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In Lipschitz two- and three-dimensional domains, we study the existence for the so-called
Boussinesq model of thermally driven convection under singular forcing. By singular we
mean that the heat source is allowed to belong to H~!(z, §2), where w is a weight in the
Muckenhoupt class Az that is regular near the boundary. We propose a finite element
scheme and, under the assumption that the domain is convex and w~! € Aj, show
its convergence. In the case that the thermal diffusion and viscosity are constants, we
propose an a posteriori error estimator and show its reliability. We also explore efficiency
estimates.
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1. Introduction

The purpose of this paper is to study existence, uniqueness, and approximation
results for the so-called Boussinesq model of thermally driven convection. While
this problem has been considered before in different contexts and there are such
results already available in the literature,10:19:21:33:41-43 gy main source of nov-

elty and originality here is that we allow the heat source to be singular, say a
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Dirac measure concentrated in a lower dimensional object so that the problem can-
not be understood with the usual energy setting; as it was done, for instance, in
Refs. 10, 21, 33, 42 and 43. Let us make this discussion precise. Let  C R?, with
d € {2,3}, be an open and bounded domain with Lipschitz boundary 9. We are
interested in existence, uniqueness, and approximation of solutions to the following
system of partial differential equations (PDEs) in strong form:

—div(¥(T)Vu) 4+ (u- V)u+Vp =gT, in(,

divu =0, in Q,

(1.1)
—div(k(T)VT) +div(uT) = H, in Q,
u=0, T=0, on 0f).

The unknowns are the velocity u, pressure p, and temperature T of the fluid, respec-
tively. The data are the viscosity coefficient v, gravity g, the thermal diffusivity
coefficient x, and the externally applied heat source H. Our main source of interest
is the case of a rough H, so that standard energy arguments do not apply to obtain
suitable estimates. We will make precise assumptions quantifying this below.

Our presentation will be organized as follows. We collect background informa-
tion, and the main assumptions under which we shall operate in Sec. 2, where we
also introduce a notion of solution for (1.1); see Definition 2.2. Existence of solutions
is presented in Sec. 3. The numerical analysis of problem (1.1) begins in Sec. 4,
where we introduce a finite-element-like numerical scheme, show that it always has
solutions, and that these converge. Section 5 continues the numerical analysis by
introducing an a posteriori error estimator for our problem and showing its reliabil-
ity. We also explore efficiency estimates. Finally, a series of numerical experiments
are presented in Sec. 6. We show the performance of the devised error estimator
within an adaptive loop and explore our model beyond what our theory can handle.

2. Notation and Main Assumptions

Throughout this paper, d € {2,3} and Q C R? is an open and bounded domain
with Lipschitz boundary 9Q. If W and Z are Banach function spaces, we write
W < Z to denote that W is continuously embedded in Z. We denote by W and
| - [ the dual and the norm of W, respectively.

For £ C Q open and f: E — R, we set

]{Efdx:ﬁ/];fdx7 |E|:/de.

Given p € (1,00), we denote by p’ its Holder conjugate, i.e. the real number
such that 1/p+1/p’ = 1. By a < b we mean a < Cb, with a constant C' that neither
depends on a, b, nor the discretization parameters. The value of C' might change at
each occurrence. If the particular value of a constant is of relevance, then we will
assign it a name. For instance, throughout our paper, by C4_,5 we shall denote the
best constant in the embedding H}(Q) — L*(().
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2.1. Weighted function spaces and their embeddings

A weight is a locally integrable and nonnegative function defined on R%. If w is a
weight and p € [1,00), we say that @ belongs to the so-called Muckenhoupt class
A, if18:35:45

-1

P
[@]a, := sup (][ wdx) (][ w!/(1-p) dx) < oo, pe€(l,00),
B B B

[w]a, = sup (][ wdx) sup L <oo, p=1,
B B zEB w(x)

where the supremum is taken over all balls B in R?. In addition, A, = Ups1 Ap-

We call [@] 4, for p € [1,00), the Muckenhoupt characteristic of w.

Distances to lower dimensional objects are prototypical examples of Mucken-
houpt weights. In particular, if I C 2 is a smooth compact submanifold of dimen-
sion k € {0,1,...,d — 1} then, owing to Lemma 2.3 item (vi) in Ref. 22, we have
that

di-(z) = dist(z, K)*

belongs to the class A, provided o € (—(d — k), (d — k)(p — 1)). This allows us to
identify three particular cases:

(i) Let d > 1 and z € Q, then the weight dJ € Ay if and only if o € (—d, d).
(ii) Let d > 2 and v C Q be a smooth closed curve without self-intersections. We
have that d € Ay if and only if a € (—(d — 1),d — 1).
(iii) Finally, if d = 3 and I' C € is a smooth surface without boundary, then
dp € Ay if and only if o € (—1,1).

Since the aforementioned lower dimensional objects are strictly contained in €2,
there is a neighborhood of 92 where the weight has no degeneracies or singularities.
In fact, it is continuous and strictly positive. Inspired by Definition 2.5 in Ref. 22,
this observation motivates us to define a restricted class of Muckenhoupt weights.

Definition 2.1. (Class A,(D)) Let D C R be a Lipschitz domain. For p € (1, 00)
we say that w € A, belongs to A, (D) if there is an open set G C D, and positive
constants € > 0 and w; > 0, such that:

{x € Q:dist(z,0D) <e} C G, wel(G), w <w(x) Vreg.

Remark 2.1. (df € A2() and d;” € A1) Let z € Q and «a € (d — 2,d). Define
d.(z) = |z — 2z|. Then, we have that the weight d is such that df € A3(Q) and
dz_a € A

From the A,-condition and Holder’s inequality follows that an A,-weight sat-
isfies the so-called strong doubling property; see Proposition 1.2.7 in Ref. 45: Let
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w € A, with p € (1,00) and E C R? be a measurable subset of a ball B C RY.
Then,

1BI\"

The following embedding results will be of importance in our analysis.
Proposition 2.1. (Weighted embedding) Let p € (1,00) and w € A,. There is
0 > 0 such that if

d
ke |:17m+5:|7

then Wy (w, Q) < L*(w,Q). If, in addition, Ssing(ww) € Q then, the embedding
is compact for 1 < k < d/(d —1). Here, Ssing(w) denotes the set of singularities
defined in Sec. 4.1 of Ref. 28.

Proof. Theorem 1.3 in Ref. 20 guarantees that the embedding is continuous. The
compactness of the embedding follows from Theorem 4.12 in Ref. 28. |

Proposition 2.2. (Embedding with different metrics) Let 1 < p < g < 00, w € A,
and p € Ay. If the pair (p,w) satisfies the compatibility condition

R() (50 e oeren

then, we have that, Wy (w, Q) < L1(p, Q).

Proof. See Theorem 6.1 in Ref. 36. O

Proposition 2.3. (Boundedness) Let d € {2,3} and w € Ay. For every g €
L>(Q), 0 € H}(w,Q), and v € H§(Q), we have that

/Gg-vdx
Q

If, in addition, the weight satisfies ™' € Ay, then provided r € Hi(w™1,Q), we
have

< Ce1llgllne@)IVOllL2(w.0) VL2 (@) (2.2)

< Ce2l| V(L2 (@) VOlL2 (w,0) VT lL2 (-1 ,0)- (2.3)

/Gv-Vrdx
Q

In both estimates, the constants depend only on Q and w.

Proof. Since the weight @w € A,, we have that it satisfies the strong doubling
property (2.1) with p = 2. Thus, for 0 <7 < R and ¢ < d/(d — 1), we have

v (1B \"" (@(Br) 1/2<(1)1+d/q |Brl _,
R \[Bg| =(B,)) ~\R B[ ~
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We thus invoke Proposition 2.2 with p = 2 and p = 1 to conclude that H}(w, Q) <
L1(§2) provided g < d/(d — 1). Consequently, for ¢ < d/(d — 1), we have

‘/Gg-vdx
Q

Notice that ¢’ > d. Choosing ¢ = d/(d — 1) and utilizing a standard Sobolev
embedding yields estimate (2.2).

We now prove inequality (2.3). To accomplish this task, we first notice that
w1 € Ay implies @w € L>°(£2). Second, since Proposition 2.1 guarantees the exis-
tence of € > 0 such that H}(w,Q) — LFT(w,Q), for p = 2d/(d — 1), we can
conclude the existence of £ > 2d/(d — 1) and m < 2d such that m=' + ¢~ =1/2

and
/ Ov - Vrdx
Q

< ||gHLoo(Q)H9||Lq(Q)HV||Lq'(Q) S ||gHLoo(Q)HVGHL%W,Q)HVHLq'(Q)-

1/m
< 1 IVl 101 o) | 210

1/m
Sl oy IVVIlLe @ VOl o e IV o1y, (2:4)

where we have also used a standard, unweighted, Sobolev embedding to handle the
term involving v. This yields (2.3) and concludes the proof. O

2.2. Main assumptions and definition of solution

Having described the functional setting that we shall adopt and some of its more
relevant properties, we can precisely state the assumptions under which we shall
operate.

e Domain: Let d € {2,3}. We assume that Q is a bounded domain in R? with
Lipschitz boundary 9€2. When dealing with discretization, we shall further assume
that Q is a polytope.

e Gravity: The gravity is a constant vector g € R?. We set g = |g|.

e Viscosity: The viscosity is a function v € C%(R) that is strictly positive and
bounded, i.e. there are positive constants v_ and vy such that v_ < vy and

v <v(t)<wvy VteR.

e Thermal diffusivity: The thermal coefficient is a function k € C%1(R) that is,
moreover, strictly positive and bounded, i.e. there are positive constants x_ and
k4 such that k_ < k4 and

ko <k(t) <ky VieR.
To quantify the oscillation of the thermal diffusivity we shall introduce

Alk) = "= € (0,1].
K+
o Weight: We assume that we have a weight @ € A3(Q) such that w1 € A
and Sgng(w) € Q. A canonical example of this scenario is given in Remark 2.1;
Example 4.4 in Ref. 28 shows that [Sging ()| = 0.
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o Heat source: We allow the heat source to be singular, and we quantify this by
assuming that it belongs to the dual of a weighted space. Namely, we assume

that H € H Y(w,Q) := H} (w1,Q).
With these assumptions at hand we can define our notion of solution.

