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In Lipschitz two- and three-dimensional domains, we study the existence for the so-called
Boussinesq model of thermally driven convection under singular forcing. By singular we
mean that the heat source is allowed to belong to H−1(̟,Ω), where ̟ is a weight in the
Muckenhoupt class A2 that is regular near the boundary. We propose a finite element
scheme and, under the assumption that the domain is convex and ̟−1 ∈ A1, show
its convergence. In the case that the thermal diffusion and viscosity are constants, we
propose an a posteriori error estimator and show its reliability. We also explore efficiency
estimates.
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1. Introduction

The purpose of this paper is to study existence, uniqueness, and approximation

results for the so-called Boussinesq model of thermally driven convection. While

this problem has been considered before in different contexts and there are such

results already available in the literature,3,10,15,21,33,41–43 our main source of nov-

elty and originality here is that we allow the heat source to be singular, say a

†Corresponding author.
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Dirac measure concentrated in a lower dimensional object so that the problem can-

not be understood with the usual energy setting; as it was done, for instance, in

Refs. 10, 21, 33, 42 and 43. Let us make this discussion precise. Let Ω ⊂ R
d, with

d ∈ {2, 3}, be an open and bounded domain with Lipschitz boundary ∂Ω. We are

interested in existence, uniqueness, and approximation of solutions to the following

system of partial differential equations (PDEs) in strong form:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− div(ν(T)∇u) + (u · ∇)u+∇p = gT, in Ω,

div u = 0, in Ω,

− div(κ(T)∇T) + div(uT) = H, in Ω,

u = 0, T = 0, on ∂Ω.

(1.1)

The unknowns are the velocity u, pressure p, and temperature T of the fluid, respec-

tively. The data are the viscosity coefficient ν, gravity g, the thermal diffusivity

coefficient κ, and the externally applied heat source H. Our main source of interest

is the case of a rough H, so that standard energy arguments do not apply to obtain

suitable estimates. We will make precise assumptions quantifying this below.

Our presentation will be organized as follows. We collect background informa-

tion, and the main assumptions under which we shall operate in Sec. 2, where we

also introduce a notion of solution for (1.1); see Definition 2.2. Existence of solutions

is presented in Sec. 3. The numerical analysis of problem (1.1) begins in Sec. 4,

where we introduce a finite-element-like numerical scheme, show that it always has

solutions, and that these converge. Section 5 continues the numerical analysis by

introducing an a posteriori error estimator for our problem and showing its reliabil-

ity. We also explore efficiency estimates. Finally, a series of numerical experiments

are presented in Sec. 6. We show the performance of the devised error estimator

within an adaptive loop and explore our model beyond what our theory can handle.

2. Notation and Main Assumptions

Throughout this paper, d ∈ {2, 3} and Ω ⊂ R
d is an open and bounded domain

with Lipschitz boundary ∂Ω. If W and Z are Banach function spaces, we write

W →֒ Z to denote that W is continuously embedded in Z. We denote by W ′ and

‖ · ‖W the dual and the norm of W , respectively.

For E ⊂ Ω open and f : E → R, we set
 

E

f dx =
1

|E|

ˆ

E

f dx, |E| =
ˆ

E

dx.

Given p ∈ (1,∞), we denote by p′ its Hölder conjugate, i.e. the real number

such that 1/p+1/p′ = 1. By a � b we mean a ≤ Cb, with a constant C that neither

depends on a, b, nor the discretization parameters. The value of C might change at

each occurrence. If the particular value of a constant is of relevance, then we will

assign it a name. For instance, throughout our paper, by C4→2 we shall denote the

best constant in the embedding H1
0(Ω) →֒ L4(Ω).
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2.1. Weighted function spaces and their embeddings

A weight is a locally integrable and nonnegative function defined on R
d. If ̟ is a

weight and p ∈ [1,∞), we say that ̟ belongs to the so-called Muckenhoupt class

Ap if18,35,45

[̟]Ap := sup
B

(
 

B

̟ dx

)(
 

B

̟1/(1−p) dx

)p−1

< ∞, p ∈ (1,∞),

[̟]A1 := sup
B

(
 

B

̟ dx

)

sup
x∈B

1

̟(x)
< ∞, p = 1,

where the supremum is taken over all balls B in R
d. In addition, A∞ :=

⋃

p≥1 Ap.

We call [̟]Ap , for p ∈ [1,∞), the Muckenhoupt characteristic of ̟.

Distances to lower dimensional objects are prototypical examples of Mucken-

houpt weights. In particular, if K ⊂ Ω is a smooth compact submanifold of dimen-

sion k ∈ {0, 1, . . . , d − 1} then, owing to Lemma 2.3 item (vi) in Ref. 22, we have

that

dαK(x) = dist(x,K)α

belongs to the class Ap provided α ∈ (−(d − k), (d − k)(p − 1)). This allows us to

identify three particular cases:

(i) Let d > 1 and z ∈ Ω, then the weight dαz ∈ A2 if and only if α ∈ (−d, d).

(ii) Let d ≥ 2 and γ ⊂ Ω be a smooth closed curve without self-intersections. We

have that dαγ ∈ A2 if and only if α ∈ (−(d− 1), d− 1).

(iii) Finally, if d = 3 and Γ ⊂ Ω is a smooth surface without boundary, then

dαΓ ∈ A2 if and only if α ∈ (−1, 1).

Since the aforementioned lower dimensional objects are strictly contained in Ω,

there is a neighborhood of ∂Ω where the weight has no degeneracies or singularities.

In fact, it is continuous and strictly positive. Inspired by Definition 2.5 in Ref. 22,

this observation motivates us to define a restricted class of Muckenhoupt weights.

Definition 2.1. (Class Ap(D)) Let D ⊂ R
d be a Lipschitz domain. For p ∈ (1,∞)

we say that ̟ ∈ Ap belongs to Ap(D) if there is an open set G ⊂ D, and positive

constants ε > 0 and ̟l > 0, such that:

{x ∈ Ω : dist(x, ∂D) < ε} ⊂ G, ̟ ∈ C(Ḡ), ̟l ≤ ̟(x) ∀x ∈ Ḡ.

Remark 2.1. (dαz ∈ A2(Ω) and d−α
z ∈ A1) Let z ∈ Ω and α ∈ (d − 2, d). Define

dz(x) = |x − z|. Then, we have that the weight dαz is such that dαz ∈ A2(Ω) and

d−α
z ∈ A1.

From the Ap-condition and Hölder’s inequality follows that an Ap-weight sat-

isfies the so-called strong doubling property; see Proposition 1.2.7 in Ref. 45: Let
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̟ ∈ Ap with p ∈ (1,∞) and E ⊂ R
d be a measurable subset of a ball B ⊂ R

d.

Then,

̟(B) ≤ Cp,̟

( |B|
|E|

)p

̟(E). (2.1)

The following embedding results will be of importance in our analysis.

Proposition 2.1. (Weighted embedding) Let p ∈ (1,∞) and ̟ ∈ Ap. There is

δ > 0 such that if

k ∈
[

1,
d

d− 1
+ δ

]

,

then W 1,p
0 (̟,Ω) →֒ Lkp(̟,Ω). If, in addition, Ssing(̟) ⋐ Ω then, the embedding

is compact for 1 ≤ k ≤ d/(d − 1). Here, Ssing(̟) denotes the set of singularities

defined in Sec. 4.1 of Ref. 28.

Proof. Theorem 1.3 in Ref. 20 guarantees that the embedding is continuous. The

compactness of the embedding follows from Theorem 4.12 in Ref. 28.

Proposition 2.2. (Embedding with different metrics) Let 1 ≤ p ≤ q < ∞, ̟ ∈ Ap,

and ρ ∈ Aq. If the pair (ρ,̟) satisfies the compatibility condition

r

R

(

ρ(Br)

ρ(BR)

)1/q (
̟(BR)

̟(Br)

)1/p

� 1, 0 < r ≤ R,

then, we have that, W 1,p
0 (̟,Ω) →֒ Lq(ρ,Ω).

Proof. See Theorem 6.1 in Ref. 36.

Proposition 2.3. (Boundedness) Let d ∈ {2, 3} and ̟ ∈ A2. For every g ∈
L∞(Ω), θ ∈ H1

0 (̟,Ω), and v ∈ H1
0(Ω), we have that

∣

∣

∣

∣

ˆ

Ω

θg · v dx

∣

∣

∣

∣

≤ Ce,1‖g‖L∞(Ω)‖∇θ‖L2(̟,Ω)‖∇v‖L2(Ω). (2.2)

If, in addition, the weight satisfies ̟−1 ∈ A1, then provided r ∈ H1
0 (̟

−1,Ω), we

have
∣

∣

∣

∣

ˆ

Ω

θv · ∇r dx

∣

∣

∣

∣

≤ Ce,2‖∇v‖L2(Ω)‖∇θ‖L2(̟,Ω)‖∇r‖L2(̟−1,Ω). (2.3)

In both estimates, the constants depend only on Ω and ̟.

Proof. Since the weight ̟ ∈ A2, we have that it satisfies the strong doubling

property (2.1) with p = 2. Thus, for 0 < r ≤ R and q ≤ d/(d− 1), we have

r

R

( |Br|
|BR|

)1/q (
̟(BR)

̟(Br)

)1/2

�
( r

R

)1+d/q |BR|
|Br|

� 1.
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We thus invoke Proposition 2.2 with p = 2 and ρ = 1 to conclude that H1
0 (̟,Ω) →֒

Lq(Ω) provided q ≤ d/(d− 1). Consequently, for q ≤ d/(d− 1), we have
∣

∣

∣

∣

ˆ

Ω

θg · v dx

∣

∣

∣

∣

≤ ‖g‖L∞(Ω)‖θ‖Lq(Ω)‖v‖Lq′ (Ω) � ‖g‖L∞(Ω)‖∇θ‖L2(̟,Ω)‖v‖Lq′ (Ω).

Notice that q′ ≥ d. Choosing q = d/(d − 1) and utilizing a standard Sobolev

embedding yields estimate (2.2).

We now prove inequality (2.3). To accomplish this task, we first notice that

̟−1 ∈ A1 implies ̟ ∈ L∞(Ω). Second, since Proposition 2.1 guarantees the exis-

tence of ǫ > 0 such that H1
0 (̟,Ω) →֒ Lµ+ǫ(̟,Ω), for μ = 2d/(d − 1), we can

conclude the existence of ℓ ≥ 2d/(d − 1) and m ≤ 2d such that m−1 + ℓ−1 = 1/2

and
∣

∣

∣

∣

ˆ

Ω

θv · ∇r dx

∣

∣

∣

∣

≤ ‖̟‖1/mL∞(Ω)‖v‖Lm(Ω)‖θ‖Lℓ(̟,Ω)‖∇r‖L2(̟−1,Ω)

� ‖̟‖1/mL∞(Ω)‖∇v‖L2(Ω)‖∇θ‖L2(̟,Ω)‖∇r‖L2(̟−1,Ω), (2.4)

where we have also used a standard, unweighted, Sobolev embedding to handle the

term involving v. This yields (2.3) and concludes the proof.

2.2. Main assumptions and definition of solution

Having described the functional setting that we shall adopt and some of its more

relevant properties, we can precisely state the assumptions under which we shall

operate.

• Domain: Let d ∈ {2, 3}. We assume that Ω is a bounded domain in R
d with

Lipschitz boundary ∂Ω.When dealing with discretization, we shall further assume

that Ω is a polytope.

• Gravity: The gravity is a constant vector g ∈ R
d. We set g = |g|.

• Viscosity: The viscosity is a function ν ∈ C0,1(R) that is strictly positive and

bounded, i.e. there are positive constants ν− and ν+ such that ν− ≤ ν+ and

ν− ≤ ν(t) ≤ ν+ ∀ t ∈ R.

• Thermal diffusivity: The thermal coefficient is a function κ ∈ C0,1(R) that is,

moreover, strictly positive and bounded, i.e. there are positive constants κ− and

κ+ such that κ− ≤ κ+ and

κ− ≤ κ(t) ≤ κ+ ∀ t ∈ R.

