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geometric characteristics of the domain when these operators are considered as
mappings from (a subset of) L?(Q, A?) to H'(Q, A1), £ € {1,...,n}. For domains

gii/:;i()oidzerivative Q that are star shaped with respect to a ball B we study the dependence of the
Poincaré operator constants on the ratio diam(Q2)/ diam(B). A program on how to develop estimates
Bogovskil operator for higher order Sobolev norms is presented. The results are extended to certain
Differential forms classes of unions of star shaped domains.

Star shaped domains © 2021 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental result in the analysis of models of incompressible fluids is the existence of a right inverse
for the divergence operator. Let 2 C R™, with n € N, be a bounded domain with Lipschitz boundary, and
u € L?(Q) be such that [, udz = 0. Then there is a vector field v € Hg (€2, R™) such that

divv = u, ||VV||L2(Q7RW,><TL) < C||u||L2(Q)7

where the constant C' depends on 2, but not on u; see Section 2 for notation. While this problem has been
studied in several sources, and from different points of view; see [34,27,36] for a very incomplete list of
references and the introduction to [1] for a nice historical account, we are interested here in [8,7], where
the function v is explicitly constructed. First, on domains that are star shaped with respect to a ball, the
function is constructed by means of a regularized version of a path integral. This regularization is necessary,
as integrals of u along paths may not be well defined. In passing, the author mentions that the constant in
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the norm estimate depends on the ratio between the diameter of the domain and that of the ball. Then, for
domains that can be represented as a finite union of star shaped domains, the construction is attained via a
partition of unity argument. Further mapping properties of this operator have been discussed, for instance,
in [17,18,13,35], and we refer the reader, again, to [1] for a rather recent overview.

A related problem, which finds applications in the study of incompressible flow and Maxwell’s equations,
is that of finding the vector potential of a solenoidal vector field given in a domain of R3. Specifically, given
v € L?(Q,R3) such that divv = 0, we need to find w € L?*(Q, R?) such that

VXxw=v,

supplemented with suitable boundary, and possibly gauge, conditions. If this problem has a solution, it is
also of interest to understand the smoothness properties of w. The solution to this problem is much more
delicate, as it depends on the boundary and gauge conditions, and the topology of the domain 2. We refer
the reader to [3] for a thorough treatise.

It is well known that vector fields and the operators of vector calculus, like the divergence and curl, are
nothing but particular cases of differential forms on the domain Q and the exterior derivative [15,26]. Thus,
it is only natural to pose the question about the existence of a right inverse for the exterior derivative or, in
the language of differential forms, to find conditions that guarantee that a closed form is exact. An explicit
solution to this problem is presented in [26] and it uses, once again, a path integral for its definition. As the
classical theory is only concerned with differential forms with at least continuous coefficients, integrals over
paths are meaningful. However, if the differential form has nonsmooth coefficients this construction is not
valid anymore. To the best of our knowledge, a regularized version of the solution in [26] was first presented
in [25], see also [32, Appendix]. It is also shown [25, Proposition 4.1] that, if Q is convex and u € L?(Q, AY),
with £ € {1,...,n}, is such that du = 0, then there is v € H(Q, A*~!) such that

dv = u, vl L2(0,ae-1) + diam(Q)[[Vv| 2 ae-1)n < Cp($2) diam(Q)[[ul[ L2 (q,a%),

where the constant C' is only dimension dependent and p(f2) is a measure of flatness of the domain, and it
is defined as

IVl Lo (,r™)

w(9) = diam(Q)" ! inf {
||80||L1(Q)

;@6030(9)}.

From this a Poincaré—Sobolev inequality is obtained [25, Corollary 4.2]. We refer the reader to [14,5,23,2]
for further estimates for this operator.

