decoding, recalling that the good lists are
only a function of the hard function itself.

We note that using expander- (or sampler-) based transformations in coding theory is quite
common, and can be found in several other works, e.g., in [ABN+92, AEL95, GI02, GI03, KMRZS17,
DHK+19].
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10.1 A New Locally List Recoverable Code

For the reader’s convenience and continuity with the previous result, we once again start with the
Reed-Muller code. However, as before, other locally list decodable codes are viable. Viewing [n̄],
the set of coordinates of the RM code, as a set of vertices, we consolidate symbols according to the
bipartite graph of a sampler Γ: [n̄]× [D]→ [m].

10.1.1 The Construction

We first state the existence of an explicit sampler. We defer the proof to Appendix B.

Theorem 10.1 (following [GW97]). There exists a constant b > 1 such that the following holds for every
positive integer N and any constants δ, β ∈ (0, 1) and 0 < γ < 1−β

b . There exists an explicit bi-regular
(δ, ε = N−γ) sampler

Γ: [N ]× [D]→ [M = Nβ ]

forD = N bγ , and a circuitC : [N ]→ [M ]D of size Õ(D) that on input x ∈ [N ] outputs Γ(x, 1), . . . ,Γ(x,D).
Moreover, Γ is bi-regular and the function Γ−1 : [M ] × [a] → [N ] for a = ND

M = N1+bγ−β is fully-
explicit, i.e., given v ∈ [M ] and i ∈ [a], Γ−1(v, i) can be computed in polylog(N) time.

Now, let α be a small constant, which we again think of as the exponent of our hardness
assumption. Let β = 6α, and let γ = α

b for the constant b given in Theorem 10.1. Assume α < 1
7 , so

that the condition α < 1 − 6α = 1 − β is met. The locally list recoverable code is constructed as
follows.

• In Theorem 4.1, set ζ = 1
3 , ε = 1

3 , t = 1
α and q = 8

ε2
· d with d chosen so that n =

(
t+d
d

)
log q.

Again, working out the parameters, one can see that d = Õα(nα) and q = Õα(nα) (here, the α
subscripts hide a 1

α factor). The resulting code

CRM : {0, 1}n → Fn̄=cn
q

is a (
Q = Õα(n2α), ε =

1

3
, ζ =

1

3
, sRM = Õ(n4α), L = O(n)

)
locally list decodable code for c =

(
72
α

) 1
α log n. Note that this time, while ε is set to be constant,

we aim at a non-constant error for our PEG.

• Let m = n̄β = Õα(n6α) and let
Γ: [n̄]× [D]→ [m]

be a biregular (2
3 , n̄
−γ = Õα(n−γ)) sampler guaranteed to us by Theorem 10.1. The right-

degree of the sampler is a = n̄1+bγ−β = Õα(n1−5α). The left-degree is D = n̄bγ = Õα(nα).

• Define
C : {0, 1}n → Σm

where Σ = Faq , so that for every f ∈ {0, 1}n and z ∈ [m],

C(f)z = CRM(f)Γ−1(z,1) ◦ . . . ◦ CRM(f)Γ−1(z,a).

See also Figure 1.
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f ∈ {0, 1}n CRM(f) ∈ Fn̄q C(f) ∈
(
Faq
)m

z

a
CRM Γ−1(z, 1)

Figure 1: The construction of our locally recoverable code. The middle layer is the Reed-Muller
encoding of f with symbols in Fq. A symbol at coordinate z in our final code is an element of Faq ,
where the a elements of Fq are determined by Γ−1(z).

10.1.2 The Analysis

We prove the following theorem about C.

Theorem 10.2. Let b > 1 be as in Theorem 10.1. For any positive integer n and constant 0 < α ≤ 1
7 ,

setting γ = α
b , the code C constructed above is (Q, ε, `, sC) locally list recoverable for Q = Õ(n2α), ε = 2

nγ ,
` = 2n

1−8α and sC = n1−α.

Proof: We describe a similar decoding algorithm to that of Theorem 4.2, using advice. The main
observation for the new decoder is that the advice can also encode which lists contain a correct
symbol. In other words, the advice can tell the recovery circuit which specific lists are in agreement
with the encoded message. This means that for any query to the RM code, it is still efficient to brute
force over all neighbors of the queried coordinate (as long as the left degree of the samplers is at
most n1−O(α)). Thus we can answer the query with the correct symbol for a large fraction of queries
if a large fraction of coordinates have at least one neighbor that has a good list – a property that the
sampler guarantees.

