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We study the dependence of the continuity constants for the regularized Poincaré 
and Bogovskĭı integral operators acting on differential forms defined on a domain 
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mappings from (a subset of) L2(Ω, Λℓ) to H1(Ω, Λℓ−1), ℓ ∈ {1, . . . , n}. For domains 
Ω that are star shaped with respect to a ball B we study the dependence of the 
constants on the ratio diam(Ω)/ diam(B). A program on how to develop estimates 
for higher order Sobolev norms is presented. The results are extended to certain 
classes of unions of star shaped domains.
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1. Introduction

A fundamental result in the analysis of models of incompressible fluids is the existence of a right inverse 

for the divergence operator. Let Ω ⊂ R
n, with n ∈ N, be a bounded domain with Lipschitz boundary, and 

u ∈ L2(Ω) be such that 
´

Ω
u dx = 0. Then there is a vector field v ∈ H1

0 (Ω, Rn) such that

div v = u, ‖∇v‖L2(Ω,Rn×n) ≤ C‖u‖L2(Ω),

where the constant C depends on Ω, but not on u; see Section 2 for notation. While this problem has been 

studied in several sources, and from different points of view; see [34,27,36] for a very incomplete list of 

references and the introduction to [1] for a nice historical account, we are interested here in [8,7], where 

the function v is explicitly constructed. First, on domains that are star shaped with respect to a ball, the 

function is constructed by means of a regularized version of a path integral. This regularization is necessary, 

as integrals of u along paths may not be well defined. In passing, the author mentions that the constant in 
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the norm estimate depends on the ratio between the diameter of the domain and that of the ball. Then, for 

domains that can be represented as a finite union of star shaped domains, the construction is attained via a 

partition of unity argument. Further mapping properties of this operator have been discussed, for instance, 

in [17,18,13,35], and we refer the reader, again, to [1] for a rather recent overview.

A related problem, which finds applications in the study of incompressible flow and Maxwell’s equations, 

is that of finding the vector potential of a solenoidal vector field given in a domain of R3. Specifically, given 

v ∈ L2(Ω, R3) such that div v = 0, we need to find w ∈ L2(Ω, R3) such that

∇ × w = v,

supplemented with suitable boundary, and possibly gauge, conditions. If this problem has a solution, it is 

also of interest to understand the smoothness properties of w. The solution to this problem is much more 

delicate, as it depends on the boundary and gauge conditions, and the topology of the domain Ω. We refer 

the reader to [3] for a thorough treatise.

It is well known that vector fields and the operators of vector calculus, like the divergence and curl, are 

nothing but particular cases of differential forms on the domain Ω and the exterior derivative [15,26]. Thus, 

it is only natural to pose the question about the existence of a right inverse for the exterior derivative or, in 

the language of differential forms, to find conditions that guarantee that a closed form is exact. An explicit 

solution to this problem is presented in [26] and it uses, once again, a path integral for its definition. As the 

classical theory is only concerned with differential forms with at least continuous coefficients, integrals over 

paths are meaningful. However, if the differential form has nonsmooth coefficients this construction is not 

valid anymore. To the best of our knowledge, a regularized version of the solution in [26] was first presented 

in [25], see also [32, Appendix]. It is also shown [25, Proposition 4.1] that, if Ω is convex and u ∈ L2(Ω, Λℓ), 

with ℓ ∈ {1, . . . , n}, is such that du = 0, then there is v ∈ H1(Ω, Λℓ−1) such that

dv = u, ‖v‖L2(Ω,Λℓ−1) + diam(Ω)‖∇v‖L2(Ω,Λℓ−1)n ≤ Cμ(Ω) diam(Ω)‖u‖L2(Ω,Λℓ),

where the constant C is only dimension dependent and μ(Ω) is a measure of flatness of the domain, and it 

is defined as

μ(Ω) = diam(Ω)n+1 inf

{
‖∇ϕ‖L∞(Ω,Rn)

‖ϕ‖L1(Ω)
: ϕ ∈ C∞

0 (Ω)

}
.

From this a Poincaré–Sobolev inequality is obtained [25, Corollary 4.2]. We refer the reader to [14,5,23,2]

for further estimates for this operator.

A remarkable property of the operator constructed by Bogovskĭı is the fact that the vector field v has a 

vanishing trace. In fact, in the case of a domain that is star shaped with respect to a ball, the value of v at 

a point depends only on the convex hull of the point and the ball. Therefore, v is supported in Ω̄. This local 

property is rather unusual for integral operators, and it does not hold for the operators constructed in [25]. 

In [31] it was observed that by taking adjoints the locality is recovered. By conjugating with the Hodge star 

operator the authors were able to construct, for every ℓ ∈ {1, . . . , n}, two integral operators that preserve 

the locality properties and they proceeded to show several mapping properties for them. Further mapping 

properties of these operators were investigated by Costabel and McIntosh [12]. In particular, they prove 

that these operators are bounded in various Sobolev norms when the domain is star shaped with respect 

to a ball. However, they do not track how the constants explicitly depend on the geometry of the domain. 

We call these operators the Bogovskĭı–type and Poincaré–type integral operators, and it is our goal here to 

study the dependence of the continuity constants of these operators on some geometric characteristics of 

the domain.
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On the other hand Durán, in [16], gives explicit bounds for the constant for the Bogovskĭı operator in 

the H1–norm. These estimates improve on those given by Galdi [21]. We will adopt the ideas of [16], where 

the operator from [8,7] is considered, to both operators and the whole range of orders for differential forms. 

We must immediately mention that, since this technique heavily uses properties of the Fourier transform, 

all of the results that we obtain are for L2–based spaces. Bounds for the Bogovskĭı–type and Poincaré–type 

integral operators are needed in finite element methods (FEM); see for example [33,20,11,30,6,19,9]. For 

simple geometries arising in FEM like a simplex one can prove the estimates by mapping to a reference 

simplex. However, for more complicated geometries arising in FEM (like curved elements or a patch of 

simplices) it might be useful to have results like the ones described in this paper.

Our presentation is organized as follows: In Section 2 we provide preliminaries. In Section 3 we focus on 

the Poincaré–type operator. We mainly focus on H1–estimates but we also show how to get a bound for the 

constant for H2–norm. In the following section we obtain bounds for the Bogovskĭı–type operator. Finally, 

in Section 5 we use the results from the previous sections to give bounds for the constants if one has a chain 

of star shaped domains.

2. Notation and preliminaries

Let us begin by presenting the notation that we will follow, together with some preliminary facts that 

shall be repeatedly used during the course of our presentation. During the course of our discussion n ∈ N

will indicate the spatial dimension. Ω ⊂ R
n indicates a bounded domain with at least Lipschitz boundary. 

If we require additional conditions on Ω these will be indicated explicitly. For any bounded, measurable, 

domain E ⊂ R
n we will indicate by diam(E) its diameter and by |E| its Lebesgue measure. We will follow 

standard notation and definitions for real valued smoothness spaces over Ω. We will make use of the Fourier 

transform and we refer the reader to [24, Section 2.2.4] for relevant results.

By C we will indicate a nonessential constant whose value may change from line to line. If we wish 

to indicate explicitly that this constant depends on certain parameters, say α, β, γ, we denote this by 

C(α, β, γ). By nonessential in this work we will mean that the constant does not depend on Ω or its 

geometric characteristics.

Let D ⊂ R
n be a bounded domain that is star shaped with respect to a ball B ⊂ D. By this we mean 

that every for every y ∈ D the convex hull of B ∪ {y} is contained in D. It is known that [10, Lemma 3.2.4]

every bounded Lipschitz domain can be represented as a finite union of domains that are star shaped with 

respect to a ball. In addition, it can be shown that there is θ ∈ C∞
0 (B) such that

ˆ

θ(x) dx = 1, ‖∂αθ‖L1(D) ≤
C(n, α)

diam(B)|α|
, ‖∂αθ‖L∞(D) ≤

C(n, α)

diam(B)n+|α|
. (1)

2.1. Differential forms on domains

For ℓ ∈ {0, . . . , n} we denote by Λℓ the vector space of exterior ℓ–forms, that is the space of skew–

symmetric ℓ–linear functions on (Rn)ℓ. In this notation Λ0 = R, and Λ1 is the dual of Rn. For ωℓ ∈ Λℓ and 

ωk ∈ Λk their exterior product is ωℓ ∧ ωk ∈ Λℓ+k. We recall that ωℓ ∧ ωk = (−1)kℓωk ∧ ωℓ. Let {ei}
n
i=1 ⊂ R

n

be the canonical basis, and {e
i}n

i=1 ⊂ Λ1 its dual basis, then any ωℓ ∈ Λℓ can be uniquely represented by

ω =
∑

I

ωIe
I ,

where ωI ∈ R, the sum runs over all ordered ℓ–tuples of indices: I = (i1, . . . , iℓ) ⊂ N
ℓ, 1 ≤ i1 < i2 < . . . <

iℓ ≤ n, and

e
I = e

i1 ∧ . . . ∧ e
iℓ .
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Whenever I is such an ordered ℓ–tuple of indices we will denote, for m ∈ {1, . . . , ℓ}, Îm = (i1, . . . , im−1, im+1,

. . . , iℓ) ⊂ N
ℓ−1, that is we suppress the index tagged by m. Finally, to describe one result we shall need to 

make use of the Hodge star operator ⋆. For ℓ ∈ {0, . . . , n} this is a mapping ⋆ : Λℓ → Λn−ℓ defined by

⋆

(
∑

I

ωIe
I

)
=

∑

I

(−1)σ(I)ωIe
Ic

,

where Ic = {1, . . . , n} \ I, and σ(I) = 0 if I ⊔ Ic forms an even permutation, and σ(I) = 1 otherwise. Notice 

that this induces an inner product on Λℓ

〈u, v〉e1 ∧ . . . ∧ e
n = u ∧ ⋆v, |u|2 = 〈u, u〉 ∈ R.

Throughout our work we will be concerned with differential ℓ–forms on Ω, that is functions on Ω that 

have values in Λℓ. For p ∈ [1, ∞] we denote by Lp(Ω, Λℓ) the space of differential ℓ–forms with components 

belonging (in some coordinate system) to Lp(Ω). A similar, and self–explanatory, notation will be used 

for other spaces of differential forms. If ω is a differential ℓ–form on Ω, that is differentiable at x ∈ Ω, its 

derivative is

Dω(x) : R
n → Λℓ.

More specifically, for h ∈ R
n, we have the definition

Dω(x)h = lim
t→0

ω(x + th) − ω(x)

t
,

where the limit is taken in Λℓ. The exterior derivative dω(x) is an (ℓ + 1)–form defined by

dω(x; ξ1, . . . , ξℓ+1) =
ℓ+1∑

i=1

(−1)i−1 [Dω(x)ξi] (ξ1, . . . , ξ̂i, . . . , ξℓ+1),

where, for i ∈ {1, . . . , ℓ + 1}, ξi ∈ R
n. The coordinate functions x1, . . . , xn are considered differential forms 

of degree zero. The one forms { dxi}
n
i=1 are constant functions from Ω into Λ1

dxi(x) = e
i.

Thus, every u ∈ Lp(Ω, Λℓ) can be uniquely represented as

u(x) =
∑

I

uI(x) dxI , uI ∈ Lp(Ω),

where dxI and the set of indices I have the same meaning as before. For k ∈ N0 and u ∈ Hk(Ω, Λℓ) we will 

set

‖u‖2
L2(Ω,Λℓ) =

∑

I

‖uI‖2
L2(Ω), |u|2Hk(Ω,Λℓ) =

∑

I

|uI |2Hk(Ω).

We define, as usual, Hk
0 (Ω, Λℓ) to be the closure of the space C∞

0 (Ω, Λℓ) in the norm of Hk(Ω, Λℓ).

