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Abstract. In two dimensions, we propose and analyze an a posteriori error estimator for finite
element approximations of the stationary Navier—Stokes equations with singular sources on Lipschitz,
but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous
and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We
illustrate the theory with numerical examples.
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1. Introduction. Let © C R? be an open and bounded domain with Lipschitz
boundary 0€2. In this work we will be interested in the design and analysis of a
posteriori error estimates for finite element approximations of the stationary Navier—
Stokes problem

(1) —Au+ (u-V)u+Vp=F¢, in Q, divu=0in Q, u =0 on 09,

where 6, corresponds to the Dirac delta supported at the interior point z € Q and
F € R2. Here, u represents the velocity of the fluid, p represents the pressure, and
Fo, is an externally applied force. Notice that, for the sake of simplicity, we have
taken the viscosity to be equal to one.

Since the stationary Navier—Stokes equations model the motion of a stationary,
incompressible, Newtonian fluid, it is no surprise that their analysis and approx-
imation, at least in energy-type spaces, is very well developed; see, for instance,
[41, 24, 10, 39, 40] for an account of this theory.

On the other hand, there are situations where one wishes to allow this model to
be driven by singular forces, like in (1). As a first example of this, in the linear setting,
one must mention that in the case that F belongs to the canonical basis of R?, then
we obtain entries of the Green’s matrix for the Stokes problem. Every situation where
the Green’s matrix needs to be computed or approximated requires the solution of
the linear version of (1). Keeping the problem linear, [31] argues that these equations
can be used to model the movement of active thin structures in a viscous fluid. A
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numerical scheme is proposed, but no complete analysis of this method is provided.
Local error estimates, away from the support of the delta, were later derived in [9].

A second example comes from PDE-constrained optimization (optimal control).
Reference [12] sets up a problem where the state is governed by the stationary Navier—
Stokes equations, but with a forcing (control) that is measure valued, like in (1). The
motivation behind this is what the authors denote sparsity of the control, meaning that
its support is small, even allowing it to have Lebesgue measure zero. The analysis
of l12] assumes that the domain has C? boundary and seeks a solution to (1) in
W, () x L1(Q)/R with ¢ € [4/3,2). In this setting a complete existence theory
for the state is provided, and the optimization problem is analyzed. Necessary and
sufficient optimality conditions are deduced. Reference [12], however, is not concerned
with approximation.

In this work we continue our program aimed at developing numerical methods for
models of fluids under singular forces. The guiding principle that we follow is that by
introducing a weight, and working in the ensuing weighted function spaces, we can
allow for data that is singular, so that (1) fits our theory. We immediately must com-
ment that the literature already presents an analysis of the stationary Navier—Stokes
equations on Muckenhoupt weighted spaces; see [37]. That paper, however, requires
the domain to be C'*!, which is not suitable for a finite element approximation. We,
in contrast, assume only that the domain is Lipschitz. In [34] we developed existence
and uniqueness for the Stokes problem over a reduced class of weighted spaces; see
Definition 1 below. The numerical analysis of this linear model is presented in [19, 5],
where a priori and a posteriori, respectively, error analyses are discussed. The nonlin-
ear case, that is, (1), is considered in [35], where existence and uniqueness for small
data, and in the same functional setting, is proved. In the setting of uniqueness, an
a priori error analysis for a numerical scheme is also developed. This brings us to
the current work and its contributions. The solution to (1), because of the singular
data, is not expected to be smooth, and thus adaptive methods must be developed to
efficiently approximate it. Our goal here is to develop and analyze a reliable and effi-
cient a posteriori error estimator, and show its performance when used in a standard
adaptive procedure.

Before proceeding any further, we must make a comment about our choice of
boundary conditions, as practical problems usually prescribe nonhomogeneous or
other types of boundary conditions. While nonhomogeneous Dirichlet conditions could
be considered, traces of weighted spaces are not easily characterized; see [43, 44] and
[11, section 2.2.1]. Thus, it is not easy to describe what type of Dirichlet data is
admissible. On the other hand, the existence theory for the stationary Navier—Stokes
equations on weighted spaces with other types of boundary conditions has not been
developed. One of the main issues is again that traces of weighted spaces cannot be
easily characterized. This would limit the type of data g that can be used in, say,
natural boundary conditions of the form

(Vu—pl) - n=g

on a piece of the boundary. In addition, the inf-sup condition for the pressure is not
known on weighted spaces if the velocity space consists of functions that vanish only
on a piece of the boundary.

Our presentation will be organized as follows. We set notation in section 2, where
we also recall the definition of Muckenhoupt weights and introduce the weighted
spaces we shall work with. In section 3, we introduce a suitable weak formulation for
problem (1) in weighted spaces and review existence and uniqueness results for small
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data. Section 4 presents basic ingredients of finite element methods. Section 5 is one
of the highlights of our work. In section 5.1 we introduce a Ritz projection of the
residuals, and in section 5.2 we prove that the energy norm of the error can be bounded
in terms of the energy norm of the Ritz projection. We thus propose in section 5.3 an
a posteriori error estimator for inf-sup stable finite element approximations of problem
(1); the devised error estimator is proven to be locally efficient and globally reliable.
Section 6 presents a series of numerical experiments that illustrate and extend our
theory. We conclude in section 7 by providing a summary of our developments, our
numerical findings, and what we think might be the limitations of our approach.

2. Notation and preliminaries. Let us set notation and describe the setting
we shall operate with. Throughout this work  C R? is an open and bounded polyg-
onal domain with Lipschitz boundary 0. Notice that we do not assume that Q is
convex. If W and Z are Banach function spaces, we write W — Z to denote that W
is continuously embedded in Z. We denote by W’ and || - ||y the dual and the norm
of W, respectively.

For E C Q of finite Hausdorff i-dimension, i € {1,2}, we denote its measure by
|E|. If E is such a set and f: E — R, we denote the mean value of f by

f=mht

The relation a < b indicates that a < Cb, with a constant C' that depends neither
on a, b nor on the discretization parameters. The value of C' might change at each
occurrence.

2.1. Weights. A notion which will be fundamental for further discussions is that
of a weight. By a weight we mean a locally integrable, nonnegative function defined
on R2. Of particular interest in our constructions will be weights that belong to the
Muckenhoupt class Ay [17], which consist of all weights w such that

@ oy = (£ ) (£o7) <=,

where the supremum is taken over all balls B in R2. For w € A, the quantity [w]a, is
the Muckenhoupt characteristic of w. We refer the reader to [17, 25, 33, 42] for basic
facts about the class A;. An A weight which will be essential for our subsequent
developments is the following. Let z € Q and « € (—2,2). Then
(3) df (z) = |z — 2|* € As.

An important property of the weight d? is that there is a neighborhood of 09
where d7 is strictly positive and continuous. This observation motivates us to define
a restricted class of Muckenhoupt weights [23, Definition 2.5].