To quantify the oscillation of the thermal diffusivity we shall introduce

Λ(κ) :=
κ−

κ+
∈ (0, 1].

• Weight: We assume that we have a weight ̟ ∈ A2(Ω) such that ̟−1 ∈ A1

and Ssing(̟) ⋐ Ω. A canonical example of this scenario is given in Remark 2.1;

Example 4.4 in Ref. 28 shows that |Ssing(̟)| = 0.
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• Heat source: We allow the heat source to be singular, and we quantify this by

assuming that it belongs to the dual of a weighted space. Namely, we assume

that H ∈ H−1(̟,Ω) := H1
0 (̟

−1,Ω)′.

With these assumptions at hand we can define our notion of solution.

Definition 2.2. (Weak solution) We say that the triple (T, u, p) ∈ H1
0 (̟,Ω) ×

H1
0(Ω)× L2

0(Ω) is a weak solution to (1.1) if
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ˆ

Ω

(ν(T)∇u : ∇v + (u · ∇)u · v − p divv − Tg · v) dx = 0,

ˆ

Ω

q div u dx = 0,

ˆ

Ω

(κ(T)∇T · ∇r − Tu · ∇r) dx = 〈H, r〉,

(2.5)

for all v ∈ H1
0(Ω), q ∈ L2

0(Ω), and r ∈ H1
0 (̟

−1,Ω). Here, 〈·, ·〉 denotes the duality

pairing between H1
0 (̟

−1,Ω) and its dual H−1(̟,Ω).

We immediately comment that, owing to our assumptions on data and definition

of solution, all terms in this definition are meaningful; see Proposition 2.3.

3. Existence of Solutions

The main goal in this section is to show that problem (1.1) has, under the assump-

tions stated in Sec. 2.2, a solution in the sense of Definition 2.2. We proceed in

several steps.

3.1. The Navier–Stokes equation with prescribed temperature

We begin by making a simple observation. Given θ ∈ H1
0 (̟,Ω), let us consider

the following problem: Find (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that, for all (v, q) ∈
H1

0(Ω)× L2
0(Ω),

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ˆ

Ω

(ν(θ)∇u : ∇v + (u · ∇)u · v − p div v) dx =

ˆ

Ω

θg · v dx

ˆ

Ω

q divu dx = 0.

(3.1)

We present the following result regarding existence and uniqueness of solutions

to (3.1). We will make use of the fact that, on Lipschitz domains, the divergence

operator is surjective fromH1
0(Ω) to L

2
0(Ω).

11,12 This implies that there is a constant

B, that depends only on d and Ω, for which

B‖q‖L2(Ω) ≤ sup
v∈H1

0(Ω)

´

Ω
div vq dx

‖∇v‖L2(Ω)
∀ q ∈ L2

0(Ω). (3.2)
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Theorem 3.1. (Existence and uniqueness) For every θ ∈ H1
0 (̟,Ω) problem (3.1)

has at least one solution. In addition, if CPCe,1g‖∇θ‖L2(̟,Ω) < ν2−, where CP is a

constant that depends only on Ω and d, then this solution is unique and satisfies

‖∇u‖L2(Ω) ≤
Ce,1g

ν−
‖∇θ‖L2(̟,Ω),

‖p‖L2(Ω) ≤
Ce,1g

B
‖∇θ‖L2(̟,Ω)

(

1 +
ν+
ν−

+
C2

4→2Ce,1g

ν2−
‖∇θ‖L2(̟,Ω)

)

,

where C4→2 is the best constant in the embedding H1
0(Ω) →֒ L4(Ω) and B is the

constant appearing in estimate (3.2).

Proof. Since θ ∈ H1
0 (̟,Ω), the function ν̄(x) := ν(θ(x)) is bounded, measurable,

and strictly positive. Define the functional

Fθ : v 
→
ˆ

Ω

θg · v dx.

Owing to Proposition 2.3 we have that Fθ ∈ H−1(Ω). In addition, Proposition 2.3

also shows that

‖Fθ‖H−1(Ω) ≤ Ce,1‖g‖L∞(Ω)‖∇θ‖L2(̟,Ω) = Ce,1g‖∇θ‖L2(̟,Ω).

Thus, the standard theory of existence and uniqueness under small data (or large

viscosity) for the Navier–Stokes equation applies; see Chap. II, §1 in Ref. 44.

We now obtain the claimed estimates. The bound on u follows from standard

energy arguments and the bound on Fθ. The bound on p is obtained from (3.2).

Indeed, using the first equation in (3.1), inequality (3.2) yields

B‖p‖L2(Ω) ≤ ν+‖∇u‖L2(Ω) + C2
4→2‖∇u‖2

L2(Ω) + ‖Fθ‖H−1(Ω).

Substitute the obtained bounds in terms of ∇θ to conclude.

3.2. The stationary heat equation with convection

Here, we study the existence of solutions to a stationary heat equation with convec-

tion and under singular forcing. Namely, given κ ∈ L∞(Ω) with 0 < κ− ≤ κ ≤ κ+,

u ∈ H1
0(Ω), and H ∈ H−1(̟,Ω), we consider the following stationary heat equa-

tion: Find T ∈ H1
0 (̟,Ω) such that

ˆ

Ω

(κ∇T · ∇r − Tu · ∇r) dx = 〈H, r〉 ∀ r ∈ H1
0 (̟

−1,Ω). (3.3)

As a first step, we state a well-posedness result for the case u = 0.

Proposition 3.1. (Well-posedness for u = 0) There is a constant Λ0, depending

only on Ω and ̟, such that, if Λ(κ) ≥ Λ0, problem (3.3) with u = 0 is well-posed.
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This, in particular, implies that

‖∇T ‖L2(̟,Ω) ≤ Cκ sup
r∈H1

0 (̟
−1,Ω)

´

Ω
κ∇T · ∇r dx

‖∇r‖L2(̟−1,Ω)

∀T ∈ H1
0 (̟,Ω). (3.4)

The constant Cκ depends only on Λ0, Λ(κ), Ω, d, and ̟.

Proof. See Theorem 12 in Ref. 40.

We now study the case with nonzero convection.

Proposition 3.2. (Well-posedness for u �= 0) Assume that Λ(κ) ≥ Λ0, where Λ0

is defined in Proposition 3.1. If

CκCe,2‖∇u‖L2(Ω) ≤ q < 1, (3.5)

then problem (3.3) is well-posed. This, in particular, implies that the solution T of

problem (3.3) satisfies the estimate

‖∇T ‖L2(̟,Ω) ≤ CH(q)‖H‖H−1(̟,Ω), CH(q) =
Cκ

1− q
.

Proof. Let us introduce the linear map A : H1
0 (̟,Ω) → H−1(̟,Ω) via

〈AT, r〉 :=
ˆ

Ω

κ∇T · ∇r dx, ∀T ∈ H1
0 (̟,Ω), ∀ r ∈ H1

0 (̟
−1,Ω).

Clearly, A is a bounded linear operator and, moreover, owing to the inf-sup estimate

(3.4), A is invertible with ‖A−1‖L(H−1(̟,Ω),H1
0 (̟,Ω)) ≤ Cκ .

Given u ∈ H1
0(Ω), we introduce the map Bu : H1

0 (̟,Ω) → H−1(̟,Ω) defined

by

〈BuT, r〉 = −
ˆ

Ω

Tu · ∇r dx, ∀T ∈ H1
0 (̟,Ω), ∀ r ∈ H1

0 (̟
−1,Ω).

Estimate (2.3) shows that Bu is a bounded linear map which satisfies the estimate

‖Bu‖L(H1
0 (̟,Ω),H−1(̟,Ω)) ≤ Ce,2‖∇u‖L2(Ω).

Since it will be needed later, we now show that Bu is compact. Let {Tn}n≥0 be

a bounded sequence in H1
0 (̟,Ω). Since Proposition 2.1 guarantees that, for k ≤

d/(d − 1), the embedding H1
0 (̟,Ω) →֒ L2k(̟,Ω) is compact, we conclude the

existence of a subsequence {Tnj}j≥0 of {Tn}n≥0 such that Tnj ⇀ T ∗ in H1
0 (̟,Ω)

and Tnj → T ∗ in L2d/(d−1)(̟,Ω) as j ↑ ∞. Thus, estimate (2.4) yields

‖BuTnj − BuT
∗‖H−1(̟,Ω) � ‖Tnj − T ∗‖L2d/(d−1)(̟,Ω)‖∇u‖L2(Ω) → 0, j ↑ ∞.

This shows that {BuTnj}j≥0 converges in H−1(̟,Ω) and thus that Bu is com-

pact. We notice that, in view of (2.4), the map Bu is well-defined on the space

L2d/(d−1)(̟,Ω).

With this notation, we have that problem (3.3) can be written as

(A+ Bu)T = H ⇐⇒ (I +A−1Bu)T = A−1H



2nd Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

A Boussinesq problem 9

in H−1(̟,Ω). Since A−1Bu is continuous, assumption (3.5) implies that this prob-

lem has a unique solution, because

‖A−1Bu‖L(H1
0 (̟,Ω)) ≤ CκCe,2‖∇u‖L2(Ω) ≤ q < 1.

Moreover, we have the estimate

‖∇T ‖L2(̟,Ω) ≤
‖A−1‖L(H−1(̟,Ω),H1

0 (̟,Ω))

1− ‖A−1Bu‖L(H1
0 (̟,Ω))

‖H‖H−1(̟,Ω) ≤
Cκ

1− q
‖H‖H−1(̟,Ω).

Notice that CH(q) = Cκ/(1− q) depends only on q, Λ0, Λ(κ), Ω, d, and ̟.

3.3. Existence of solutions

Having studied each one of the subproblems separately, we proceed to show exis-

tence of solutions to (2.5) via a fixed point argument. To accomplish this task, we

define the map F : H1
0 (̟,Ω) × H1

0(Ω)×L2
0(Ω) → H1

0 (̟,Ω) × H1
0(Ω)×L2

0(Ω) by

F(θ,u, p) := (T, u, p), where (T, u, p) solves
ˆ

Ω

(ν(θ)∇u : ∇v + (u · ∇u) · v − p div v) dx =

ˆ

Ω

θg · v dx ∀v ∈ H1
0(Ω), (3.6)

ˆ

Ω

q div u dx = 0 ∀ q ∈ L2
0(Ω), (3.7)

ˆ

Ω

(κ(θ)∇T · ∇r − Tu · ∇r) dx = 〈H, r〉 ∀ r ∈ H1
0 (̟

−1,Ω). (3.8)

Note that the definition of (T, u, p) implies solving a stationary Navier–Stokes equa-

tion with prescribed temperature θ and a stationary heat equation with convection

u. The following result shows that the map F is well-defined. To concisely state it

we define
⎧

⎪

⎪

⎨

⎪

⎪

⎩

BT = {θ ∈ H1
0 (̟,Ω) : ‖∇θ‖L2(̟,Ω) ≤ S},

S =
ν−

gCe,1
min

{

ν−
CP

,
1

2CκCe,2

}

,

(3.9)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Bu = {u ∈ H1
0(Ω) : ‖∇u‖L2(Ω) ≤ G},

G =
1

2CκCe,2
,

(3.10)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Bp = {p ∈ L2
0(Ω) : ‖p‖L2(Ω) ≤ P},

P =
Ce,1g

B
S

(

1 +
ν+
ν−

+
C2

4→2Ce,1g

ν2−
S

) (3.11)

and B = BT ×Bu×Bp.



2nd Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

10 A. Allendes, E. Otárola & A. J. Salgado

Proposition 3.3. (F is well-defined) Assume that Λ(κ) ≥ Λ0, where Λ0 is defined

in Proposition 3.1. If the heat source H ∈ H−1(̟,Ω) satisfies the estimate

‖H‖H−1(̟,Ω) ≤
S

CH(1/2)
=

S

2Cκ

, (3.12)

then F is well-defined on B. In addition, we have F(B) ⊂ B.