Let ℓ ∈ {0, . . . , n − 1}. For a smooth differential form u ∈ C1(Ω, Λℓ) we shall also need to define the trace 

tr∂Ω u. This can be done by invoking the inclusion i : ∂Ω → Ω and its pullback

tr∂Ω u = i
♯u.
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An important feature of this mapping is that, if ℓ = n − 1, we have Stokes theorem [28, Proposition 16.10]:

ˆ

∂Ω

tr∂Ω u =

ˆ

Ω

du. (2)

This, in conjunction with Leibniz rule, yields that for every u ∈ C1(Ω, Λℓ) and all w ∈ C1(Ω, Λn−ℓ−1)

ˆ

Ω

du ∧ w = (−1)ℓ−1

ˆ

Ω

u ∧ dw +

ˆ

∂Ω

tr∂Ω u ∧ tr∂Ω w,

which is sometimes called integration by parts.

As it is customary, see for example [4, page 19], we extend this definition by continuity. In other words, 

every u ∈ L2(Ω, Λℓ) with du ∈ L2(Ω, Λℓ+1) defines a continuous linear functional, which we call tr∂Ω u, on 

H1(Ω, Λn−ℓ−1) via

〈tr∂Ω u, w〉 =

ˆ

Ω

du ∧ w + (−1)ℓ

ˆ

Ω

u ∧ dw.

Finally, although this can be done more generally, we only define the interior product (contraction), 

denoted by �, between a one–form and an ℓ–differential form. Thus, if z ∈ Λ1 ≈ R
n and u =

∑
I uI dxI ∈

L1(Ω, Λℓ), then

z�u(x) =
∑

I

uI(x)
ℓ∑

m=1

(−1)m−1zim
dxÎm

∈ L1(Ω, Λℓ−1).

2.2. The Bogovskĭı and regularized Poincaré integral operators

Let us now present the main objects that we are concerned with. From now on, we let θ ∈ C∞
0 (Rn) be 

supported on a ball B and satisfy (1). For ℓ ∈ {0, . . . , n} we define the kernel Gℓ by

Gℓ(x, y) =

∞̂

1

(t − 1)n−ℓtℓ−1θ(y + t(x − y)) dt. (3)

The main objects of our concern in this work are the operators

Bℓu(x) =

ˆ

Gℓ(x, y)(x − y)�u(y) dy, (4)

Pℓu(x) =

ˆ

Gn−ℓ+1(y, x)(x − y)�u(y) dy, (5)

which we will call Bogovskĭı–type and Poincaré–type operators, respectively. Here ℓ ∈ {1, . . . , n} and, u is 

an ℓ–differential form. One of the main results, adapted to our needs, of [12] is the following.

Theorem 1 (continuity). Let Ω be a bounded domain that is star shaped with respect to a ball containing 

supp θ, and ℓ ∈ {1, . . . , n}.

(1) The operator Bℓ, defined in (4), defines a bounded linear operator on L2(Ω, Λℓ). In addition, for k ∈ N0, 

we have

‖Bℓu‖Hk+1
0 (Ω,Λℓ−1) ≤ CBℓ,k‖u‖Hk

0 (Ω,Λℓ).
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Finally, if u ∈ Hk
0 (Ω, Λℓ) is such that du = 0, with tr∂Ω u = 0 if k = 0 and 

´

Ω
u = 0 if ℓ = n, then

u = dBℓu.

(2) The operator Pℓ, defined in (5), defines a bounded linear operator on L2(Ω, Λℓ). In addition, for k ∈ N0, 

we have

‖Pℓu‖Hk+1(Ω,Λℓ−1) ≤ CPℓ,k‖u‖Hk(Ω,Λℓ).

Finally, if u ∈ Hk(Ω, Λℓ) is such that du = 0, then

u = dPℓu.

Our main purpose in this work is to estimate the continuity constants, CBℓ,1 and CPℓ,1, in this result.

Remark 2 (continuity). We must remark that a priori, the operators (4) and (5) are singular integral oper-

ators, and so care must be taken when manipulating them. However, one of the consequences of Theorem 1

is that these are bounded operators. For this reason, during the course of our estimates, we will change 

orders of integration and subdivide domains of integration with impunity.

3. The Poincaré–type operators

Let us begin by providing an estimate on the continuity constant for the Poincaré–type operators. From 

now on, we will assume that our domain Ω is star shaped with respect to a ball B.

We begin by closely examining the operator. The change of variables s = (t − 1)/t allows us to rewrite 

the kernel Gn−ℓ+1, defined in (3), as

Gn−ℓ+1(y, x) =

∞̂

1

(t − 1)n−(n−ℓ+1)tn−ℓ+1−1θ(x + t(y − x)) dt

=

∞̂

1

(t − 1)ℓ−1tn−ℓθ(x + t(y − x)) dt

=

1
ˆ

0

sℓ−1

(1 − s)n+1
θ

(
x +

y − x

1 − s

)
ds.

Therefore,

Pℓu(x) =

1
ˆ

0

sℓ−1

ˆ

θ

(
x +

y − x

1 − s

)
x − y

1 − s
�u(y) dy

ds

(1 − s)n
,

so that, if u(x) =
∑

I uI(x) dxI , then

Pℓu(x) =
∑

I

ℓ∑

m=1

(−1)m−1

1
ˆ

0

sℓ−1

ˆ

θ

(
x +

y − x

1 − s

)
xm − ym

1 − s
uI(y) dy

ds

(1 − s)n
dxÎm

.
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3.1. First order estimates

The computations presented above show that, to accomplish our goals, it suffices to consider, for m ∈

{1, . . . , n} and f ∈ L2(Rn) such that supp f ⊂ Ω̄, the operator

Pℓf(x) =

1
ˆ

0

sℓ−1

ˆ

θ

(
x +

y − x

1 − s

)
xm − ym

1 − s
f(y) dy

ds

(1 − s)n
. (6)

We, first of all, observe that Pℓf(x) = xmP ℓ
1 f(x) − P ℓ

2 f(x) where, for k ∈ N,

P k
i f(x) =

1
ˆ

0

sk−1

ˆ

φi

(
x +

y − x

1 − s

)
f(y) dy

ds

(1 − s)n
, (7)

with

φi(z) =

{
θ(z), i = 1,

θ(z)zm i = 2.

As a consequence,

∂jPℓf(x) = δj,mP ℓ
1 f(x) + xm∂jP ℓ

1 f(x) + ∂jP ℓ
2 f(x). (8)

Thus, for k ∈ N, we need to estimate two different types of operators:

P k
∂ f(x) = lim

ε↑1

ε
ˆ

0

ˆ

sk−1∂j

[
φ

(
x +

y − x

1 − s

)]
f(y) dy

ds

(1 − s)n
,

P k
θ f(x) = lim

ε↑1

ε
ˆ

0

ˆ

sk−1θ

(
x +

y − x

1 − s

)
f(y) dy

ds

(1 − s)n
.

We consider each one separately.

3.1.1. Bound on P k
∂

We split the integral that defines P k
∂ and set

P k,L
∂ f(x) =

1/2
ˆ

0

ˆ

sk−1∂j

[
φ

(
x +

y − x

1 − s

)]
f(y) dy

ds

(1 − s)n
,

P k,U
∂ f(x) = lim

ε↑1
P k,U

∂,ε f(x),

where

P k,U
∂,ε f(x) =

ε
ˆ

1/2

ˆ

sk−1∂j

[
φ

(
x +

y − x

1 − s

)]
f(y) dy

ds

(1 − s)n
.

Let us now estimate P k,U
∂ f . We will achieve this via the Fourier transform.
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Lemma 3 (Fourier transform). Let f ∈ L2(Rn) with supp f ⊂ Ω̄. The Fourier transform of P U
∂ f is

̂
P k,U

∂ f(ξ) = (−1)n2πiξj

1
ˆ

1/2

sk−1f̂(ξ/s)φ̂((s − 1)ξ/s)
ds

sn
.

Proof. Taking the Fourier transform we get

̂
P k,U

∂,ε f(ξ) =

ε
ˆ

1/2

sk−1

ˆ

∂j

ˆ

φ

(
x +

y − x

1 − s

)
f(y) dye−2πiξ·x dx

ds

(1 − s)n
.

Integration by parts shows that

̂
P k,U

∂,ε f(ξ) = 2πiξj

ε
ˆ

1/2

sk−1

ˆ

f(y)

ˆ

φ

(
x +

y − x

1 − s

)
e−2πiξ·x dx dy

ds

(1 − s)n
.

The change of variables z = x + y−x
1−s in the innermost integral shows that

̂
P k,U

∂,ε f(ξ) = 2πiξj(−1)n

ε
ˆ

1/2

sk−1−n

ˆ

f(y)e−2πi(ξ/s)·y dy

ˆ

φ(z)e−2πi((s−1)ξ/s)·z dz ds

= (−1)n2πiξj

ε
ˆ

1/2

sk−1f̂(ξ/s)φ̂((s − 1)ξ/s)
ds

sn
.

Letting ε ↑ 1 the result follows. �

The following result is similar to [16, Lemma 2.3], but we provide a proof for completeness. To state it, 

and for future reference, we set the following notation. If ρ > 0 and φ : R
n → R, then we define

C(φ, ρ) = ρ−1‖φ‖L1(Rn) + ρ‖∂2
j φ‖L1(Rn). (9)

Lemma 4 (auxiliary estimate). Let φ ∈ C∞
0 (B), where B is a ball of radius ρ, then

2π|ξj |

0
ˆ

−∞

|φ̂(tξ)| dt ≤ C(φ, ρ).

Proof. We write

2π|ξj |

0
ˆ

−∞

|φ̂(tξ)| dt = 2π|ξj |

0
ˆ

− 1
2πρ|ξj |

|φ̂(tξ)| dt + 2π|ξj |

− 1
2πρ|ξj |
ˆ

−∞

|φ̂(tξ)| dt = I + II,

and estimate each term separately. We have

I ≤ 2π|ξj |‖φ̂‖L∞

0
ˆ

− 1
2πρ|ξj |

dt = ρ−1‖φ̂‖L∞(Rn) ≤ ρ−1‖φ‖L1(Rn),
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and

II = 2π‖ξ2
j φ̂‖L∞(Rn)

− 1
2πρ|ξj |
ˆ

−∞

1

t2|ξj |
dt ≤ ρ‖∂2

j φ‖L1(Rn),

where, in both estimates, we used the Hausdorff–Young inequality [24, Proposition 2.2.16]. To conclude, 

collect both estimates. �

With these two results at hand we can finally bound P k,U
∂ f .

Proposition 5 (bound on P k,U
∂ ). Let Ω be star shaped with respect to a ball B of radius ρ, φ ∈ C∞

0 (B). Then, 

for every f ∈ L2(Rn) with supp f ⊂ Ω̄ we have that

‖P k,U
∂ f‖L2(Ω) ≤ 2(n−2)/2

C(φ, ρ)‖f‖L2(Ω).

Proof. Applying the Cauchy–Schwarz inequality to 
̂
P k,U

∂ f(ξ), which was obtained in Lemma 3, immediately 

yields that

| ̂P k,U
∂ f(ξ)|2 ≤ I × II,

I = 2π|ξj |

1
ˆ

1/2

∣∣∣∣φ̂
(

s − 1

s
ξ

)∣∣∣∣
ds

sn
, II = 2π|ξj |

1
ˆ

1/2

s2(k−1)

∣∣∣∣φ̂
(

s − 1

s
ξ

)∣∣∣∣ |f̂(ξ/s)|2
ds

sn
.

The change of variables t = (s − 1)/s and Lemma 4 imply that

I = 2π|ξj |

1
ˆ

1/2

∣∣∣∣φ̂
(

s − 1

s
ξ

)∣∣∣∣
ds

sn
= 2π|ξj |

0
ˆ

−1

(1 − t)n−2|φ̂(tξ)| dt ≤ 2n−2
C(φ, ρ).