DEFINITION 1 (class A2(Q)). Let Q C R? be a Lipschitz domain. We say that
w € Ay belongs to Aa(QY) if there are an open set G C Q and £,w; > 0 such that

{z € Q: dist(z,00) < e} C G, wig € C(9), w <w(r) Vreg.
As we have mentioned in the introduction, what allows us to consider rough

forcings in (1) is the use of weights and weighted spaces, as we will define below.
We must note, however, that since we are not assuming our polygonal domain {2
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to be convex, the same considerations given in the counterexample of [16, page 2]
show that we cannot work with general weights, and we cannot allow our forcings to
have singularities near the boundary. This is the importance of the class A2(€) of
Definition 1.

2.2. Weighted spaces. Let E be an arbitrary domain in R? and w € A,. We
define L?(w, E) as the space of Lebesgue measurable functions in F such that

%
ol 2.y = (/ w|v|2> < 0.
E

We define the weighted Sobolev space H'(w, E) as the set of functions v € L?(w, F)
such that, for every multi-index v € N2 with |y| < 1, we have that the distributional
derivatives D7v € L?(w, ). We endow H!(w, E) with the norm
(4) ol e o) 1= (I01320.m) + 19013205 )
We define H} (w, E) as the closure of C§°(E) in H'(w, E). We notice that, owing to
a weighted Poincaré inequality [22, 13, 28], over H}(w, E) the seminorm V]| L2(w, )
is equivalent to the norm defined in (4).

Spaces of vector valued functions will be denoted by boldface, that is,

1
2 3
Htl)(w’E) = [H(%@J?E)}Za HVVHLQ(W,E) = (Z ||vvi|%2(w,E)> )
i=1
where v = (v1,v2)T.
The following product spaces with the weight df will be of particular importance.
For a € (—2,2), we define
(5) X(E)=H,(d2, E) x L*(d2, B)/R, Y(E)=Hy(d; ", E) x L*(d; ", E)/R,
which we endow with standard product space norms. When E = (), and in order to
simplify the presentation of the material, we write X = X(Q2) and Y = Y().

3. The stationary Navier—Stokes equations under singular forcing. For
a € (—2,2), we define the bilinear forms

(6) a:H(dY, Q) x Hy(d; %, Q) = R, a(w,v):= / Vw: Vv,
Q
and
(7) by : HY(dEY,Q) x L2(dT*,Q) = R, bi(v,q) := —/ qdivv.
Q

We also define the trilinear form
(8) c: [HY(dY, Q)2 x HY(dJ*, Q) = R, c(u,w;V) := f/ u®w: Vv.
Q

The results of [34] yield an inf-sup condition for the bilinear form a on weighted
spaces; i.e., we have

a(v,w)

(9) inf sup
0AvEH](d2,2) oxweHl (d-,) || VViL2@e o) VWL @-e o)

a(v,w) >o.

= inf sup
0AwEH] (d7*,9) 02venl(de,0) || VVIiLz@e,0) VWL oo 0)
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On the other hand, since we are in two dimensions and d§ € As, [22, Theorem 1.3]
shows that H}(d2, Q) < L*(d2,Q). Thus, if we denote by Cy_,2 the best embedding
constant, we have that the convective term can be bound as follows:

le(u, w;v)| = ’/QU@WV V| < JuflLae,o)[WllLa@e o) IVViLz@-e.0)

(10)
< CF ol VullLe@e o) VW2 @e o) [V VL2 @-o )

Remark 2 (two dimensions). Estimate (10) is the sole reason why our analysis is
restricted to two dimensions. In three dimensions, since d € A, we only have that
H{(d2, Q) < L3+°(d2,Q), where § > 0; see [22, Theorem 1.3]. This is not enough to
guarantee the boundedness of the convective term.

3.1. Weak formulation. With definitions (6)—(8) at hand, we consider the
following weak formulation for problem (1): Find (u, p) € X such that

(11) a(u,v) +b_(v,p) + c(u,u;v) = (Fé,,v), by (u,q) =0,

for all (v,q) € Y. Here and in what follows (-,-) denotes a duality pairing. The
spaces used for such pairing shall be evident from the context. We must immediately
comment that in order to guarantee that 6, € Hg(d;*, ), and thus that (Fé,,v) is
well-defined for v € H}(d; %, Q), the parameter a should be restricted to belong to
the interval (0,2); see [30, Lemma 7.1.3] and [26, Remark 21.18].

3.2. Existence and uniqueness for small data. Let us define the mappings
S: XY NL:X =) and Fe) by

(S(u,p), (v,q)) = a(u,v) +b_(v,p) + by (u,q),
NL(u,p), (v,q)) = c(u,u;v),

and (F,(v,q)) = (Fd,,Vv), respectively. With this notation (11) can be equivalently
written as the following operator equation in )’

S(u,p) + NL(u,p) = F.

In what follows, by ||S™!|| we shall denote the }’ — X norm of S~!. We re-
call that Cy_,5 denotes the best constant in the embedding H}(dS, Q) — L4(d?, Q).
Throughout this work, and without explicitly mentioning it, we assume that the forc-
ing term F9, is sufficiently small so that
1
5

With this assumption on the data at hand, we have existence and uniqueness.

(12) CEoallSTHPIFS: ey (9= ) <

PROPOSITION 3 (existence and uniqueness). Let Q be Lipschitz and a € (0,2).
Assume that the intensity of the forcing term F is sufficiently small so that (12)
holds. Then, there is a unique solution of (11). Moreover, this solution satisfies the
estimates

3 o
(13) IV ulluee ) < SIS TS - 0y

and

Ipllz2(@e.0) S IVallLz@e o) + Vullfe e o) + IF0 13 @-e .0y
where the hidden constant is independent of u, p, and Fé,, but depends on a and
blows up as either a L 0 or a1 2.
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Proof. Existence, uniqueness, and the velocity estimate are the content of [35,
Corollary 1]. To show the estimate on the pressure, we invoke the weighted inf-sup
condition [18, Theorem 3.1}, [36, Theorem 1], [19, Lemma 6.1]

b_(v,p

bl s s Py e paar a)/m.
0#AvEHE (d7*,Q) I VHL2(d;"‘,Q)

The hidden constant depends only on © and [d7]4,. Using this estimate for p, the

first equation in (11), and the estimate on the convective term of (10), we obtain the

desired pressure estimate. ]

4. Discretization. We now propose a finite element scheme to approximate the
solution to (11). To accomplish this task, we first introduce some terminology and a
few basic ingredients.

4.1. Triangulation. We denote by .7 = {T'} a conforming partition of {2 into
closed triangles T' with size hy = diam(T") and define hy = maxpe s hy. We denote
by T the collection of conforming and shape regular meshes that are refinements of
an initial mesh % [14, 21].