Proof. Let θ ∈ BT . Invoke Theorem 3.1 to conclude the existence of a unique

(u, p) ∈ H1
0(Ω)× L2

0(Ω) that solves (3.6) and (3.7). Moreover, u and p satisfy the

estimates

‖∇u‖L2(Ω) ≤
Ce,1g

ν−
‖∇θ‖L2(̟,Ω) ≤

Ce,1g

ν−

ν−
gCe,1

1

2CκCe,2
= G,

‖p‖L2(Ω) ≤
Ce,1g

B
‖∇θ‖L2(̟,Ω)

(

1 +
ν+
ν−

+
C2

4→2Ce,1g

ν2−
‖∇θ‖L2(̟,Ω)

)

≤ P.

Consequently, u ∈ Bu and p ∈ Bp. Now, since Λ(κ) ≥ Λ0 and u ∈ Bu, we invoke

Proposition 3.2, with q = 1/2, to conclude that there exists a unique T that solves

(3.8). Moreover, the condition on H guarantees that

‖∇T‖L2(̟,Ω) ≤ CH(1/2)‖H‖H−1(̟,Ω) ≤ S,

which implies that T ∈ BT . We have thus proved all the statements.

As a last preparatory step we show that the mapping F is weakly continuous.

Lemma 3.1. (Weak continuity) The mapping F : B → B is weakly continuous.

Proof. Let the sequence {(θn,un, pn)}n≥0 ⊂ B be such that (θn,un, pn) ⇀

(θ,u, p) in H1
0 (̟,Ω) × H1

0(Ω)×L2
0(Ω). As the set B is closed and convex, it

is weakly closed. Therefore, (θ,u, p) ∈ B. Set (Tn, un, pn) = F(θn,un, pn) and

(T, u, p) = F(θ,u, p). We must show that (Tn, un, pn) ⇀ (T, u, p).

Owing to the reverse Hölder inequality, Theorem 7.4 in Ref. 18, we have that, for

some ǫ > 0, the embedding H1
0 (̟,Ω) →֒ W 1,1+ǫ(Ω) is continuous. Since W 1,1+ǫ(Ω)

is compactly embedded in L1+ǫ(Ω), we obtain that θn → θ in L1+ǫ(Ω). The conti-

nuity of κ implies then that κ(θn) → κ(θ) almost everywhere in Ω; see Theorem 7

in Ref. 9. Now, since {(Tn, un, pn)}n≥0 ⊂ B is bounded, we can extract a weakly

convergent subsequence {(Tnk
, unk

, pnk
)}k≥0 such that (Tnk

, unk
, pnk

) ⇀ (T̃, ũ, p̃)

in H1
0 (̟,Ω) × H1

0(Ω)×L2
0(Ω) as k ↑ ∞. The previous discussion shows that, for

every r ∈ H1
0 (̟

−1,Ω), we have

ˆ

Ω

κ(θnk
)∇Tnk

· ∇r dx →
ˆ

Ω

κ(θ)∇T̃ · ∇r dx, k ↑ ∞.
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Similar arguments for the remaining terms that comprise the definition of F show

that, in the limit, we must have (T̃, ũ, p̃) = F(θ,u, p). Consequently, (T̃, ũ, p̃) =

(T, u, p). Since problem (3.6)–(3.8) admits a unique solution, any convergent sub-

sequence converges to the same limit, which implies that the whole sequence must

do so to (T, u, p), which established the desired weak continuity of F.

We now proceed to obtain existence via a fixed point argument.

Theorem 3.2. (Existence) Assume that Λ(κ) ≥ Λ0, where Λ0 is defined in Propo-

sition 3.1. If the heat source H ∈ H−1(̟,Ω) satisfies (3.12), then there is a

(T, u, p) ∈ H1
0 (̟,Ω)×H1

0(Ω)×L2
0(Ω) that solves (1.1) in the sense of Definition 2.2.

Moreover, we have that (T, u, p) ∈ B.

Proof. We wish to invoke the Leray–Schauder fixed point theorem, Theorem 8.8

in Ref. 16, for the map F over B = BT × Bu × Bp, where BT , Bu, and Bp

are defined in (3.9), (3.10), and (3.11), respectively. Notice that B is nonempty,

closed, bounded, and convex. Since Proposition 3.3 already showed that F(B) ⊂ B,

it remains to show the compactness of F. In other words, we must improve on

Lemma 3.1 by showing the weak–strong continuity of F. To accomplish this task,

let {(θn,un, pn)}n≥0 ⊂ B be such that (θn,un, pn) ⇀ (θ,u, p) ∈ B, in H1
0 (̟,Ω)×

H1
0(Ω) × L2

0(Ω), as n ↑ ∞. We already know, via Lemma 3.1, that (Tn, un, pn) =

F(θn,un, pn) ⇀ F(θ,u, p) = (T, u, p), in H1
0 (̟,Ω)×H1

0(Ω)× L2
0(Ω).

Let r ∈ H1
0 (̟

−1,Ω). Invoke the problems that (Tn, un) and (T, u) satisfy and

observe that the difference eT,n := T− Tn verifies the relation

ˆ

Ω

(κ(θn)∇eT,n − eT,nu) · ∇r dx =

ˆ

Ω

(Tn(u− un) + (κ(θn)− κ(θ))∇T) · ∇r dx,

i.e. eT,n is the solution to a heat equation with convection; the problem that was

studied in Sec. 3.2. Let us denote the functional on the right-hand side of this

expression by Hn. Since u ∈ Bu and Λ(κ) ≥ Λ0, we can invoke Proposition 3.2 to

conclude that

‖∇eT,n‖L2(̟,Ω) ≤ CH(1/2)‖Hn‖H−1(̟,Ω).

The arguments that led to (2.4) show the existence of m < 2d and ℓ > 2d/(d− 1)

such that

sup
r∈H1

0 (̟
−1,Ω)

´

Ω Tn(u− un) · ∇r dx

‖∇r‖L2(̟−1,Ω)
� ‖∇Tn‖L2(̟,Ω)‖u− un‖Lm(Ω) → 0,

where we have also used the compact embedding H1
0 (Ω) →֒ Lm(Ω). For the second

term we observe that, since κ is continuous, and hence bounded, we have that

(κ(θn)− κ(θ))∇T → 0 in L2(̟,Ω). In conclusion, Tn → T in H1
0 (̟,Ω).



2nd Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

12 A. Allendes, E. Otárola & A. J. Salgado

An argument similar to that used to obtain uniqueness for the stationary

Navier–Stokes equation, cf. Chap. II, §1 in Ref. 44, shows that un → u in H1
0(Ω).

Finally, (3.2) implies that pn → p in L2
0(Ω).

The theorem is thus proved.

4. Discretization and Convergence

Let us now study a finite-element-like scheme to approximate the solution of (1.1).

To that effect, we assume that we have at hand, for each h > 0, finite-dimensional

spaces Wh ⊂ H1
0 (̟,Ω) ∩ H1

0 (̟
−1,Ω), Xh ⊂ H1

0(Ω), and Mh ⊂ L2
0(Ω) that are

dense in the limit. Moreover, we assume that the pair (Xh,Mh) is compatible, in

the sense that there is a constant β > 0 such that, for all h > 0,

β‖qh‖L2(Ω) ≤ sup
vh∈Xh

´

Ω
div vhqh dx

‖∇vh‖L2(Ω)
∀ qh ∈ Mh. (4.1)

We also assume that the H1
0 (Ω) projection onto Wh is H1

0 (̟
±1,Ω) stable. In other

words, there is a constant γ > 0 such that, for all h > 0,

γ‖∇rh‖L2(̟±1,Ω) ≤ sup
θh∈Wh

´

Ω
∇rh · ∇θh dx

‖∇θh‖L2(̟∓1,Ω)

∀ rh ∈ Wh. (4.2)

Finally, we assume that there is an interpolation operator πW : H1
0 (̟

−1,Ω) → Wh

which is stable and has suitable approximation properties: For all r ∈ H1
0 (̟

−1,Ω),

we have

‖∇πW r‖L2(̟−1,Ω) � ‖∇r‖L2(̟−1,Ω), ‖∇(πW r − r)‖L2(̟−1,Ω)
h→0−→ 0. (4.3)

Examples of triples verifying our assumptions are plentiful within the finite

element literature. Pairs that satisfy (4.1) can be found, for instance, in Refs. 14, 19

and 26. In addition, Theorem 3.2 and Corollary 3.4 in Ref. 17 show that if Ω is

convex, and Wh consists of continuous functions that are piecewise polynomials of

degree k ≥ 1 over a quasiuniform mesh of Ω of size h, then our assumptions on

the weight ̟ guarantee that (4.2) holds. Finally, in this setting, Ref. 36 constructs

interpolants that satisfy (4.3).

As in the continuous case, we will say that a triple (Th, uh, ph) ∈ Wh×Xh×Mh

is a discrete solution to (1.1) if
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ˆ

Ω

(

ν(Th)∇uh : ∇vh + (uh · ∇uh) · vh +
1

2
div uhuh · vh

− ph div vh − Thg · vh

)

dx = 0,

ˆ

Ω

qh div uh dx = 0,

ˆ

Ω

(κ(Th)∇Th · ∇rh − Thuh · ∇rh) dx = 〈H, rh〉,

(4.4)
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for all vh ∈ Xh, qh ∈ Mh, and rh ∈ Wh. Our main objective here will be to

show that, under similar assumptions to Theorem 3.2, problem (4.4) always has a

solution and that, as h → 0, these solutions weakly converge, up to subsequences,

to a solution of (1.1) in the sense of Definition 2.2.

4.1. A discrete stationary heat equation with variable coefficient

As a first step to achieve our goals we must prove a discrete version of Proposi-

tion 3.1. The proof of the following result is, essentially, an adaption of Proposi-

tion 8.6.2 in Ref. 13.

Proposition 4.1. (Weighted stability) If κ ∈ L∞(Ω) is such that 0 < κ− ≤ κ ≤
κ+ and

Λ(κ) ≥ Λ1 := max

{

Λ0, 1− γ

(

1− 1

2κ+

)}

, (4.5)

then, for all h > 0, we have that

γ

2
‖∇rh‖L2(̟±1,Ω) ≤ sup

θh∈Wh

´

Ω κ∇rh · ∇θh dx

‖∇θh‖L2(̟∓1,Ω)

∀ rh ∈ Wh, (4.6)

where γ > 0 is the constant appearing in estimate (4.2).

Proof. As mentioned above, the proof essentially follows the perturbation argu-

ment developed in Proposition 8.6.2 of Ref. 13. Let us define the bilinear form

Bκ : H1
0 (̟

±1,Ω)×H1
0 (̟

∓1,Ω) → R, Bκ(r, θ) :=

ˆ

Ω

(

1− κ

κ+

)

∇r · ∇θ dx.

Note that, for r ∈ H1
0 (̟

±1,Ω) and θ ∈ H1
0 (̟

∓1,Ω),

|Bκ(r, θ)| ≤ (1− Λ(κ))‖∇r‖L2(̟±1,Ω)‖∇θ‖L2(̟∓1,Ω),

and that
ˆ

Ω

∇r · ∇θ dx = Bκ(r, θ) +
1

κ+

ˆ

Ω

κ∇r · ∇θ dx.

Thus, owing to (4.2) we have that, for any h > 0 and any rh ∈ Wh,

(γ + Λ(κ)− 1)‖∇rh‖L2(̟±1,Ω) ≤
1

κ+
sup

θh∈Wh

´

Ω κ∇rh · ∇θh dx

‖∇θh‖L2(̟∓1,Ω)

.

The restriction on Λ(κ) allows us to conclude.