Integration in ξ then reveals that

ˆ

| ̂P k,U
∂ f(ξ)|2 dξ ≤ 2n−2

C(φ, ρ)

1
ˆ

1/2

s2(k−1)

ˆ

2π|ξj |

∣∣∣∣φ̂
(

s − 1

s
ξ

)∣∣∣∣ |f̂(ξ/s)|2 dξ
ds

sn

= 2n−2
C(φ, ρ)

1
ˆ

1/2

s2k−1

ˆ

2π|zj |
∣∣∣φ̂((s − 1)z)

∣∣∣ |f̂(z)|2 dz ds

= 2n−2
C(φ, ρ)

ˆ

|f̂(z)|2

⎛
⎜⎝2π|zj |

1
ˆ

1/2

s2k−1
∣∣∣φ̂((s − 1)z)

∣∣∣ ds

⎞
⎟⎠ dz

≤ 2n−2
C(φ, ρ)2‖f̂‖2

L2(Rn),

where we used Lemma 4 in the last step. Conclude using Plancherel’s identity [24, Theorem 2.2.14(4)]. �
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We will now estimate the term P k,L
∂ f(x), which we recall it reads

P k,L
∂ f(x) =

1/2
ˆ

0

sk−1

ˆ

∂j

[
φ

(
x +

y − x

1 − s

)]
f(y) dy

ds

(1 − s)n

= −

1/2
ˆ

0

sk

ˆ

∂jφ

(
x +

y − x

1 − s

)
f(y) dy

ds

(1 − s)n+1
.

The bound on this term depends on k. Thus, the strategy that we will follow here is to obtain an 

Lp(Ω)–estimate for suitable p and interpolate it with another bound that is valid for all values of k.

Lemma 6 (Lp(Ω)–estimate). Let k ∈ N. If p ∈ [1, ∞] is such that p > n/(k + 1), then

‖P k,L
∂ f‖Lp(Ω) ≤

2n/p−k

k − n/p + 1
‖∂jφ‖L1(Rn)‖f‖Lp(Ω).

Proof. The change of variables z = x + y−x
1−s shows that

|P k,L
∂ f(x)| ≤

1/2
ˆ

0

sk

1 − s

ˆ

|∂jφ(z)||f(sx + (1 − s)z)| dz ds,

which by Minkowski’s integral inequality [24, Exercise 1.1.6] implies that

‖P k,L
∂ f‖Lp(Ω) ≤

1/2
ˆ

0

sk

1 − s

ˆ

|∂jφ(z)|

⎛
⎝
ˆ

Ω

|f(sx + (1 − s)z)|p dx

⎞
⎠

1/p

dz ds

=

1/2
ˆ

0

sk−n/p

1 − s

ˆ

|∂jφ(z)| dz

⎛
⎝
ˆ

Ω

|f(x̄)|p dx̄

⎞
⎠

1/p

ds.

Note that x ∈ Ω and z ∈ supp φ ⊂ B so that, since Ω is star shaped with respect to a ball x̄ = sx +(1 −s)z ∈

Ω. The restriction on p guarantees that the integrals converge and the result follows. �

The previous result implies an estimate for large enough k.

Corollary 7 (estimate for large k). Let k ∈ N be such that k > (n − 2)/2, then

‖P k,L
∂ f‖L2(Ω) ≤

2n/2−k

k − n/2 + 1
‖∂jφ‖L1(Rn)‖f‖L2(Ω).

Proof. The restriction on k allows to apply the previous result with

p = 2 >
n

k + 1
. �

If k is not sufficiently large, we must proceed differently.
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Proposition 8 (estimate for small k). Let k ∈ N be such that k ≤ (n − 2)/2, then for any p > n/(k + 1) we 

have that

‖P k,L
∂ f‖L2(Ω) ≤

(
2n−k

k + 1
‖∂jφ‖L∞(Rn)|Ω|

)γ (
2n/p−k

k − n/p + 1
‖∂jφ‖L1(Rn)

)1−γ

‖f‖L2(Ω),

where γ = p−2
2(p−1) .

Proof. We begin by providing a bound in L1(Ω). We have that

|P k,L
∂ f(x)| ≤

1/2
ˆ

0

sk

ˆ

∣∣∣∣∂jφ

(
x +

y − x

1 − s

)∣∣∣∣ |f(y)| dy
ds

(1 − s)n+1
,

so that

‖P k,L
∂ f‖L1(Ω) ≤ ‖∂jφ‖L∞(Rn)‖f‖L1(Ω)|Ω|

1/2
ˆ

0

sk ds

(1 − s)n+1

≤
2n−k

k + 1
‖∂jφ‖L∞(Rn)|Ω|‖f‖L1(Ω).

Notice that

k + 1 ≤
n

2
⇐⇒

n

k + 1
≥ 2.

Thus, we can apply the Riesz–Thorin interpolation theorem [24, Theorem 1.3.4] between the recently ob-

tained L1(Ω) estimate and the Lp(Ω) estimate of Lemma 6 with p > n/(k + 1) ≥ 2 to obtain

‖P k,L
∂ f‖L2(Ω) ≤

(
2n−k

k + 1
‖∂jφ‖L∞(Rn)|Ω|

)γ (
2n/p−k

k − n/p + 1
‖∂jφ‖L1(Rn)

)1−γ

‖f‖L2(Ω),

where

1

2
=

γ

1
+

1 − γ

p
=⇒ γ =

p − 2

2(p − 1)
. �

We conclude by gathering all the previous estimates.

Theorem 9 (bound on P k
∂ ). Let k ∈ N. If k > (n − 2)/2 then we have that

‖P k
∂ f‖L2(Ω) ≤

[
2(n−2)/2

C(φ, ρ) +
2n/2−k

k − n/2 + 1
‖∂jφ‖L1(Rn)

]
‖f‖L2(Ω).

If, on the other hand, k ≤ (n − 2)/2 then, for any p > n/(k + 1) we have that

‖P k
∂ f‖L2(Ω) ≤

[
2

n−2
2 C(φ, ρ)+

(
2n−k

k + 1
‖∂jφ‖L∞ |Ω|

)γ (
2n/p−k

k − n/p + 1
‖∂jφ‖L1

)1−γ
]

‖f‖L2(Ω),

where

γ =
p − 2

2(p − 1)
.
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Proof. We have

‖P k
∂ f‖L2(Ω) ≤ ‖P k,L

∂ f‖L2(Ω) + ‖P k,U
∂ f‖L2(Ω),

and apply all the estimates that we have obtained so far. �

3.1.2. Bound on P k
θ

We now bound the operator P k
θ . Once again, we define

P k,L
θ f(x) =

1/2
ˆ

0

ˆ

sk−1θ

(
x +

y − x

1 − s

)
f(y) dy

ds

(1 − s)n
,

P k,U
θ f(x) = lim

ε↑1

ε
ˆ

1/2

ˆ

sk−1θ

(
x +

y − x

1 − s

)
f(y) dy

ds

(1 − s)n
.

The bound on P k,U
θ f is immediate

Lemma 10 (bound on P k,U
θ f). We have

‖P k,U
θ f‖L2(Ω) ≤

1 − 2n/2−k

k − n/2
‖θ‖L1(Rn)‖f‖L2(Ω).

Proof. Notice that

̂
P k,U

θ f(ξ) =

1
ˆ

1/2

sk−1

(1 − s)n

ˆ

f(y)

ˆ

θ

(
x +

y − x

1 − s

)
e−2πiξ·x dx dy ds,

and the change of variables z = x + y−x
1−s in the innermost integral gives

̂
P k,U

θ f(ξ) = (−1)n

1
ˆ

1/2

sk−n−1

ˆ

f(y)e−2πi(ξ/s)·y dy

ˆ

θ(z)e−2πi((s−1)ξ/s)·z dz ds

= (−1)n

1
ˆ

1/2

sk−n−1f̂(ξ/s)θ̂((s − 1)ξ/s) ds.

Minkowski’s integral inequality then shows that

‖ ̂
P k,U

θ f‖L2(Rn) ≤

1
ˆ

1/2

sk−n−1

(
ˆ

|f̂(ξ/s)|2|θ̂((s − 1)ξ/s)|2 dξ

)1/2

ds

≤ ‖θ̂‖L∞(Rn)

1
ˆ

1/2

sk−n/2−1

(
ˆ

|f̂(ξ/s)|2
dξ

sn

)1/2

ds

≤ ‖θ‖L1(Rn)‖f̂‖L2(Rn)

1
ˆ

1/2

sk−n/2−1 ds,

where we again used Hausdorff–Young’s inequality. Conclude using Plancherel’s identity. �
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We now bound the term P k,L
θ f , where again we distinguish two cases.

Lemma 11 (Lq–estimate). Let k ∈ N and q ∈ [1, ∞] be such that q > n/k, then

‖P k,L
θ f‖Lq(Ω) ≤

2n/q−k

k − n/q
‖θ‖L1‖f‖Lq(Ω).

Proof. Similar to previous computations

‖P k,L
θ f‖Lq(Ω) ≤

1/2
ˆ

0

sk−1

ˆ

θ(z)

⎛
⎝
ˆ

Ω

|f(sx + (1 − s)z)|q dx

⎞
⎠

1/q

dz ds

=

1/2
ˆ

0

sk−1−n/q

ˆ

θ(z)

⎛
⎝
ˆ

Ω

|f(x̄)|q dx̄

⎞
⎠

1/q

dz ds,

and the condition on q guarantees the convergence of the integrals. �

As a consequence, again, we obtain the desired L2(Ω) estimate for large k.

Corollary 12 (estimate for large k). Let k > n/2, then

‖P k,L
θ f‖L2(Ω) ≤

2n/2−k

k − n/2
‖θ‖L1‖f‖L2(Ω).

Proof. Set q = 2 > n/k in Lemma 11. �

For small values of k we, again, proceed by interpolation.

Proposition 13 (estimate for small k). Let k ∈ N be such that k ≤ n/2. Then, for any q > n/k we have that

‖P k,L
θ f‖L2(Ω) ≤

(
2n−k

k
|Ω|‖θ‖L∞(Rn)

)β (
2n/q−k

k − n/q
‖θ‖L1(Rn)

)1−β

‖f‖L2(Ω),

where β = q−2
2(q−1) .

Proof. First, notice that,

|P k,L
θ f(x)| ≤

1/2
ˆ

0

sk−1

(1 − s)n

ˆ

θ

(
x +

y − x

1 − s

)
f(y) dy ds

≤ ‖θ‖L∞(Rn)‖f‖L1(Ω)

1/2
ˆ

0

sk−1

(1 − s)n
ds,

so that

‖P k,L
θ f‖L1(Ω) ≤

2n−k

k
|Ω|‖θ‖L∞(Rn)‖f‖L1(Ω).
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Let now q > n/k ≥ 2 and apply the Riesz–Thorin interpolation theorem to obtain

‖P k,L
θ f‖L2(Ω) ≤

(
2n−k

k
|Ω|‖θ‖L∞(Rn)

)β (
2n/q−k

k − n/q
‖θ‖L1(Rn)

)1−β

‖f‖L2(Ω),

where

1

2
=

β

1
+

1 − β

q
=⇒ β =

q − 2

2(q − 1)
. �

We gather all estimates in one result.

Theorem 14 (bound on P k
θ ). Let k ∈ N. If k > n/2, then we have that

‖P k
θ f‖L2(Ω) ≤

1

k − n/2
‖θ‖L1(Rn)‖f‖L2(Ω).

If, on the other hand, k ≤ n/2, then for any q > n/k ≥ 2 we have that

‖P k
θ f‖L2(Ω) ≤

[
1 − 2

n
2 −k

k − n/2
‖θ‖L1(Rn) +

(
2n−k

k
|Ω|‖θ‖L∞(Rn)

)β
(

2
n
q −k

k − n/q
‖θ‖L1(Rn)

)1−β
⎤
⎦ ‖f‖L2(Ω)

with β = q−2
2(q−1) .