A remarkable property of the operator constructed by Bogovskii is the fact that the vector field v has a
vanishing trace. In fact, in the case of a domain that is star shaped with respect to a ball, the value of v at
a point depends only on the convex hull of the point and the ball. Therefore, v is supported in Q. This local
property is rather unusual for integral operators, and it does not hold for the operators constructed in [25].
In [31] it was observed that by taking adjoints the locality is recovered. By conjugating with the Hodge star
operator the authors were able to construct, for every ¢ € {1,...,n}, two integral operators that preserve
the locality properties and they proceeded to show several mapping properties for them. Further mapping
properties of these operators were investigated by Costabel and McIntosh [12]. In particular, they prove
that these operators are bounded in various Sobolev norms when the domain is star shaped with respect
to a ball. However, they do not track how the constants explicitly depend on the geometry of the domain.
We call these operators the Bogovskii-type and Poincaré-type integral operators, and it is our goal here to
study the dependence of the continuity constants of these operators on some geometric characteristics of
the domain.
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On the other hand Durdn, in [16], gives explicit bounds for the constant for the Bogovskil operator in
the H!'-norm. These estimates improve on those given by Galdi [21]. We will adopt the ideas of [16], where
the operator from [8,7] is considered, to both operators and the whole range of orders for differential forms.
We must immediately mention that, since this technique heavily uses properties of the Fourier transform,
all of the results that we obtain are for L?-based spaces. Bounds for the Bogovskii-type and Poincaré-type
integral operators are needed in finite element methods (FEM); see for example [33,20,11,30,6,19,9]. For
simple geometries arising in FEM like a simplex one can prove the estimates by mapping to a reference
simplex. However, for more complicated geometries arising in FEM (like curved elements or a patch of
simplices) it might be useful to have results like the ones described in this paper.

Our presentation is organized as follows: In Section 2 we provide preliminaries. In Section 3 we focus on
the Poincaré-type operator. We mainly focus on H'-estimates but we also show how to get a bound for the
constant for H2-norm. In the following section we obtain bounds for the Bogovskii-type operator. Finally,
in Section 5 we use the results from the previous sections to give bounds for the constants if one has a chain
of star shaped domains.

2. Notation and preliminaries

Let us begin by presenting the notation that we will follow, together with some preliminary facts that
shall be repeatedly used during the course of our presentation. During the course of our discussion n € N
will indicate the spatial dimension. 2 C R"™ indicates a bounded domain with at least Lipschitz boundary.
If we require additional conditions on €2 these will be indicated explicitly. For any bounded, measurable,
domain F C R™ we will indicate by diam(F) its diameter and by |E| its Lebesgue measure. We will follow
standard notation and definitions for real valued smoothness spaces over 2. We will make use of the Fourier
transform and we refer the reader to [24, Section 2.2.4] for relevant results.

By C' we will indicate a nonessential constant whose value may change from line to line. If we wish
to indicate explicitly that this constant depends on certain parameters, say «, 3,7y, we denote this by
C(a, B,7). By nonessential in this work we will mean that the constant does not depend on  or its
geometric characteristics.

Let D C R™ be a bounded domain that is star shaped with respect to a ball B C D. By this we mean
that every for every y € D the convex hull of BU{y} is contained in D. It is known that [10, Lemma 3.2.4]
every bounded Lipschitz domain can be represented as a finite union of domains that are star shaped with
respect to a ball. In addition, it can be shown that there is 6 € C5°(B) such that

C(n,a) C(n, a)
O(x)dx =1 00 < ———— 0| p<(p) < ————"——. 1
[ @ =1, 10%6l0) < Tl 100 < o )
2.1. Differential forms on domains
For ¢ € {0,...,n} we denote by A’ the vector space of exterior ¢-forms, that is the space of skew—

symmetric ¢-linear functions on (R™). In this notation A° = R, and A' is the dual of R™. For wy € A* and
wi € AF their exterior product is wy Awy € A%, We recall that wy Awy = (—1)*wi Awy. Let {e;}7, C R®
be the canonical basis, and {e’}"_; C Al its dual basis, then any w, € A? can be uniquely represented by

w = E wrel,
I

where wy € R, the sum runs over all ordered ¢-tuples of indices: I = (iy,...,i,) C N/ 1<i; <ip <...<
i¢ < n, and

el =et AL Ne™.
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Whenever [ is such an ordered ¢~tuple of indices we will denote, for m € {1,...,¢}, I, = (T1y s fm—1y bmt1,
...,ig) € N*~1 that is we suppress the index tagged by m. Finally, to describe one result we shall need to
make use of the Hodge star operator . For £ € {0,...,n} this is a mapping x : A* — A"~* defined by

I I

where I¢ = {1,...,n}\ I, and o(I) = 0 if I U I° forms an even permutation, and o(I) = 1 otherwise. Notice
that this induces an inner product on A*

(w,v)e* A...Ae" =u A, |ul* = (u,u) € R.