With the previous result at hand, we can show that a discrete version of (3.3)

always has a solution for sufficiently small convection and that, more importantly,

the discrete solutions are uniformly bounded with respect to h. Given κ ∈ L∞(Ω)
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with 0 < κ− ≤ κ ≤ κ+, u ∈ H1
0(Ω), and H ∈ H−1(̟,Ω) we consider the following

problem: Find Th ∈ Wh such that
ˆ

Ω

(κ∇Th · ∇rh − Thu · ∇rh) dx = 〈H, rh〉 ∀ rh ∈ Wh. (4.7)

Corollary 4.1. (Well-posedness) Assume that Λ(κ) ≥ Λ1, where Λ1 is defined in

(4.5), and that u ∈ H1
0(Ω) satisfies

2Ce,2

γ
‖∇u‖L2(Ω) ≤ q < 1.

Then, for every h > 0, problem (4.7) has a unique solution. Moreover, Th satisfies

‖∇Th‖L2(̟,Ω) ≤
2

γ(1− q)
‖H‖H−1(̟,Ω).

Proof. Repeat verbatim the proof of Proposition 3.2 replacing (3.4) by (4.6) and

Cκ by 2/γ.

4.2. Existence and stability

Having studied a discrete diffusion equation with variable coefficient on weighted

spaces, we can proceed and show that, under similar assumptions to Theorem 3.2,

our discrete problem (4.4), always has solutions and that, moreover, these are uni-

formly bounded with respect to h > 0. This will be the first step to show, via a

compactness argument, the convergence of discrete solutions to a solution of (1.1),

in the sense of Definition 2.2.

We proceed via a fixed point argument. We define, for each h > 0, the map

Fh : Wh ×Xh ×Mh → Wh ×Xh ×Mh, (θh,uh, ph) 
→ Fh(θh,uh, ph)

= (Th, uh, ph)

by the following procedure: Let the pair (uh, ph) ∈ Xh ×Mh be such that, for all

(vh, qh) ∈ Xh ×Mh,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ˆ

Ω

(

ν(θh)∇uh : ∇vh + (uh · ∇)uh · vh +
1

2
div uhuh · vh

)

dx

−
ˆ

Ω

ph div vh dx =

ˆ

Ω

θhg · vh dx,

ˆ

Ω

qh div uh dx = 0,

(4.8)

and Th ∈ Wh be defined as the solution to
ˆ

Ω

(κ(θh)∇Th · ∇rh − Thuh · ∇rh) dx = 〈H, rh〉 ∀ rh ∈ Wh. (4.9)
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For reasons similar to the continuous case, this map is well-defined, if we restrict

it to a ball of appropriate size. To quantify that, we introduce
⎧

⎪

⎨

⎪

⎩

Bh
T = {θh ∈ Wh : ‖∇θh‖L2(̟,Ω) ≤ S̃},

S̃ =
ν−

gCe,1
min

{

ν−
CP

,
γ

4Ce,2

}

,

⎧

⎪

⎨

⎪

⎩

Bh
u = {uh ∈ Xh : ‖∇uh‖L2(Ω) ≤ G̃},

G̃ =
γ

4Ce,2
,

⎧

⎪

⎨

⎪

⎩

Bh
p = {ph ∈ Mh : ‖ph‖L2(Ω) ≤ P̃},

P̃ =
Ce,1g

β
S̃

(

1 +
ν+
ν−

+
3

2

C2
4→2Ce,1g

ν2−
S̃

)

,

and Bh = Bh
T ×Bh

u
×Bh

p . Notice that neither S̃, G̃, nor P̃ are dependent on the

parameter h > 0.

Proposition 4.2. (Fh is well-defined) Assume that Λ(κ) ≥ Λ1, where Λ1 is defined

in Proposition 4.1. If the heat source H ∈ H−1(̟,Ω) satisfies the estimate

‖H‖H−1(̟,Ω) ≤
γS̃

4
,

then, for every h > 0, the mapping Fh is well-defined on Bh. Moreover, Fh(B
h) ⊂

Bh.

Proof. The proof essentially repeats that of Proposition 3.3. For this reason, we

only sketch it. Let (θh,uh, ph) ∈ Bh. Since we have skew symmetrized the convective

term, we know that problem (4.8) always has a solution which satisfies

‖∇uh‖L2(Ω) ≤
1

ν−
‖θhg‖H−1(Ω) ≤

Ce,1g

ν−
‖∇θh‖L2(̟,Ω) ≤ G̃,

β‖ph‖L2(Ω) ≤ ν+‖∇uh‖L2(Ω) +
3

2
C2

4→2‖∇uh‖2L2(Ω) +
3

2
‖θhg‖H−1(Ω) ≤ βP̃ ,

where we used (2.2) and the fact that θh ∈ Bh
T , to obtain the estimate for uh, and

the inf-sup condition (4.1) for the estimate of ph. In addition, we observe that the

conditions on the data for this solution to be unique are met; see Theorem IV.3.1 in

Ref. 25. Corollary 4.1, with q = 1/2, then implies that problem (4.9) has a unique

solution, which satisfies

‖∇Th‖L2(̟) ≤
4

γ
‖H‖H−1(̟) ≤ S̃,

where we used the assumption on H. Thus, as we intended to show, Fh is well-

defined on Bh and Fh(B
h) ⊂ Bh.

We conclude by showing existence of solutions, via a fixed point argument.
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Theorem 4.1. (Existence) Assume that Λ(κ) ≥ Λ1, where Λ1 is defined in Propo-

sition 4.1. If the heat source H ∈ H−1(̟,Ω) satisfies the estimate

‖H‖H−1(̟,Ω) ≤
γS̃

4
,

then, for every h > 0, there is a triple (Th, uh, ph) ∈ Bh ⊂ Wh × Xh × Mh that

solves (4.4).

Proof. Since we are now in finite dimensions, we will apply Brouwer’s fixed point

theorem; see Theorem 3.2 in Ref. 16. For that, we only need to verify the continuity

of Fh. This is achieved by repeating verbatim the proof of Lemma 3.1 and using

that we are in finite dimensions to pass from weak to strong convergence.

4.3. Convergence

The results of the previous section show that, provided the heat source H and the

oscillation of κ are not too large, then for every h > 0 problem (4.4) has a solution,

and that this family of solutions remains bounded uniformly in h > 0. We can then

pass to a (not relabeled) weakly convergent subsequence (Th, uh, ph) ⇀ (T, u, p).

We will show here that this limit must be a solution to (1.1), in the sense of

Definition 2.2.

We begin with some notation. We define

B̂T = {θ ∈ H1
0 (̟,Ω) : ‖∇θ‖L2(̟,Ω) ≤ Ŝ}, B̂h

T = B̂T ∩Wh,

Ŝ = min{S, S̃}, B̂u = {u ∈ H1
0(Ω) : ‖∇u‖L2(Ω) ≤ Ĝ},

B̂h
u
= B̂u ∩Xh, Ĝ = min{G, G̃}, B̂p = {p ∈ L2

0(Ω) : ‖p‖L2(Ω) ≤ P̂},

B̂h
p = B̂p ∩Mh, P̂ = min{P, P̃},

B̂ = B̂T × B̂u × B̂p, and H = min

{

γS̃

4
,

S

2Cκ

}

.

Theorem 4.2. (Convergence) Assume that Λ(κ) ≥ Λ1, where Λ1 is defined in

Proposition 4.1. If the heat source H ∈ H−1(̟,Ω) satisfies

‖H‖H−1(̟) ≤ H,

then the family {(Th, uh, ph) ⊂ Bh}h>0 of solutions to (4.4) converges weakly (up

to subsequences) to an element of B. Moreover, this limit is a solution to (1.1) in

the sense of Definition 2.2.

Proof. The assumptions guarantee that we can invoke Theorem 4.1 to ascertain

the existence of (Th, uh, ph) ∈ B̂h
T × B̂h

u × B̂h
p that solve (4.4). Moreover, since

B̂h
T × B̂h

u
× B̂h

p ⊂ B̂, this family of solutions remains in a bounded set, and we can

extract weakly convergent subsequences which for simplicity of notation we do not
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relabel. Let us denote this limit by (T, u, p) ∈ B̂, and show that it is a solution to

(2.5).

Observe now that:

• The compact embedding H1
0 (̟,Ω) →֒→֒ L1+ǫ(Ω) implies, by continuity of ν and

κ, that we have ν(Th) → ν(T) and κ(Th) → κ(T) almost everywhere in Ω.

• Let q ∈ C∞
0 (Ω) with zero average, and qh ∈ Mh be its L2-projection onto Mh.

Then we have that
∣

∣

∣

∣

ˆ

Ω

q div u dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

ˆ

Ω

(q − qh) div uh dx

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Ω

q div(u− uh) dx

∣

∣

∣

∣

→ 0,

where we used that uh is discretely solenoidal, the strong convergence qh → q in

L2
0(Ω) and the weak convergence div uh ⇀ div u. In conclusion u is solenoidal.

• We now show that the pair (T, u) satisfies the heat equation with convection.

Let now r ∈ H1
0 (̟

−1,Ω) be arbitrary and introduce rh = πW r ∈ Wh, where the

operator πW is the one that satisfies (4.3). The almost everywhere convergence

of κ(Th) then implies
ˆ

Ω

κ(Th)∇Th · ∇rh dx =

ˆ

Ω

κ(Th)∇Th · ∇r dx+

ˆ

Ω

κ(Th)∇Th · ∇(rh − r) dx

→
ˆ

Ω

κ(T)∇T · ∇r dx.

Finally, let k > 2d/(d−1) such that we have the compact embedding H1(Ω) →֒→֒
Lm(Ω), with k−1 + m−1 = 1/2, i.e. m < 2d. Consequently, uh → u in Lm(Ω).

This is sufficient to assert that
ˆ

Ω

Thuh · ∇r dx →
ˆ

Ω

Tu · ∇r dx.

• It remains to deal with the momentum equation, but most of the terms are

standard here and have been treated in several other works, see for instance

Refs. 23, 27 37, 38 and 39. The only somewhat nonstandard term is
ˆ

Ω

Thg · vh dx,

but the estimates of Proposition 2.3 can be used to assert convergence of this

term as well.

In conclusion, the limit is a solution and the theorem is proved.

5. A Posteriori Error Estimates

In this section, we design and analyze an a posteriori error estimator for the finite-

dimensional approximation (4.4) of problem (2.5). To be able to do so, in addition

to the assumptions stated in Sec. 2.2, we shall require that:

• The viscosity ν and the thermal diffusivity κ are independent of the temperature,

i.e. they are positive constants.
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In addition, to be able to develop an explicit a posteriori error estimator and

show its reliability, we must be more specific in the structure of the discrete spaces

we are dealing with. For this reason, in addition to the assumptions of Sec. 4, we

assume that, for h > 0, the spaces Wh, Xh, and Mh are constructed using finite

elements over a conforming and shape regular mesh Th = {K} of Ω̄. In this setting,

however, the parameter h does not bear the meaning of a mesh size. Rather, it

can be thought of as h = 1/k, where k ∈ N0 is the index set in a sequence of

refinements of an original partition T0. For definiteness, we select the pair of discrete

velocity/pressure spaces (Xh,Mh) from the following (popular) options:

(1) The lowest order Taylor Hood element,19,30,46 which is defined by

Xh = {vh ∈ C(Ω̄) : ∀K ∈ Th,vh|K ∈ P2(K)d} ∩H1
0(Ω), (5.1)

Mh = {qh ∈ L2
0(Ω) ∩ C(Ω̄) : ∀K ∈ Th, qh|K ∈ P1(K)}. (5.2)

(2) The mini element, which is considered in Refs. 7 and 19 and is defined by

Xh = {vh ∈ C(Ω̄) : ∀K ∈ Th,vh|K ∈ [P1(K)⊕ B(K)]d} ∩H1
0(Ω), (5.3)

Mh = {qh ∈ L2
0(Ω) ∩ C(Ω̄) : ∀K ∈ Th, qh|K ∈ P1(K)}, (5.4)

where B(K) denotes the space spanned by local bubble functions.