Proof. One only needs to gather all the estimates that we have obtained so far. The only point worth noting 

is that, in the case k > n/2, the constant in the estimate turns out to be

1 − 2n/2−k

k − n/2
‖θ‖L1(Rn) +

2n/2−k

k − n/2
‖θ‖L1(Rn). �

All these preparatory estimates allow us to obtain a bound on the operators P ℓ
i , for i = 1, 2, that comprise 

the components of the Poincaré–type operator Pℓ.

Corollary 15 (bound on P ℓ
1 ). If ℓ ∈ N and n

2 < ℓ ≤ n we have

‖P ℓ
1 f‖L2(Ω) ≤ C(n, ℓ)‖f‖L2(Ω). (10)

On the other hand, if ℓ ∈ N and 1 ≤ ℓ ≤ n
2 we have

‖P ℓ
1 f‖L2(Ω) ≤ C(n, ℓ)

[
1 +

(
|Ω|

|B|

) n−2ℓ
2(n−ℓ)

(
log

|Ω|

|B|

) n
2(n−ℓ)

]
. (11)

Proof. In the case n
2 < ℓ ≤ n we use the first case of Theorem 14, to obtain

‖P ℓ
1 f‖L2(Ω) ≤

1

ℓ − n/2
‖θ‖L1(Rn)‖f‖L2 = C(n, ℓ)‖f‖L2(Ω).

This shows (10). In the case, 1 ≤ ℓ ≤ n
2 we use the second case of Theorem 14 to obtain

‖P ℓ
1 f‖L2(Ω) ≤

[
C(n, ℓ) +

(
2n−ℓ

ℓ
|Ω|‖θ‖L∞(Rn)

)β (
2n/q−ℓ

ℓ − n/q
‖θ‖L1(Rn)

)1−β
]

‖f‖L2(Ω),
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with q > n/ℓ and β = q−2
2(q−1) . Using that ‖θ‖L∞(Rn) ≤ C(n)/|B| we get

‖P ℓ
1 f‖L2(Ω) ≤ D‖f‖L2(Ω),

where

D = C(n, ℓ) +

(
2n−ℓC(n)

ℓ

)β (
2n/q−ℓ

ℓ − n/q

)1−β (
|Ω|

|B|

)β

.

Let us write now

β =
q − 2

2(q − 1)
=

1

2

(
1 −

1

q − 1

)
=

1

2

(
1 −

ℓ

n − ℓ

)
+

1

2

(
ℓ

n − ℓ
−

1

q − 1

)
.

We choose q = n/ℓ + ǫ with

ǫ =
CA2

1 − CA
, C =

2

log(|Ω|/|B|)
A = n/ℓ − 1.

We assume that |Ω|/|B| is sufficiently large so that 1 − CA > 1/2 which will imply that 0 < ǫ ≤ A. We then 

see that

1

2

(
ℓ

n − ℓ
−

1

q − 1

)
=

1

log(|Ω|/|B|)
.

Consequently,

D ≤ C(n, ℓ) + e

(
2n−ℓC(n)

ℓ

)β (
2n/q−ℓ

ℓ − n/q

)1−β (
|Ω|

|B|

) n−2ℓ
2(n−ℓ)

.

With these choices, we get that

ℓ − n/q =
ℓ2ǫ

n + ℓǫ
≥

ℓ2ǫ

n + ℓA
≥ C

ℓ2A2

n + ℓA
.

Moreover,

1 − β = q/2(q − 1) =
n + ǫℓ

2(n − ℓ) + 2ǫℓ
≤

n

2(n − ℓ)
.

Hence,

D ≤ C(n, ℓ)

[
1 +

(
|Ω|

|B|

) n−2ℓ
2(n−ℓ)

(
log

|Ω|

|B|

) n
2(n−ℓ)

]
.

This proves (11). �

Corollary 16 (bound on ∂jP ℓ
i ). If ℓ ∈ N and n−2

2 < ℓ ≤ n we have

R‖∂jP ℓ
1 f‖L2(Ω) + ‖∂jP ℓ

2 f‖L2(Ω) ≤ C(n, ℓ)
R

ρ
‖f‖L2(Ω). (12)
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On the other hand, if ℓ ∈ N and 1 ≤ ℓ ≤ n−2
2 we have

R‖∂jP ℓ
1 f‖L2(Ω) + ‖∂jP ℓ

2 f‖L2(Ω) ≤ C(n, ℓ)
R

ρ

⎡
⎣1 +

(
|Ω|

|B|

) n−2(ℓ+1)
2(n−ℓ−1)

(
log

|Ω|

|B|

) n
2(n−ℓ−1)

⎤
⎦ ‖f‖L2(Ω). (13)

Proof. If n−2
2 < ℓ ≤ n we use the first case of Theorem 9 to get

‖∂jP ℓ
1 f‖L2(Ω) ≤

[
2(n−2)/2

C(φ1, ρ) +
2n/2−ℓ

ℓ − n/2 + 1
‖∂jφ1‖L1(Rn)

]
‖f‖L2(Ω)

≤ C(n, ℓ)

[
C(φ1, ρ) +

1

ρ

]
‖f‖L2(Ω),

where we used that φ1 = θ and (1). Using (1) again yields

C(φ1, ρ) = C(θ, ρ) = ρ−1‖θ‖L1(Rn) + ρ‖D2θ‖L1(Rn) ≤
C(n)

ρ
, (14)

and as a consequence we finally get

R‖∂jP ℓ
1 f‖L2(Ω) ≤

C(n, ℓ)R

ρ
‖f‖L2(Ω).

Similarly,

‖∂jP ℓ
2 f‖L2(Ω) ≤

[
2(n−2)/2

C(φ2, ρ) +
2n/2−ℓ

ℓ − n/2 + 1
‖∂jφ2‖L1(Rn)

]
‖f‖L2(Ω)

≤ C(n, ℓ)
[
C(φ2, ρ) + ‖∂jφ2‖L1(Rn)

]
‖f‖L2(Ω).

Using that φ2(z) = zkθ(z), we can easily show that C(φ2, ρ) + ‖∂jφ2‖L1(Rn) ≤ C(n). Consequently,

‖∂jP ℓ
2 f‖L2(Ω) ≤ C(n, ℓ)‖f‖L2(Ω).

This proves (12).

If 1 ≤ ℓ ≤ n−2
2 then by Theorem 9 we have

‖∂jP ℓ
1 f‖L2(Ω) ≤ D‖f‖L2(Ω),

with

D = 2(n−2)/2
C(φ1, ρ) +

(
2n−ℓ

ℓ + 1
‖∂jφ1‖L∞(Rn)|Ω|

)γ (
2n/p−ℓ

ℓ − n/p + 1
‖∂jφ1‖L1(Rn)

)1−γ

.

Here p > n/(ℓ + 1), and γ = p−2
2(p−1) . Using (14) and (1) this reduces to

D ≤
C(n, ℓ)

ρ

[
1 +

(
2n−ℓ

ℓ + 1

)γ (
2n/p−ℓ

ℓ − n/p + 1

)1−γ (
|Ω|

|B|

)γ
]

.

We write

γ =
1

2

(
1 −

1

p − 1

)
=

1

2

(
1 −

ℓ + 1

n − (ℓ + 1)

)
+

1

2

(
ℓ + 1

n − (ℓ + 1)
−

1

p − 1

)
.
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We choose p = n/(ℓ + 1) + ǫ with

ǫ =
CA2

1 − CA
, C =

2

log(|Ω|/|B|)
, A =

1

n/(ℓ + 1) − 1
.

We assume that |Ω|/|B| is sufficiently large so that 1 − CA > 1/2 which will imply that 0 < ǫ ≤ A. We then 

see that

1

2

(
ℓ + 1

n − (ℓ + 1)
−

1

p − 1

)
=

1

log(|Ω|/|B|)
.

Consequently,

D ≤
C(n, ℓ)

ρ

⎡
⎣1 + e

(
2n−ℓ

ℓ + 1

)γ (
2n/p−ℓ

ℓ − n/p + 1

)1−γ (
|Ω|

|B|

) n−2(ℓ+1)
2(n−ℓ−1)

⎤
⎦ .

We see that these choices yield

ℓ + 1 − n/p =
(ℓ + 1)2ǫ

n + (ℓ + 1)ǫ
≥

(ℓ + 1)2ǫ

n + (ℓ + 1)A
≥ C

(ℓ + 1)2A2

n + (ℓ + 1)A
.

Moreover,

1 − γ = (p − 1)/2p =
n + ǫ(ℓ + 1)

2(n − (ℓ + 1)) + 2ǫ(ℓ + 1)
≤

n

2(n − (ℓ + 1))
.

As a consequence,

(
2n/p−ℓ

ℓ − n/p + 1

)1−γ

≤ C(n, ℓ)

(
log

|Ω|

|B|

) n
2(n−ℓ−1)

.

Thus,

D ≤
C(n, ℓ)

ρ

⎡
⎣1 +

(
|Ω|

|B|

) n−2(ℓ+1)
2(n−ℓ−1)

(
log

|Ω|

|B|

) n
2(n−ℓ−1)

⎤
⎦ ,

which shows that

R‖∂jP ℓ
1 f‖L2(Ω) ≤ C(n, ℓ)

R

ρ

⎡
⎣1 +

(
|Ω|

|B|

) n−2(ℓ+1)
2(n−ℓ−1)

(
log

|Ω|

|B|

) n
2(n−ℓ−1)

⎤
⎦ .

Similarly, we can show that

‖∂jP ℓ
2 f‖L2(Ω) ≤ C(n, ℓ)

⎡
⎣1 +

(
|Ω|

|B|

) n−2(ℓ+1)
2(n−ℓ−1)

(
log

|Ω|

|B|

) n
2(n−ℓ−1)

⎤
⎦ .

This proves (13). �
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3.1.3. The final estimate

All the preliminary estimates of the previous section make obtaining a first order estimate for Pℓ almost 

immediate.

Theorem 17 (bound on Pℓ). Let Ω be a bounded domain that is star shaped with respect to a ball B. Set 

R = diam(Ω), and ρ = diam(B). Then, for ℓ ∈ {1, . . . , n}, the operator Pℓ, defined in (6), satisfies

|Pℓf |H1(Ω) ≤ C(n, ℓ)
R

ρ
κ‖f‖L2(Ω),

where C(n, ℓ) is a constant that only depends on n and ℓ and κ = κ(Ω, B, R, ρ) is such that,

1. If 2ℓ > n, then

κ = 1.

2. If 2ℓ = n − 1 or 2ℓ = n, then

κ =

(
|Ω|

|B|

) n−2ℓ
2(n−ℓ)

(
log

|Ω|

|B|

) n
2(n−ℓ)

.

3. If 2ℓ ≤ n − 2, then

κ =

(
|Ω|

|B|

) n−2ℓ
2(n−ℓ)

(
log

|Ω|

|B|

) n
2(n−ℓ−1)

.

Proof. From (8) we have that, for any j ∈ {1, . . . , n},

‖∂jPℓf‖L2(Ω) ≤ ‖P ℓ
1 f‖L2(Ω) + R‖∂jP ℓ

1 f‖L2(Ω) + ‖∂jP ℓ
2 f‖L2(Ω).

Then, the result follows from Corollaries 15 and 16. �

The most important consequence of this estimate is one of the main results in this work. Namely, an 

estimate on CPℓ,1.

Corollary 18 (estimate on CPℓ,1). Let Ω be a bounded domain that is star shaped with respect to a ball B. 