Throughout our work we will be concerned with differential /~forms on 2, that is functions on €2 that
have values in A’. For p € [1,00] we denote by LP(2, A?) the space of differential /~forms with components
belonging (in some coordinate system) to LP(€2). A similar, and self-explanatory, notation will be used
for other spaces of differential forms. If w is a differential /~form on 2, that is differentiable at x € €Q, its
derivative is

Duw(z) : R™ — AL
More specifically, for h € R™, we have the definition

Du(z)h = lim 2 ) —w(@)
t—0 t

where the limit is taken in A*. The exterior derivative dw(z) is an (¢ + 1)-form defined by

£+1

dw(sc; 517 s 7£€+1) = Z(_l)i_l [Dw(x){z] (517 ce 7%1’7 ce 7£Z+1)7
i=1
where, for i € {1,...,£+4 1}, &, € R™. The coordinate functions 1, ..., x, are considered differential forms

of degree zero. The one forms { dz;}?"_; are constant functions from € into A!
dz;(z) = €'
Thus, every u € LP(2, A*) can be uniquely represented as

u(z) = Zu;(x) dzg, ur € LP(Q),
I

where dz; and the set of indices I have the same meaning as before. For k € Ny and u € H"“(Q, Ae) we will
set

HU”QL?(Q,A@) = Z ||UIH%2(Q)7 |u|ilk(Q,A4) = Z |U1|i1k(9)-
I I

We define, as usual, H¥(Q, A%) to be the closure of the space C§°(Q2, A?) in the norm of H* (£, AY).
Let £ € {0,...,n—1}. For a smooth differential form u € C*(£, A*) we shall also need to define the trace
troq u. This can be done by invoking the inclusion i : 9Q — Q and its pullback

trogou = ify.
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An important feature of this mapping is that, if £ = n — 1, we have Stokes theorem [28, Proposition 16.10]:

/ tro0 4 = / du. (2)

o0 Q

This, in conjunction with Leibniz rule, yields that for every u € C1(Q, A?) and all w € C1(Q, A"~¢~1)

/du/\w:(—l)e_l/u/\ dw—l—/tragu/\tragw,
Q

Q o2

which is sometimes called integration by parts.

As it is customary, see for example [4, page 19], we extend this definition by continuity. In other words,
every u € L?(Q, AY) with du € L?(Q, A*t!) defines a continuous linear functional, which we call traq u, on
HY(Q,A" 1) via

(troq u, w) :/du/\w—l—(—l)e/u/\ dw.
Q Q

Finally, although this can be done more generally, we only define the interior product (contraction),
denoted by J, between a one—form and an /-differential form. Thus, if z € A ¥ R" and u =Y, usdzs €
LY (9, AY), then

‘
zau(x) = Zu;(az) Z ()™ 1z dz; € LY(Q,AY).

I m=1

2.2. The Bogouvskii and reqularized Poincaré integral operators

Let us now present the main objects that we are concerned with. From now on, we let § € C§°(R™) be
supported on a ball B and satisfy (1). For £ € {0,...,n} we define the kernel Gy by

Glwy) = [ (6= 17400y + e~ ) . 3)

The main objects of our concern in this work are the operators

Bru(e) = [ Gle.9)(a — y)uly) dy, ()
Pru(e) = [ Gumsia(y: )@ — ) u(s) . 5)
which we will call Bogovskii-type and Poincaré-type operators, respectively. Here £ € {1,...,n} and, u is

an {—differential form. One of the main results, adapted to our needs, of [12] is the following.

Theorem 1 (continuity). Let 2 be a bounded domain that is star shaped with respect to a ball containing
suppf, and £ € {1,...,n}.

(1) The operator By, defined in (4), defines a bounded linear operator on L?(2, AY). In addition, for k € Ny,
we have

HBKUHHSH(Q,AZ—U < OBz,k”UHH(’;(Q,AZy
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Finally, if u € HE(Q, AY) is such that du = 0, with traqu =0 if k =0 and fQ u=0 i { =n, then
u = ngu.