Definition 2.2. (Weak solution) We say that the triple (T,u,p) € Hi(w,Q) x
H{(Q) x LE(Q) is a weak solution to (1.1) if

/(V(T)VU1VV+(U-V)U-v—pdivv—Tg-v)dx:Q
Q

/ gdivudz =0, (2.5)
Q

/ (K(T)VT -Vr —Tu-Vr)de = (H,r),
Q

for all v e H(Q), ¢ € LE(Q), and r € Hi (w1, Q). Here, (-,-) denotes the duality
pairing between Hi(cw™!, Q) and its dual H = (w, Q).

We immediately comment that, owing to our assumptions on data and definition
of solution, all terms in this definition are meaningful; see Proposition 2.3.

3. Existence of Solutions

The main goal in this section is to show that problem (1.1) has, under the assump-
tions stated in Sec. 2.2, a solution in the sense of Definition 2.2. We proceed in
several steps.

3.1. The Navier—Stokes equation with prescribed temperature
We begin by making a simple observation. Given 6 € H{(w, (), let us consider

the following problem: Find (u,p) € H(Q) x L3(Q) such that, for all (v,q) €
H(Q) x L§(Q),

/(V(@)Vu:Vv—i—(u-V)u-v—pdivv)dx:/Qg-vdx
Q Q

/ gdivudz = 0.
Q

We present the following result regarding existence and uniqueness of solutions
o (3.1). We will make use of the fact that, on Lipschitz domains, the divergence
operator is surjective from H} () to L2(£2).11:12 This implies that there is a constant
B, that depends only on d and 2, for which

(3.1)

divvgdz
Bllgllrz@) < sup Jodivvad Vg e L3(Q). (3.2)
veri@ [IVVvirz)
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Theorem 3.1. (Existence and uniqueness) For every 0 € H}(w, Q) problem (3.1)
has at least one solution. In addition, if CpCe 19||VO|L2(w,0) < V2, where Cp is a
constant that depends only on Q and d, then this solution is unique and satisfies

Ce,lg
v_

[VullLeq) < VOlL2(w.0),

Ceg v C? Ceny9
IPlerey < S8Vl (14 25 + S Tl ).

A

where Cy_,o is the best constant in the embedding H{(Q) < L*(Q) and B is the
constant appearing in estimate (3.2).

Proof. Since § € H}(w,Q), the function v(z) := v(0(x)) is bounded, measurable,
and strictly positive. Define the functional

.7-'9:V'—>/9g-vdx.
Q

Owing to Proposition 2.3 we have that Fy € H=(€2). In addition, Proposition 2.3
also shows that
[Folla-10) < Ceillgllu=@ IVOL2(w,0) = Ce19IVO|L2(w,0)-

Thus, the standard theory of existence and uniqueness under small data (or large
viscosity) for the Navier—Stokes equation applies; see Chap. 11, §1 in Ref. 44.

We now obtain the claimed estimates. The bound on u follows from standard
energy arguments and the bound on Fy. The bound on p is obtained from (3.2).
Indeed, using the first equation in (3.1), inequality (3.2) yields

Bllpllz2) < vellVullpzq) + CZ%IIVuIIia(Q) + 1 Folla—1(o)-

Substitute the obtained bounds in terms of V@ to conclude. O

3.2. The stationary heat equation with convection

Here, we study the existence of solutions to a stationary heat equation with convec-
tion and under singular forcing. Namely, given ¢ € L™>(Q) with 0 < s < 3¢ < 3¢y,
u € H{(Q), and H € H '(ww,Q), we consider the following stationary heat equa-
tion: Find T' € H{ (ww, Q) such that

/ (VT -Vr —Tu-Vr)de = (H,r) Vre Hj(w ' Q). (3.3)
Q
As a first step, we state a well-posedness result for the case u = 0.

Proposition 3.1. (Well-posedness for u = 0) There is a constant Ao, depending
only on Q and @, such that, if A(3¢) > Ag, problem (3.3) with u = 0 is well-posed.
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This, in particular, implies that

VT -Vrd
9Tty < € sup 2NV

VT € fll(w7 ). (3.4)
redl(w-1,0) IVrlLzw-1,0) 0

The constant C,, depends only on Ao, A(x), Q, d, and w.
Proof. See Theorem 12 in Ref. 40. O

We now study the case with nonzero convection.

Proposition 3.2. (Well-posedness for u # 0) Assume that A(3¢) > Ay, where Ag
is defined in Proposition 3.1. If

C%Ce,QHVu”LQ(Q) <qg<l, (35)
then problem (3.3) is well-posed. This, in particular, implies that the solution T' of
problem (3.3) satisfies the estimate
C.
1—q

IVT|l2(w,0) < Ca(@Hlla-1 (=0, Culg)=

Proof. Let us introduce the linear map A : H}(w, Q) — H 1(w, Q) via
(AT, 7) ::/%VT-Vrdgm VT € Hi(w,Q), Vre Hl(m1,9).
Q

Clearly, A is a bounded linear operator and, moreover, owing to the inf-sup estimate
(34), A is invertible with ||A_1Hﬁ(H_l(W,Q),Hé(W,Q)) < C%.

Given u € H} (), we introduce the map By : H} (w,Q) — H(w, Q) defined
by

(BuT,7) = —/ Tu-Vrdz, VT € H)(w,Q), VreH)(w Q).
Q
Estimate (2.3) shows that By, is a bounded linear map which satisfies the estimate

1Bull (212 (w,0), 51 (w.0)) < Ce2l|VUllLz).

Since it will be needed later, we now show that By is compact. Let {T},},>0 be
a bounded sequence in H{(w, Q). Since Proposition 2.1 guarantees that, for k <
d/(d — 1), the embedding H}(w,) — L?*(w,) is compact, we conclude the
existence of a subsequence {7}, };>0 of {T7}n>0 such that T;,, — T* in Hg(w,Q)
and Ty, — T in L24/(d=D) (5, Q) as j 1 oo. Thus, estimate (2.4) yields
1BuTrn; = BuT™[| -1 (w,0) S 1 Tn; — T* || p2a/a-1 (09 [IVU[lL2(2) = 0, 5 T 00.
This shows that {ByT},};>0 converges in H~'(w,Q) and thus that By is com-
pact. We notice that, in view of (2.4), the map B, is well-defined on the space
L2d/(d71)(w7 Q)
With this notation, we have that problem (3.3) can be written as

(A+B)T =M <= I+ A 'B)T=A"'H
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in H~ (o, Q). Since A~!B,, is continuous, assumption (3.5) implies that this prob-
lem has a unique solution, because

A~ Bull £ (113 (w,0)) < CocClal|VullL2) < ¢ < 1.
Moreover, we have the estimate

H‘Ail”E(H*l(w,Q)AHl(wAQ))
——— ||| -

el

1—¢

IVT||L2(e,0) < Uw,0) < I1HI -1 (,0)-

L= A= Bull 21 (w.02))
Notice that Cy(q) = C,./(1 — q) depends only on ¢, Ag, A(3), 2, d, and w. O

3.3. FEuxistence of solutions

Having studied each one of the subproblems separately, we proceed to show exis-
tence of solutions to (2.5) via a fixed point argument. To accomplish this task, we
define the map § : Hi(w, Q) x H§(Q)xL3() — Hi(w,Q) x H{(Q)xL3(Q) by
5(6,u,p) := (T,u,p), where (T, u,p) solves

/(V(O)Vu:Vv—l—(u-Vu)-v—pdivv)dx:/Gg-vdx Vv e HY(Q), (3.6)
Q Q

/qdivudx:O Vqe L3(9Q), (3.7)
Q

/(K(H)VT Vr—Tu-Vr)de = (H,r) Vre H (x5 Q). (3.8)
Q

Note that the definition of (T, u, p) implies solving a stationary Navier—Stokes equa-
tion with prescribed temperature € and a stationary heat equation with convection
u. The following result shows that the map § is well-defined. To concisely state it

we define
Br = {0 € Hy(w,Q) : | VO|L2(w,0) < S},
§=-"2 min{Z _ (3.9)
~ gCen Cp 20,.Con [’
By = {u € Hy(Q) : [VullL2 ) < G},
oo ! (3.10)
- 20,.Cep’
B, = {p e Lj(Q) : [|Ipll2@) < P},
2 (3.11)
P = MS<1+V_++C4L2C€>193)
B v v

and B = B x B xB,,.
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Proposition 3.3. (F is well-defined) Assume that A(k) > Ao, where Ay is defined
in Proposition 3.1. If the heat source H € H~'(ww,Q) satisfies the estimate

S S
—1 < _— .

then § is well-defined on B. In addition, we have F(*B) C B.