Both pairs satisfy the compatibility condition (4.1) and are such that Xh ⊂ H1
0(Ω)

and Mh ⊂ L2
0(Ω). We will set the finite element space Wh as

Wh = {wh ∈ C(Ω̄) : ∀K ∈ Th, wh|K ∈ Pk(K)} ∩H1
0 (Ω),

where k = 2 when the Taylor–Hood element (5.1)–(5.2) is used to approximate the

velocity and pressure variables and k = 1 for when the mini element (5.3)–(5.4) is

considered. Notice that, for any ̟ ∈ A2, Wh ⊂ W 1,∞
0 (Ω) ⊂ H1

0 (̟
±1,Ω).

We begin our analysis by introducing some preliminary notions. We define the

temperature error eT, the velocity error eu, and the pressure error ep as follows:

eT := T− Th ∈ H1
0 (̟,Ω), eu := u− uh ∈ H1

0(Ω), ep := p− ph ∈ L2
0(Ω).

We also define, for an open setD ⊂ Ω, the following norms on the spaceH1
0 (̟,D)×

H1
0(D)× L2(D):

�(w,w, s)�2
D := ν‖∇w‖2

L2(D) + ‖divw‖2L2(D) + ‖s‖2L2(D) + ‖∇w‖2
L2(̟,D),

‖(w,w, s)‖2D := ν‖∇w‖2
L2(D) + ‖s‖2L2(D) + ‖∇w‖2

L2(̟,D).

5.1. Ritz projection

To perform a reliability analysis for the devised a posteriori error estimator we

shall introduce a so-called Ritz projection (ϕ,Φ, ψ) of the residuals. This projection
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is defined as the solution to the following problem: Find (ϕ,Φ, ψ) ∈ H1
0 (̟,Ω) ×

H1
0(Ω)× L2

0(Ω) such that
ˆ

Ω

∇ϕ · ∇r dx = Υ(r), ∀ r ∈ H1
0 (̟

−1,Ω), (5.5)

ν

ˆ

Ω

∇Φ : ∇v dx = Ξ(v), ∀v ∈ H1
0(Ω), (5.6)

ˆ

Ω

ψq dx = Σ(q), ∀ q ∈ L2
0(Ω), (5.7)

where the functionals Υ ∈ H−1(̟,Ω) , Ξ ∈ H−1(Ω), and Σ ∈ L2
0(Ω) are defined,

respectively, by

Υ(r) :=

ˆ

Ω

(κ∇eT · ∇r − Teu · ∇r − eTuh · ∇r) dx,

Ξ(v) :=

ˆ

Ω

(

ν∇eu : ∇v − ep div v

+ (u · ∇)eu · v + (eu · ∇)uh · v +
1

2
div euuh · v − eTg · v

)

dx,

Σ(q) := −
ˆ

Ω

q div eu dx.

(5.8)

The following result yields the well-posedness of problem (5.5)–(5.7). Recall that,

by C4→2 we denote the best constant in the Sobolev embedding H1
0(Ω) →֒ L4(Ω).

To shorten notation we define

B(u, uh) :=
C2

4→2

ν

(

‖∇u‖L2(Ω) +
3

2
‖∇uh‖L2(Ω)

)

, A(u, uh) := 1 +B(u, uh).

Proposition 5.1. (Ritz projection) Problem (5.5)–(5.7) admits a unique solution

(ϕ,Φ, ψ) ∈ H1
0 (̟,Ω)×H1

0(Ω)× L2
0(Ω). In addition, we have the estimate

‖(ϕ,Φ, ψ)‖2Ω ≤
[

3A(u, uh)
2 + 2

C2
1C

2
e,2

ν
‖∇T‖2

L2(̟,Ω)

]

ν‖∇eu‖2L2(Ω)

+ ‖div eu‖2L2(Ω) +
3

ν
‖ep‖2L2(Ω)

+

[

3g2C2
e,1

ν
+ 2C2

1

(

κ+ Ce,2‖∇uh‖L2(Ω)

)2

]

‖∇eT‖2L2(̟,Ω), (5.9)

where C1 denotes the constant in the inf-sup estimate (3.4) with κ = 1.

Proof. Since Ξ ∈ H−1(Ω), the Lax–Milgram lemma immediately yields the exis-

tence of a unique Φ ∈ H1
0(Ω) that solves problem (5.6). In addition, estimate (2.2)
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and the standard Sobolev embedding H1
0(Ω) →֒ L4(Ω) yield

√
ν‖∇Φ‖L2(Ω) ≤ A(u, uh)

√
ν‖∇eu‖L2(Ω)

+
1√
ν
‖ep‖L2(Ω) +

gCe,1√
ν

‖∇eT‖L2(̟,Ω). (5.10)

On the other hand, since eu ∈ H1
0(Ω), similar arguments reveal the existence and

uniqueness of ψ ∈ L2
0(Ω) that solves problem (5.7) together with the bound

‖ψ‖L2(Ω) ≤ ‖div eu‖L2(Ω). (5.11)

Next, we invoke the inf-sup condition (3.4) for the variational form of the Dirichlet

Laplace operator on weighted spaces to conclude that there exists a unique ϕ ∈
H1

0 (̟,Ω) that solves (5.5). In addition, we have that ϕ satisfies the estimate

‖∇ϕ‖L2(̟,Ω) ≤ C1[κ‖∇eT‖L2(̟,Ω) + Ce,2‖∇T‖L2(̟,Ω)‖∇eu‖L2(Ω)

+Ce,2‖∇eT‖L2(̟,Ω)‖∇uh‖L2(Ω)], (5.12)

where C1 denotes the constant in the inf-sup estimate (3.4) with κ = 1.

The desired estimate (5.9) thus follows from collecting estimates (5.10), (5.11),

and (5.12). This concludes the proof.

5.2. An upper bound for the error

We now prove that the energy norm of the error can be bounded in terms of

the energy norm of the Ritz projection, which in turn will allow us to provide a

computable upper bound for the error.

Theorem 5.1. (Upper bound for the error) Assume that the solutions to (2.5) and

(4.4) are such that the following inequalities hold :

max

{

CκCe,2,
3C2

4→2

2ν

}

‖∇uh‖L2(Ω) ≤
1

16
,

C2
4→2

ν
‖∇u‖L2(Ω) ≤

1

16
,

gCκCe,1Ce,2

ν
‖∇T‖L2(̟,Ω) ≤

15

162
.

(5.13)

Then, we have that

�(eT, eu, ep)�Ω � �(ϕ,Φ, ψ)�Ω,

where the hidden constant is independent of (eT, eu, ep) and (ϕ,Φ, ψ) but depends

on ν and the constant involved in the inf-sup condition (3.2).
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Proof. We divide the proof in six steps.

Step 1. We first bound ‖∇eT‖L2(̟,Ω). Owing to Proposition 3.1 we have that

there is a positive constant Cκ such that the following inf-sup condition holds:

‖∇eT‖L2(̟,Ω) ≤ Cκ sup
r∈H1

0 (̟
−1,Ω)

´

Ω κ∇eT · ∇r dx

‖∇r‖L2(̟−1,Ω)
. (5.14)

To estimate the right-hand side of (5.14) we rewrite Eq. (5.5) as
ˆ

Ω

κ∇eT · ∇r dx =

ˆ

Ω

(Teu · ∇r + eTuh · ∇r +∇ϕ · ∇r) dx ∀ r ∈ H1
0 (̟

−1,Ω).

Utilize the inf-sup condition (5.14) and estimate (2.3), twice, to obtain

‖∇eT‖L2(̟,Ω) ≤ Cκ(Ce,2‖∇T‖L2(̟,Ω)‖∇eu‖L2(Ω)

+Ce,2‖∇eT‖L2(̟,Ω)‖∇uh‖L2(Ω) + ‖∇ϕ‖L2(̟,Ω)),

which, upon utilizing the first estimate in (5.13), yields the bound

15

16
‖∇eT‖L2(̟,Ω) ≤ Cκ(Ce,2‖∇T‖L2(̟,Ω)‖∇eu‖L2(Ω) + ‖∇ϕ‖L2(̟,Ω)). (5.15)

Step 2. We now control ‖ep‖L2(Ω). To do this, we rewrite Eq. (5.6) as follows:
ˆ

Ω

ep div v dx =

ˆ

Ω

(ν∇eu : ∇v + (u · ∇)eu · v + (eu · ∇)uh · v

+
1

2
div euuh · v − eTg · v − ν∇Φ : ∇v

)

dx =: X(v) ∀v ∈ H1
0(Ω).

The standard inf-sup condition for the divergence (3.2) thus yields the estimate

B‖ep‖L2(Ω) ≤ ‖X‖H−1(Ω).

Moreover, Sobolev embeddings and estimate (2.2) imply that

‖X‖H−1(Ω) ≤ ν(‖∇eu‖L2(Ω) + ‖∇Φ‖L2(Ω))

+B(u, uh)ν‖∇eu‖L2(Ω) + Ce,1g‖∇eT‖L2(̟,Ω).

To conclude this step, we invoke (5.15) to arrive at

B‖ep‖L2(Ω) ≤ ν(‖∇Φ‖L2(Ω) + ‖∇eu‖L2(Ω)) +
16CκCe,1g

15
‖∇ϕ‖L2(̟,Ω)

+

[

B(u, uh) +
16CκCe,1Ce,2g

15ν
‖∇T‖L2(̟,Ω)

]

ν‖∇eu‖L2(Ω). (5.16)

Step 3. Set v = eu in (5.6) and q = −ep in (5.7). Adding the obtained relations,

and using the skew symmetry of convection when the first argument is solenoidal,

we see that

ν‖∇eu‖2L2(Ω) ≤ ν‖∇Φ‖L2(Ω)‖∇eu‖L2(Ω) + ‖ψ‖L2(Ω)‖ep‖L2(Ω)

+
3C2

4→2

2ν
‖∇uh‖L2(Ω)ν‖∇eu‖2L2(Ω) + Ce,1g‖∇eT‖L2(̟,Ω)‖∇eu‖L2(Ω).
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Estimate (5.15) and Young’s inequality imply that

ν(1− ε1)‖∇eu‖2L2(Ω) ≤ ν‖∇Φ‖L2(Ω)‖∇eu‖L2(Ω) + ‖ep‖L2(Ω)‖ψ‖L2(Ω)

+

[

3C2
4→2

2ν
‖∇uh‖L2(Ω) +

16CκCe,1Ce,2g

15ν
‖∇T‖L2(̟,Ω)

]

× ν‖∇eu‖2L2(Ω) + Cε1

(

16CκCe,1Ce,2g

15
√
ν

)2

‖∇ϕ‖2
L2(̟,Ω).

The pressure error estimate (5.16), and repeated applications of Young’s inequality

imply that, for some ε ∈ (0, 1)

(1− ε)ν‖∇eu‖2L2(Ω) ≤ Cε,Bν‖∇Φ‖2
L2(Ω) + Cε,B,ν‖ψ‖2L2(Ω) + Cε,B,ν‖∇ϕ‖2

L2(̟,Ω)

+

[

3C2
4→2

2ν
‖∇uh‖L2(Ω) +

16CκCe,1Ce,2g

15ν
‖∇T‖L2(̟,Ω)

]

× ν‖∇eu‖2L2(Ω)

+
1

2

[

B(u, uh) +
16CκCe,1Ce,2g

15ν
‖∇T‖L2(̟,Ω)

]2

ν‖∇eu‖2L2(Ω).

Now, estimates (5.13) imply that we can choose ε ∈ (0, 1) so that

ν‖∇eu‖2L2(Ω) � ν‖∇Φ‖2
L2(Ω) + ‖ψ‖2L2(Ω) + ‖∇ϕ‖2

L2(̟,Ω),

where the hidden constant depends on ǫ, B, and ν.

Step 5. The previous estimate combined with estimates (5.15) and (5.16) yields

‖∇eT‖2L2(̟,Ω) + ν‖∇eu‖2L2(Ω) + ‖ep‖2L2(Ω)

� ‖∇ϕ‖2
L2(̟,Ω) + ν‖∇Φ‖2

L2(Ω) + ‖ψ‖2L2(Ω).

Step 6. Conclude with the obvious observation that, since div eu ∈ L2
0(Ω), (5.7)

implies

‖div eu‖L2(Ω) ≤ ‖ψ‖L2(Ω).