We denote by . the set of internal one dimensional interelement boundaries S
of 7. For § € ., we indicate by hg the length of S. If T' € &, we define ¥ as the
subset of . that contains the sides of T'. For S € ., we set N = {T+,T~}, where
T+, T~ € J are such that S =TT NT~. For T € 7, we define the following stars
or patches associated with the element T':

(14) NT::{T'eﬂzﬁﬂTﬂfp;A@}, STZZ{T/EQZTﬁTl#w}.

Thus, N7 contains the (at most) three triangles that share a side with T, while St
is N together with those triangles that also share a vertex with T. In an abuse of
notation, in what follows, by N7 and Sy we will indistinctively denote either these
sets or the union of the triangles that comprise them.

4.2. Finite element spaces. Given a mesh 7 € T, we denote by V(.7) and
P(.7) the finite element spaces that approximate the velocity field and the pressure,
respectively, constructed over .7. The following choices are popular.

(a) The mini element. This pair is studied, for instance, in [8], [21, section 4.2.4],
and it is defined by

(15)  V(2)={vz €CQ): VT € T, vy € [P1(T) ®B(T)]*} NH(Q),

(16) P(7)={q7 € L*(Q)/RNC(Q): VT € T ,q7 7 € P1(T)},

where B(T') denotes the space spanned by a local bubble function.

(b) The Taylor-Hood pair. The lowest order Taylor-Hood element [27], [45], [21,
section 4.2.5] is defined by

(17) V(7)={vy €C(Q): VT € T, vgir € Po(T)*} NH{(Q),

(18) P(7)={q7 € L*(Q)/RNC(Q): VT € T,qz17 € P1(T)}.

It is important to observe that if w € As, we have, for the spaces defined in
(15)-(18),

V(7)) C Wy™(Q) Cc Hy(w,Q),  P(T)C L=Q)/R C L*(w,Q)/R.
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In addition, these spaces are compatible, in the sense that they satisfy weighted ver-
sions of the classical LBB condition [21, 24]. Namely, there exists a positive constant
B > 0, which is independent of .7 and for which we have [19, Theorems 6.2 and 6.4]

b= (v,
19)  Blaslpaeg < s ZEVZT) oy cp(gy,
ozvrev(7) Vvl gze o)

4.3. Finite element approximation. We now define a finite element approx-
imation of problem (11) as follows: Find (ugz,ps) € V() x P(7) such that

(20) a(ug,vy)+b_(vr,p7)+cluz,uz;vy)=F -vz(z), bi(uz,qz)=0,

for all vy € V() and qo € P(T).
Denote by S& the discrete version of S. Our theory is based on the following
assumption.

ASSUMPTION 4. The operator Sz is a bounded linear operator whose inverse S}l
s bounded uniformly over all 7 € T.

We immediately comment that existence and uniqueness of solutions, i.e., the fact
that S;l exists, is not an issue. We are in finite dimensions, and our spaces V(.7)
and P(J) are assumed to be compatible. The main point of the previous assumption
is the existence of suitable, and uniform in T, estimates on the solution of the discrete
Stokes problem in terms of data. Under the assumption that the domain 2 is convex
and the family T is quasi-uniform [19, Theorem 4.1] has shown that this assumption
indeed holds. Whether this holds in general Lipschitz domains and in more general
families of meshes is an open issue. The proof of this result is beyond the scope of
our interest here.

We shall also assume, without explicitly mentioning it, that the intensity F of
the forcing term Fo, is sufficiently small so that (12) holds with S replaced by S=.
Then, owing to [35, Corollary 4] there is a unique (uz,ps) € V(7) x P(7) that
solves (20). Moreover, we have

3,
(21) [Vuz|lLz@e,0) < 5\\591” 1F0: e a-e 0y

with a pressure estimate similar to that of Proposition 3.

4.4. A quasi-interpolation operator. In order to derive reliability properties
for the proposed a posteriori error estimator, it is useful to have at hand a suitable
quasi-interpolation operator with optimal approximation properties [46]. We consider
the operator I : L'(Q) — V() analyzed in [33]. The construction of Il is
inspired by the ideas developed by Clément [15], Scott and Zhang [38], and Duran
and Lombardi [20]: It is built on local averages over stars and thus is well defined
for functions in L'(Q); it also exhibits optimal approximation properties. In what
follows, we shall make use of the following estimates of the local interpolation error
[5, 33]. To present them, we first define, for T € .7,

(22) Dy := max|z — z|.
zeT

We remind the reader that we denote by z € € the support of the Dirac delta.

PROPOSITION 5 (stability and interpolation estimates). Let a € (—2,2) and
T € 7. Then, for every v € Hl(dzia,ST), we have the local stability bound

(23) IVILgv||L2@ze 1) S (VYL @ze,s0)
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and the interpolation error estimate

(24) v — H9V||L2(dzi~,T) S hTHVV”LZ(dZi“,ST)'
In addition, if a € (0,2), then we have that

(25) v —gvllLe(r) S hrDEIVVLz @z sp)-

The hidden constants in the previous inequalities are independent of v, the cell T, and

the mesh 7.

PROPOSITION 6 (trace interpolation estimate). Let « € (0,2), T € ., S C S,
and v € HY(d;%, Sr). Then we have the following interpolation error estimate for
the trace:

1 «
(26) v —TzvvLe(s) S hp D7 IVVlLz@e sp),

where the hidden constant is independent of v, T, and the mesh .

5. A posteriori error estimates. In this section, we analyze a posteriori error
estimates for the finite element approximation (20) of problem (11). To begin such
an analysis, we define the velocity and pressure errors (ey,ep) by

(27) ew:=u—ug € H(d?,Q), e,:=p—ps € L*(d?,Q)/R,

respectively.

5.1. Ritz projection. In order to perform a reliability analysis for the proposed
a posteriori error estimator, inspired by the developments of [3], we introduce a Ritz
projection (®,v) of the residuals. The pair (®,1)) is defined as the solution to the
following problem: Find (®,4) € X’ such that
CL((I>7 V) = a’(euv V) +b_ (Vv ep) + C(“v €u, V) + C(euv Uz, V),
(28)
(Y, @)r2(Q) = by(eu, q)

for all (v,q) € ).
The following results yields the well-posedness of problem (28).

THEOREM 7 (Ritz projection). Problem (28) has a unique solution in X. In
addition, this solution satisfies the estimate

(29) [[V®|lL2(de,0) + ¥l L2@e,0) S IVeullLz@e o) + lleplln2 e ,0)
+ [VeullL2@e,0) (IVullL2@e,0) + IVuz|lL2@e,0)

where the hidden constant is independent of (®,), (u,p), and (uz,ps).
Proof. Define

& H(l)(dz_o‘, M) =R, veraley,v)+b_(v,ep) +c(u,ey;v)+cley, ug;v).