Proof. Let 6 € Bp. Invoke Theorem 3.1 to conclude the existence of a unique
(u,p) € H{(Q) x LZ() that solves (3.6) and (3.7). Moreover, u and p satisfy the

estimates

Ce}lg vV_ 1 o
v gCe,l 20%06,2 B

Ce7lg
v_

[VullLz(q) < [VOlL2(w.0) < G,

Cey9 v C? Ce19
Pl 2y < 5 1VO||L2(w,0) (1 + f + %”vonlﬂ(w,ﬂ) <P.

Consequently, u € B, and p € B,. Now, since A(k) > Ag and u € B, we invoke
Proposition 3.2, with ¢ = 1/2, to conclude that there exists a unique T that solves
(3.8). Moreover, the condition on H guarantees that

IVTL2(w,0) < Cu(1/2)|H]lg-1(w,0) < S,

which implies that T € B7. We have thus proved all the statements. O

As a last preparatory step we show that the mapping § is weakly continuous.

Lemma 3.1. (Weak continuity) The mapping § : B — B is weakly continuous.

Proof. Let the sequence {(0n,un,pn)}n>0 C B be such that (0,,u,,p,) —
(0,u,p) in H}(w,Q) x HI(Q)xL3(2). As the set B is closed and convex, it
is weakly closed. Therefore, (6,u,p) € B. Set (T, uUn,pn) = F(0n,un,pn) and
(T,u,p) =§(0,u,p). We must show that (T, up,pn) — (T,u,p).

Owing to the reverse Holder inequality, Theorem 7.4 in Ref. 18, we have that, for
some € > 0, the embedding H} (w, Q) < WHT€(Q) is continuous. Since W1T¢(Q)
is compactly embedded in L!7¢(Q), we obtain that 6, — 6 in L'T¢(Q). The conti-
nuity of x implies then that x(6,) — () almost everywhere in Q; see Theorem 7
in Ref. 9. Now, since {(Tp, Un, Pn)}n>0 C B is bounded, we can extract a weakly
convergent subsequence {(T,, , Un,, Pn, ) te>0 such that (Ty,, Un,, Pny) — ('T', U,p)
in HY(w,Q) x H}(Q)xL3(Q2) as k 1 co. The previous discussion shows that, for
every r € H} (w™1,Q), we have

/li(@nk)VTnk -Vrdx%/n(@)VT-Vrd% k1 0.
Q Q
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Similar arguments for the remaining terms that comprise the definition of § show
that, in the limit, we must have (1'707[3) = F(0,u,p). Consequently, (T7L~J7}5) =
(T, u,p). Since problem (3.6)-(3.8) admits a unique solution, any convergent sub-
sequence converges to the same limit, which implies that the whole sequence must
do so to (T, u,p), which established the desired weak continuity of §. O

We now proceed to obtain existence via a fixed point argument.

Theorem 3.2. (Existence) Assume that A(k) > Ao, where Ag is defined in Propo-
sition 3.1. If the heat source H € H '(w,Q) satisfies (3.12), then there is a
(T,u,p) € Hi(w, Q) xH}(Q) x L(2) that solves (1.1) in the sense of Definition 2.2.
Moreover, we have that (T,u,p) € B.

Proof. We wish to invoke the Leray—Schauder fixed point theorem, Theorem 8.8
in Ref. 16, for the map § over B = Br x By x B, where Br, By, and B,
are defined in (3.9), (3.10), and (3.11), respectively. Notice that B is nonempty,
closed, bounded, and convex. Since Proposition 3.3 already showed that F(B) C B,
it remains to show the compactness of §. In other words, we must improve on
Lemma 3.1 by showing the weak—strong continuity of §. To accomplish this task,
let {(0n, Wn, Pn) fn>0 C B be such that (0, u,,pn) — (6,u,p) € B, in Hi(w,Q) x
H}(Q) x L3(2), as n 1 co. We already know, via Lemma 3.1, that (T, u,, p,) =
§(00, . p) — §(0,w,p) = (T,u,p), in Hi(e, Q) x HA(Q) x L3(Q).

Let 7 € Hi(w™1,9). Invoke the problems that (T,,u,) and (T,u) satisfy and
observe that the difference et ,, := T — T,, verifies the relation

/ (k(0,)Ver, —erpu) - Vrde = / (Th(u—uy,) + (k(0,) — k(0))VT) - Vrda,
Q Q

i.e. eT,, is the solution to a heat equation with convection; the problem that was
studied in Sec. 3.2. Let us denote the functional on the right-hand side of this
expression by H,,. Since u € B,, and A(k) > Ay, we can invoke Proposition 3.2 to
conclude that

Vet nllLz(w,0) < Cu(1/2)[[Hall -1 (w,0)-

The arguments that led to (2.4) show the existence of m < 2d and ¢ > 2d/(d — 1)

such that
T,(u—u,) Vrdz
swp  d2 < VTl o — wallim @y = 0,
rei(w-1,0)  IV7rllzw-1.0)

where we have also used the compact embedding H}(Q) < L™ (). For the second
term we observe that, since x is continuous, and hence bounded, we have that
(k(0) — k(0))VT — 0 in L?(w, Q). In conclusion, T,, — T in Hg(w, Q).
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An argument similar to that used to obtain uniqueness for the stationary
Navier—Stokes equation, cf. Chap. II, §1 in Ref. 44, shows that u, — u in H} ().
Finally, (3.2) implies that p,, — p in L3(€2).

The theorem is thus proved. O

4. Discretization and Convergence

Let us now study a finite-element-like scheme to approximate the solution of (1.1).
To that effect, we assume that we have at hand, for each A > 0, finite-dimensional
spaces Wy, C H} (w,Q) N HY(w™1,Q), X, € HY(Q), and M), C LZ(Q) that are
dense in the limit. Moreover, we assume that the pair (X, M}) is compatible, in
the sense that there is a constant 5 > 0 such that, for all A > 0,

divv dx
ﬁ||Qh||L2(Q)§ sup fﬂ—hqh

th € My, 4.1
viex, [IVvallLzo) (4.1)

We also assume that the H{ () projection onto Wy, is Hi (w®!, Q) stable. In other
words, there is a constant v > 0 such that, for all h > 0,

V?”h . V&h dx
A Trallgsein gy < sup a1 VO d

Vry, € Wh. 4.2
e A P (4.2)

Finally, we assume that there is an interpolation operator 7y : H} (w1, Q) — W),
which is stable and has suitable approximation properties: For all r € H (™1, Q),
we have

h
HVWWrHL2(w—1’Q) S HVTHL2(W_1,Q)7 ||V(7Tw’r’ — T)HL?(w—l,Q) 19 0 (43)

Examples of triples verifying our assumptions are plentiful within the finite
element literature. Pairs that satisfy (4.1) can be found, for instance, in Refs. 14, 19
and 26. In addition, Theorem 3.2 and Corollary 3.4 in Ref. 17 show that if €2 is
convex, and Wy, consists of continuous functions that are piecewise polynomials of
degree k > 1 over a quasiuniform mesh of ) of size h, then our assumptions on
the weight w guarantee that (4.2) holds. Finally, in this setting, Ref. 36 constructs
interpolants that satisfy (4.3).

As in the continuous case, we will say that a triple (T, up, pn) € Wi x Xj, X My,
is a discrete solution to (1.1) if

1
/ (y(Th)Vuh : Vv + (up - Vug) - vy, + 2 divupup - vy
Q

—prdivvy, — Trg- vh) dz =0,
(4.4)
/ qn divup dz =0,
Q

/(K(Th)VTh . VT}L — Thuh . Vrh) dx = <H,7‘h>,
Q
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for all vy, € Xy, g € My, and r, € Wy, Our main objective here will be to
show that, under similar assumptions to Theorem 3.2, problem (4.4) always has a
solution and that, as h — 0, these solutions weakly converge, up to subsequences,
to a solution of (1.1) in the sense of Definition 2.2.

4.1. A discrete stationary heat equation with variable coefficient

As a first step to achieve our goals we must prove a discrete version of Proposi-
tion 3.1. The proof of the following result is, essentially, an adaption of Proposi-
tion 8.6.2 in Ref. 13.

Proposition 4.1. (Weighted stability) If >z € L>(€) is such that 0 < 3 < 3 <

»y and

2%+

A > Ay = max{Ag, 1+ (1 - L)} (4.5)

then, for all h > 0, we have that

Vry, - VO, do
LV < sup A2 T

Vr, € Wh7 4.6
B L7 P (4.6)

where v > 0 is the constant appearing in estimate (4.2).

Proof. As mentioned above, the proof essentially follows the perturbation argu-
ment developed in Proposition 8.6.2 of Ref. 13. Let us define the bilinear form

(1 — i) Vr-Vodx.

B,.: HY(w*, Q) x H} (@, Q) = R, B.,.(r,0) ::/
Ay

Q

Note that, for r € H} (w*!,Q) and 6 € H (T, Q),
|Bue(r,0)] < (1 = AG)) VT2 (wtr,0)[VO|L2(@71,0),
and that

1
/Vr-Vde:B%(r,G)—I——/%Vr-Vde.
Q 7t o

Thus, owing to (4.2) we have that, for any A > 0 and any r), € W,

1 Jo 7V - Vo, dx
v+ A(x) = D)||Vri|i2(wer o) < — sup .
( (30) = DIVralre (w10 P A 1T [—

The restriction on A(sr) allows us to conclude. m|

With the previous result at hand, we can show that a discrete version of (3.3)
always has a solution for sufficiently small convection and that, more importantly,
the discrete solutions are uniformly bounded with respect to h. Given » € L>()
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with 0 < 3 < 3 < 3y, u e H{(Q), and H € H ! (w, Q) we consider the following
problem: Find T}, € W}, such that

/(%VTh -Vry, —Thu- V?”h) dx = <,H77"h> Yr, € Wp. (4.7)
Q

Corollary 4.1. (Well-posedness) Assume that A(3¢) > Ay, where Ay is defined in
(4.5), and that u € H}(Q) satisfies

2C,.
7'2 [Vullpz0) < g < 1.