(2) The operator Py, defined in (5), defines a bounded linear operator on L?(2, A%). In addition, for k € Ny,
we have

[Pevll rr1o,ae-1) < Cp kllull e a)-
Finally, if u € H*(Q, AY) is such that du = 0, then
u = dPyu.
Our main purpose in this work is to estimate the continuity constants, (s, 1 and Cp, 1, in this result.
Remark 2 (continuity). We must remark that a priori, the operators (4) and (5) are singular integral oper-
ators, and so care must be taken when manipulating them. However, one of the consequences of Theorem 1

is that these are bounded operators. For this reason, during the course of our estimates, we will change
orders of integration and subdivide domains of integration with impunity.

3. The Poincaré-type operators
Let us begin by providing an estimate on the continuity constant for the Poincaré—type operators. From
now on, we will assume that our domain 2 is star shaped with respect to a ball B.

We begin by closely examining the operator. The change of variables s = (t — 1)/t allows us to rewrite
the kernel G,,_¢41, defined in (3), as

(t _ 1)n7(n7€+1)tn7€+1719(1, + t(y _ :L')) dt

Gn—2+1 (ya .T) =

(t— 1) 0(x + t(y —x)) dt

Il
S "t g

Therefore,

1
— - ds
. _ [ y—x\ -y
ou(x) /s /0 (a: + s ) 1 s Ju(y) dy—(l —5
0

so that, if uw(z) =Y, ur(x)day, then

¢ 1
_ _1ym—1 -1 Y=\ Tm — Ym ds A
Peu() =3 3 (1) /S /9($+1s> 1—s W<y)dy(175)ndxlm'
0

I m=1
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3.1. First order estimates

The computations presented above show that, to accomplish our goals, it suffices to consider, for m €
{1,...,n} and f € L?(R"™) such that supp f C Q, the operator

m — Ym d
e /f o (o B2T) T gy ()
We, first of all, observe that P, f(x) = ., P{ f(z) — P f(z) where, for k € N,
ds
PEf(a) / o (a4 420) s v 7)

with

As a consequence,
0;Puf(x) = 8;m Py f(x) + 2n0; Pl f(z) + 0; P3 f (). (8)

Thus, for k € N, we need to estimate two different types of operators:

s -t [ [0 (15 o e
risir - [ [0 (4
0

We consider each one separately.

3.1.1. Bound on Pg
We split the integral that defines Pg and set

Pt // oo (e 0 wa S

PEY f(x) = lim PRV f(x),
eT1 ’

where

R = // [#70s o (e 420) | s an

Let us now estimate Pg v f- We will achieve this via the Fourier transform.
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Lemma 3 (Fourier transform). Let f € L*(R™) with supp f C Q. The Fourier transform of PY f is

J%U\f(é):(71)"2771@‘/skflf(g/s)q;((sfl)g/s)g'
/2

1

Proof. Taking the Fourier transform we get

o € _ , d
Blro= [ [o [o (x i H) F@) dye™ e da e

1/2
Integration by parts shows that

€

P/g-g\f(f) =27Ti€j/3k—1/f(y)/¢ <x—|— ?:i) €—2mg.xdxdy(1i1788)n.
1/2

y—x

The change of variables z = x + =

in the innermost integral shows that

€

P(’I)f:sUf(f) _ 27Ti§j(—1)n / Sk—l—n/f(y>e—27ri(§/s)'y dy/¢(z)e—2ﬂ-i((s—1)§/s)~z dzds

1/2

= (1emig; [ e/ - e/

1/2

Letting € 1 1 the result follows. O

The following result is similar to [16, Lemma 2.3], but we provide a proof for completeness. To state it,
and for future reference, we set the following notation. If p > 0 and ¢ : R®™ — R, then we define

Clg,p) = p~ @l ey + P05l L1 (R (9)

Lemma 4 (auziliary estimate). Let ¢ € C§°(B), where B is a ball of radius p, then

0
25| / 1(t6)| dt < C(6, p).