Set R = diam(Ω), and ρ = diam(B). Then, for ℓ ∈ {1, . . . , n}, the operator Pℓ, defined in (5) satisfies

|Pℓu|H1(Ω,Λℓ−1) ≤ C(n, ℓ)
R

ρ
κ‖u‖L2(Ω,Λℓ),

where C(n, ℓ) is a constant that only depends on n and ℓ and κ = κ(Ω, B, R, ρ) is as in Theorem 17.

Proof. It suffices to apply the estimate of Theorem 17 to each one of the components of Pℓu. �

Due to its importance in applications, we specialize Corollary 18 to n = 3 and closed forms. We state it 

in the language of vector calculus.

Corollary 19 (n = 3). Let Ω be a bounded domain that is star shaped with respect to a ball B. Set R =

diam(Ω), and ρ = diam(B).
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1. Let v ∈ L2(Ω, R3) be an irrotational vector field, i.e.,

∇ × v = 0.

There is ϕ ∈ H1(Ω) such that

∇ϕ = v, ‖∇ϕ‖L2(Ω,R3) ≤ C
R

ρ

(
|Ω|

|B|

)1/4 (
log

|Ω|

|B|

)3/4

‖v‖L2(Ω,R3),

where the constant C is independent of v, Ω, and B.

2. Let w ∈ L2(Ω, R3) be a solenoidal vector field, i.e.,

div w = 0.

There is v ∈ H1(Ω, R3) such that

∇ × v = w, ‖∇v‖L2(Ω,R3×3) ≤ C
R

ρ
‖w‖L2(Ω,R3),

where the constant C is independent of w, Ω, and B.

3. Let f ∈ L2(Ω), then there is v ∈ H1(Ω, R3) such that

div v = f, ‖∇v‖L2(Ω,R3×3) ≤ C
R

ρ
‖f‖L2(Ω),

where the constant C is independent of w, Ω, and B.

3.2. Second order estimates

Let us now describe how our techniques can be used to estimate the continuity constant in the case 

that u ∈ Hk(Ω, Λℓ) with k ∈ N. The starting point is again the operator Pℓ defined in (6). The change of 

variables z = x + (y − x)/(1 − s) reveals (compare with formula (3.9) of [12])

Pℓf(x) =

ˆ

θ(z)(xm − zm)

1
ˆ

0

sℓ−1f(sx + (1 − s)z) ds dz,

and, therefore, if α ∈ N
n is a multiindex of length k

∂αPℓf(x) =
∑

ν≤α

(
α

ν

)
∂ν(xm)

ˆ

θ(z)

1
ˆ

0

sℓ−1∂α−ν
x [f(sx + (1 − s)z)] ds dz

−

ˆ

zmθ(z)

1
ˆ

0

sℓ−1∂α
x [f(sx + (1 − s)z)] ds dz

=
∑

ν≤α

(
α

ν

)
∂ν(xm)

ˆ

θ(z)

1
ˆ

0

sℓ−1+|α−ν|∂α−νf(sx + (1 − s)z) ds dz

−

ˆ

zmθ(z)

1
ˆ

0

sℓ−1+k∂αf(sx + (1 − s)z) ds dz,
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where the sum is over all multiindices ν ∈ N
n such that νi ≤ αi for all i ∈ {1, . . . , n} and

(
α

ν

)
=

n∏

i=1

(
αi

νi

)
.

Let us now introduce the change of variables y = sx + (1 − s)z in each integral to obtain

∂αPℓf(x) =
∑

ν≤α

(
α

ν

)
∂ν(xm)

1
ˆ

0

sℓ−1+|α−ν|

ˆ

θ

(
x +

y − x

1 − s

)
∂α−νf(y) dy

ds

(1 − s)n

−

1
ˆ

0

sℓ−1+k

ˆ

θ

(
x +

y − x

1 − s

)
xm − ym

1 − s
∂αf(y) dy

ds

(1 − s)n

=
∑

ν≤α

(
α

ν

)
∂ν(xm)P

ℓ+|α−ν|
1 [∂α−νf ](x) + P ℓ+k

2 [∂αf ](x),

where the operators P k
i , for i = 1, 2 and k ∈ N are defined in (7). Thus, in much similarity to (8), we have 

that

∂j∂αPℓf(x) = δjmP ℓ+k
1 [∂αf ](x) +

∑

0<ν≤α

(
α

ν

)
∂ν(xm)∂jP

ℓ+|α−ν|
1 [∂α−νf ](x)

+ ∂jP ℓ+k
2 [∂αf ](x).

(15)

The bounds on each one of these operators were already obtained in Sections 3.1.1 and 3.1.2. Unfortu-

nately, since they heavily depend on the order of the operator, there is no clear way that one can explicitly 

estimate the middle term in this last expression. For this reason, we will content ourselves with a second 

order estimate in the case of sufficiently large ℓ. The remaining cases can be treated with a detailed analysis 

similar to that of Section 3.1.3. We skip this for brevity.

Theorem 20 (estimate on CPℓ,2). Let Ω be a bounded domain that is star shaped with respect to a ball B. 

Set R = diam(Ω), and ρ = diam(B). Then, for ℓ ∈ {1, . . . , n}, such that 2ℓ > n the operator Pℓ, defined in 

(5), satisfies

|Pℓu|H2(Ω,Λℓ−1) ≤ C(n, ℓ)
1

ρ
‖u‖H1(Ω,Λℓ),

where C(n, ℓ) is a constant that only depends on n and ℓ.

Proof. Clearly, it suffices to estimate each one of the terms in (15) for k = 1 and multiindices ν such that 

|α − ν| = 0. Appealing to Theorems 9 and 14 with k = ℓ + 1 then we get that

|Pℓu|H2(Ω,Λℓ−1) ≤ (C1 + C2 + C3)‖u‖H1(Ω,Λℓ),

with

C1 =
1

ℓ + 1 − n/2
,
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and, for i = 2, 3,

Ci = Ci(φ) = 2(n−2)/2
C(φ, ρ) +

2n/2−ℓ−1

ℓ − n/2 + 2
‖∂jφ‖L1(Rn),

where φ(z) = zmθ(z) for i = 2 and φ(z) = θ(z) for i = 3. Estimates (14) and properties of θ show that

C2 ≤ C(n), C3 ≤
C(n)

ρ
.

This is the claimed estimate. �

4. The Bogovskĭı–type operators

In this section we obtain bounds on the Bogovskĭı–type operator defined in (4). To keep the presentation 

within reasonable limits, many of the computations will be skipped as they repeat much of what we have 

already accomplished for the Poincaré–type operator in previous sections.

A simple change of variables allows us to write

Bℓu(x) =

1
ˆ

0

(1 − s)n−ℓ

ˆ

θ

(
y +

x − y

s

)
x − y

s
�u(y) dy

ds

sn
,

so that, if u(x) =
∑

I uI(x) dxI , then

Bℓu(x) =
∑

I

ℓ∑

m=1

(−1)m−1

1
ˆ

0

(1 − s)n−ℓ

ˆ

θ

(
y +

x − y

s

)
xm − ym

s
uI(y) dy

ds

sn
dxÎm

.

The computations presented above show that, to accomplish our goals, it suffices to consider, for m ∈

{1, . . . , n} and f ∈ L2(Rn) such that supp f ⊂ Ω̄ the operator

Qℓf(x) =

1
ˆ

0

(1 − s)n−ℓ

ˆ

θ

(
y +

x − y

s

)
xm − ym

s
f(y) dy

ds

sn
. (16)

We, first of all, observe that Qℓf(x) = −Qℓ
1g(x) + Qℓ

2f(x) where, g(y) = yf(y) and for k ∈ N,

Qℓ
iv(x) =

1
ˆ

0

(1 − s)n−ℓ

ˆ

φi

(
y +

x − y

s

)
v(y) dy

ds

sn
, (17)

with

φi(z) =

{
θ(z), i = 1,

θ(z)zm i = 2.

As a consequence,

∂jQℓf(x) = −∂jQℓ
1g(x) + ∂jQℓ

2f(x), (18)
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where g(y) = yf(y). Thus, for k ∈ N we need to estimate the following type of operator:

Qℓ
∂v(x) = lim

ε↓0

1
ˆ

ε

(1 − s)n−ℓ

ˆ

∂j

[
φ

(
y +

x − y

s

)]
v(y) dy

ds

sn
.

We write Qℓ
∂v(x) = Qℓ,L

∂ v(x) + Qℓ,U
∂ v(x) where

Qℓ,L
∂ v(x) = lim

ε↓0
Qℓ,L

∂,εv(x),

Qℓ,U
∂ v(x) =

1
ˆ

1/2

(1 − s)n−ℓ

ˆ

∂j

[
φ

(
y +

x − y

s

)]
v(y) dy

ds

sn
,

and

Qℓ,L
∂,εv(x) =

1/2
ˆ

ε

(1 − s)n−ℓ

ˆ

∂j

[
φ

(
y +

x − y

s

)]
v(y) dy

ds

sn
.

As in the case of the Poincaré operator, we estimate each one of these separately. It is interesting to note 

that the techniques used here are, in a sense, dual to those needed in previous section.

4.1. Bound for Qℓ,L
∂

We begin by bounding Qℓ,L
∂ . This will be accomplished via the Fourier transform.

Lemma 21 (Fourier transform). We have that

̂
Qℓ,L

∂ v(ξ) = 2πiξj

1
2
ˆ

0

(s − 1)n−ℓφ̂(sξ)v̂((1 − s)ξ) ds. (19)

Proof. We take the Fourier transform:

̂
Qℓ,L

∂,εv(ξ) =

¨

1
2
ˆ

ε

(s − 1)n−ℓ∂j

[
φ

(
y +

x − y

s

)]
v(y)e−2πix·ξ ds

sn
dy dx. (20)

We integrate by parts to obtain

̂
Qℓ,L

∂,εv(ξ) = 2πiξj

1
2
ˆ

ε

(s − 1)n−ℓ

¨

φ

(
y +

x − y

s

)
v(y)e−2πix·ξ dx dy

ds

sn
.

Making the change of variables z = y + x−y
s we get

̂
Qℓ,L

∂,εv(ξ) = 2πiξj

1
2
ˆ

ε

(s − 1)n−ℓ

¨

φ(z)v(y)e−2πi(sz+(1−s)y)·ξ dz dy ds.
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Thus,

̂
Qℓ,L

∂,εv(ξ) =2πiξj

1
2
ˆ

ε

(s − 1)n−ℓφ̂(sξ)

ˆ

v(y)e−2πi(1−s)y·ξ dy ds

=2πiξj

1
2
ˆ

ε

(s − 1)n−ℓφ̂(sξ)v̂((1 − s)ξ) ds.

The identity (19) follows by taking the limit ε ↓ 0. �

Lemma 22 (estimate on Qℓ,L
∂ ). It holds that

‖Qℓ,L
∂ v‖L2(Ω) ≤ cn+1−2ℓC(φ, ρ)‖v‖L2(Ω), (21)

where c2
r = max0≤t≤1

1
|1+t|r .

Proof. By using (19), the Cauchy–Schwarz inequality, and Lemma 4 we get

|̂Qℓ,L
∂ v(ξ)|2 ≤2πC(φ, ρ)|ξj |

1
2
ˆ

0

|1 − s|2(n−ℓ)|φ̂(sξ)||v̂((1 − s)ξ)|2 ds.

Hence, we obtain

∥∥∥∥
̂
Qℓ,L

∂ v

∥∥∥∥
2

L2(Rn)

≤ 2πC(φ, ρ)

ˆ

|ξj |

1
2
ˆ

0

|1 − s|2(n−ℓ)|φ̂(sξ)||v̂((1 − s)ξ)|2 ds dξ

Using the change of variables η = (1 − s)ξ, we see that

∥∥∥∥
̂
Qℓ,L

∂ v

∥∥∥∥
2

L2(Rn)

≤ 2πC(φ, ρ)

ˆ

1
2
ˆ

0

|1 − s|2(n−ℓ)−n−1|ηj |

∣∣∣∣φ̂
(

sη

1 − s

)∣∣∣∣ |v̂(η)|2 ds dη.