Then, for every h > 0, problem (4.7) has a unique solution. Moreover, Ty, satisfies

2

VT (w0 < -
IV Tk <

1H]| =1 (=)

Proof. Repeat verbatim the proof of Proposition 3.2 replacing (3.4) by (4.6) and
C,. by 2/~. O

4.2. Existence and stability

Having studied a discrete diffusion equation with variable coefficient on weighted
spaces, we can proceed and show that, under similar assumptions to Theorem 3.2,
our discrete problem (4.4), always has solutions and that, moreover, these are uni-
formly bounded with respect to h > 0. This will be the first step to show, via a
compactness argument, the convergence of discrete solutions to a solution of (1.1),
in the sense of Definition 2.2.

We proceed via a fixed point argument. We define, for each h > 0, the map

Sno: Wi x Xp X My, — Wi, x X x My, (On,upn,pn) = S0, un, pr)
= (Th,un,pn)

by the following procedure: Let the pair (up, pn) € X x M), be such that, for all
(Vhyqn) € Xp X Mp,

1
/ <V(9h)Vuh s Vv 4 (up - V)uy, - vy, + 3 div upuy, - vh> dz
Q

— / phdivvhdac:/th-vhdac7 (4.8)
Q Q

/ qn divuy dr = 0,
Q
and T;, € W), be defined as the solution to

/ (K(0))V T - Vrn — Toun - Vi) da = (H, 1) ¥ € Wi, (4.9)
Q
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For reasons similar to the continuous case, this map is well-defined, if we restrict
it to a ball of appropriate size. To quantify that, we introduce

Bl = {0h € Wi+ |VOh|lL2(w,0) < S},
§— Y= mind = T

5= e mm{cp’ 406,2}’

%ﬁ = {uh c Xy, : ||VII}L||L2(Q) < é},

5 _ 7
G
4C. "

Bl = {pn € My, : |pnll2) < P},

~ ~ 2 ~

P:@”51+ﬁ+§9ﬁ%ﬂs,
Ié] ve 2 v

and B = %éﬂ X %ﬁx%’;. Notice that neither S, G, nor P are dependent on the
parameter h > 0.

Proposition 4.2. (F}, is well-defined) Assume that A(k) > A1, where Ay is defined
in Proposition 4.1. If the heat source H € H~'(w, Q) satisfies the estimate
S
I1H] g1 (,0) < 777
then, for every h > 0, the mapping §1 is well-defined on B". Moreover, F,(B") C
B

Proof. The proof essentially repeats that of Proposition 3.3. For this reason, we
only sketch it. Let (65, un, pr) € B". Since we have skew symmetrized the convective
term, we know that problem (4.8) always has a solution which satisfies

Ce,lg
12

1 -
[VunllL2o) < V—||9hg||H—1(Q) < [VOr||L2(w.0) < G,

3 3 -
Bllenllzz() < v lVunllLz(o) + §CZ_>2||VUhHi2(Q) + 5 10nglla-1(0) < BP,

where we used (2.2) and the fact that 6, € %%, to obtain the estimate for uy, and
the inf-sup condition (4.1) for the estimate of p,. In addition, we observe that the
conditions on the data for this solution to be unique are met; see Theorem IV.3.1 in
Ref. 25. Corollary 4.1, with ¢ = 1/2, then implies that problem (4.9) has a unique
solution, which satisfies

4 -
[VTh|Lz(w) < ;HHHHﬂ(w) <8,

where we used the assumption on H. Thus, as we intended to show, §j is well-
defined on B and Fj,(B") C B". |

We conclude by showing existence of solutions, via a fixed point argument.
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Theorem 4.1. (Existence) Assume that A(k) > A1, where Ay is defined in Propo-
sition 4.1. If the heat source H € H~'(w, Q) satisfies the estimate

vS
I1HI -1 (,0) < i

then, for every h > 0, there is a triple (Tp,un,pn) € B" € W), x X, x My, that
solves (4.4).

Proof. Since we are now in finite dimensions, we will apply Brouwer’s fixed point
theorem; see Theorem 3.2 in Ref. 16. For that, we only need to verify the continuity
of §p. This is achieved by repeating verbatim the proof of Lemma 3.1 and using
that we are in finite dimensions to pass from weak to strong convergence. O

4.3. Conwvergence

The results of the previous section show that, provided the heat source H and the
oscillation of k are not too large, then for every & > 0 problem (4.4) has a solution,
and that this family of solutions remains bounded uniformly in 2 > 0. We can then
pass to a (not relabeled) weakly convergent subsequence (T, up,pn) — (T,u,p).
We will show here that this limit must be a solution to (1.1), in the sense of
Definition 2.2.

We begin with some notation. We define

Br = {0 € Hj(w,9Q) : |[VO||r2(w.) < S}, Bl = Br N Wy,
S =min{S,S}, By ={ucHL(Q):||Vurzq) <G},

B =B, NX;,, G=min{G,G}, B,={pe L) :]|plr2a < P}

%Z = %p nNM, P= min{ P, P},

Ce S 8

B =By x By x B,, and H:min{%,QCN}.
Theorem 4.2. (Convergence) Assume that A(k) > Ay, where Ay is defined in
Proposition 4.1. If the heat source H € H™(w,2) satisfies

1HI 1) < H,

then the family {(Th,un,pn) C B"}n=o of solutions to (4.4) converges weakly (up
to subsequences) to an element of B. Moreover, this limit is a solution to (1.1) in
the sense of Definition 2.2.

Proof. The assumptions guarantee that we can invoke Theorem 4.1 to ascertain
the existence of (Tp,up,pn) € Bl x B x %Z that solve (4.4). Moreover, since
BL x Bl x Bl C B, this family of solutions remains in a bounded set, and we can
extract weakly convergent subsequences which for simplicity of notation we do not
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relabel. Let us denote this limit by (T, u,p) € %, and show that it is a solution to
(2.5).
Observe now that:

e The compact embedding Hg (e, ) << L1*¢(Q) implies, by continuity of v and
K, that we have v(T,) — v(T) and k(T})) — &(T) almost everywhere in .

e Let ¢ € C§°(Q2) with zero average, and g, € M), be its L?-projection onto My,.
Then we have that

/ gdivudx / (¢ — gp) divup dx / qdiv(u —up)dz| — 0,
Q Q Q

where we used that uj, is discretely solenoidal, the strong convergence ¢, — ¢ in
L3(Q2) and the weak convergence div uj — div u. In conclusion u is solenoidal.

e We now show that the pair (T,u) satisfies the heat equation with convection.
Let now r € Hg (w1, Q) be arbitrary and introduce 7, = mwr € Wy, where the
operator s is the one that satisfies (4.3). The almost everywhere convergence
of k(Ty) then implies

< +

/ K(Tp)VTy - Vrpde = / K(Tp)VTy - Vrde —|—/ K(Tp)VTh - V(r, —r)dx
Q Q Q

— / K(T)VT - Vrdz.
Q

Finally, let k > 2d/(d—1) such that we have the compact embedding H'(Q) <>
L™(Q), with k=1 + m~! = 1/2, i.e. m < 2d. Consequently, up, — u in L™(Q).
This is sufficient to assert that

/Thuh~Vrda:—>/Tu-Vrda:.
Q Q

e It remains to deal with the momentum equation, but most of the terms are
standard here and have been treated in several other works, see for instance
Refs. 23, 27 37, 38 and 39. The only somewhat nonstandard term is

/ Trg - vy de,
Q

but the estimates of Proposition 2.3 can be used to assert convergence of this
term as well.

In conclusion, the limit is a solution and the theorem is proved. O

5. A Posteriori Error Estimates

In this section, we design and analyze an a posteriori error estimator for the finite-
dimensional approximation (4.4) of problem (2.5). To be able to do so, in addition
to the assumptions stated in Sec. 2.2, we shall require that:

e The viscosity v and the thermal diffusivity  are independent of the temperature,
i.e. they are positive constants.
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In addition, to be able to develop an explicit a posteriori error estimator and
show its reliability, we must be more specific in the structure of the discrete spaces
we are dealing with. For this reason, in addition to the assumptions of Sec. 4, we
assume that, for h > 0, the spaces W}, X;, and M), are constructed using finite
elements over a conforming and shape regular mesh .7, = { K} of 2. In this setting,
however, the parameter h does not bear the meaning of a mesh size. Rather, it
can be thought of as h = 1/k, where k € Ny is the index set in a sequence of
refinements of an original partition 7. For definiteness, we select the pair of discrete
velocity /pressure spaces (X, M},) from the following (popular) options:

(1) The lowest order Taylor Hood element,®3%46 which is defined by
Xy, = {vn € C(Q) : VK € Th,vi|Kk € Po(K)'} NHY(Q), (5.1)
My, = {qn € L§( ) NC(Q) : VK € T, qnlk € P1(K)}. (5.2)
(2) The mini element, which is considered in Refs. 7 and 19 and is defined by
Xn = {vh € C(Q) : VK € Th, vi|x € [P1(K) @ B(K)“} N Hy(Q),  (5.3)
My ={qn € L) NC(Q) : VK € T, qu|x € P1(K)}, (5.4)
where B(K') denotes the space spanned by local bubble functions.