Towards this end, fix any codeword C(f) for f ∈ {0, 1}n satisfying C(f)z ∈ Sz for at least
ε-fraction of z ∈ [m]. We describe a randomized circuit for computing C(f). Consider

A
OS̄
adv(x, r)

which takes as input x ∈ [n], uses randomness string r, has access to some fixed oracle OS̄ for
lists S̄ = S1, . . . , Sm, and aims to compute fx. The decoder circuit AOS̄adv implements the following
procedure.

1. We first describe the advice.
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• AOS̄adv is hardwired with advice adv = (y1, . . . , ym, g1, . . . , gm,RM), where each yz ∈
{0, 1}log ` points to some list entry in the z-th list. We assume the correct advice is given.
Specifically, for each z such that C(f)z ∈ Sz , let the correct yz be such thatOS̄(yz) = C(f)z ,
otherwise let yz be an arbitrary string such that OS̄(yz) 6= ⊥. Note that the size of the
advice is m log ` = Õ(n1−2α), and only depends on f and S̄ and not on the input x.

• Each g1, . . . , gm is a single bit. In the correct advice, gz = 1 if and only if C(f)z ∈ Sz .
• The rest of the advice RM points to a decoding circuit for the Reed-Muller code, and

we assume the correct circuit is given. That is, let ARM be the randomized circuit that
computes fx for every x, with probability at least 2

3 when given oracle access to a word
in Fn̄q with at most 2

3 fraction of errors from CRM(f).

2. Run the decoding circuit ARM(x, r). For every j ∈ [Q], supply the answer to the j-th oracle
query that ARM makes to some coordinate i ∈ [n̄] as follows:

(a) Compute Γ(i, 1), . . . ,Γ(i,D).

(b) Check if any of the gΓ(i,1), . . . , gΓ(i,D) are 1. If none of them are, return an arbitrary
symbol in Fq.

(c) Otherwise, pick an arbitrary d ∈ [D] such that gΓ(i,d) = 1. Let z = Γ(i, d). Use the advice
string yz and the oracle access to S̄ to query the element ṽ = OS̄(yz) ∈ Faq .

(d) Return the appropriate symbol ṽh ∈ Fq (for h ∈ [a]) that corresponds to the symbol for
the i-th coordinate of ARM. That is, return ṽh for h such that Γ−1(z, h) = i.

3. Return the output of ARM(x, r).

First we argue that the size of such a circuit is small. The inputs to the circuit are x ∈ {0, 1}logn and
the randomness r. Since Reed-Muller decoding is the only place our algorithm uses randomness,
the length of r is subsumed by the size of ARM. The advice that we hardwire to the circuit,
excluding RM, has length Õ(n1−2α) + Õ(n6α). Next, the size of ARM itself is Õ(n4α), and for each
of the Q = Õ(n2α) queries, we compute Γ(i, 1), . . . ,Γ(i,D), and compare the results to the advice
bits g1, . . . , gm. This will add Q · Õ(D) = Õ(n3α) to the size of the circuit. For each query, we also
compute a single inverse Γ−1(z, h) which adds another polylog(n̄) additive factor. Overall, the size
of the circuit is at most

log n+ Õ(n1−2α) + Õ(n6α) + Õ(n4α) + Õ(n4α) = Õ(n1−2α).

The derandomized circuit obtained via repeated amplification, as we did in Section 4.2, incurs
another log n factor, so overall the deterministic circuit will have size at most n1−α.

It is left to show that the randomized circuit described above errs with probability at most 1
3 . As

before, we show that the Reed-Muller decoder essentially queries a word with 1
3 agreement with

CRM(f). Let G ⊆ [m] be the set of density at least ε = 2
nγ of all z-s such that Sz contains the correct

symbol C(f)z .
Consider the induced Reed-Muller word w obtained by setting wi = CRM(f)i if Γ(i, d) ∈ G for

some d, and wi is set arbitrarily otherwise. By the properties of the sampler Γ, at least 1
3 of the

Reed-Muller code coordinates have at least one neighbor in G, and so w has at least 1
3 agreement

with CRM(f). By construction, the Reed-Muller decoder essentially makes queries to w.
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This list recoverable code immediately implies a pseudoentropy generator with small error.