Another change of variables t = s
1−s gives

∥∥∥∥
̂
Qℓ,L

∂ v

∥∥∥∥
2

L2(Rn)

≤ 2πC(φ, ρ)

ˆ

1
ˆ

0

1

|1 + t|2(n−ℓ)−n+1
|ηj |

∣∣∣φ̂(tη)
∣∣∣ |v̂(η)|2 dt dη.

Thus, applying (20) and Lemma 4, we get

∥∥∥∥
̂
Qℓ,L

∂ v

∥∥∥∥
2

L2(Rn)

≤ c2
n+1−2ℓC(φ, ρ)2 ‖v̂‖2

L2(Rn) .

The result follows from Plancherel’s theorem. �



24 J. Guzmán, A.J. Salgado / J. Math. Anal. Appl. 502 (2021) 125246

4.2. Bound for Qℓ,U
∂

We now bound Qℓ,U
∂ . This is the operator where we need to argue differently depending on the size of ℓ.

Lemma 23 (Lp(Ω)–estimate). Consider p ≥ 1 such that n/p − ℓ + 1 > 0. If v ∈ Lp(Rn) and is supported in 

Ω̄, then

‖Qℓ,U
∂ v‖Lp(Ω) ≤

2ℓ−n/p

n/p − ℓ + 1
‖∂jφ‖L1(Ω)‖v‖Lp(Ω). (22)

Moreover, assuming that m ≥ 0 then

‖Qℓ,U
∂ v‖L∞(Ω) ≤ 2ℓ|Ω| ‖∂jφ‖L∞(Ω)‖v‖L∞(Ω). (23)

Proof. We first prove (22). We can write

Qℓ,U
∂ v(x) =

1
ˆ

1/2

(1 − s)n−ℓ

ˆ

∂jφ

(
y +

x − y

s

)
v(y) dy

ds

sn+1
. (24)

We do the change of variables z = y + x−y
s then we get

|Qℓ,U
∂ v(x)| ≤ 2

ˆ

1
ˆ

1
2

|1 − s|−ℓ|∂jφ(z)|

∣∣∣∣v
(

sz − x

s − 1

)∣∣∣∣ ds dz. (25)

If we raise to power p, integrate, and use the Minkowski’s inequality for integrals we get

‖Qℓ,U
∂ v‖Lp(Ω) ≤ 2

ˆ

1
ˆ

1
2

|1 − s|−ℓ|∂jφ(z)|

(
ˆ

∣∣∣∣v
(

sz − x

s − 1

)∣∣∣∣
p

dx

)1/p

ds dz.

Then, applying the change of variables x̄ = sz−x
1−s we get

‖Qℓ,U
∂ v‖Lp(Ω) ≤ 2

ˆ

1
ˆ

1
2

|1 − s|−ℓ+n/p|∂jφ(z)|

(
ˆ

|v(x̄)|p dx̄

)1/p

ds dz

Hence, we get

‖Qℓ,U
∂ v‖Lp(Ω) ≤2‖v‖Lp(Ω)

ˆ

1
ˆ

1
2

|1 − s|−ℓ+ n
p |∂jφ(z)| ds dz

=2‖v‖Lp(Ω)‖∂jφ‖L1(B)

1
ˆ

1
2

|1 − s|n/p−ℓ ds

=
2ℓ−n/p

n/p − ℓ + 1
‖v‖Lp(Ω)‖∂jφ‖L1(B).
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The result (22) follows by applying the triangle inequality.

Inequality (23) easily follows from (24) and using that 
´ 1

1
2

|s−1|n−ℓ

sn+1 ds ≤ 2ℓ. �

We can now apply the Riesz–Thorin interpolation theorem in conjunction with Lemma 23 to obtain an 

L2–bound. Again we must distinguish two cases depending on the size of ℓ.

Corollary 24 (estimate for Qℓ,U
∂ ). Let v ∈ L2(Ω). If n/2 + 1 > ℓ, then

∥∥∥Qℓ,U
∂ v

∥∥∥
L2(Ω)

≤
2ℓ−n/2

n/2 − ℓ + 1
‖∂jφ‖L1(Ω)‖v‖L2(Ω). (26)

On the other hand, if n/2 + 1 ≤ ℓ, then for every p < n
ℓ−1 ≤ 2 it holds

‖Qℓ,U
∂ v‖L2(Ω) ≤

(
2ℓ−n/p

n/p − ℓ + 1
‖∂jφ‖L1(Ω)

) p
2 (

2ℓ|Ω|‖∂jφ‖L∞(Ω)

)1− p
2 ‖v‖L2(Ω). (27)

Proof. We repeat the arguments that were used in the proofs of Corollary 7 and Proposition 8. For brevity 

we skip the details. �

We can now prove the main result concerning the estimates on ∂jQℓ
2.

Lemma 25 (bound on ∂jQℓ
2). Let f ∈ L2(Ω). If n/2 + 1 > ℓ then

‖∂jQℓ
2f‖L2(Ω) ≤ C(n, ℓ)‖f‖L2(Ω). (28)

On the other hand, if n/2 + 1 ≤ ℓ, then

‖∂jQℓ
2f‖L2(Ω) ≤ C(n, ℓ)

⎡
⎣1 +

(
log

(
|Ω|

|B|

)) n
2(ℓ−1)

(
|Ω|

|B|

) 2(ℓ−1)−n
2(ℓ−1)

⎤
⎦ ‖f‖L2(Ω). (29)

Proof. First assume that n/2 + 1 > ℓ and using (21) and (26) we obtain

‖∂jQℓ
2f‖L2(Ω) ≤

(
cn+1−2ℓC(φ2, ρ) +

2ℓ−n/2

n/2 − ℓ + 1
‖∂jφ2‖L1(Ω)

)
‖f‖L2(Ω)

Then we can easily show that C(φ2, ρ) + ‖∂jφ‖L1(Ω) ≤ C(n) and so (28) holds.

Next, assume that n/2 + 1 ≤ ℓ and using (21) and (27) we get

‖∂jQℓ
2f‖L2(Ω) ≤ C(n, ℓ)

[
1 +

(
2ℓ−n/p

n/p − ℓ + 1

)p/2 (
2ℓ |Ω|

|B|

)1−p/2
]

‖f‖L2(Ω).

Here we also used that ‖∂jφ2‖L∞(Ω) ≤ C(n)
|B| and that C(φ2, ρ) ≤ C(n). We write

1 − p/2 =
1

2

(
n

ℓ − 1
− p

)
+

(
1 −

n

2(ℓ − 1)

)
, (30)

and choose p = n
ℓ−1 − ǫ where ǫ = 2

log
(

|Ω|
|B|

) . Hence,

1

2

(
n

ℓ − 1
− p

)
=

1

log
(

|Ω|
|B|

)
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We thus have that

(
2ℓ |Ω|

|B|

)1−p/2

≤ 2ℓ(1−p/2)e

(
|Ω|

|B|

) 2(ℓ−1)−n
2(ℓ−1)

≤ C(n, ℓ)

(
|Ω|

|B|

) 2(ℓ−1)−n
2(ℓ−1)

.

Also, we notice that

1

n/p − ℓ + 1
=

p

n − p(ℓ − 1)
=

p

ǫ(ℓ − 1)
=

p log
(

|Ω|
|B|

)

2(ℓ − 1)
,

which allows us to estimate

(
2ℓ−n/p

n/p − ℓ + 1

)p/2

≤

(
p

2(ℓ − 1)

)p/2 (
log

(
|Ω|

|B|

))p/2

≤ C(n, ℓ)

(
log

(
|Ω|

|B|

)) n
2(ℓ−1)

.

This concludes the proof. �

We now bound the term involving ∂jQℓ
1.

Lemma 26 (bound on ∂jQℓ
1). Let f ∈ L2(Ω) and g(y) = yf(y). If n/2 + 1 > ℓ then

‖∂jQℓ
1g‖L2(Ω) ≤ C(n, ℓ)

R

ρ
‖f‖L2(Ω). (31)

On the other hand, if n/2 + 1 ≤ ℓ, then

‖∂jQℓ
1g‖L2(Ω) ≤ C(n, ℓ)

R

ρ

⎡
⎣1 +

(
log

(
|Ω|

|B|

)) n
2(ℓ−1)

(
|Ω|

|B|

) 2(ℓ−1)−n
2(ℓ−1)

⎤
⎦ ‖f‖L2(Ω). (32)

Proof. First assume that n/2 + 1 > ℓ and using (21) and (26) we obtain

‖∂jQℓ
1g‖L2(Ω) ≤

(
cn+1−2ℓC(φ1, ρ) +

2ℓ−n/2

n/2 − ℓ + 1
‖∂jφ1‖L1(Ω)

)
‖g‖L2(Ω)

Then we can easily show that C(φ1, ρ) + ‖∂jφ1‖L1(Ω) ≤ C(n)
ρ and since f is supported in Ω we have 

‖g‖L2(Ω) ≤ R‖f‖L2(Ω). This proves (31).

Next, assume that n/2 + 1 ≤ ℓ and using (21) and (27) we get

‖∂jQℓ
1g‖L2(Ω) ≤

C(n, ℓ)

ρ

[
1 +

(
2ℓ−n/p

n/p − ℓ + 1

)p/2 (
2ℓ |Ω|

|B|

)1−p/2
]

‖g‖L2(Ω).

Here we also used that ‖∂jφ1‖L∞(Ω) ≤ C(n)
ρ|B| , ‖∂jφ1‖L∞(Ω) ≤ C(n)

ρ and that C(φ1, ρ) ≤ C(n)
ρ . Proceeding as 

we did in the proof of (29), and using that ‖g‖L2(Ω) ≤ R‖f‖L2(Ω), proves (32). �

We are ready to prove the main estimate regarding the components that comprise the Bogovskĭı–type 

operator Bℓ.

Theorem 27 (bound on Qℓ). Let Ω be a bounded domain that is star shaped with respect to a ball B. Set 

R = diam(Ω), and ρ = diam(B). Then, for ℓ ∈ {1, . . . , n}, the operator Qℓ, defined in (16), satisfies



J. Guzmán, A.J. Salgado / J. Math. Anal. Appl. 502 (2021) 125246 27

|Qℓf |H1(Ω) ≤ C(n, ℓ)
R

ρ
κ‖f‖L2(Ω),

where C(n, ℓ) is a constant that only depends on n and ℓ, and κ = κ(Ω, B, R, ρ) is such that,

1. If ℓ < n/2 + 1, then

κ = 1.

2. If ℓ ≥ n/2 + 1, then

κ = 1 +

(
log

(
|Ω|

|B|

)) n
2(ℓ−1)

(
|Ω|

|B|

) 2(ℓ−1)−n
2(ℓ−1)

.

Proof. It suffices to gather the previously obtained estimates for and ∂jQℓ
2f and ∂jQℓ

1g. �

As a consequence we obtain the second main result of this work. An estimate on the continuity constant 

for the Bogovskĭı–type operators Bℓ.

Corollary 28 (estimate on CBℓ,1). Let Ω be a bounded domain that is star shaped with respect to a ball B. 

Set R = diam(Ω), and ρ = diam(B). Then, for ℓ ∈ {1, . . . , n}, the operator Bℓ, defined in (4), satisfies

|Bℓu|H1(Ω,Λℓ−1) ≤ C(n, ℓ)
R

ρ
κ‖u‖L2(Ω,Λℓ),

where C(n, ℓ) is a constant that only depends on n and ℓ and κ = κ(Ω, B, R, ρ) is as in Theorem 27.