The claimed upper bound for the error has been obtained, and the theorem has

been proved.

5.3. A residual-type error estimator

In this section, we design an a posteriori error estimator for the finite-dimensional

approximation (4.4) of problem (2.5). To be able to do so, we will assume that the

singular forcing H has a particular structure, that is:

• The singular forcing term H has the form H = hδz , where δz corresponds to the

Dirac delta supported at the interior point z ∈ Ω and h ∈ R.
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To handle such a singular forcing term, we introduce the weight dαz , where dz(x) :=

|x− z| and α ∈ (d− 2, d). We must immediately notice the following two important

properties: First, owing to Remark 2.1, we have that the weight dαz is such that

dαz ∈ A2(Ω) and d−α
z ∈ A1. Second, δz ∈ H−1(dαz ,Ω); see Lemma 7.1.3 in Ref. 32

and Remark 21.18 in Ref. 29. Simply put, all the assumptions we have made so far

apply to this particular choice of H and weight.

5.3.1. Notation

Before presenting and analyzing our a posteriori error estimator we first need to

introduce and set some notation. We recall that Th = {K} is a conforming and

shape regular partition of Ω̄ into closed simplices K with size hK = diam(K) ≈
|K|1/d. We denote by S the set of internal (d−1)-dimensional inter-element bound-

aries S of Th. For S ∈ S , we indicate by hS the diameter of S. If K ∈ Th, we

define SK as the subset of S that contains the sides of K. For S ∈ S , we set

NS = {K+,K−}, where K+,K− ∈ Th are such that S = K+ ∩K−. For K ∈ Th,

we define the following stars or patches associated with the element K

NK := {K ′ ∈ Th : SK ∩ SK′ �= ∅}, SK := {K ′ ∈ Th : K ∩K ′ �= ∅}. (5.17)

In an abuse of notation, below we denote by NK and SK either the sets themselves,

or the union of its elements.

5.3.2. A posteriori error estimator

We define an error estimator that can be decomposed as the sum of two contribu-

tions: a contribution related to the discretization of the stationary Navier–Stokes

equations and another one associated to the discretization of the stationary heat

equation with convection and singular forcing.

To present the contribution related to the stationary Navier–Stokes equations,

we define, for an element K ∈ Th and an internal side S ∈ S , the element residual

RK and the interelement residual JS as

RK :=

(

ν∆uh − (uh · ∇)uh − 1

2
div uhuh −∇ph + Thg

)

|K ,

JS := �(ν∇uh − phI) · n�,

(5.18)

where (Th, uh, ph) denotes a solution to the discrete problem (4.4) and I ∈ R
d×d

denotes the identity matrix. For a discrete tensor-valued function vh, we denote

by �vh · n� the jump, which is defined, on the internal side S ∈ S shared by the

distinct elements K+, K− ∈ NS , by

�vh · n� = vh|K+ · ν+ + vh|K− · n−.

Here n
+,n− are unit normals on S pointing toward K+, K−, respectively. With

RK andJS at hand, we define, for K ∈ Th, the element indicator

E 2
K := h2

K‖RK‖2
L2(K) + ‖div uh‖2L2(K) + hK‖JS‖2L2(∂K\∂Ω). (5.19)
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We now introduce the contribution associated to the stationary heat equation

with convection. To accomplish this task, we define, for K ∈ Th and an internal

side S ∈ S , the element residual RK and the interelement residual JS as

RK := (κ∆Th − uh · ∇Th − div uhTh)|K ,

JS := �(κ∇Th − Thuh) · n�.
(5.20)

With RK and JS at hand, we define, for K ∈ Th and α ∈ (d− 2, d),

E2
K := h2

KDα
K‖RK‖2L2(K) + hKDα

K‖JS‖2L2(∂K\∂Ω)

+ |h|hα+2−d
K #({z} ∩K), (5.21)

where DK := maxx∈K |x− z|. For a set E, by #(E) we mean its cardinality. Thus,

#({z} ∩K) equals one if z ∈ K and zero otherwise. Here, we must recall that we

consider our elements K to be closed sets.

With all these ingredients at hand, we define the local error indicator E2
K :=

E 2
K + E2

K and the a posteriori error estimators

Eh :=

[

∑

K∈Th

E 2
K

]
1
2

, Eh :=

[

∑

K∈Th

E2
K

]
1
2

, E2
h :=

[

∑

K∈Th

E2
K

]
1
2

. (5.22)

5.4. Reliability estimates

We present the following global reliability estimate for the estimator Eh.

Theorem 5.2. (Global reliability) Let (T, u, p) ∈ H1
0 (d

α
z ,Ω) ×H1

0(Ω) × L2
0(Ω) be

a solution to (2.5) and (Th, uh, ph) ∈ Wh ×Xh ×Mh be its finite element approx-

imation obtained as solution to (4.4). Let α ∈ (d − 2, d). In the framework of

Theorem 5.1, we have the following a posteriori error estimate:

�(eT, eu, ep)�Ω � Eh, (5.23)

where the hidden constant is independent of the continuous and discrete solutions,

the size of the elements in the mesh Th, and #Th.

Proof. We proceed in several steps.

Step 1. Invoke Theorem 5.1, and the obvious bound ‖divΦ‖L2(Ω) ≤ ‖∇Φ‖L2(Ω)

to arrive at the estimate

�(eT, eu, ep)�
2
Ω � ‖∇ϕ‖2

L2(dαz ,Ω) + ‖∇Φ‖2
L2(Ω) + ‖ψ‖2L2(Ω).

It thus suffices to bound ‖∇Φ‖L2(Ω), ‖ψ‖L2(Ω), and ‖∇ϕ‖L2(dαz ,Ω).

Step 2. We control ‖∇Φ‖L2(Ω). To accomplish this task, we invoke Eq. (5.6),

the fact that (T, u, p) solves problem (2.5), and an integration by parts formula to

conclude that, for every v ∈ H1
0(Ω), we have

I :=

ˆ

Ω

ν∇Φ : ∇v dx =
∑

K∈Th

ˆ

K

RK · v dx+
∑

S∈S

ˆ

S

JS · v ds. (5.24)
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Denote by Ih the Clément interpolation operator. We utilize the first equation of

problem (4.4) with vh = Ihv and an integration by parts formula, again, to arrive at

I =
∑

K∈Th

ˆ

K

RK · (v − Ihv) dx+
∑

S∈S

ˆ

S

JS · (v − Ihv) ds.

We now invoke standard approximation properties for the interpolation operator

Ih and a scaled trace inequality to conclude that

|I| �
∑

K∈Th

(

hK‖RK‖L2(K)‖∇v‖L2(SK) +
∑

S∈SK

h
1
2

K‖JS‖L2(S)‖∇v‖L2(SK)

)

.

Set v = Φ, use the Cauchy–Schwarz inequality in R
#Th and the finite overlapping

property of stars to obtain

‖∇Φ‖L2(Ω) �

(

∑

K∈Th

h2
K‖RK‖2

L2(K) + hK‖JS‖2L2(∂K\∂Ω)

)
1
2

. (5.25)

Step 3. In this step we bound ‖ψ‖L2(Ω). Set q = ψ in (5.7). This yields

‖ψ‖2L2(Ω) =

ˆ

Ω

ψ div uh dx ≤
∑

K∈Th

‖ψ‖L2(K)‖div uh‖L2(K)

≤
(

∑

K∈Th

‖div uh‖2L2(K)

)
1
2

‖ψ‖L2(Ω). (5.26)

Notice that we have used that
´

Ω q div u dx = 0 for every q ∈ L2
0(Ω).

Step 4. Estimates (5.25) and (5.26) immediately yield that

(‖∇Φ‖2
L2(Ω) + ‖ψ‖2L2(Ω))

1
2 �

(

∑

K∈Th

E 2
K

)
1
2

= Eh. (5.27)

Step 5. Our goal now is to bound ‖∇ϕ‖L2(dαz ,Ω). To accomplish this task, we

invoke the problem that ϕ solves, i.e. problem (5.5), and the fact that (T, u, p) solves

(2.5). These arguments, combined with an integration by parts formula, yield

II :=

ˆ

Ω

∇ϕ · ∇r dx = 〈hδz , r〉+
∑

K∈Th

ˆ

K

RKr dx+
∑

S∈S

ˆ

S

JSr ds,

for every r ∈ H1
0 (d

−α
z ,Ω). We recall that RK and JS are defined in (5.20). Invoke

the discrete problem (4.4) and an integration by parts formula, again, to arrive at

II = 〈hδz , r − πW r〉+
∑

K∈Th

ˆ

K

RK(r − πW r) dx+
∑

S∈S

ˆ

S

JS(r − πW r) ds,

where we recall that πW denotes the quasi-interpolation operator onto Wh, con-

structed in Ref. 36, that satisfies (4.3). We control 〈hδz, r − πW r〉 on the basis of
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Theorem 4.7 in Ref. 1 and stability and interpolation estimates for πW derived in

Ref. 36. In fact, let K be such that z ∈ K, then

|〈hδz , r − πW r〉| � |h|h
α
2 − d

2

K ‖r − πW r‖L2(d−α
z ,K)

+ |h|h
α
2 +1− d

2

K ‖∇(r − πW r)‖L2(d−α
z ,K)

� |h|h
α
2 +1− d

2

K ‖∇r‖L2(d−α
z ,SK).

Notice now that
ˆ

K

RK(r − πW r) dx ≤ ‖RK‖L2(K)‖r − πW r‖L2(K)

� hKD
α
2

K‖RK‖L2(K)‖∇r‖L2(d−α
z ,SK),

where we have used Proposition 4 in Ref. 4. Similar arguments yield, upon using

Proposition 5 in Ref. 4, the control of the jump term. We can thus invoke the inf-sup

condition (3.4) to arrive at the estimate

‖∇ϕ‖L2(dαz ,Ω) � sup
r∈H1

0(d
−α
z ,Ω)

´

Ω
∇ϕ · ∇r

‖∇r‖L2(d−α
z ,Ω)

� Eh. (5.28)

Step 6. Collecting the estimates (5.27) and (5.28) we obtain the reliability bound

(5.23). This concludes the proof.

5.5. Efficiency estimates

In this section, we analyze efficiency properties for the local error indicator EK on

the basis of standard bubble function arguments.47 Before proceeding with such

analysis, we introduce the following notation: For an edge, triangle or tetrahedron

G, let V(G) be the set of vertices of G. With this notation at hand, we introduce

the following standard element and edge bubble functions. Let K ∈ Th and S ∈ S .

We define

ΥK := (d+ 1)d+1
∏

v∈V(K)

λv|K , ΥS := dd
∏

v∈V(S)

λv|K with K ∈ NS . (5.29)

In these formulas, by λv|K , we denote the barycentric coordinate function associated

to v ∈ V(K).

We will also make use of the following bubble functions, whose construction we

owe to Ref. 1. Given K ∈ Th, we introduce ΨK , which satisfies 0 ≤ ΨK ≤ 1,

ΨK(z) = 0, |K| �
ˆ

K

ΨK dx, ‖∇ΨK‖L∞(RK) � h−1
K , (5.30)

and there exists a simplex K∗ ⊂ K such that RK := supp(ΨK) ⊂ K∗. Notice that,

since ΨK satisfies (5.30), we have that, for every m ∈ N

‖θ‖L2(RK) � ‖Ψ
1
2

Kθ‖L2(RK) ∀ θ ∈ Pm(RK), (5.31)
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where the hidden constant depends on m, but does not depend on θ or K. Given

S ∈ S , we also introduce an edge bubble function ΨS, which satisfies 0 ≤ ΨS ≤ 1,

ΨS(z) = 0, |S| �
ˆ

S

ΨS ds, ‖∇ΨS‖L∞(RS) � h−1
S , (5.32)

and RS := supp(ΨS) is such that, if NS = {K,K ′}, there are simplices K∗ ⊂ K

and K ′
∗ ⊂ K ′ such that RS ⊂ K∗ ∪K ′

∗ ⊂ K ∪K ′.