Notice that & is linear. To prove that & € H}(d; *,Q)’, we observe that

18(v)| < ([[VeullLze,0) + llepllL2(@e,0) + [[ullLe@s o) ll€ullLe@s o)

+ lleullLs@e o) [z llLe@s o)V VL2 @-a,0)-
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This, combined with the Sobolev embedding H}(d%, ) — L*(d2,Q) allows us to
conclude.

Since df € A3(Q) and & € H{(d;*,Q)’, we can thus invoke the results of [34] to
conclude the existence and uniqueness of ® € H}(dS, Q) together with the bound

(30)  [[V®[L2(de,0) S IVeullLze o) + llepll 22,0
+ [[VeullL2(ge,0) (IVullLz@e o) + [[VuzllLz@e,0)-

On the other hand, since e,, € H}(d%,Q), by (eu, ) defines a linear and bounded
functional in L?(d;*,Q)/R. This immediately yields the existence and uniqueness of
€ L?(d2, Q) /R together with the estimate

191 22(@2,0) < || diveu|lL2de,0)-

A collection of the derived estimates yields (29). This concludes the proof. |

5.2. An upper bound for the error. With the results of Theorem 7 at hand,
we observe that the pair (ey, ep) satisfies the following identity:

(31) a(eu, v) + b (v, ep) = $(v), bi(ew,q) = ("paq)Lz(Q)
for all (v,q) € Y, where
F:HNAIYQ) =R, v a(®,v) —c(u,eq;v) —cleg,uz;v).

Thus, (eu, ep) can be seen as the solution to a Stokes problem with data (F,%). It is
clear that, for u and ug given, § is linear in Hj(d;“,€2). Moreover, § € H}(d;“, Q)"

I181lexy =0 < [[VRlL2ae 0

(32) )
+ CF ol Veulltz@e,0) (IVullz@e,0) + [Vuz Lz @e o) -

With the aid of this identification, we now prove that the energy norm of the
error can be bounded in terms of the energy norm of the Ritz projection, which in
turn will allow us to provide computable upper bounds for the error. To do so, we
must assume that the forcing term F¢, is sufficiently small so that

(33) 1= I87HICE Lo [IVullL2e ) + Vg L2@e,o)] > A > 0.
Notice that if the intensity of the Dirac source F' is such that

2(1 - \)

F| < = ;
IS=H1CE L2 (ISTHI+ 18711 18-l 3 o=

then estimate (13) and its discrete analogue (21) imply condition (33).

COROLLARY 8 (upper bound for the error). Assume that the intensity of the forc-
ing term F is sufficiently small so that (33) holds. We then have that

(34) [Veullrze,0) + llepllLz@e,0) S IVR[|L2@e,0) + 191 22@e ),

where the hidden constant is independent of (u,p), (uz,pz), and (®,).
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Proof. Since dS € A3(Q2) and § € H}(dJ“,Q)’, we can apply [34, Theorem 17] to
conclude that

IVeullLz@e.0) + llepllz2@e,o) < ISTH (IVR[|L2@e.0) + 19122 e )
+ Ci sl Veulre@e o) [IVullLe@e o) + IVuzllLe@e o)) »

where we have also used estimate (32). The smallness assumption (33) allows us to
absorb the last term in this estimate on the left-hand side and obtain (34). This
concludes the proof. O

5.3. A residual-type error estimator. In this section, we propose an a pos-
teriori error estimator for the finite element approximation (20) of problem (11).
Define, for a € (0,2) and T € 7, the element indicator

(35) &i(uz,p7;T):=h7D3||Auy — (uy - V)uy —divusus — Vpz|izq
+ [ divug||72@e r) + hrDE[(Vug — pol) - v]|i2om00) + AFIFP#({2} N T),

where (uz,pz) denotes the solution to the discrete problem (20) and I € R*4
denotes the identity matrix. For a set F, by #(F) we mean its cardinality. Thus
#({z} NT) equals one if z € T and zero otherwise. Here we must recall that we
consider our elements T to be closed sets. For a discrete tensor valued function W o,
we denote by [W & - v] the jump or interelement residual, which is defined, on the
internal side S € .# shared by the distinct elements T+, T~ € Ng, by

(36) [[Wg . V]] = W9|T+ vt + W9|T7 v,
Here vT, v~ are unit normals on S pointing towards 7', T, respectively. The error
estimator is thus defined as
%
(37) Sa(ug,pg; T) = (Z 53(11%P9;T)> :
TeT
5.4. Reliability. We present the following global reliability result.

THEOREM 9 (global reliability). Let o € (0,2), (u,p) € X be the solution to (11)
and the pair (ugz,pg) € (V(T),P(T)) be its finite element approzimation defined
as the solution to (20). Assume that the intensity of the forcing term F is sufficiently
small so that (33) holds. Then

(38) [VeullLz(de,0) + lepllr2 e ,0) S dalug,pa; 7),

where the hidden constant is independent of the continuous and discrete solutions, the
size of the elements in the mesh 7, and #.7, but depends on « and blows up as either
al0oraf?2.

Proof. We proceed in three steps.
Step 1. Using the first equation of (28) and (11) we obtain that

(39) a(®,v) = (Fo,,v) — Z/(Vug:Vv—ug®Ug:Vv—pydivv)
Teg’T

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/21 to 160.36.108.101. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

A1870 A. ALLENDES, E. OTAROLA, AND A. J. SALGADO

for every v € H}(d;“, Q). Integrating by parts we arrive at the identity

(40) a(®,v) = (Fd,,v) + Z /S[[(VUy —pgl)-v]-v

Ses

+ Z / (Aug — (ug - V)ug —divugug — Vpg) - v.
Teg’T

Notice that to derive the previous expression, we have used that f S [ug®@ugs-v]-v =0,
which follows from the fact that our finite element velocity space consists of continuous
functions.

On the other hand, the first equation of problem (20) can be rewritten as

<F5Z,V9> — a(Ug,Vg) — b_(Vy,pg) — C(Ug,Uy;Vg) =0 Vvg € V(y)

Set vy = Il zv in the previous expression, apply again an integration by parts for-
mula, and invoke (39) to arrive at the identity

(41) a(®,v) = (Fo,,v—Ilzv)+ Z /[[(Vu(g —pzl)-v] - (v-Igv)
ses S

+Z/(AUQ—(Ug'V)U3—diVUguy—pr)'(V—HgV)=I+II—|—III,
Teg’T

where we have also used that fs[[ug Qug -v] -lUzv=0.
We now control each term separately. To control the term I, we first invoke the
local bound of [1, Theorem 4.7] for §, and then the interpolation error estimate (24)

and the stability bound (23) to arrive at
a_q a

wy (hi IV = Trvligeze my + A3 IV (v = 1) |2aze 1))
S FIAZ IV VIiLe @z sp)-

The control of IT follows from the trace interpolation error estimate (26):

IS Y [[(Vugr — poD) - V]Les) v — Davllzas)
Ses

1 a
S Y hiDEI(Vuz = o) vllLe(s) I VVIILe @z e s0)-
Ses

(43)

We finally bound III using the interpolation estimate (25):
(44) III < Z hTD% [Aug —(ug-V)ug—div uﬂuﬂ_vPﬂllLZ(T)||VVHL2(d;‘*,ST)-
TeT

We now apply the inf-sup condition (9), the identity (41), and the estimates
obtained for the terms I, II, and III to arrive at

2

a(P,v)

V@32 0o ) < sup
0AvEH(d72,Q) ||V||H5(d;a,9)

< Z (hTD%Il[[(Vuy —pzD) - V]l o100
Te7

+h3DF[Aug — (ug - V)ug —divugus — Vpalizir + hFFP#({z} N T)) ;
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where, to obtain the last estimate, we have also used the finite overlapping property
of stars. Notice that for T € Sy, D7/ is comparable to Dr.