Corollary 10.3. Let b > 1 be as in Theorem 10.1. For any positive integer n, assume

f : {0, 1}logn → {0, 1}

is such that sizeSV N (f) > n1−α0 for some constant α0 <
1
8 . Let α be any constant such that α0 < α < 1

8
and let γ = α

b . Then, there exists a function

Gf : {0, 1}d → {0, 1}a

that is a (k, s, ε) SVN metric PEG for ε = 2
nγ , k = n1−8α

2 , s ≥ n1−4α, d = 6α log n + O(log log n) and
a = Õ(n1−5α).

Given oracle access to f , the support of Gf takes Õ(n) time to compute. Moreover, if f ∈ DTIME(ncf )

for some cf ≥ 1, the support of Gf can be computed in time Õ(ncf+1+α).

The correctness proof is identical to the proof of Theorem 4.7. For the computation time, all that
is changed is the way we consolidate the symbols, and Theorem 10.1 tells us we can do it efficiently.

10.2 Low Error PRG

Just as before, if we now assume hardness against randomized SVN circuits, we can combine our
new low error PEG with the previous extractor to obtain a low error PRG, now instantiating the
extractor with a smaller error.

Theorem 10.4. There exists a constant c ≥ 7 such that the following holds for every positive integer
n. Assume f : {0, 1}logn → {0, 1} requires randomized SVN circuits for error δ, of size n1−α0 for some
universal constant α0 <

1
c , and δ = 2− logc

′
n for an arbitrary constant c′. Let α be any constant such that

α0 < α ≤ 1
c . Let γ = α

c , and let ε = c · n−γ . Then, there exists a function

G
f

: {0, 1}(1+cα) log s → {0, 1}s

which is an ε-PRG against circuits of size s = n1−cα.
The support of Gf can be computed in time s

2+cα
1−cα given oracle access to the truth table of f . Moreover,

if f ∈ DTIME(scf ) for some cf ≥ 1 then the support of Gf can be computed in time s
ζ

1−cα for ζ =
max{2 + cα, cf + 1}.

Proof (sketch): First fix α and let γ = α
b for the b as in Theorem 10.1. As before, we can first prove

the result assuming hardness for DensityApprox gates. This is simply repeating the arguments of
Theorem 8.6. In order to do so, we want to instantiate our extractor Ext from Theorem 7.4 with
error n−γ and use Lemma 6.3 that guarantees pseudorandomness from high metric pseudoentropy.
However, unlike previous sections, we now must work with DensityApproxη gates with non-
constant η = n−γ . This gives us a PRG from hardness against SVN circuits with DensityApproxη
gates. For the seed length of our PRG, we add a factor of

(1 + cExt ·O(α)) log n+ cExt log(nγ),
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to the seed length of the PEG, where cExt is the constant guaranteed by Theorem 7.4. Choosing c
large enough to subsume constants relevant to α (such as cExt and b) yields the result.

Next, to get a result for randomized SVN circuits, we once again replace our DensityApproxη
gates with random sampling. First, instantiate our just now proven result for low error PRGs
assuming hardness against DensityApproxη circuits of size n1−2α−2γ . That is, a distinguisher for the
PRG implies a DensityApproxη circuit of size s = n1−2α−2γ computing f . Tracing the parameters of
Lemma 9.1, we see that an DensityApproxη SVN circuit of size s is computable by a randomized
SVN circuit of size Õ(s · n2γ) = Õ(n1−2α) < n1−α.
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A Condensers and List Recoverable Codes

In this section we continue the discussion of Section 1.3, proving the equivalence between strong
condensers and list recoverable codes.

Definition A.1. Given a function E : {0, 1}a × [n] → Σ, we denote CE : {0, 1}a → Σn as the code
mapping x ∈ {0, 1}a to

CE(x) = E(x, 1) ◦ . . . ◦ E(x, n).

Note that the rate of CE is a
n log |Σ| .