Both pairs satisfy the compatibility condition (4.1) and are such that X, C H}(€2)
and M), C L3(£2). We will set the finite element space W), as

Wi ={w, € C(Q) : VK € T, wpn|x € Prp(K)} N HY(Q),

where k& = 2 when the Taylor-Hood element (5.1)-(5.2) is used to approximate the
velocity and pressure variables and k = 1 for when the mini element (5.3)—(5.4) is
considered. Notice that, for any @ € Ay, W), € Wy (Q) C H} (w*!, Q).

We begin our analysis by introducing some preliminary notions. We define the
temperature error et, the velocity error e,, and the pressure error e, as follows:

er:=T-Th € Hy(w,Q), e,:=u—u,€H}Q), e :=p—pncLiQ).

We also define, for an open set D C €, the following norms on the space H}(w, D) x
H}(D) x L*(D):

Il (w, w, )| = VHVW”iz(D) + HdiVW||2L2(D) + ||3H%2(D) + vaHiQ(w,D)7

1w, w, $)I = v VWIIEz () + I51Z2(p) + IVWlEe ()

5.1. Ritz projection

To perform a reliability analysis for the devised a posteriori error estimator we
shall introduce a so-called Ritz projection (p, @, 1)) of the residuals. This projection
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is defined as the solution to the following problem: Find (¢, ®,v) € H}(w, Q) x
H}(Q) x LE(9) such that

/ Ve -Vrde=Y(r), VrecHj(w *Q), (5.5)
Q
1// V®:Vvder =Z(v), VveHQ), (5.6)
Q
[ vade =z, vae i@, (7)

where the functionals T € H }(w,Q) , 2 € H (), and ¥ € L3(Q) are defined,
respectively, by

Y(r):= / (kVer - Vr —Te, - Vr —etuy, - Vr) dz,
Q

(1]

(v) ::/Q (uVeu : Vv —epdivv s

1
+ (u-V)eu-v+(eu-V)uh-v+§diveuuh-v—eTg-v>d:c7

Y(q) == —/ gdive,dz.
Q

The following result yields the well-posedness of problem (5.5)—(5.7). Recall that,
by Cy—,2 we denote the best constant in the Sobolev embedding H{(2) — L4((Q).
To shorten notation we define

C3 3
B(u,up) = % <|VU|L2(Q) + §|Vuh||L2(Q)) , Au,up) =14+ B(u,up).

Proposition 5.1. (Ritz projection) Problem (5.5)—(5.7) admits a unique solution
(o, ®,1) € Hi (w,Q) x H{(Q) x L3(R). In addition, we have the estimate

212
1

c:C
(0, @, 9)[1E < [32A(u, up)? + 27’2|VT|?}(W7Q)] V[ Veull2 )

e
v

) 3
=+ ||d1V€uH%2(Q) + ;||eP||%2(Q)

3g%2C?

+ TEI +2C% (5 + Ce 2|

2
VUhHU(Q)) ] HVGTH%ﬁ(w,ny (5.9)

where Cy denotes the constant in the inf-sup estimate (3.4) with » = 1.

Proof. Since = € H™ (), the Lax-Milgram lemma immediately yields the exis-
tence of a unique ® € H}(9) that solves problem (5.6). In addition, estimate (2.2)



200 Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

20 A. Allendes, E. Otdrola € A. J. Salgado

and the standard Sobolev embedding H}(Q2) < L4(Q) yield

VV[IV®L2) < Au, up) V|| Veullrz (o)

1 gCeAl
+ ﬁ”epHB(Q) + TV'HVGTHm(w,Qy (5.10)

On the other hand, since e, € H}(), similar arguments reveal the existence and
uniqueness of ¢ € LZ(Q2) that solves problem (5.7) together with the bound

9] 22y < [|diveu||2(0)- (5.11)

Next, we invoke the inf-sup condition (3.4) for the variational form of the Dirichlet
Laplace operator on weighted spaces to conclude that there exists a unique ¢ €
H}(w,Q) that solves (5.5). In addition, we have that ¢ satisfies the estimate

Vol (w0 < Cilkl|Ver|lLz(w,a) + Ce 2l VT IL2(w,0) [ VeullL2 (o)
+ Ce2lIVerllLz(w.0) I VunllLz )], (5.12)
where C denotes the constant in the inf-sup estimate (3.4) with s = 1.

The desired estimate (5.9) thus follows from collecting estimates (5.10), (5.11),
and (5.12). This concludes the proof. m|

5.2. An upper bound for the error

We now prove that the energy norm of the error can be bounded in terms of
the energy norm of the Ritz projection, which in turn will allow us to provide a
computable upper bound for the error.

Theorem 5.1. (Upper bound for the error) Assume that the solutions to (2.5) and
(4.4) are such that the following inequalities hold:

3C? 1
max{ €,C. 222 L ooy < 5.
Cis 1 (5.13)
< .
S IVullez) < 5
gCnCe,ICeQ 15
f"VTHL%w}Q) < 6

Then, we have that

(e, e, &p)llla < lIl(p, @, 9)lllo;

where the hidden constant is independent of (er,ey,ep) and (p, ®,1) but depends
on v and the constant involved in the inf-sup condition (3.2).



200 Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

A Boussinesq problem 21

Proof. We divide the proof in six steps.
Step 1. We first bound ||Ver||y2(x,0). Owing to Proposition 3.1 we have that
there is a positive constant C; such that the following inf-sup condition holds:
Jo KVer - Vrdx
IVer|Le(wa) <Cx sup S
redl(w-1,0) IVTlLzm-1,0)

To estimate the right-hand side of (5.14) we rewrite Eq. (5.5) as

(5.14)

/WeT-wdx:/(Teu-Vr+eTuh-w+w-w)dx Vre Hy(w Q).
Q Q

Utilize the inf-sup condition (5.14) and estimate (2.3), twice, to obtain
[VerllLz(w,0) < Cu(Ce2lVT L2 (w0 I VeullLz(o)

+ Ce2l|Ver||L2(w.0) IVurlLz) + VellLe(w.0);
which, upon utilizing the first estimate in (5.13), yields the bound

15
EHveTHL2(w,Q) < Cu(Cepl| VT L2(w,0) [ VeullLz) + [VollLz(w,0))- (5.15)

Step 2. We now control [|ey||£2(q). To do this, we rewrite Eq. (5.6) as follows:

/epdivvda::/(VVeu:Vv+(u-V)eu-v—|—(eu-V)uh-v
Q Q

+ %diveuuh v—erg - v—vVd: Vv)dx =:X(v) VvecHQ).
The standard inf-sup condition for the divergence (3.2) thus yields the estimate
Bllepllrz(o) < [X[lm-1(0)-
Moreover, Sobolev embeddings and estimate (2.2) imply that
[X[[1-102) < v([IVeullLz) + [VR[L2(e)
+B(u, up)v||VeullL2 Q) + Ce19lVer||L2(w,0) -

To conclude this step, we invoke (5.15) to arrive at

160,106719

Bllepll 2y < v([IV®|lL2(0) + | VeullLz o)) + 15

IVellLz(w,0)

160,.@06,106,29
15v
Step 3. Set v =e, in (5.6) and ¢ = —e, in (5.7). Adding the obtained relations,
and using the skew symmetry of convection when the first argument is solenoidal,
we see that

+ [B(u,up) + IVTlL2(w,0) | Y[ VeullLzo)-  (5.16)

V[IVeullfziq) < VIIV®IIL2 @) VeullLz @) + 1912 llepl 2o

3C2
+ #HVUhHLz(Q)VHVeu||i2(n) + Ce19|Ver||L2(w.0)ll VeullL2 (o)
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Estimate (5.15) and Young’s inequality imply that
V(1 —e1)l|Veullfeie) < VIVl VeullLz) + llepllza ¢l 20

160,{06’106’29

3OZ—>2
—=||V
+ % VunllL2o) + 50

|VT|L2<W7Q>]

16C.Ce1Ceng )\’
X yHVeuHig(Q) + 051 (T ||V<p|\i2(w’9)

The pressure error estimate (5.16), and repeated applications of Young’s inequality
imply that, for some € € (0, 1)

(1 —ev[[Veullfa(ay < CepVVRIIT2iq) + Cepull¥liz) + Cem il Veliz(w.n)

304% 2 160506’1 Cagg
+ [ gy + D T
X Z/Hveu“iQ(Q)
160HC€,1C€,29

2
|9 T ATl

1
+ 3 {%(u, up) +
Now, estimates (5.13) imply that we can choose € € (0, 1) so that

V[Veulfzi) S VIV + 101720 + IVElE2 (w05

where the hidden constant depends on €, B, and v.
Step 5. The previous estimate combined with estimates (5.15) and (5.16) yields

||VeT||i2(w7Q) + V||Veu||i2(9) + ||ep||2L2(Q)
SIVolie@a) + VIVITa ) + 191720
Step 6. Conclude with the obvious observation that, since dive, € L3(9), (5.7)
implies
[diveu||r2(0) < [[¥[ L2

The claimed upper bound for the error has been obtained, and the theorem has
been proved. O

5.3. A restdual-type error estimator

In this section, we design an a posteriori error estimator for the finite-dimensional
approximation (4.4) of problem (2.5). To be able to do so, we will assume that the
singular forcing H has a particular structure, that is:

e The singular forcing term A has the form H = hé., where §, corresponds to the
Dirac delta supported at the interior point z € Q2 and h € R.



200 Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

A Boussinesq problem 23

To handle such a singular forcing term, we introduce the weight d7, where d,(x) :=
|z —z| and a € (d—2,d). We must immediately notice the following two important
properties: First, owing to Remark 2.1, we have that the weight d is such that
d¥ € A3(Q) and dJ“ € A;. Second, §, € H~1(d?,9); see Lemma 7.1.3 in Ref. 32
and Remark 21.18 in Ref. 29. Simply put, all the assumptions we have made so far
apply to this particular choice of H and weight.