Step 2. Notice that since 1 € L?(dZ,Q), then § = d%¢ € L?(d]“, ). Define now
q = q + ¢, where ¢ € R is chosen so that ¢ € L?(d;*,Q)/R. This particular choice of
test function for the second equation of (28) yields

(45) ||¢H2L2(dg,9) =by(en,d79) = —by(uz,die) < | div uﬂHLz(dg@)||%/1||L2(dg,sz)-

Consequently, [[¢||L2@e,0) < [|divug||L2@e q)-
Step 3. In light of the smallness assumption (33), we may apply the estimate (34)
of Corollary 8 to write

VeullL2(de,0) + llepll2@e,0) S (||V‘I’HL2(dg,Q) + ||1/’HL2(dg,Q)) .

The desired estimate (38) thus follows from the estimates derived in steps 1 and 2.
This concludes the proof. 0

5.5. Local efficiency analysis. To derive efficiency properties for the local
indicator &,(ug,ps;T) we utilize standard residual estimation techniques but on
the basis of suitable bubble functions, whose construction we owe to [1, section 5.2].

Given T € 7, we introduce an element bubble function ¢ that satisfies 0 <
YT S ]-7

(46) or()=0, |T|< /T o [Verlneirn < b,

and there exists a simplex T C T such that Ry := supp(pr) C T*. Notice that since
o satisfies (46), we have that

(47) 100 2(rr) S Nl020ll2(rry VO € Ps(Rrp).

Given S € ., we introduce an edge bubble function ¢g that satisfies 0 < pg <1,

(48) ps(2) =0, 18] < /5 05, |Veslie(re) < h5',

and Rg := supp(ps) is such that if Ng = {T,T"}, there are simplices T, C T and
T, C T' such that Rg C T, UT, C TUT".

PROPOSITION 10 (estimates for bubble functions). Let T € 7 and @7 be the
bubble function that satisfies (46). If a € (0,2), then
(49) hr [V (0o7) 27y S Dr > 1022y VO € P5(T).

Let S € .7 and @gs be the bubble function that satisfies (48). If a € (0,2), then

1 _a
(50) hillV(Ops)liLe@-one) S Dr 2 10llL2(s)y V0 € P3(9),

where 6 is extended to the elements that comprise Ns as a constant along the direction
normal to S.
Proof. See [1, Lemma 5.2]. O

Having constructed these local bubble functions, the local efficiency can be shown
following more or less standard arguments.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/21 to 160.36.108.101. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

A1872 A. ALLENDES, E. OTAROLA, AND A. J. SALGADO

THEOREM 11 (local efficiency). Let o € (0,2), let (u,p) € X be the solution to
problem (11), and let (ug,pz) € V(T) x P(T) be its finite element approximation
given as the solution to (20). Assume that the intensity of the forcing term F is
sufficiently small so that (33) holds. Then

(51) 827,75 T) S [Veullae apy + ool 2 .

where the hidden constant is independent of the continuous and discrete solutions, the
size of the elements in the mesh 7, and #7, but depends on a and blows up as either
al0oraf?2.

Proof. We estimate each contribution in (35) separately, so the proof has several
steps.

Step 1. For T € Z we bound the bulk term h2D%||Augy — (ugy - V)ugy —
divugugy — Vng%z(T). To shorten notation, we define the functions

XT = (AUg7(ug~V)u<97divu:7u:9’7pr)lT, TT = <PTXT~

Since pr(2z) = 0, we immediately conclude that Y7 (z) = o7 (2)Xr(z) = 0. We utilize
the definitions of X7 and Y7 and invoke (47) to conclude that

(52) [|Aug — (uz - V)uy —divugsus — Vpz|iz(r

§/ |XT|2<PT=/XT'TT~
Rr T

Set v.= Yr as test function in identity (40), and use that Yr(z) = 0 and that
Y75 =0, for S € 77, to arrive at

/ XT . TT = a(<I>, TT)
T

Since supp X7 C T, a local version of the argument that led to estimate (29) implies
that

a(®,Y7) < (IVeullL2@e, ) + llepllz2@e 1) + IVUllL2 e 1yl VeallL2 e 1)
+ [[VeullL2 e 0yl VuzllLz@e,r) [VYTlL2@-er)-
Next, we utilize the smallness assumption (33), which implies the estimate

1-X
IVullLz@e o) + [Vuzllre@e,0) < oAz —
e R S [

to obtain that

(53) a(®,Y7) < (IVeullL2@e ) + lepll L2 @em) IV lL2@-o 7
We thus substitute this estimate in (52) to derive

(54) 1X7li2ry S (IVeallLz@e.ry + lepllnz@e.m) IV YT lL2@-e 1)-

We now recall that Y1 := orXr and invoke estimate (49) to arrive at

— —a/2
IVYr|L2@-ar) S hy' Dy IXrllLz(r)-
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The previous two estimates yield the desired bound on the first term:
(55) h%D%HAug — (ugz -Vug —divugugs — VngiQ(T)
S IVeullfze ) + llepl 2o 7y

Step 2. In this step we control the jump term hpDZ||[(Vugy — poI) - V]]||i2(s).