Theorem A.2. Let Cond : {0, 1}a × [n] → Σ be some function so that CCond is (ε, `, L) list recoverable.
Then, Cond is a strong (

k = log
L

ε
, k′ = log

`

n
, 2ε

)
condenser. Recall that `

n = 2k
′ is the average size of a list CCond can handle.

Proof: Assume towards a contradiction that Cond is not such a condenser, so there exists an
(a, k) source X for which Cond(X,Y ) ◦ Y is not ε-close to having min-entropy k′ + log n, where
Y is uniformly distributed over [n]. By Claim 2.26 there exist sets S1, . . . , Sn ⊆ Σ satisfying∑n

i=1 |Si| ≤ n · 2k
′

= ` such that

Pr
x∼X,i∼[n]

[Cond(X, i) ∈ Si] = Pr
x∼X,i∼[n]

[CCond(x)i ∈ Si] > 2ε.

By an averaging argument, there exists a set G ⊆ {0, 1}a of density larger than ε such that for every
x ∈ G,

Pr
i∼[n]

[C(x)i ∈ Si] ≥ ε.
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By the list recovery properties of CCond it must hold that |G| ≤ L, however |G| > ε · |Supp(X)| ≥
ε · 2k ≥ L, in contradiction.

Theorem A.3. Let Cond : {0, 1}a × [n]→ Σ be a strong (k, k′, ε) condenser. Then, CCond is(
4ε, ` = 2εn · 2k′ , L = 2k

)
list recoverable.

Proof: Let S1, . . . , Sn ⊆ Σ satisfy
∑n

i=1 |Si| ≤ `. Define the test T ⊆ Σ× [n] so that (z, i) ∈ T if and
only if z ∈ Si. Let

L =

{
u ∈ CCond : Pr

i∼[n]
[ui ∈ Si] ≥ 4ε

}
and assume towards a contradiction that |L| ≥ 2k = L. Note that the set L is in one-to-one
correspondence with the set

A =

{
x ∈ {0, 1}a : Pr

i∼[n]
[Cond(x, i) ∈ Si] ≥

`

n · 2k′
+ 2ε

}
.

Let Y be uniformly distributed over [n]. Then, on the one hand, Hε
∞(Cond(UA, Y ) ◦ Y ) ≥

k′ + log n so by Claim 2.26,

Pr[Cond(UA, Y ) ◦ Y ∈ T ] ≤ ε+ |T | · 2−k′−logn ≤ ε+
`

n · 2k′
.

On the other hand,

Pr[Cond(UA, Y ) ◦ Y ∈ T ] =
1

|A|
∑
x∈A

Pr
i∼[n]

[Cond(x, i) ∈ Si] ≥
`

n · 2k′
+ 2ε >

`

n · 2k′
+ ε,

in contradiction.

B The Goldreich-Wigderson Sampler

In this section we show that the Goldreich-Wigderson sampler given in Section 10 is indeed
efficiently computable. For convenience we use the extractor terminology (see Lemma 2.21).

Theorem B.1 (following [GW97]). For any positive integers n and c < n, and every ε > 0 and m ≤ n−
O(c+log 1

ε ) there exists a (k = n−c, ε) extractor Ext : {0, 1}n×{0, 1}` → {0, 1}m where ` = O(c+log 1
ε ).

Furthermore, there exists a circuit C : {0, 1}n → ({0, 1}m)2` of size polynomial in n and log 2c

ε that on
input x ∈ {0, 1}n outputs the evaluation of Ext on x and all possible seeds.

To implement Ext, we need efficient constructions of expanders of arbitrary degree.

Claim B.2. For every positive integer n and 0 < λ < 1 there exists a connected d-regular undirected graph
with n vertices which is a λ-expander, for d = poly( 1

λ). Given a vertex x ∈ [n] and an edge label i ∈ [d], the
i-th neighbor of x can be computed in time log 1

λ · polylog(n).
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Proof: Let G be a λ0 = 1
4 expander over [n] with degree d0 = O(1) guaranteed to us by Theo-

rem 2.23. For t =
⌈

1
2 log 1

λ

⌉
, consider the graph Gt wherein each edge corresponds to taking a walk

of length t on G. The graph Gt has the same vertex set, has degree dt0 = poly( 1
λ), and it is known

that λ(Gt) ≤ λt0 ≤ λ.
Given x ∈ [n] and an edge label i = (i1, . . . , it) ∈ [d0]t, computing the i-th neighbor of x amounts

to taking a walk on G0 of length t from x according to the labels i1, . . . , it, which can be done in
time t · polylog(n).