Proof. We write

0 0 _#\Eﬂ
25| / 1B(t€)| dt = 2ml¢;| / 1(€)]| dt + 2nl¢;| / (t€)|dt = T + 1T,
J e J

and estimate each term separately. We have

0
I < 2mlé; |19~ / at = p |l sy < o~ 6l s

R
27pl€5]
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and

_ 1
2mplE 5]

o 1
11 = 27 €2)| . / g 4 < 1530l
J

— 00

where, in both estimates, we used the Hausdorff-Young inequality [24, Proposition 2.2.16]. To conclude,
collect both estimates. O

With these two results at hand we can finally bound PE’; U f.

Proposition 5 (bound on Pg’U), Let Q be star shaped with respect to a ball B of radius p, ¢ € C3°(B). Then,
for every f € L*(R™) with supp f C Q we have that

IBEY fll 2@y < 27D72C(0, )1 | 2(s0-

L —

Proof. Applying the Cauchy—Schwarz inequality to Pg U f(€), which was obtained in Lemma 3, immediately
yields that

|P’“U O <IxII,

1
$<5—1£> E, II:27T|§7‘/82(1€—1)
s s™

1/2 1/2

I =2rlg;

as(s

)| iferr .

The change of variables ¢ = (s — 1)/s and Lemma 4 imply that

1
I =2r[g;| / ‘55 (S
1/2

Integration in £ then reveals that

1
[T s @R a < 2o [ 5200 [omle |]¢(

15)]——%@/ )"21d(16) dt < 2 2C p).

L) i€ ae s

1/2
1
—2"2C(4,p / /WW s—l)z)’|f(z)|2dzds
72
=2""2C(¢,p /|f 27r|zj|/ 2h= 1 l)z)‘ ds | dz
1/2
< 2"72C(¢,p ”fHLZ(]R“

where we used Lemma 4 in the last step. Conclude using Plancherel’s identity [24, Theorem 2.2.14(4)]. O
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We will now estimate the term Pg Ly (x), which we recall it reads

PR f(2) = ://2Sk_1 /aj {¢ (m—l— %)] f(y) dyﬁ
=— ://23’“/8]¢ (x + zi:i:) f(y) dy(l_dss)nﬂ'

The bound on this term depends on k. Thus, the strategy that we will follow here is to obtain an
LP(Q)—-estimate for suitable p and interpolate it with another bound that is valid for all values of k.

Lemma 6 (L?(Q)—estimate). Let k € N. If p € [1,00] is such that p > n/(k + 1), then

2n/p—k

phoL <
1Py fllzeo) < [ —

||aj¢||L1(R”)||fHLP(Q)-

Proof. The change of variables z = x 4+ =7 shows that

1/2

Sk
i@l < [ 1 [ e+ 0= s))dsds

0

which by Minkowski’s integral inequality [24, Exercise 1.1.6] implies that

1/2 1/p

k
15 ooy < [ 1 [0 | 1o+ 1= 92)as ] dzas
0 Q

1/2 1/p

-/ —— [1osonas | [ir@paz) s
Q

0

Note that € Q and z € supp ¢ C B so that, since  is star shaped with respect to a ball Z = sx+(1—s)z €
Q. The restriction on p guarantees that the integrals converge and the result follows. O

The previous result implies an estimate for large enough k.

Corollary 7 (estimate for large k). Let k € N be such that k > (n — 2)/2, then

2n,/2—k
Pt < ||5; . :
1P fllz2e) < k—n/2—|—1|| il L) 1f [l 220

Proof. The restriction on k£ allows to apply the previous result with
p=2>—— O

If k£ is not sufficiently large, we must proceed differently.
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Proposition 8 (estimate for small k). Let k € N be such that k < (n — 2)/2, then for any p > n/(k+1) we
have that

1—
phL on—k 9 q 7 on/p=k 0. v
1Py " fllz2(o k—i-IH i | Loo (R €] m” ol L1 (R Il L2

where v = 2(’;;_21).

Proof. We begin by providing a bound in L*(2). We have that

IPE" f(a) |</ “f

m(w+—)‘|f =

so that

1/2

ds

k

f||L1(Q)|Q|/S (1 s)ntt
0

10591l Lo @y (U Fll 1 (2)-

k,
1Py fll () < 11056l oe )

2nk:
_k+1

Notice that

n
— — > 2.

kal<
tis krl=

|3

Thus, we can apply the Riesz—Thorin interpolation theorem [24, Theorem 1.3.4] between the recently ob-
tained L'(Q) estimate and the LP(2) estimate of Lemma 6 with p > n/(k + 1) > 2 to obtain

n—k

i 2 (2 o
1P ey < (G pl0blumeni®l) (2 W0idlan) I,

where

We conclude by gathering all the previous estimates.