The following identities are essential to perform the upcoming efficiency analysis.

Invoke (5.24), (5.6), and (5.8) to arrive at

∑

K∈Th

ˆ

K

RK · v dx+
∑

S∈S

ˆ

S

JS · v ds =

ˆ

Ω

ν∇Φ : ∇v dx =

ˆ

Ω

(

ν∇eu : ∇v

− ep div v + (u · ∇)eu · v + (eu · ∇)uh · v +
1

2
div euuh · v − eTg · v

)

dx (5.33)

for all v ∈ H1
0(Ω). We recall the reader that RK and JS are defined in (5.18).

Similarly, for every r ∈ H1
0 (d

−α
z ,Ω), we have

∑

K∈Th

ˆ

K

RKr dx+
∑

S∈S

ˆ

S

JSr ds+ 〈hδz, r〉 =
ˆ

Ω

∇ϕ · ∇r dx

=

ˆ

Ω

(κ∇eT · ∇r − Teu · ∇r − eTuh · ∇r) dx. (5.34)

In order to be in position to prove an efficiency result, we must obtain higher

integrability of the velocity in our problem in the case d = 3. The following result

provides this.

Proposition 5.2. (Higher integrability) Let d = 3, α ∈ (1, 3), and (T, u, p) ∈
H1

0 (d
α
z ,Ω)×H1

0(Ω)×L2
0(Ω) denote the solution to (2.5) in the sense of Definition 2.2

with κ and ν constant, and H = hδz, with z ∈ Ω. Then we have that

1

ν
‖∇u‖L3(Ω) ≤ C,

where C denotes a positive constant.

Proof. We recall that we are assuming that the domain Ω is at least Lipschitz.

Write the momentum component of the stationary Navier–Stokes equations as

−ν∆u+∇p = gT− (u · ∇u)u.

In three dimensions, we have that ∇u ∈ L3(Ω), and since α ∈ (1, 3) that gT ∈
L2(Ω). Owing then to Corollary 1.7 in Ref. 34 (with α = −1 and q = 2) the result

follows.

Our efficiency result is as follows.
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Theorem 5.3. (Efficiency) Let (T, u, p) ∈ H1
0 (d

α
z ,Ω)×H1

0(Ω)×L2
0(Ω) be a solution

to (2.5) and (Th, uh, ph) ∈ Wh × Xh × Mh be its finite element approximation

obtained as solution to (4.4). Let α ∈ (d− 2, d). In the framework of Theorem 5.1,

we have the following efficiency estimate:

E 2
K �

∑

K′∈SK

(‖eT‖2L2(dαz ,K′) + ν2‖eu‖2H1(K′) + ‖ep‖2L2(K′))

+ ‖div eu‖2L2(K), (5.35)

where the hidden constant is independent of the continuous and discrete solutions,

the size of the elements in the mesh Th, and #Th.

Proof. We examine each of the contributions of EK separately so the proof involves

several steps.

Step 1. Let K ∈ Th. We bound the term h2
K‖RK‖2

L2(K) in (5.19). To accomplish

this task, we first utilize estimate (5.31) and write

‖RK‖2
L2(K) =

ˆ

K

|RK |2 dx �

ˆ

K

|RK |2ΨK dx =

ˆ

K

RK ·ΘK dx, (5.36)

where ΘK := ΨKRK . Set v = ΘK as a test function on identity (5.33) and

utilize that suppΘK ⊂ K∗ ⊂ K. We proceed differently according to the spatial

dimension. If d = 2, then we have
ˆ

K

RK ·ΘK dx ≤ (ν‖∇eu‖L2(K) + ‖ep‖L2(K))‖∇ΘK‖L2(K)

+ ‖g‖L∞(K)‖eT‖L2(dαz ,K)‖ΘK‖L2(d−α
z ,K) +

(

‖u‖L2(K)‖∇eu‖L2(K)

+ ‖eu‖L2(K)‖∇uh‖L2(K) +
1

2
‖∇eu‖L2(K)‖uh‖L2(K)

)

‖ΘK‖L∞(K). (5.37)

Now, observe that estimate (5.6) in Ref. 1 yields ‖ΘK‖L2(d−α
z ,K) � D

−α/2
K

‖RK‖L2(K) while basic arguments reveal that ‖∇ΘK‖L2(K) � h−1
K ‖RK‖L2(K) and

‖ΘK‖L∞(K) � h−1
K ‖RK‖L2(K). With these estimates at hand, we utilize (5.36) and

(5.13) to obtain

h2
K‖RK‖2

L2(K) � ‖eT‖2L2(dαz ,K) + ν2‖eu‖2H1(K) + ‖ep‖2L2(K). (5.38)

Observe that D
−α

2

K = (maxx∈K |x − z|)−α
2 � h

−α
2

K � h−1
K , because hK � DK and

α ∈ (0, 2); see Sec. 5.2 in Ref. 1 for details. If d = 3, we proceed as follows:
ˆ

K

RK ·ΘK dx ≤ (ν‖∇eu‖L2(K) + ‖ep‖L2(K))‖∇ΘK‖L2(K)

+ ‖g‖L∞(K)‖eT‖L2(dαz ,K)‖ΘK‖L2(d−α
z ,K)
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+

[

‖u‖L3(K)‖∇eu‖L2(K) + ‖eu‖L2(K)‖∇u‖L3(K)

+ ‖∇eu‖L2(K)

(

‖eu‖L3(K) +
1

2
‖uh‖L3(K)

)]

‖ΘK‖L6(K).

We thus invoke ‖ΘK‖L6(K) � h−1
K ‖ΘK‖L2(K) and similar arguments to the ones

used to treat the two-dimensional case to conclude that (5.38) holds also for d = 3.

Step 2. Let K ∈ T and S ∈ SK . We bound hK‖JS‖2L2(S). Define ΛS :=

ΨSJS , whereJS and ΨS are as in (5.18) and (5.32), respectively. Basic properties

of ΨS yield

‖JS‖2L2(S) =

ˆ

S

|JS |2 ds �
ˆ

S

|JS |2ΨS ds =

ˆ

S

JS ·ΛS ds. (5.39)

Notice that suppΛS ⊂ K∗ ∪K ′
∗ ⊂ NS . Setting v = ΛS in (5.33) yields

ˆ

S

JS ·ΛS ds =
∑

K′∈NS

ˆ

K′

(ν∇eu : ∇ΛS − ep divΛS + (u · ∇)eu ·ΛS

+(eu · ∇)uh ·ΛS +
1

2
div euuh ·ΛS − eTg ·ΛS − RK′ ·ΛS

)

dx.

On the other hand, by shape regularity, we have that

‖ΛS‖L2(K′) ≈ |K ′| 12 |S|− 1
2 ‖ΛS‖L2(S) ≈ h

1
2

K′‖ΛS‖L2(S) ≈ h
1
2

K′‖JS‖L2(S),

‖∇ΛS‖L2(K′) � h−1
K′‖ΛS‖L2(K′) ≈ h

− 1
2

K′ ‖JS‖L2(S).

In view of (5.39), the estimates for ΛS previously stated, and the arguments

that yield estimate (5.38) for ‖RK‖L2(K′), we are capable of obtaining that

hK‖JS‖2L2(S) �
∑

K′∈NS

(‖eT‖2L2(dαz ,K′) + ν2‖eu‖2H1(K′) + ‖ep‖2L2(K′)).

Step 3. We now bound the residual term associated with the incompressibility

constraint. Since div u = 0, for any K ∈ T , we have

‖div uh‖2L2(K) = ‖div eu‖2L2(K).

Finally, combining all the previous results (5.35) follows.

Theorem 5.4. (Efficiency) Let (T, u, p) ∈ H1
0 (d

α
z ,Ω)×H1

0(Ω)×L2
0(Ω) be a solution

to (2.5) and (Th, uh, ph) ∈ Wh × Xh × Mh be its finite element approximation

obtained as solution to (4.4). Let α ∈ (d− 2, d). In the framework of Theorem 5.1,

we have the following efficiency estimate:

E2
K �

∑

K′∈NS

((ν2 + κ2)‖∇eT‖2L2(dαz ,K′) + ν2h−2
K ‖eT‖2L2(dαz ,K′)

+ ν2‖∇eu‖2L2(K′) + ν2h−2
K ‖eu‖2L2(K′)), (5.40)
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where the hidden constant is independent of the continuous and discrete solutions,

the size of the elements in the mesh Th, and #Th.

Proof. We proceed in several steps.

Step 1. Let K ∈ Th. We bound h2
KDα

K‖RK‖2L2(K) in (5.21). Define φK :=

Ψ2
KRK , where RK and ΨK are as in (5.20) and (5.30), respectively. Invoke (5.31)

to arrive at

‖RK‖2L2(K) �

ˆ

K

RKφK dx. (5.41)

Set r = φK ∈ H1
0 (d

−α
z ,Ω) as a test function in (5.34). Utilize that RK = suppφK ⊂

K∗ ⊂ K and the property φK(z) = 0 to obtain

ˆ

K

RKφK dx =

ˆ

K

κ∇eT · (2ΨK∇ΨKRK +Ψ2
K∇RK) dx

−
ˆ

K

T(ΨKeu) · (2∇ΨKRK +ΨK∇RK) dx

−
ˆ

K

(ΨKeT)uh · (2∇ΨKRK +ΨK∇RK) dx =: I + II + III.

We first observe that Proposition 8 in Ref. 4 yields

‖2∇ΨKRK +ΨK∇RK‖L2(d−α
z ,K) � h−1

K D
−α/2
K ‖RK‖L2(K). (5.42)

We now proceed differently according to the spatial dimension. If d = 2, we utilize

(2.4) and (5.42) and estimate II as follows:

II � ‖T‖L4(dαz ,K)‖ΨKeu‖L4(K)h
−1
K D

−α/2
K ‖RK‖L2(K)

� ‖T‖L4(dαz ,Ω)h
1/2
K ‖∇(ΨKeu)‖L2(K)h

−1
K D

−α/2
K ‖RK‖L2(K)

� νh
1/2
K

(

h−1
K ‖eu‖L2(K) + ‖∇eu‖L2(K)

)

h−1
K D

−α/2
K ‖RK‖L2(K),

(5.43)

where we have also used Lemma II.3.2 in Ref. 24 and the smallness assumption

(5.13). We now control the term III. To accomplish this task, we utilize (2.4) and

(5.42) to obtain

III � ‖ΨKeT‖L4(dαz ,K)‖uh‖L4(K)h
−1
K D

−α/2
K ‖RK‖L2(K)

� ‖∇(ΨKeT)‖L2(dαz ,K)‖uh‖L4(Ω)h
−1
K D

−α/2
K ‖RK‖L2(K)

� ν(h−1
K ‖eT‖L2(dαz ,K) + ‖∇eT‖L2(dαz ,K))h

−1
K D

−α/2
K ‖RK‖L2(K).

(5.44)

Here, we have also used ‖ΨKeT‖L4(dαz ,K) � ‖∇(ΨKeT)‖L2(dαz ,K), which follows

from Theorem 1.2 in Ref. 20. A collection of the estimates obtained for II and III
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yields
ˆ

K

RKφK dx ≤ [κ‖∇eT‖L2(dαz ,K) + νh
1/2
K (h−1

K ‖eu‖L2(K) + ‖∇eu‖L2(K))

+ ν(h−1
K ‖eT‖L2(dαz ,K) + ‖∇eT‖L2(dαz ,K))]h

−1
K D

−α/2
K ‖RK‖L2(K).