Proof of Theorem B.1: Ext is constructed as follows. Given positive integers n, c, and ε > 0, we
use the following primitives.

• Let G be a λ-expander over the vertex set {0, 1}m, where λ ≤ ε2

4·2c/2 . By Claim B.2, such a
graph exists with degree d =

(
2c

ε

)a for some constant a > 1. Furthermore, the neighbourhood
function of G, ΓG : {0, 1}m × [d]→ {0, 1}m, can be computed in time poly(m, log 1

ε , c).

• Let H ⊆ {0, 1}n−m → [d] be a two-universal family of hash functions. In Lemma 2.31 we
took H to be the set of all affine functions, and here, to get a smaller family, we use affine
transformations with Toeplitz matrices (see, e.g., [Gol97, Section 3]). This gives log |H| =

n−m+ 2 log d− 1. Computing the linear transformation can be done in time Õ(n−m).

Given x ∈ {0, 1}n and h ∈ H, we output

Ext(x, h) = ΓG
(
x[1,m], h(x[m+1,n])

)
.

The correctness follows from [GW97, Theorem 4.2]. For it to hold, we need to verify that

2−(n−m−c) ≤ ε8

64d
,

and indeed choosing n−m = (a+ 8) log 1
ε + 6ac satisfies the above. This choice of m puts a bound

on log |H|:
log |H| = n−m+ 2 log d− 1 ≤ 8a log

1

ε
+ 8ac,

and so our seed length does satisfy ` ≥ log |H|. To output less than m bits, we can simply truncate
the output.

Given x ∈ {0, 1}n and h ∈ H, computing Ext(x, h) takes time

O(n+ log |H|) + Õ(n−m) + poly(m, log(1/ε), c) = poly(n, log(1/ε))

and so can be done by a circuit of size poly(n, log(1/ε)) as well. Thus, iterating over all seeds can
be done by a circuit of size

|H| · poly(n, log(1/ε)) +O(1) = poly

(
n,

1

ε
, 2c
)
.

We instantiate Theorem B.1 as a sampler in the slightly unusual setting, where δ = 2−c is
constant and δ � ε. We then get the following corollary.
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Corollary B.3. There exists a constant b > 1 such that the following holds for every positive integer N and
any constants δ, β ∈ (0, 1) and 0 < γ < 1−β

b . There exists an explicit bi-regular (δ, ε = N−γ) sampler

Γ: [N ]× [D]→ [M = Nβ ]

forD = N bγ , and a circuitC : [N ]→ [M ]D of size Õ(D) that on input x ∈ [N ] outputs Γ(x, 1), . . . ,Γ(x,D).
Moreover, Γ is bi-regular and the function Γ−1 : [M ] × [a] → [N ] for a = ND

M = N1+bγ−β is fully-
explicit, i.e., given v ∈ [M ] and i ∈ [a], Γ−1(v, i) can be computed in polylog(N) time.

Proof: The first part of the corollary follows from applying Lemma 2.21 to Theorem B.1. Proving
that Γ is bi-regular and establishing its running time can be done together. Assume ΓG outputs m
bits, i.e., before we truncate it to logM bits as the truncation changes neither the bi-regularity nor
the running time. We use the notation of the proof of Theorem B.1. Given v ∈ {0, 1}m and i ∈ [a],
interpret i = (i1, i2), where i1 ∈ [d] and i2 ∈ {0, 1}n−m . Then, outputting Γ−1(v, i) is computed as
follows.

• Let u ∈ {0, 1}m be such that ΓG(u, i1) = v. Working with expanders suitable edge labelings,
this can be done in poly(m) time.

• Return the x ∈ {0, 1}n for which x[1,m] = u and x[m+1,n] = i2.

For correctness, note that H is also one-universal, so in particular there exists h ∈ H such that
h(i2) = i1.24 Thus, indeed, ΓG(u, h(i2)) = v and also distinct i-s give rise to distinct x-s.

24Here, we need to slightly modifyH so that the linear transformations act only on nonzero vectors.
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