5.3.1. Notation

Before presenting and analyzing our a posteriori error estimator we first need to
introduce and set some notation. We recall that .75, = {K} is a conforming and
shape regular partition of 2 into closed simplices K with size hy = diam(K) ~
|K|'/®. We denote by .7 the set of internal (d—1)-dimensional inter-element bound-
aries S of Z,. For S € ., we indicate by hg the diameter of S. If K € .%,, we
define .k as the subset of .# that contains the sides of K. For S € ., we set
Ns ={K*, K}, where K™, K~ € 7, are such that S = KT N K. For K € 7,
we define the following stars or patches associated with the element K

NK::{K/E%L:yKﬁyK/#@}, SKZZ{KIE%L:KQKI#(D}. (517)

In an abuse of notation, below we denote by Nk and Sg either the sets themselves,
or the union of its elements.

5.3.2. A posteriori error estimator

We define an error estimator that can be decomposed as the sum of two contribu-
tions: a contribution related to the discretization of the stationary Navier—Stokes
equations and another one associated to the discretization of the stationary heat
equation with convection and singular forcing.

To present the contribution related to the stationary Navier—Stokes equations,
we define, for an element K € .7}, and an internal side S € .7, the element residual
Z and the interelement residual fs as

1
%K = <1/Auh — (Uh . V)uh — 5 diV Uupup — Vph =+ Thg> |K;
(5.18)
s = [(vVuy — ppl) - n],
where (T4, up, pn) denotes a solution to the discrete problem (4.4) and I € R4*4
denotes the identity matrix. For a discrete tensor-valued function vp, we denote

by [vi - n] the jump, which is defined, on the internal side S € . shared by the
distinct elements K+, K~ € Ng, by

[vih-n] =vilg+ v +vi|lg- -n".

Here n™,n~ are unit normals on S pointing toward K, K, respectively. With
Zr and _fg at hand, we define, for K € 7}, the element indicator

Ei = Wl Zr 122 ey + 1AV unllZ2 gy + Prcll Zs 120000 (5.19)
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We now introduce the contribution associated to the stationary heat equation
with convection. To accomplish this task, we define, for K € .7}, and an internal
side S € ., the element residual R and the interelement residual Jg as

m}( = (KAT}L — up - VTh — diV uhTh)|K,

(5.20)
Js == [(kVTp — Thup) - n].

With Rk and Js at hand, we define, for K € 7, and a € (d — 2,d),
€% = hi DRk |72y + b D% 135172 0x0\00)

+ 1|2 ({2} N K), (5.21)

where Dg := max,ck |z — z|. For a set E, by #(F) we mean its cardinality. Thus,
#({z} N K) equals one if z € K and zero otherwise. Here, we must recall that we
consider our elements K to be closed sets.

With all these ingredients at hand, we define the local error indicator £% =
&% + €% and the a posteriori error estimators

Z&%z, esh::lz ei(r, 5,3;:[2 542. (5.22)

Ke7, Ke7, Keo,

gh =

5.4. Reliability estimates

We present the following global reliability estimate for the estimator &j,.

Theorem 5.2. (Global reliability) Let (T,u,p) € H(dS, Q) x HY(Q) x L3(Q) be
a solution to (2.5) and (Tp,up, pn) € Wi, x Xy X My, be its finite element approz-
imation obtained as solution to (4.4). Let a € (d — 2,d). In the framework of
Theorem 5.1, we have the following a posteriori error estimate:

[I(eT,eu ep)lle < &n, (5.23)

where the hidden constant is independent of the continuous and discrete solutions,
the size of the elements in the mesh F,, and #.},.

Proof. We proceed in several steps.
Step 1. Invoke Theorem 5.1, and the obvious bound ||div @||12(q) < [|[V®||L2(q)
to arrive at the estimate

ll(erseu, &)l S IVelEa(e.0) + IVRIL2 @) + 111720)-
It thus suffices to bound [|[V®||12(q), [[¥]|22(0), and |Ve|L2(ge 0)-
Step 2. We control ||[V®|y2(q). To accomplish this task, we invoke Eq. (5.6),
the fact that (T,u, p) solves problem (2.5), and an integration by parts formula to
conclude that, for every v € H}(€2), we have

I::/VV@:Vvdarz Z /%’K-vdx—FZ
Q K

Ke9, Ses

/ Fs-vds.  (5.24)
S



200 Reading

April 9, 2021 16:42 WSPC/103-M3AS 2150019

A Boussinesq problem 25

Denote by I, the Clément interpolation operator. We utilize the first equation of
problem (4.4) with v;, = I;,v and an integration by parts formula, again, to arrive at

I= Z /%K-(V—Ihv)dx—l—Z//s-(v—Ihv)ds.
Kez, ' K ser?S

We now invoke standard approximation properties for the interpolation operator
I, and a scaled trace inequality to conclude that

1
s > <h11<|<%’1<|L2(1r<)||VV||L2(sK)7L > hf<|/SHL?(S)HVVHL?(SK))~
Ke9, SeS Kk

Set v = ®, use the Cauchy-Schwarz inequality in R#7» and the finite overlapping
property of stars to obtain

2
[Ve@|r2@) < ( > bl 2R +hK|f5”%2(8K\89)> . (5.25)
Keoy,

Step 3. In this step we bound |[|1)[|z2(q). Set ¢ = in (5.7). This yields

||1/J|\%2(Q)=/Q¢divuhd$§ Z 91| L2y 1div up L2 (k)

Keoy,
1
2
< ( > ||diVUh|%2(K)> 11l L2 (0)- (5.26)
KeTy,

Notice that we have used that [, ¢divudz = 0 for every ¢ € L§(Q).
Step 4. Estimates (5.25) and (5.26) immediately yield that

2
1
(V@20 + %1727 < ( > 51%) = &h- (5:27)

KeZy,

Step 5. Our goal now is to bound [|[V¢l|L2e ). To accomplish this task, we
invoke the problem that ¢ solves, i.e. problem (5.5), and the fact that (T, u, p) solves
(2.5). These arguments, combined with an integration by parts formula, yield

II;:/V@-Vde:(bézﬂ")-i- Z /%Krdx—i— Z/ﬁsrds,
Q Keg, VK ses’S

for every r € H}(dJ“, Q). We recall that R and Js are defined in (5.20). Invoke
the discrete problem (4.4) and an integration by parts formula, again, to arrive at

IT = (ho,,r — mwr) + Z /D‘{K(r—wwr)dx—i— Z/ﬁs(r—’frw’f')d&
Kez, 'K ser s

where we recall that my denotes the quasi-interpolation operator onto W, con-
structed in Ref. 36, that satisfies (4.3). We control (hd,,r — myr) on the basis of
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Theorem 4.7 in Ref. 1 and stability and interpolation estimates for 7y, derived in
Ref. 36. In fact, let K be such that z € K, then

a_ d
|<b§z7r —mwr)| S |b|h12( 2 HT - WWT”L?(d;“,K)
a41-4d
+olhg IV —mwr)lleaze x)

Q+1,Q
SI0lhg 2Vl @-a s
Notice now that

/ R (r —mwr)de < || Rl L2a0)llr — 7wl 2 k)
K

S he DR R 20 VT llLz@-o,si
where we have used Proposition 4 in Ref. 4. Similar arguments yield, upon using
Proposition 5 in Ref. 4, the control of the jump term. We can thus invoke the inf-sup
condition (3.4) to arrive at the estimate

< ¢ (5.28)

~

Ve -Vr
HV%DHLz(dg,Q) s sup éﬂ—
reHL(d7>,Q) | 7‘|\L2(dz—a,9)
Step 6. Collecting the estimates (5.27) and (5.28) we obtain the reliability bound
(5.23). This concludes the proof. O

5.5. Efficiency estimates

In this section, we analyze efficiency properties for the local error indicator £k on
the basis of standard bubble function arguments.?” Before proceeding with such
analysis, we introduce the following notation: For an edge, triangle or tetrahedron
G, let V(G) be the set of vertices of G. With this notation at hand, we introduce
the following standard element and edge bubble functions. Let K € .}, and S € ..
We define

TK = (d—|— 1)d+1 H )\le, TS = dd H AV‘K with K € NS. (529)
veV(K) vey(S)

In these formulas, by Ay|x, we denote the barycentric coordinate function associated
tov e V(K).

We will also make use of the following bubble functions, whose construction we
owe to Ref. 1. Given K € .7, we introduce Vg, which satisfies 0 < U <1,

\I/K(Z) = 0, |K| 5 / \I/K dx, ||V\I!K||L°°(RK) S h;(17 (530)
K

and there exists a simplex K* C K such that Ry := supp(Vx) C K*. Notice that,
since Wk satisfies (5.30), we have that, for every m € N

1
10022 (ric) S N7 L2(rye) VO € Pr(Ri), (5.31)
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where the hidden constant depends on m, but does not depend on 6 or K. Given
S € .7, we also introduce an edge bubble function g, which satisfies 0 < Ug < 1,

Us(z) =0, |9]< / Tsds, [[VUs|p=(re) < b3, (5.32)
S

and Rg := supp(V¥g) is such that, if Ng = {K, K'}, there are simplices K, C K
and K| C K’ such that Rs C K, UK, C KUK".