Consequently,

h2
KDα

K‖RK‖2
L2(K) � (κ2 + ν2)‖∇eT‖2L2(dαz ,K) + ν2hK‖∇eu‖2L2(K)

× ν2h−2
K ‖eT‖2L2(dαz ,K) + ν2h−1

K ‖eu‖2L2(K). (5.45)

Similar arguments yield the following bound for the three-dimensional case:

II � ‖T‖L3(dαz ,K)‖ΨKeu‖L6(K)h
−1
K D

−α/2
K ‖RK‖L2(K)

� ν(h−1
K ‖eu‖L2(K) + ‖∇eu‖L2(K))h

−1
K D

−α/2
K ‖RK‖L2(K),

(5.46)

upon utilizing estimate II.3.7 in Ref. 24, and

III � ‖ΨKeT‖L3(dαz ,K)‖uh‖L6(K)h
−1
K D

−α/2
K ‖RK‖L2(K)

� νh
1/6
K (h−1

K ‖eT‖L2(dαz ,K) + ‖∇eT‖L2(dαz ,K))h
−1
K D

−α/2
K ‖RK‖L2(K).

(5.47)

Here, we have used the estimate ‖ΨKeT‖L3(dαz ,K) � h
1/6
K ‖∇(ΨKeT)‖L2(dαz ,K), which

follows from Theorem 1.2 in Ref. 20. Consequently,

h2
KDα

K‖RK‖2
L2(K) � (κ2 + ν2h

1/3
K )‖∇eT‖2L2(dαz ,K) + ν2‖∇eu‖2L2(K)

× ν2h
−5/3
K ‖eT‖2L2(dαz ,K) + ν2h−2

K ‖eu‖2L2(K). (5.48)

Step 2. Let K ∈ Th and S ∈ SK . The bound of hKDα
K‖JS‖2L2(S) follows similar

arguments as the ones developed in Step 2 upon utilizing (5.45) and (5.48). In fact,

we have, in two and three dimensions,

hKDα
K‖JS‖2L2(S) �

∑

K′∈NS

((ν2 + κ2)‖∇eT‖2L2(dαz ,K′) + ν2h−2
K ‖eT‖2L2(dαz ,K′)

+ ν2‖∇eu‖2L2(K′) + ν2h−2
K ‖eu‖2L2(K′)).

Step 3. We now control the term |h|hα+2−d
K #({z} ∩K) in (5.21). Let K ∈ Th,

and notice first that, if T ∩{z} = ∅, then estimate (5.40), follows from the estimates

derived in the previous steps. If, on the other hand, K ∩ {z} = {z}, then we must

obtain a bound for the term |h|hα+2−d
K . To do so we follow the arguments developed

in the proof of Theorem 5.3 in Ref. 1 that yield the existence of a smooth η such

that

η(z) = 1, ‖η‖L∞(Ω) = 1, ‖∇η‖L∞(Ω) = h−1
K , Ωη := supp(η) ⊂ SK ,
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where SK is defined in (5.17). With this function at hand, define rη := hη2 ∈
W 1,∞

0 (Ω) ⊂ H1
0 (d

−α
z ,Ω) and notice that

|h|2 = 〈hδz, rη〉 =
ˆ

Ω

(κ∇T · ∇rη − Tu · ∇rη) dx

=

ˆ

Ω

∇ϕ · ∇rη dx+

ˆ

Ω

(κ∇Th · ∇rη − Thuh · ∇rη) dx,

where we have used Eq. (5.5). We thus apply similar arguments to the ones used

in the previous steps, integration by parts, and basic estimates to arrive, in two

dimensions, at

|h|2 � κ‖∇eT‖L2(dαz ,SK)‖∇rη‖L2(d−α
z ,SK)

+ νh
1/2
K (h−1

K ‖eu‖L2(SK) + ‖∇eu‖L2(SK))‖h∇η‖L2(d−α
z ,SK)

+ ν(h−1
K ‖eT‖L2(dαz ,SK) + ‖∇eT‖L2(dαz ,SK))‖h∇η‖L2(d−α

z ,SK)

+
∑

K′∈Th:K′⊂SK

⎛

⎝‖RK‖
L2(K′)‖rη‖L2(K′)

+
∑

S∈SK′ :S 
⊂∂SK

‖JS‖L2(S)‖rη‖L2(S)

⎞

⎠ ,

where we have also used the smallness assumption (5.13). Using the shape regularity

of the mesh, in conjunction with the fact that, since z ∈ K, hK ≈ DK , the bounds

‖∇η‖L2(d−α
z ,SK) � h

d−2
2 −α

2

K , ‖η‖L2(SK) � h
d
2

K , ‖η‖L2(S) � h
d−1
2

K ,

allow us to conclude that

|h| � h
d−2
2 −α

2

K ((κ+ ν)‖∇eT‖L2(dαz ,SK) + νh
1/2
K ‖∇eu‖L2(SK)

× νh
−1/2
K ‖eu‖L2(SK) + νh−1

K ‖eT‖L2(dαz ,SK))

+
∑

K′∈Th:K′⊂SK

h
d−2
2 −α

2

K′

⎛

⎝hK′D
α
2

K′‖RK‖
L2(K′)

+
∑

S∈SK′ :S 
⊂∂SK

h
1
2

K′D
α
2

K′‖JS‖L2(S)

⎞

⎠ .

The estimate in three dimensions being similar.

Finally, combining all the previous results (5.35) follows.
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6. Numerical Experiments

In this section, we conduct a series of numerical examples that illustrate the perfor-

mance of the a posteriori error estimator we have devised and analyzed in Sec. 5.

The examples have been carried out with the help of a code that we implemented

using C++. All matrices have been assembled exactly and global linear systems were

solved using the multifrontal massively parallel sparse direct solver (MUMPS).5,6

The element and interelement residuals are computed with the help of quadrature

formulas which are exact for all the expressions involved. To visualize finite element

approximations we have used the open-source application ParaView.2,8

For a given partition Th, we solve (4.4) with the discrete spacesXh, Mh, andWh

given by (5.1), (5.2), and the space of continuous piecewise polynomial functions

of degree two, respectively. To be precise, to adaptively solve the nonlinear system

(4.4) we proceed as in Algorithm 1. We comment that, in Algorithm 2, for an initial

partition T0, the initial guesses T0
h ∈ Wh and (u0h, p

0
h) ∈ Xh ×Wh are obtained as

the respective solutions to the following problems:
ˆ

Ω

κ∇T0
h · ∇rh dx = 〈H, rh〉 ∀ rh ∈ Wh

and
ˆ

Ω

ν∇u0h : ∇vh −
ˆ

Ω

p0h div vh dx =

ˆ

Ω

T0
hg · vh dx,

ˆ

Ω

qh div u
0
h dx = 0,

for all vh ∈ Xh and qh ∈ Mh, respectively. Once the discrete solution is obtained,

we compute, for all K ∈ Th, the local a posteriori error indicators EK , defined

in Sec. 5.3.2, to derive the adaptive mesh refinement procedure described in

Algorithm 1. A sequence of adaptively refined meshes is thus generated from an

initial mesh.

Finally, we denote the total number of degrees of freedom by Ndof = dim(Wh)+

dim(Xh) + dim(Mh).

Algorithm 1: Adaptive Algorithm.

Input: Initial mesh T0, interior point z ∈ Ω, and parameters ν, κ, h, and

α ∈ (0, 2);

1: Solve the discrete problem (4.4) by using Algorithm 2;

2: For each K ∈ Th compute the local error indicators EK defined in Sec.

5.3.2;

3: Mark an element K ∈ Th for refinement if

EK >
1

2
max

K′∈Th

EK′ ;

4: From step 3, construct a new mesh, using a longest edge bisection

algorithm.31 Set i ← i+ 1, and go to step 1.
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Algorithm 2: Fixed-Point Algorithm.

Input: Initial guess (T0
h, u

0
h, p

0
h) ∈ Wh ×Xh ×Mh and tol = 10−8.

1: For i ≥ 0, find (ui+1
h , pi+1

h ) ∈ Xh ×Mh such that
ˆ

Ω

(ν∇ui+1
h : ∇vh + (uih · ∇)ui+1

h · vh +
1

2
div uihu

i+1
h · vh) dx

−
ˆ

Ω

pi+1
h div vh dx =

ˆ

Ω

Ti
hg · vh dx, ∀vh ∈ Xh,

ˆ

Ω

divui+1
h qh dx, ∀ qh ∈ Mh.

Then, Ti+1
h ∈ Wh is found as the solution of

ˆ

Ω

(κ∇Ti+1
h · ∇rh − Ti+1

h ui+1
h · ∇rh) dx = 〈hδz , rh〉 ∀ rh ∈ Wh.

2: If ‖(Ti+1
h , ui+1

h , pi+1
h )− (Ti

h, u
i
h, p

i
h)‖2 > tol, set i ← i+ 1, and go to step 1.

Otherwise, return (Th, uh, ph) = (Ti+1
h , ui+1

h , pi+1
h ).

We now explore the performance of the devised a posteriori error estimator in

two problems with homogeneous Dirichlet boundary conditions on convex and non-

convex domains. In all the numerical experiments, we have considered ν = κ = 1,

g = [1, 0]⊺, h = 1, z = (0.5, 0.5), and different values for the exponent of the

Muckenhoupt weight: α ∈ {0.1, 0.5, 1.0, 1.5, 1.9}. We let

(i) Ω = (0, 1)2, for example 1, and

(ii) Ω = (−1, 1)2 \ [0, 1)× [−1, 0), for example 2.

In Figs. 1 and 3 we present, within the setting of examples 1 and 2, respectively,

experimental rates of convergence for the error estimator Eh. We also present the

initial meshes used in the adaptive algorithm.We observe that optimal experimental

rates of convergence are attained for all the values of the parameter α that we have

considered. We also observe that a better value of the estimator, at a fixed mesh,

can be obtained for values of α closer to two. We notice that, when α is small,

after a certain number of adaptive iterations, there are elements K around z such

that |K| ≈ 10−16. This makes impossible more computations within the adaptive

procedure.

In Figs. 2 and 4 we present, for examples 1 and 2, respectively, a series of meshes

obtained after 30 adaptive iterations. We observe that most of the refinement is

concentrated around the singular source point. For the case of example 2, and after

30 adaptive refinements, the adaptive loop also concentrates the refinement around

the reentrant corner when α ∈ [1, 2).

Finally, in Fig. 5 we present, for the setting of example 2 with α = 1.5, |uh|,
its associated streamlines, the pressure ph, and the temperature Th over a mesh
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Fig. 1. Example 1: Experimental rates of convergence for the error estimator Eh considering
α ∈ {0.1, 0.5, 1.0, 1.5, 1.9} (left) and the initial mesh used in the adaptive algorithm (right).

(a) (b) (c)

(d) (e)

Fig. 2. Example 1: Meshes obtained after 30 iterations of our adaptive loop for (a) α = 0.1 (232
elements and 121 vertices); (b) α = 0.5 (232 elements and 121 vertices); (c) α = 1.0 (392 elements
and 209 vertices); (d) α = 1.5 (592 elements and 309 vertices); and (e) α = 1.9 (1056 elements
and 553 vertices).
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Fig. 3. Example 2: Experimental rates of convergence for the error estimator Eh considering
α ∈ {0.1, 0.5, 1.0, 1.5, 1.9} (left) and the initial mesh used in the adaptive algorithm, which contains
96 elements and 65 vertices (right).

(a) (b) (c)

(d) (e)

Fig. 4. Example 2: Meshes obtained after 30 iterations of our adaptive loop for (a) α = 0.1 (328
elements and 181 vertices); (b) α = 0.5 (328 elements and 181 vertices); (c) α = 1.0 (539 elements
and 291 vertices); (d) α = 1.5 (847 elements and 450 vertices); and (e) α = 1.9 (1380 elements
and 728 vertices).
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Fig. 5. Example 2: Finite element approximations of |uh|, combined with its streamlines (left),
pressure ph (center), and temperature Th (right) over a mesh containing 16105 elements and 8178
vertices obtained after 65 adaptive refinements (α = 1.5).

containing 16105 elements and 8178 vertices; the latter being obtained after 65

iterations of our adaptive loop.
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Lipschitz domains, Astérisque 344 (2012) viii+241.
35. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans.

Amer. Math. Soc. 165 (1972) 207–226.
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40. E. Otárola and A. J. Salgado, The Poisson and Stokes problems on weighted spaces
in Lipschitz domains and under singular forcing, J. Math. Anal. Appl. 471 (2019)
599–612.
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