Once again due to its importance in applications, we specialize Corollary 28 to n = 3 and closed forms. 

We also state our result in the language of vector calculus.

Corollary 29 (n = 3). Let Ω be a bounded domain that is star shaped with respect to a ball B. Set R =

diam(Ω), and ρ = diam(B).

1. Let v ∈ L2(Ω, R3) be an irrotational vector field with zero tangential trace, i.e.,

∇ × v = 0, v × n = 0.

There is ϕ ∈ H1
0 (Ω) such that

∇ϕ = v, ‖∇ϕ‖L2(Ω,R3) ≤ C
R

ρ
‖v‖L2(Ω,R3),

where the constant C is independent of v, Ω, and B.

2. Let w ∈ L2(Ω, R3) be a solenoidal vector field with zero normal trace, i.e.,

div w = 0, w · n = 0.

There is v ∈ H1
0 (Ω, R3) such that

∇ × v = w, ‖∇v‖L2(Ω,R3×3) ≤ C
R

ρ
‖w‖L2(Ω,R3),

where the constant C is independent of w, Ω, and B.
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3. Let f ∈ L2(Ω) be such that

ˆ

Ω

f(x) dx = 0,

then there is v ∈ H1
0 (Ω, R3) such that

div v = f, ‖∇v‖L2(Ω,R3×3) ≤ C
R

ρ

(
|Ω|

|B|

)1/4 (
log

|Ω|

|B|

)3/2

‖f‖L2(Ω),

where the constant C is independent of w, Ω, and B.

Notice that, in the previous result, the third item is precisely the content of [16, Theorem 3.2].

5. A chain of star shaped domains

Let us now extend the technique to estimate the constants in our operators to more general domains. 

To do so we will follow some ideas presented in [29] to decompose domains but in a much simpler setting. 

Our techniques for the case of no boundary conditions were also inspired by the proof of the so–called 

Mayer–Vietoris theorem as presented in [28, Theorem 15.9].

Let us begin by presenting the class of domains Ω to which our results shall apply. Essentially, we will deal 

with a chain of domains over which the estimate can be extended. We will assume that Ω is a contractible 

domain, such that there is N ∈ N for which

Ω =

N⋃

i=1

Ωi

where:

• For each i ∈ {1, . . . , N} the domain Ωi is star shaped with respect to a ball Bi ⊂ Ωi.

• For every i, j ∈ {1, . . . , N} with |i − j| > 1 we have Ωi ∩ Ωj = ∅.

• For i ∈ {1, . . . , N − 1} let Ωi+1/2 = Ωi ∩ Ωi+1 �= ∅. Then Ωi+1/2 is star shaped with respect to a ball 

Bi+1/2 ⊂ Ωi+1/2.

• We have a partition of unity subject to this decomposition. In other words, there are {φi}
N
i=1 ⊂ C∞(Ω), 

such that 0 ≤ φi ≤ 1, φi = 0 in Ω \ Ωi and 
∑N

i=1 φi = 1 in Ω.

• Finally, we impose a restriction on the way the sets can intersect, in the sense that for i ∈ {1, . . . , N}

and any multiindex α ∈ N
n
0

‖∂αφi‖L∞(Ω) ≤
Cα,i

d
|α|
i

,

where di = min{diam(Ωi−1/2), diam(Ωi+1/2)}. We comment that this last assumption is common in the 

domain decomposition literature; see [37, Assumptions 3.1, 3.2].

Notice that the conditions of our decomposition guarantee that, for every x ∈ Ω,

1 ≤ #{i : x ∈ Ωi} ≤ 2,

where by #S we denote the cardinality of the set S.
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The estimates of Corollary 18 and 28 depend on the geometric characteristics of the domain. Specifically 

on the ratio of the diameter of the domain and the ball, and the ratio of their measures. Let us denote by 

CD the constant in these estimates for a domain D. Then we set

T = {1, . . . , N} ∪

{
3

2
,

5

2
, . . . , N −

1

2

}
,

and

CT = max {CΩt
: t ∈ T} , (33)

DT = max {diam(Ωt) : t ∈ T} , (34)

dT = min {diam(Ωt) : t ∈ T} , (35)

CS = max {Cα,i : |α| ≤ 2, i ∈ {1, . . . , N − 1}} . (36)

We also need to recall Poincaré’s inequality as stated, for example, in [22, equation (7.44)].

Lemma 30 (Poincaré inequality I). Let t ∈ T , ℓ ∈ {0, . . . , n}, v ∈ H1
0 (Ωt, Λ

ℓ). Then we have that

‖v‖L2(Ωt) ≤ C(n) diam(Ωt)|v|H1(Ωt,Λℓ),

where the constant C(n) only depends on n.

The next result is well known, and is also sometimes referred to as Poincaré’s inequality. Of importance 

to us here is an estimate on the value of the constant. This result, in the language of vector fields, was 

presented in [16, Section 5]. For completeness, we provide a proof.

Lemma 31 (Poincaré inequality II). Let t ∈ T , and u ∈ H1(Ωt, Λ
0) be such that 

´

Ωt
⋆u = 0. Then, there is 

a constant KPt
such that

‖u‖L2(Ωt,Λ0) ≤ KPt
diam(Ωt)|u|H1(Ωt,Λ0).

Moreover, the constant KPt
can be bounded by

KPt
≤ C

Rt

ρt

[
1 +

(
log

(
|Ωt|

|Bt|

)) n
2(n−1)

(
|Ωt|

|Bt|

) n−2
2(n−1)

]
,

where the constant C depends only on the dimension n, Rt = diam(Ωt) and ρt = diam(Bt).

Proof. Since ⋆u ∈ L2(Ωt, Λ
n) has zero average, we can deduce from Corollary 28 (with ℓ = n) the existence 

of v ∈ H1
0 (Ω, Λn−1) such that dv = ⋆u and, since ⋆ is an isometry,

|v|H1(Ωt,Λn−1) ≤ C
Rt

ρt

[
1 +

(
log

(
|Ωt|

|Bt|

)) n
2(n−1)

(
|Ωt|

|Bt|

) n−2
2(n−1)

]
‖u‖L2(Ωt,Λ0), (37)

with a constant C that depends only on the dimension. Now,

‖u‖2
L2(Ωt,Λ0) =

ˆ

Ωt

u ∧ ⋆u =

∣∣∣∣∣∣

ˆ

Ωt

u ∧ dv

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ˆ

Ωt

du ∧ v

∣∣∣∣∣∣

≤ C|u|H1(Ωt,Λ0)‖v‖L2(Ωt,Λn−1),
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where the constant C depends only on the dimension. Since v ∈ H1
0 (Ω, Λn−1), using Lemma 30 and estimate 

(37) the result follows. �

Having realized that the constants KPi
can be bound, once again, by geometric characteristics of our 

domains, we set

CP = max {KPt
: t ∈ T} . (38)

5.1. Using the Poincaré operator

Our result about estimating the continuity constant for more general domains then reads as follows. 

Interestingly, the value of the constant is independent of N . This, of course, provided the value of the 

constants defined in (33)—(36) and (38) is also independent of N .

Theorem 32 (estimate on a chain: without boundary conditions). Let Ω satisfy all the previously stated 

conditions, ℓ ∈ {1, . . . , n} and u ∈ L2(Ω, Λℓ) be such that du = 0. Then, there is v ∈ H1(Ω, Λℓ−1) such that 

dv = u and, moreover,

|v|H1(Ω,Λℓ−1) ≤ C(CT , DT , dT , CS)‖u‖L2(Ω,Λℓ).

An upper bound for the constant in this estimate is given by

C(CT , DT , dT , CS) ≤ 2CT

⎧
⎪⎨
⎪⎩

√
1 + 32C2

S

(
CT CP DT

dT

+ 1
)4

, ℓ ≥ 2,

1, ℓ = 1.

Proof. Let, for the time being, ℓ ≥ 2. Since, by assumption, all the {Ωi}
N
i=1 are star shaped with respect to 

a ball, a combination of Theorem 1 and Corollary 18 yield the existence of ηi ∈ H1(Ωi, Λ
ℓ−1) such that, in 

their domain of definition dηi = u, and

|ηi|H1(Ωi,Λℓ−1) ≤ CT ‖u‖L2(Ωi,Λℓ).

Notice that we can add and subtract a suitable constant to ηi to conclude, via Poincaré inequality, that

‖ηi‖L2(Ωi,Λℓ−1) ≤ CP DT |ηi|H1(Ωi,Λℓ−1) ≤ CP DT CT ‖u‖L2(Ωi,Λℓ).

While this provides a solution to the problem locally, the issue at hand is that, for i ∈ {1, . . . , N − 1}, 

ηi, ηi+1 may not coincide on the intersection Ωi+1/2. Thus, we must make a local correction.

Let i ∈ {1, . . . , N − 1} and notice that,

d(ηi − ηi+1) = 0 on Ωi+1/2. (39)

Since by assumption Ωi+1/2 is star shaped with respect to a ball, we can apply again Theorem 1 and 

Corollary 18 to find wi+1/2 ∈ H1(Ωi+1/2, Λℓ−2) such that

dwi+1/2 = ηi − ηi+1 on Ωi+1/2

and
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‖wi+1/2‖L2(Ωi+1/2,Λℓ−2) ≤ CP DT |wi+1/2|H1(Ωi+1/2,Λℓ−2)

≤ CP DT CT ‖ηi − ηi+1‖L2(Ωi+1/2,Λℓ−1)

≤ 2C2
P D2

T
C2

T
‖u‖L2(Ωi∪Ωi+1,Λℓ).

Here we used Poincaré’s inequality twice. Set φ0 ≡ 0 ≡ φN+1 and w−1/2 ≡ 0 ≡ wN+1/2. We then define, for 

1 ≤ i ≤ N ,

vi = ηi + d(φi−1wi−1/2 − φi+1wi+1/2) in Ωi.

We see that dvi = dηi = u in Ωi. Moreover, in Ωi+1/2,

vi+1 − vi =
(
ηi+1 + d(φiwi+1/2)

)
−

(
ηi − d(φi+1wi+1/2)

)

=
(
ηi+1 − ηi) + d((φi + φi+1)wi+1/2) =

(
ηi+1 − ηi) + d(wi+1/2) = 0.

Here we used that φi+2 and φi−1 vanish on Ωi+1/2 and that φi + φi+1 = 1 on Ωi+1/2. Consequently, we can 

define v ∈ H1(Ω, Λℓ−1) by v|Ωi
= vi for every i. We also have

dv = dvi = u.

It remains then to provide a bound on the seminorm of v. To this end,

|v|2H1(Ω,Λℓ−1) ≤
N∑

i=1

|vi|
2
H1(Ωi,Λℓ−1)

≤2

N∑

i=1

|ηi|
2
H1(Ωi,Λℓ−1) + 2

N∑

i=1

| d(φi−1wi−1/2 − φi+1wi+1/2)|2H1(Ωi,Λℓ−1).

Since every point x ∈ Ω belongs to at most two subsets

N∑

i=1

|ηi|
2
H1(Ωi,Λℓ−1) ≤ C2

T

N∑

i=1

‖u‖2
L2(Ωi,Λℓ) ≤ 2C2

T
‖u‖2

L2(Ω,Λℓ). (40)

We also have

2

N∑

i=1

| d(φi−1wi−1/2 − φi+1wi+1/2)|2H1(Ωi,Λℓ−1) ≤ 8

N∑

i=1

| d(φi+1wi+1/2)|2H1(Ωi+1/2,Λℓ−1).