The following identities are essential to perform the upcoming efficiency analysis.
Invoke (5.24), (5.6), and (5.8) to arrive at

Z /%’K-vdx—kZ//5~vd3=/uv<1>:Vvda:=/ (VVeu:Vv
K s Q Q

Ke, Ses
1
—epdivv+ (u-V)e, - v+ (ey- V)up - v+ §diveuuh SV — eTg-v) dz (5.33)

for all v € H{(€2). We recall the reader that Zx and Zg are defined in (5.18).
Similarly, for every r € H}(d;,Q), we have

> /mKrdx+ Z/ﬁsrds+(b6z7r):/vgp.Vrdx
K S Q

Ke, Ses
= / (kVer - Vr —Te, - Vr —eruy - Vr) dz. (5.34)
Q

In order to be in position to prove an efficiency result, we must obtain higher
integrability of the velocity in our problem in the case d = 3. The following result
provides this.

Proposition 5.2. (Higher integrability) Let d = 3, « € (1,3), and (T,u,p) €
HY(dS, Q) xHS(Q) x L3(Q2) denote the solution to (2.5) in the sense of Definition 2.2
with Kk and v constant, and H = hd,, with z € Q. Then we have that

1
;HVUHL3(Q) <C,

where C' denotes a positive constant.

Proof. We recall that we are assuming that the domain 2 is at least Lipschitz.
Write the momentum component of the stationary Navier—Stokes equations as

—vAu+ Vp=gT — (u-Vu)u.

In three dimensions, we have that Vu € L3(), and since a € (1,3) that gT €
L2(Q). Owing then to Corollary 1.7 in Ref. 34 (with a = —1 and ¢ = 2) the result
follows. 0

Our efficiency result is as follows.
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Theorem 5.3. (Efficiency) Let (T, u,p) € Hi(dS, Q) xH{(Q) x LE(Q) be a solution
to (2.5) and (Tp,up,pr) € Wi x X, x My, be its finite element approzimation
obtained as solution to (4.4). Let o € (d — 2,d). In the framework of Theorem 5.1,
we have the following efficiency estimate:

&k S Z (HeT||2L2(dg,K/) + V2||eUH%—Il(K’) + HePH%Q(K'))
K’'eSk
+ ||diveu||2L2(K), (535)

where the hidden constant is independent of the continuous and discrete solutions,
the size of the elements in the mesh F,, and #.},.

Proof. We examine each of the contributions of &k separately so the proof involves
several steps.

Step 1. Let K € 9,. We bound the term h%{H%’KHiQ(K) in (5.19). To accomplish
this task, we first utilize estimate (5.31) and write

||%K||ig(K):/KL%KFdx§/K|%K|2\11Kda::/K%K~®de, (5.36)

where O = VxZi. Set v. = Ok as a test function on identity (5.33) and
utilize that supp ®@x C K* C K. We proceed differently according to the spatial
dimension. If d = 2, then we have

| i @ucdo < W Veulluago + lealzzo) VO iz
K
+ I8l x)llerll2@e ) Ok [|L2@=o k) + <|U||L2(K)||Veu|L2(K)

1
+llewllz () IVun L2 k) + §|Veu||L2(K)|Uh|L2(K)> @KL~ x). (5.37)

Now, observe that estimate (5.6) in Ref. 1 yields [[@k|[p2-o k) < DI_(O‘/2
| Z x| |L2 (k) while basic arguments reveal that [|[VO g ||L2(x) S h}1||%K||Lz(K) and
1Ok |L=x) < h}1||<%K||Lz(K). With these estimates at hand, we utilize (5.36) and

(5.13) to obtain
h%(H%KHiz(K) S ||eT||2L2(df;,K) + V2||eu|\%11(x) + ”ePHiz(K)' (5.38)

o

Observe that DI_(% = (maxgex |z —2])72 S h;(% < hit, because hye < Dy and
a € (0,2); see Sec. 5.2 in Ref. 1 for details. If d = 3, we proceed as follows:

| - @ucdn < 0 euluae + leplloao) VO ez
K

+ gl x)llerll2@e 1) Ok L2 (@=o k)
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T [|u||Ls<K>||Veu||L2<K> T leullzeo I Vullogey
1
+ I VeullLz (k) { llellLs ) +§||Uh|\L3(K> 1©k|lLox)-

We thus invoke [|@k||Lsr) S h;<1||®K||Lz(K) and similar arguments to the ones
used to treat the two-dimensional case to conclude that (5.38) holds also for d = 3.

Step 2. Let K € 7 and S € k. We bound hKH/S”iz(S). Define Ag :=
Vg Zs, where #g and Vg are as in (5.18) and (5.32), respectively. Basic properties
of Ug yield

| 7sl2acs) = /5 | #sl ds < /5 | [0 ds = /S Fs-Asds.  (539)

Notice that supp Ag C K, U K, C Ns. Setting v = Ag in (5.33) yields

//S-ASdSZ Z / (vVe, : VAg —epdivAg + (u- Ve, - Ag
s K’'eNs K

1
+ (eu . V)uh -Ag + B diveyup - As —etg-As — Xk - As) dx.
On the other hand, by shape regularity, we have that
1 1 1 1
[AsllL2xy = [K'[2|S|72 |AsllLa(sy = b | AsllLa(s) = gl ZsllL2(s)s

_1
IVAs|ltzxy S bl Aslleeny = bt | Zslliegs)-

In view of (5.39), the estimates for Ag previously stated, and the arguments
that yield estimate (5.38) for || %k ||L2(k), we are capable of obtaining that

hicll Zslias S D (lerllize, i + v lleullfn i + lleplZ2(xry)-
K’'eNs
Step 3. We now bound the residual term associated with the incompressibility
constraint. Since divu = 0, for any K € 7, we have
div unll7e sy = I1diveul|Ze -

Finally, combining all the previous results (5.35) follows. O

Theorem 5.4. (Efficiency) Let (T, u,p) € H3(dS, Q) x H{(Q) x LE(Q) be a solution
to (2.5) and (Tp,up,pn) € Wi x X, X My, be its finite element approzimation
obtained as solution to (4.4). Let o € (d — 2,d). In the framework of Theorem 5.1,
we have the following efficiency estimate:

¢k S Z (V" + “2)||V9T|‘%2(dg,l(f) + Vzh;<2||eT||2L2(dj,K’)
K'eNs

+ 02| VeulRa e + V2 hi leullEa i), (5.40)
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where the hidden constant is independent of the continuous and discrete solutions,
the size of the elements in the mesh F,, and #.9},.

Proof. We proceed in several steps.

Step 1. Let K € 93,. We bound h%(D‘}(HERKﬂiz(K) in (5.21). Define ¢ :=
U2 R, where R and Uk are as in (5.20) and (5.30), respectively. Invoke (5.31)
to arrive at

1Rl 0y < /K Ric i d. (5.41)

Set r = ¢ € Hi(d;*, Q) as a test function in (5.34). Utilize that Rx = supp ¢x C
K* C K and the property ¢k (z) = 0 to obtain

/ Riox dr = / kVer - QU VU xRk + U2 VRK) dz
K K
— / T(\I/Keu) . (2V‘I’Km}< + \I/KVSRK) dx
K

— / (\I'KeT)uh . (2V\I’Km[( + \I’KVSRK)dx =: 1+ II + III.
K

We first observe that Proposition 8 in Ref. 4 yields
12V xRk + Ui VRK 2o i) S hie D 1%kl L2x0)- (5.42)

We now proceed differently according to the spatial dimension. If d = 2, we utilize
(2.4) and (5.42) and estimate IT as follows:

os ”THL“(dg‘,K)H“IjKeu||L4(K)h[_(1D;(a/2HmKHLQ(K)
ST lagas oyh i IV (0 ke llez 0 bt D 198 | 22 o) (5.43)

1/2 — — —a/2
S vhil? (it lellie ey + [ Veullie (o)) B D2 1R ke 22 (i)

where we have also used Lemma I1.3.2 in Ref. 24 and the smallness assumption
(5.13). We now control the term III. To accomplish this task, we utilize (2.4) and
(5.42) to obtain

ar g ”\I'KeTHL‘*(dg‘,K)||uh||L4(K)h}_(1D;(a/2HmKHLQ(K)

a/QH%KHB(K) (5.44)

S IV ker)lle@e, i) llunllns @b Dy
S vihigllerll2qe i) + [ Verllzge, ) ki D 1R k]| 12 (x)-

Here, we have also used [|[Vxer|pige k) S [IV(Yker)|lL2(e, k), which follows
from Theorem 1.2 in Ref. 20. A collection of the estimates obtained for II and III
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yields
| Bcon do < el Verllaaz,ao + vy (i el + [ Veulao)
K

Fulhit et 2o k) + | Verlla@e )lhi D™ 1Rkl 12 (x)-

Consequently,
h%(D?{HERKHiQ(K) S (K + V2)|\V9T|\i2(dg,1<) + VQhK”VeuHiz(K)
X V2h1_<2”eT||2L2(dg,K) + V2h1_<1”eu”%2(1<)~ (5.45)
Similar arguments yield the following bound for the three-dimensional case:

I < [T llwsqae )1 xeullns oy h i D™ 1Rl 12 x0)

(5.46)
_ — —a/2
< v(h lealleacre) + I Veullz o) i D™ 198kl 2 )
upon utilizing estimate I1.3.7 in Ref. 24, and
III < H\I’KeT”L?’(dg,K)HUhHLG(K)h;{1D}_<a/2”ERKHLQ(K) (5.47)

Svhil (Wit et 2o k) + Ve lLage k) hit D 198kl 12 (i) -

Here, we have used the estimate ||V cet||Ls@e k) S h}(/GHV(\I!KeT)||Lz(d?’K)7 which
follows from Theorem 1.2 in Ref. 20. Consequently,