Let T € J and S € Sr. Define As = ps[(Vug — psI) - v] so that, using (48), we
have

I(Vus — poT) - o] 2a0s) < /S [(Vug — poI) - U] Pps

(56)

= [1(Vus —psD v As.
S

Setting v = Ag in (40) and using that Ag(z) = 0 yields
/[(VUgfpyI)J/ﬂ~A5:a(<I’,AS)f S| X As.
s T'eNs T

Now, since supp(Ag) C Rg = supp(pg) C T UT., C U{T" : T € Ng}, arguments
similar to those that led to (53) allow us to obtain

/S[[(Vuy —pzl)-v]-As

<la(®,As)|+ D> Xz llLzer | AslLeer)
T'eNs

< Y (IVeullz@e,r) + llepll 2e. ) IVAs Lz @=o 7
T'eNs

+ Z X7 Lz | As Lz (7).
T'eNs

By shape regularity we have that |T"| ~ h%, and |S| a2 hgv. Moreover, since the func-
tion Ag is the product of a fixed, and smooth, function by a polynomial, equivalence
of norms, scaling arguments, and the previous two observations yield

1 _1 1
[AsllLzy ~ |T'|21S] "2 | AslLz(s) = hi llAs|lL2(s),

where the hidden constants depend only on the polynomial degree. This, estimate
(50), and the bound on Xy derived in (55) yield

/S[[(Vuy —pzI)-v]-Ag

1 _a
< Y (IVeulliae oy + llepllL2@s ) br® Dr 2 | AslLas).
T'eNs

We replace the previous estimate in (56) to arrive at

(57)  hrDE|[(Vur —poD) V]IE2) S D (”veUH%Q(dg,T’) + ”ePH%?(d‘;,T/)) :
T'eNs
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Since every T € .7 belongs to at most three sets in the collection {Ngs : S € S}, we
can conclude.

Step 3. We now bound the residual term associated with the incompressibility
constraint. Since divu = 0, for any T' € .77, we immediately arrive at

(58) || le u¢7HL2(dj,T) = H le eu||L2(dj,T) g ||Veu||L2(d37T).

Step 4. We now bound the term associated with the singular source. Let T' € .7
and note that if 7N {z} = (, then there is nothing to prove. Otherwise, we must
obtain a bound for the term h%:|F|?. To do so we follow the arguments developed in
the proof of [1, Theorem 5.3] that yield the existence of a smooth function 7 such that

(59) n(z) =1, |nlee@ =1 IVnlue@ Shr's supp(n) C Nr.
Define v,, := Fn € H{(d; %, ). Since (u,p) and (®,7) solve (11) and (28), respec-
tively, we obtain
|F‘2 = <F52avn> = a(u,vn) + b (Vm p) + c(u,u;vy)
=a(®,v,) +aluz,vy,) +b_(vy,p7)+c(uz,ugy;vy).
Since supp(n) C N, we apply arguments similar to those that led to (53), integration
by parts, and basic estimates to arrive at
F* S (IVeullLz@e nry + lepllzz@e nimy) 1V llLz@=o ai)

+ Z |Aug — (ug - V)ugy —divugzus — Vpz|lLz (|| vyllLz ()
T'eT:T'CNr

+ Z Z [[(Vug —paI) - V]|lL2(s)llVallLe(s)-
T'€ T/ CNr S€EF1:5¢ ONT

We now use the estimates

—a
2

Inll2esy S hps nllczvey S by IVIllL@-ang) S he?,
and the fact that since z € T, we have hy ~ D, to assert the bound

1

—a 2
(60) IF1> S by * 1B (I VeulZaer nir) + o3 @z i)

T hT2FI< > hrDilAug - (7 V)ug —divugus = Vps L)
T'eT:T'CNr

+ Z Z Dz hi|[[(Vag — paI) - VﬂL2(S)>-

T'eT:T'CNypr SESLp1:SZONT

Invoke (55) and (57) to conclude.
Step 5. Collect the estimates derived in the previous steps to arrive at the desired
local efficiency estimate (51). |

6. Numerical results. In this section we present a series of numerical examples
that illustrate the performance of the devised error estimator &,(ug,po;7) defined
in (37). In some of these examples, we go beyond the presented theory and per-
form numerical experiments where we violate the assumption of homogeneous Dirich-
let boundary conditions. The examples have been carried out with the help of a
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@ (b O © (@)

FI1G. 1. The initial meshes % used in the adaptive algorithm, Algorithm 1, when (a) Q = (0,1)2,
(b) Q= (_17 1)2 \ [07 1) X [_17 O)’ (C) Q= (074) X (07 1)) and (d) Q= (07 10) X (07 1) \ [27 4] X [047 06]

code that we implemented using C++. All matrices have been assembled exactly, and
global linear systems were solved using the multifrontal massively parallel sparse di-
rect solver (MUMPS) [6, 7]. The right-hand sides, the terms involving the weight,
and the approximation errors are computed by a quadrature formula which is exact
for polynomials of degree 19.

For a given partition .7, we solve the discrete problem (20) with the discrete
spaces (17)—(18). This setting will be referred to as Taylor-Hood approximation. To
obtain the solution of (20) we use a fixed—point strategy, which is described in Algo-
rithm 2. In this algorithm, the initial guess is obtained as a discrete approximation
of the solution to a Stokes problem with singular sources [5] and tol = 1078, Once
the discrete solution (ug,ps) is obtained, we compute, for T' € .7, the a posteriori
error indicators &,(uz,ps;T), given in (35), to drive the adaptive mesh refinement
procedure described in Algorithm 1. Every mesh 7 is adaptively refined by marking
for refinement the elements T' € .7 that are such that step 3 in Algorithm 1 holds. A
sequence of adaptively refined meshes is thus generated from the initial meshes shown
in Figure 1.

We define the total number of degrees of freedom as Ndof := dimV(Z) +
dim P(.7). We recall that the discrete spaces V(7) and P(7) are as in (17) and
(18), respectively.

Algorithm 1 Adaptive Algorithm.

Input: Initial mesh 5, interior point z € €2, and « € (0, 2);

1: Solve the discrete problem (20) by using Algorithm 2;

2: For each T € 7 compute the local error indicators &,(ug,ps;T) given in (35);
3: Mark an element T' € .7 for refinement if

1
&, T — &, S ASF
(uz,p7;T) > 5 max (uz,pz;T")

4: From step 3, construct a new mesh, using a longest edge bisection algorithm [29].
Set i + i+ 1, and go to step 1.

6.1. Convex and nonconvex domains with homogeneous boundary con-
ditions. We first explore the performance of the devised a posteriori error estimator
in problems with homogeneous boundary conditions on convex and nonconvex do-
mains §2.

6.1.1. Convex domain. We set Q) = (0,1)%, z = (0.5,0.5)T, and F = (1,1)T.
We explore the performance of &, when driving the adaptive procedure of Algorithm 1.
We also investigate the effect of varying the exponent « in the Muckenhoupt weight.
To accomplish this task, we consider o € {0.25,0.5,0.75,1.0,1.25,1.5,1.75}.
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Algorithm 2 Fixed-Point Algorithm.

Input: Initial guess (u%,p%) € V() x P(7) and tol. Set i = 1;
1: Find (u'y,p'y) € V() x P(7) such that
a(uf?vv9) + b_(Vg, p??) =+ C(u?;lv uf?;vﬂ) =F- Vg(z), b+(u?‘9,qg) =0,
for all (v.7,47) € V() x P(T);
2: If |(u'y,ply) — (ugl,p;lﬂ > tol, set i < ¢+ 1, and go to step 1. Otherwise,
return (uz,ps) = (u'y,p'y).