Now, on every Ωi+1/2,

| d(φi+1wi+1/2)|H1(Ωi+1/2,Λℓ−1) =
∣∣φi+1 dwi+1/2 + dφi+1 ∧ wi+1/2

∣∣
H1(Ωi+1/2,Λℓ−1)

≤|φi+1(ηi − ηi+1)|H1(Ωi+1/2,Λℓ−1)

+ | dφi+1 ∧ wi+1/2|H1(Ωi+1/2,Λℓ−1),

with
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|φi+1(ηi − ηi+1)|H1(Ωi+1/2,Λℓ−1) ≤CS |ηi − ηi+1|H1(Ωi+1/2,Λℓ−1)

+
CS

dT

‖ηi − ηi+1‖L2(Ωi+1/2,Λℓ−1)

≤2CSCT

(
1 +

CP DT

dT

)
‖u‖L2(Ωi∪Ωi+1,Λℓ),

and

| dφi+1 ∧ wi+1/2|H1(Ωi+1/2,Λℓ−1)

≤
CS

d2
T

‖wi+1/2‖L2(Ωi+1/2,Λℓ−1) +
CS

dT

|wi+1/2|H1(Ωi+1/2,Λℓ−1)

≤
2CSCP DT C2

T

dT

(
CP DT

dT

+ 1

)
‖u‖L2(Ωi∪Ωi+1,Λℓ).

Therefore, using that CT ≥ 1,

| d(φi+1/2wi+1/2)|H1(Ωi+1/2,Λℓ−1) ≤ 2CSCT

(
CT CP DT

dT

+ 1

)2

‖u‖L2(Ωi∪Ωi+1,Λℓ).

Using, once again, that every point x ∈ Ω belongs to at most two subsets

8
N∑

i=1

| d(φi+1wi+1/2)|2H1(Ωi+1/2,Λℓ−1)

≤16C2
SC2

T

(
CT CP DT

dT

+ 1

)4 N−1∑

i=1

‖u‖2
L2(Ωi∪Ωi+1,Λℓ)

≤64C2
SC2

T

(
CT CP DT

dT

+ 1

)4

‖u‖2
L2(Ω,Λℓ).

(41)

Gathering (40) and (41)

|v|2H1(Ω,Λℓ−1) ≤ 2

(
2C2

T
+ 64C2

SC2
T

(
CT CP DT

dT

+ 1

)4
)

‖u‖2
L2(Ω,Λℓ),

which is the claimed estimate in the case ℓ ≥ 2.

Now let us turn to the case ℓ = 1. In this case, (39) implies that ηi − ηi+1 is a constant on Ωi+1/2 which 

we denote by bi. Hence, we define constants ci recursively satisfying

ci+1 = ci + bi+1, (42)

with c1 = 0. Then we set vi = ηi + ci on Ωi. We see that dvi = dηi = u on Ωi. Moreover, vi+1 − vi =

(ηi+1 + ci+1) − (ηi + ci) = 0 on Ωi+1/2. Therefore, we define v ∈ H1(Ω, Λ0) by v|Ωi
= vi for every i. In this 

case, we have

|v|2H1(Ω,Λ0) ≤
N∑

i=1

|vi|
2
H1(Ωi,Λ0) ≤ 2

N∑

i=1

|ηi|
2
H1(Ωi,Λ0).

Combining this with (40) gives the estimate in the case ℓ = 1. �
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Remark 33 (L2–bounds). Although we only focused on an estimate for the H1–seminorm we could have also 

obtained an estimate for the L2–norm. The L2 estimate in the case of ℓ ∈ {2, . . . , n} would have followed 

easily. In the case ℓ = 1, however, the estimate would not have been so well behaved since the constants in 

(42) would have more dependence on each other. As a consequence, at least with our technique, the constant 

in the L2–bound would depend linearly on N when ℓ = 1.

5.2. Using the Bogovskĭı operator

In this section we use the Bogovskĭı operator, which we estimated in Corollary 28, to prove estimates 

on a chain or star shaped domains for functions that have boundary conditions. We shall only consider the 

cases ℓ ∈ {1, . . . , n − 1}. The result for ℓ = n was proved in [29, Corollary 3.1] in much greater generality 

(e.g. Lp norms and allowing the cardinality of the subdomains {Ωi} in the decomposition to be countable 

and having more overlap). In fact, the result ℓ = n is very special in the sense that the constant seems to 

be worst behaved. One key difference is that in the case ℓ = n one has to correct forms to make them have 

average zero. In contrast, in the case 1 ≤ ℓ < n, one has to correct the forms to make them have vanishing 

exterior derivative.

For this reason, we need to provide an additional condition to our decomposition. From the previous 

assumptions we already had that φi vanishes on ∂Ωi \ ∂Ω. We make this slightly stronger as follows:

• The function φi vanishes in a neighborhood of ∂Ωi \ ∂Ω.

We then begin with an auxiliary result. The proof of this result is presented in Appendix B.

Lemma 34 (vanishing trace). Let i ∈ {1, . . . , N − 1}, ℓ ∈ {1, . . . , n − 1}, and u ∈ L2(Ωi+1/2, Λℓ) be such that 

du = 0. Define w = d(φi+1u), then tr∂Ωi+1/2
w = 0.

Theorem 35 (estimate on a chain: with boundary conditions). Let Ω satisfy all the previously stated con-

ditions, ℓ ∈ {1, . . . , n − 1} and u ∈ L2(Ω, Λℓ) be such that du = 0 and tr∂Ω u = 0. Then, there is 

v ∈ H1
0 (Ω, Λℓ−1) such that dv = u and, moreover,

|v|H1(Ω,Λℓ−1) ≤ C(CT , DT , dT , CS)‖u‖L2(Ω,Λℓ).

An upper bound for the constant in this estimate is given by

C(CT , DT , dT , CS) ≤ 4CT

√
2 + C2

SC(n)2
D2

T

d2
T

C2
T

.

Proof. By Lemma 34 we have that tr∂Ωi+1/2
d(φi+1u).

Define Wi = ∪1≤j≤iΩj , and let φ̃i+1 = 0 be the function that coincides with φi+1 in Ωi+1/2, equals 

zero in Wi \ Ωi+1/2 and equals one in Ω \ Wi. The additional assumption we imposed in the decomposition 

guarantees that φ̃i+1 ∈ C1(Ω). Then, since du = 0 in Ω,

ˆ

Ωi+1/2

d(φi+1u) =

ˆ

Ω

d(φ̃i+1u) = 〈tr∂Ω u, φ̃i+1〉 = 0.

Hence, using Theorem 1 and Corollary 28 we obtain wi+1/2 ∈ H1
0 (Ωi+1/2, Λℓ), such that dwi+1/2 =

d(φi+1u) on Ωi+1/2 with the estimate
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‖wi+1/2‖L2(Ωi+1/2,Λℓ) ≤ C(n)DT |wi+1/2|H1(Ωi+1/2,Λℓ)

≤ C(n)DT CT ‖ d(φi+1u)‖L2(Ωi+1/2,Λℓ+1) ≤ CSC(n)
DT

dT

CT ‖u‖L2(Ωi+1/2,Λℓ).

We thus have

d(φiu) = d(wi−1/2 − wi+1/2) in Ωi.

Here we used that − d(wi+1/2) = − d(φi+1u) = d(φiu) in Ωi+1/2. We also used that φi = 1 on Ωi\(Ωi−1/2 ∪

Ωi+1/2). Again, using Theorem 1 and Corollary 28 we can find vi ∈ H1
0 (Ωi, Λ

ℓ−1) such that dvi = φiu +

wi+1/2 − wi−1/2, with the bound

|vi|H1(Ωi,Λℓ) ≤ CT ‖φiu + wi+1/2 − wi−1/2‖L2(Ωi+1/2,Λℓ).

We then define v =
∑N

i=1 vi ∈ H1
0 (Ω, Λℓ−1) and see that

dv =

N∑

i=1

dvi =

N∑

i=1

φiu = u on Ω.

Moreover,

|v|2H1(Ω,Λℓ−1) ≤2
N∑

i=1

|vi|
2
H1(Ωi,Λℓ−1)

≤16C2
T

N∑

i=1

(
‖φiu‖2

L2(Ωi,Λℓ) + ‖wi+1/2‖2
L2(Ωi+1/2,Λℓ)

)

≤16C2
T

(
2 + C2

SC(n)2 D2
T

d2
T

C2
T

)
‖u‖2

L2(Ω,Λℓ),

which gives the desired estimate. �

Appendix A. An alternative proof of Lemma 10

For diversity in our arguments let us show a direct proof of Lemma 10. The change of variables z = x + y−x
1−s

gives that

|P k,U
θ f(x)| ≤

1
ˆ

1/2

sk−1

ˆ

θ(z)|f(sx + (1 − s)z)| dz ds,

so that

‖P k,U
θ f‖L2(Ω) ≤

1
ˆ

1/2

sk−1

ˆ

θ(z)

⎛
⎝
ˆ

Ω

|f(sx + (1 − s)z)|2 dx

⎞
⎠

1/2

dz ds

=

1
ˆ

1/2

sk−1−n/2

ˆ

θ(z)

⎛
⎝
ˆ

Ω

|f(x̄)|2 dx̄

⎞
⎠

1/2

dz ds,



J. Guzmán, A.J. Salgado / J. Math. Anal. Appl. 502 (2021) 125246 35

where we again used that Ω is star shaped with respect to a ball, so that if x ∈ Ω and z ∈ supp θ ⊂ B, then 

x̄ = sx + (1 − s)z ∈ Ω. With this technique then the same estimate can be concluded.

Appendix B. Proof of Lemma 34

Intuitively it is clear that the result holds. To see this, we observe that can write ∂Ωi+1/2 = Γ0 ⊔ Γ1 ⊔ Γ2

where Γ0 = ∂Ω ∩ ∂Ωi+1/2, Γ1 = (∂Ωi+1/2 ∩ ∂Ωi)\Γ0 and Γ2 = (∂Ωi+1/2 ∩ ∂Ωi+1)\Γ0. Note that φi+1 ≡ 1

on Γ1 and φi+1 ≡ 0 on Γ2. Thus, we have that tr∂Ωi+1/2
dφi+1 = 0 in Γ1 ∪ Γ2. We now note that, since 

du = 0, we have d(φi+1u) = dφi+1 ∧ u and as a consequence tr∂Ωi+1/2
d(φi+1u) = tr∂Ωi+1/2

( dφi+1 ∧ u) =

tr∂Ωi+1/2
dφi+1∧tr∂Ωi+1/2

u. Here we used that the trace operator (or more generally a pullback) respects the 

wedge product [28, Lemma 14.16 (b)]. Since tr∂Ωi+1/2
u = 0 on Γ0 and we showed that tr∂Ωi+1/2

dφi+1 = 0

on Γ1 ∪ Γ2, we conclude that tr∂Ωi+1/2
d(φi+1u) = 0.

Let us now be more rigorous in our reasoning.

Proof. Notice, first of all, that since w ∈ L2(Ωi+1/2, Λℓ) and dw = 0, the trace trΩi+1/2
w is well defined.

By definition, if ψ ∈ H1(Ωi+1/2, Λn−ℓ−2),

∣∣〈trΩi+1/2
w, ψ〉

∣∣ =

∣∣∣∣∣∣∣

ˆ

Ωi+1/2

w ∧ dψ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

ˆ

Ωi+1/2

u ∧ dφi+1 ∧ dψ

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

ˆ

Ω

u ∧ dφ̃i+1 ∧ dψ

∣∣∣∣∣∣
,

where we used that du = 0 in Ωi+1/2, and φ̃i+1 has the same meaning as in the proof of Theorem 35.

Observe now that dφ̃i+1 ∧ dψ = − d( dφ̃i+1 ∧ ψ) so that, invoking the fact that du = 0 in Ω, we obtain

∣∣〈trΩi+1/2
w, ψ〉

∣∣ =
∣∣∣〈trΩ u, dφ̃i+1 ∧ ψ〉

∣∣∣ = 0,

where in the last step we used that dφ̃i+1 ∧ ψ ∈ H1(Ω, Λn−ℓ−1). �
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