« 1/3
h%(DKHmKH?}(K) NG V2hK/ )HVGTH?ﬂ(dg,K) + V2||Veu||i2(1<)
—5/3 —
< VP hi P lerl3a e iy + VPRl leulfoe) (5.48)

Step 2. Let K € 7, and S € .%k. The bound of hKD?{H35||2L2(S) follows similar
arguments as the ones developed in Step 2 upon utilizing (5.45) and (5.48). In fact,
we have, in two and three dimensions,

hKD?(”:JSH%%S) S Z ((v? +H2)|‘V9T|‘%2(dg,1{') +V2h1_(2||eT||2L2(dg,K')
K'eNs

+ V[ VeullEa iy + V7R leullEarery)-

Step 3. We now control the term [h|aA% 2~ # ({2} N K) in (5.21). Let K € F,,
and notice first that, if ’N{z} = (), then estimate (5.40), follows from the estimates
derived in the previous steps. If, on the other hand, K N {z} = {z}, then we must
obtain a bound for the term |l’)|h?{+27d. To do so we follow the arguments developed
in the proof of Theorem 5.3 in Ref. 1 that yield the existence of a smooth 7 such
that

n(z) =1, |nllp=@ =1, [IVnllz=@) =hzx', @ :=supp(n) C Sk,
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where Sk is defined in (5.17). With this function at hand, define 7, = bhn? €
W, (Q) c Hi(d;*, Q) and notice that

|b|2 = (hd,,ry) = /Q(/QVT -Vr, —Tu-Vr,)dz

= / V- Vr,dz+ / (kVTh - Vry — Truy - Vi) da,
Q Q

where we have used Eq. (5.5). We thus apply similar arguments to the ones used
in the previous steps, integration by parts, and basic estimates to arrive, in two
dimensions, at

6° < Kl Ver|lL2 e i) IV llLz = s

1/2 —
ol (W eullva s + 1Veullizsie) 10V llLz@=e s
+u(hitlerlliLae.se) + 1VerllLz@e s 18VllLz @-« s0)

+ Z 1Rkl eyl ll 2 ey
K'e 7,:K'CSk

+ > Rslzaslrallzacs) | -
SES1rSTOSK

where we have also used the smallness assumption (5.13). Using the shape regularity
of the mesh, in conjunction with the fact that, since z € K, hx =~ Dy, the bounds

d—2 o d—1
2

2 2

d
IVillLe@-a.si0) S hed %5 Inllesi) S Pies Inllzzesy) S bl
allow us to conclude that
< 1T 1/2
bl Shd (5 + ) VerllLz@e sk + vh ([ VeullLzs,

—1/2 _
< vhic 2 lleullz s + vhitlerll Lo as si)

=2 _ o g
+ Y hd F e DRIk e
K'€Tn:K'CSk

1 o
+ Y hEDE|Tsles)
SGYK/:SQZ()SK

The estimate in three dimensions being similar.
Finally, combining all the previous results (5.35) follows. |
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6. Numerical Experiments

In this section, we conduct a series of numerical examples that illustrate the perfor-
mance of the a posteriori error estimator we have devised and analyzed in Sec. 5.
The examples have been carried out with the help of a code that we implemented
using C++. All matrices have been assembled exactly and global linear systems were
solved using the multifrontal massively parallel sparse direct solver (MUMPS).5:6
The element and interelement residuals are computed with the help of quadrature
formulas which are exact for all the expressions involved. To visualize finite element
approximations we have used the open-source application ParaView.28

For a given partition ., we solve (4.4) with the discrete spaces Xy, My, and W,
given by (5.1), (5.2), and the space of continuous piecewise polynomial functions
of degree two, respectively. To be precise, to adaptively solve the nonlinear system
(4.4) we proceed as in Algorithm 1. We comment that, in Algorithm 2, for an initial
partition 7, the initial guesses T € W), and (u,p)) € X, x W}, are obtained as
the respective solutions to the following problems:

/ KVT) - Vry, do = (H,rn) Yry, € Wy

Q

and
/qu?L:Vvh—/ p%divvhdx:/ng-vhdaf, /thivugdxzo,
Q Q Q Q

for all vy, € X and ¢, € My, respectively. Once the discrete solution is obtained,
we compute, for all K € %, the local a posteriori error indicators Ex, defined
in Sec. 5.3.2, to derive the adaptive mesh refinement procedure described in
Algorithm 1. A sequence of adaptively refined meshes is thus generated from an
initial mesh.

Finally, we denote the total number of degrees of freedom by Ndof = dim(W},) +
dim(Xy) + dim(Mp,).

Algorithm 1: Adaptive Algorithm.
Input: Initial mesh %, interior point z € €2, and parameters v, &, h, and
a € (0,2);
1: Solve the discrete problem (4.4) by using Algorithm 2;
2: For each K € .7}, compute the local error indicators £k defined in Sec.
5.3.2;
3: Mark an element K € .7}, for refinement if

1
Ex > - max Eir;
K =9 gice, KD

4: From step 3, construct a new mesh, using a longest edge bisection
algorithm.?! Set i <— i + 1, and go to step 1.
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Algorithm 2: Fixed-Point Algorithm.
Input: Initial guess (T9,u?,p?) € W), x X;, x M}, and tol = 1075,
1: For i > 0, find (u}", pit!) € X;, x M, such thlat
(VU Vv + (Ul - V)urtt vy + 5 divujultt vy, da

Q

—/pﬁfldivvhdx:/T?Lg-vhdac7 Vv € Xp,
Q Q

/Qdivuﬁlqh dz, Vg € My,.
Then, T}t € W}, is found as the solution of
/(KVTZH -Vry, — TZHUZH -Vry)de = (hd,, ) Vry € Wh.
Q

2: If ||(T3H ul ™ pith) — (T4, ud, pi )|l > tol, set i < i + 1, and go to step 1.
Otherwise, return (T, up, pn) = (T;fl, uzﬂ, p}j’l).

We now explore the performance of the devised a posteriori error estimator in
two problems with homogeneous Dirichlet boundary conditions on convex and non-
convex domains. In all the numerical experiments, we have considered v = kK = 1,
g = [1,0]T, h = 1, z = (0.5,0.5), and different values for the exponent of the
Muckenhoupt weight: o € {0.1,0.5,1.0,1.5,1.9}. We let

(0,1)2, for example 1, and

(i)
i (=1,1)2\[0,1) x [~1,0), for example 2.

0 =
(i) Q=
In Figs. 1 and 3 we present, within the setting of examples 1 and 2, respectively,
experimental rates of convergence for the error estimator £,. We also present the
initial meshes used in the adaptive algorithm. We observe that optimal experimental
rates of convergence are attained for all the values of the parameter o that we have
considered. We also observe that a better value of the estimator, at a fixed mesh,
can be obtained for values of « closer to two. We notice that, when « is small,
after a certain number of adaptive iterations, there are elements K around z such
that |K| ~ 10716, This makes impossible more computations within the adaptive
procedure.

In Figs. 2 and 4 we present, for examples 1 and 2, respectively, a series of meshes
obtained after 30 adaptive iterations. We observe that most of the refinement is
concentrated around the singular source point. For the case of example 2, and after
30 adaptive refinements, the adaptive loop also concentrates the refinement around
the reentrant corner when a € [1,2).

Finally, in Fig. 5 we present, for the setting of example 2 with a = 1.5, |uy|,
its associated streamlines, the pressure pj, and the temperature T, over a mesh
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En

—©—alpha=0.1
—H—alpha=0.5
—O—alpha=1.0 X
1073 t|—A—alpha=1.5 N

—Z—alpha=1.9 S
- - -rate(h2)

2

10 108 10

Fig. 1. Example 1: Experimental rates of convergence for the error estimator &, considering
a €4{0.1,0.5,1.0,1.5,1.9} (left) and the initial mesh used in the adaptive algorithm (right).

a=0.1 a=0.5 a=1.0

(d) (e)

Fig. 2. Example 1: Meshes obtained after 30 iterations of our adaptive loop for (a) o = 0.1 (232
elements and 121 vertices); (b) a = 0.5 (232 elements and 121 vertices); (c) a = 1.0 (392 elements
and 209 vertices); (d) a = 1.5 (592 elements and 309 vertices); and (e) o = 1.9 (1056 elements
and 553 vertices).
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En

102 t-e~a=0.1
—B-a=05
—-a=10
10° | k—a=15
“a=19 TS
- - -Ndof !

102 10° 10 10°

Fig. 3. Example 2: Experimental rates of convergence for the error estimator &, considering
a € {0.1,0.5,1.0,1.5,1.9} (left) and the initial mesh used in the adaptive algorithm, which contains
96 elements and 65 vertices (right).

a=0.1 a=20.5 a=1.0
/
) K
\
N
/ // /
(a) (b) (c)
a=1.5 a=19
N
N\ %
/ \
(d) (e)

Fig. 4. Example 2: Meshes obtained after 30 iterations of our adaptive loop for (a) o = 0.1 (328
elements and 181 vertices); (b) e = 0.5 (328 elements and 181 vertices); (c) a = 1.0 (539 elements
and 291 vertices); (d) a = 1.5 (847 elements and 450 vertices); and (e) o = 1.9 (1380 elements
and 728 vertices).
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006400 040608 11214118 2 2224 28400
———

Fig. 5. Example 2: Finite element approximations of |up|, combined with its streamlines (left),
pressure pp, (center), and temperature T}, (right) over a mesh containing 16105 elements and 8178
vertices obtained after 65 adaptive refinements (o = 1.5).

containing 16105 elements and 8178 vertices; the latter being obtained after 65
iterations of our adaptive loop.
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