In Figure 2 we present the experimental rates of convergence for the error es-
timator &,. We also present the meshes obtained after 20 adaptive refinements for
a € {0.25,1.0,1.5}. We observe that optimal experimental rates of convergence are
attained for all the values of the parameter o that we considered. We also observe
that most of the refinement is concentrated around the singular source point. In
Figure 3 we present effectivity indices Effg(a) for o € {0.5,1.0,1.5}. Since no exact
solution is available, we consider as an exact solution a discrete one, which we denote
by (u TP 9R) and is obtained after performing enough adaptive refinements in order
to surpass one million degrees of freedom. The effectivity indices are calculated as
follows:

_ ga(u97p9§y)
IV(ug, —uz)llLz@e.0) +Pg, —Pallrz@e .o

(61) Effz ()

From Figure 3 it can be observed that, for all the values of the parameter o that we
consider, the effectivity indices are stabilized around the value of 6. This shows the
accuracy of the proposed error estimator when it is used in our adaptive algorithm.

(gjy(uya p;7: ’?)

(a) (0) (c)

Ndof

Fic. 2. Convex domain: FEzperimental rates of convergence for the error estimator
Ea(ug,pz;T) considering o € {0.25,0.5,0.75,1.0,1.25,1.5,1.75} (left) and the meshes obtained
after 20 adaptive refinements for (a) a = 0.25 (168 elements and 89 wvertices); (b) a = 1.0 (252
elements and 137 vertices); and (¢) a = 1.75 (664 elements and 355 vertices).

6.1.2. Nonconvex domain. We set Q = (—1,1)2\[0,1) x [-1,0), an L-shaped
domain, z = (0.5,0.5)T, and F = (1,1)T. We again consider different values of
the exponent « of the Muckenhoupt weight dJ defined in (3). We consider a €
{0.25,0.5,0.75,1.0,1.25,1.5,1.75}.

In Figure 4 we present the experimental rates of convergence for the error es-
timator &,. We also present the meshes obtained after 25 adaptive refinements for
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—A—Eff(0.5)
—B— Eff(1.0)
—+—Effg(1.5) 1

Fi1G. 3. Convex domain: Effectivity indices Effg(c), which are calculated as in (61), for a €
{0.5,1.0,1.5}.

&u(uz,ps;T)

YN ol b (a) (b) (©)

Fi1a. 4. Nonconvex domain: Ezperimental rates of convergence for the error estimator
Ea(ug,pz;T) considering o € {0.25,0.5,0.75,1.0,1.25,1.5,1.75} (left) and the meshes obtained
after 25 adaptive refinements for (a) a = 0.25 (201 elements and 107 vertices); (b) o = 1.0 (412
elements and 222 vertices); and (¢) a = 1.75 (923 elements and 493 vertices).

a € {0.25,1.0,1.5}. We observe that for all the values of the parameter a that we
have considered, optimal experimental rates of convergence are attained. We also
observe that most of the refinement is concentrated around the singular source point
and that the geometric singularity is rapidly noticed for values of « closer to two.

6.2. A series of Dirac sources. We now go beyond the presented theory and
include a series of Dirac delta sources on the right-hand side of the momentum equa-
tion. To be precise, we will replace the momentum equation in (1) by

(62) —Au+ (u-V)u+Vp=>» F.4. inQ,
z2€Z

where Z C ) denotes a finite set with cardinality #Z which is such that 1 < #Z and
{F.}.cz C R% We introduce the weight [4, section 5]

[ de, FzeZijz—z <z,
(63) p(x){l’ |z —2| >4 VzeZ,

where dz = min {dist(Z,0Q), min{|z — 2’| : 2,2’ € Z,2 # 2’'}}. This weight belongs
to the Muckenhoupt class Ag [2] and to the restricted class A(£2). With the weight
p at hand, we modify the definition (5) of the spaces X and ) as follows:

(64) X =H(p, ) x L*(p,Q)/R, Y =Hy(p~", Q) x L*(p~", Q)/R.
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—— %15(uz,p7:T)
— — = Ndof™!

Fia. 5. A series of Dirac sources: Ezperimental rate of convergence for the error estimator
Ds5(ug,pa;T) (left) and the mesh obtained after 30 adaptive refinements (right) with o = 1.5.
The mesh contains 1324 elements and 693 vertices.

Define

(65) Dr z := min {max |z — z|} .
z€Z | z€T

We propose the following error estimator when the Taylor—-Hood scheme is con-
sidered:

Do(ug,p7; T) = (Z @i(uym%T)) ;

TeT
where the local indicators Z,(uz,ps;T) are such that

(66) Za(ug,pz;T):= (h%D%,Z”Auﬂ —(uz - Vugy —divuzuy — Vpzlliz(p

-

2
+ | div uﬂ”%?(p,T) +hr D7 2|[[(Vug — pzI)] - V||i2(aT\aQ) + Z h%|Fz|2) :
zeZNT

6.2.1. Convex domain with four Delta sources. We set = (0,1)? and
Z = {(0.25,0.25), (0.25,0.75), (0.75,0.25), (0.75,0.75) }.

We consider, for all z € Z, F, = (1,1)7 and fix the exponent of the Muckenhoupt
weight p as a = 1.5.

In Figure 5 we present the experimental rates of convergence for the error es-
timator %, and the mesh obtained after 30 adaptive refinements with o = 1.5. It
can be observed that the devised a posteriori error estimator exhibits an optimal ex-
perimental rate of convergence. It can also be observed that most of the refinement
is concentrated around the singular source points. In Figure 6, we present the fi-
nite element approximations of [ug| and po over the mesh that is obtained after 30
iterations of our adaptive loop with o = 1.5.

6.3. A convex domain with nonhomogeneous boundary conditions. We
now explore the performance of our devised a posteriori error estimator by considering
a problem with nonhomogeneous boundary conditions—a framework that does not fit
in our analysis.
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F1G. 6. A series of Dirac sources: Finite element approzimations [ug| (left) and pg (right)
over the mesh obtained after 30 adaptive refinements with « = 1.5. The mesh contains 1324 elements
and 693 vertices.

6.3.1. A rectangular domain. We set 2 = (0,4) x (0,1), z = (0.5,0.5)T, and
F = (10,10)T. The boundary conditions are illustrated in the left panel of Figure
7. We prescribe the parabolic Dirichlet inflow condition up = (y(1 — y),0)T on
{0} x[0,1] and up = 0 on [0,4] x {0} U{1} and the homogeneous Neumann condition
(Vup —pI)v = 0 on {4} x (0,1). Here, v denotes the unit normal on 9 pointing
outwards. We recall that I denotes the identity matrix in R2*2,

In the right panel of Figure 7 we observe an optimal decay rate for the devised
error estimator & 5(uz,ps; ). Finally, Figure 8 shows the streamlines associated
to the velocity field ug and the mesh obtained after 30 adaptive refinements. It can
be observed that most of the refinement is concentrated around the singular source
point.

6.3.2. A rectangular domain with an obstacle. We set = (0,10) x (0,1)\
[2,4] x [0.4,0.6] and F, = (10,10)7 for z € Z, where Z = {z;}}_; with

2z = (1.011635,0.198805)T, 2 = (1.011635,0.801195)T,
23 = (5.354725,0.200869)T,  z4 = (5.264444,0.719518)T.

The boundary conditions are illustrated in the top panel of Figure 9. We prescribe
the parabolic Dirichlet inflow condition up = (y(1 —y),0)T on {0} x [0,1], up =0
on [0,10] x {0} U {1}, and up = 0 on the boundary of [2,4] x [0.4,0.6], and the
homogeneous Neumann condition (Vup —pI)v = 0 on {10} x (0,1). Here, v denotes
the unit normal on 0f2 pointing outwards. We recall again that I denotes the identity
matrix in R2*2. The bottom panel of Figure 9 shows the experimental rate of conver-
gence for the error estimator Z,(ugz,pz;7) with @ = 1.5. The estimator exhibits
an optimal rate of decay. Finally, Figure 10 shows the streamlines associated to the
velocity field ug over the mesh obtained after 100 iterations of our adaptive loop. It
can be appreciated that most of the refinement is concentrated around the singular
sources and the involved geometric singularities.
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F1G. 7. A rectangular domain: Boundary conditions for problem (1) on Q = (0,4) x (0,1). We
prescribe the parabolic Dirichlet inflow condition up = (y(1 —y),0)T on {0} X [0,1] and up =0 on
[0,4] x {0} U{1} and the homogeneous Neumann condition (Vup — pI)v =0 on {4} x (0,1) (left).
Ezxperimental rate of convergence for the error estimator éo(Wg,pa; T ) with a = 1.5 (right).

0.0e+00 2 4 6 8 10 1.2e+01
|

Fi1G. 8. A rectangular domain: Streamlines associated to the velocity field ug (top) over the
mesh, with 1485 elements and 781 wvertices, that is obtained after 30 adaptive refinements of our
adaptive loop (bottom). We have considered o = 1.5.

7. Concluding remarks. In this work, an a posteriori error estimator for the
two dimensional stationary Navier—Stokes equations under singular forcing has been
developed and analyzed. By singular forcing here we mean that the forcing is a linear
combination of Dirac deltas in the interior of the domain. Under the standard small-
ness setting that guarantees uniqueness of solutions, we showed that this estimator
is globally reliable and locally efficient. We presented several numerical examples to
illustrate and extend our theory. To conclude we make the following observations.

e Dependence on the constants on «: In Proposition 3 and Theorems 9 and 11 we
state that our estimates involve constants that depend on « and blow up as they
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FiG. 9. A rectangular domain with an obstacle: Boundary conditions for problem (1) on
Q = (0,10) x (0,1) \ [2,4] x [0.4,0.6]. We prescribe the parabolic Dirichlet inflow condition up =
(y(1-9),0)T on {0} x[0,1], up = 0 on [0,10] x {0}U{1}, up = 0 on the boundary of [2,4] x[0.4,0.6],
and the homogeneous Neumann condition (Vup — pI)v = 0 on {10} x (0,1) (top). Experimental
rate of convergence for the error estimator Y9o(ug,pa;.7) with a = 1.5 (bottom,).

00002 4 6 8 10 12 Tdesl)

Fia. 10. A rectangular domain with an obstacle. Streamlines associated to the velocity field
ug (top) over the mesh, with 8670 elements and 4498 vertices, that is obtained after 100 adaptive
refinements of our adaptive loop (bottom). We have considered ov = 1.5.
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approach the critical values 0 or 2. The precise value, or asymptotic behavior, of

many of the constants that we use is not known, even for simple domains. In spite

of this fact, the following comments can be provided.

o dY belongs to the Muckenhoupt class Ay provided a € (—2,2) and the Mucken-
houpt characteristic of d blows up as o — £2.

o The constants appearing in the interpolation estimates stated in Proposition 5,
which are derived in [33], depend on the Muckenhoupt characteristic of df. It
can thus be concluded that the involved constants blow up as o« — +2.

o In the course of the proof of Theorem 9 we use the precise bound for ¢, derived in
[1, Theorem 4.7]. As is stated in [1, Theorem 4.7], the involved constant blows up
as a J 0. This is expected because §, does not belong to the dual of H}(d;%,)
when « = 0; see [26, Remark 21.19] (see also the computation in [19, Proposition
5.2]).

These arguments lead us to the conclusion that in Proposition 3 and Theorems 9
and 11, the hidden constants blow up as « approaches either 0 or 2. However,
as we previously stated, we have no control of all the involved constants (such as
embedding constants between weighted Sobolev spaces), so it is not possible to
make quantitative statements regarding the behavior of these constants and, as a
consequence, of the behavior of our estimator as a approaches either 0 or 2.
Practical choice of a: The numerical observations seem to indicate (see Figures 2
and 4) that the choice of @ € (0,2) is not essential for the asymptotic behavior of
the method, but a better value of the error at a fixed mesh can be obtained for
values of « closer to two. One may not wish to make this value too close to the
critical value of two, however, as this may give a blowup in the implicit constants
that appear in our estimates. When the domain exhibits geometric singularities,
numerical evidence supports the claim that they are rapidly noticed for values of «
closer to two. In such a case the refinement is more spread throughout the domain
due to the smaller relative importance of the singularity introduced by 9,.
Limitations: There seem to be two main limitations to our approach. First, we
are restricted to the two dimensional setting. The reason for this is explained in
Remark 2. Our current arguments based on weighted spaces and related techniques
cannot show the boundedness of the convective term in three dimensions. Note that
a similar limitation appears in [12, 32]. The second limitation is that we need to
know the location and intensity of the Dirac source for our approach to work.
However, if we do not have these two pieces of information we do not know the
forcing term, a problem that is beyond our scope here. We are not claiming that
our estimator works for any singular forcing term, or that it will perform well if
the forcing happens to be regular. In fact, in this case our estimator will not work.
This is a heavily tailored estimator for a very singular problem.
Boundedness of {S‘}l}geqr: Our developments are based on the fact that the family
{S}l}geqy is uniformly bounded on weighted spaces. As mentioned above, if Q
is convex and T is quasi-uniform, then [19, Theorem 4.1] has proved this fact.
While convexity may not be a restrictive assumption on the domain, the fact that
T must be quasi-uniform is not fulfilled in an adaptive setting. Filling this gap
is beyond the scope of our interest here. Our numerical experiments, however,
present numerical evidence that this assumption is indeed true. If this assumption
is false, the constants in our estimates will depend on .7 (read number of degrees of
freedom), and the devised adaptive loop will not deliver optimal asymptotic rates
of decay.
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