Theorem 9 (bound on P}). Let k € N. If k > (n — 2)/2 then we have that

2n/27k:

Pk < [2(n=2/2C S
1Pl < | 60+ o

8j¢||L1<Rn)} T

If, on the other hand, k < (n — 2)/2 then, for any p > n/(k+ 1) we have that

n—

2 T on/e—k =
1Pl < [ ot (Epoisleniol) (ool ) | Ile

where
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Proof. We have
1P fllz2ce) < IP5" fliraco) + 1257 fllcac),
and apply all the estimates that we have obtained so far. O

3.1.2. Bound on Pek
We now bound the operator P(f. Once again, we define

1/2

Pyt f(z) = //s’Ho (z+%> fw) v fss)n,
v —lp// o (o4 422 S v

1/2

The bound on Pek U f is immediate

Lemma 10 (bound on ng’Uf). We have

kU 1 — gn/2-k
1Py f||L2(Q) < WHQHD(R")

fllzco)-

Proof. Notice that

PV F(e) = / / 1) [0 ( l_j)e%&“dxdyds,

and the change of variables z = x + Y=< in the innermost integral gives
g 1—s

1
Pf’Uf(f) — (_1)n / Sk—n—l/f(y)e—Qwi(f/s)~y dy/9(2)6_2‘“((8_1)5/8)% dzds
/2

1

— (1 / Sn L f(e/5)0((s — 1)€/s) ds

1/2

Minkowski’s integral inequality then shows that

1

1
. X ae\ /2
< Olumquey [ 702 ([iferRSE) T as

1/2

T T
1P e < [ /) P10((s — De/s)Pde ) ds
72

1
< He”Ll(Rn)HfHsz(Rn) /Sk*n/271d8’
1/2

where we again used Hausdorff-Young’s inequality. Conclude using Plancherel’s identity. 0O
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We now bound the term P; L f, where again we distinguish two cases.

Lemma 11 (L9-estimate). Let k € N and g € [1, 0] be such that ¢ > n/k, then

kL 2n/a=k
IBS* Flinca < =702 1o
Proof. Similar to previous computations
1/2 1/q
I ey < [ 7 [0 | [ 10+ 0= pac)  azas
0 Q
1/2 1/q

— /skflfn/Q/a(z) /|f(§c)|qdf dzds,
0 Q

and the condition on ¢ guarantees the convergence of the integrals. 0O
As a consequence, again, we obtain the desired L?(2) estimate for large k.

Corollary 12 (estimate for large k). Let k > n/2, then

n/2—k

k—n/2

1By fll 2y < 16] 2 111 22 (62 -

Proof. Set ¢ =2 > n/k in Lemma 11. O
For small values of k we, again, proceed by interpolation.

Proposition 13 (estimate for small k). Let k € N be such that k < n/2. Then, for any q > n/k we have that

1B floe < (Ztiaol e i
) r2(Q) < 2 Lo (Rn) k—n/q L1(R") L2(Q))

where 3 = Q(q;j).

Proof. First, notice that,

sl < [ i [ (o4 22 s avas
0

1/2

Gh1
< 10| 7,00 (7 ——d
<0l [ g
0
so that
oL 2n—k
1Py fllo @) < [N Ol Loo )| Fll 1 (2)-

k
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Let now ¢ > n/k > 2 and apply the Riesz—Thorin interpolation theorem to obtain

L on—k B 2n/q—k 1-p
1P ey < (ZiOlmn ) (oo IOl ) 22

where

1-p
q 2(¢—1)

+

=l

1
2
We gather all estimates in one result.

Theorem 14 (bound on PY). Let k € N. If k > n/2, then we have that
1P Fllzx@) < a0l 7Lz
“k—n/2
If, on the other hand, k < n/2, then for any ¢ > n/k > 2 we have that

i 1_ 9%k on—k Bl o2k 1-8
155 fllL2(e) < WHHHU(R”) + (= 10l e ) mHQHLI(R") [ fllz2)

with 8 = ng;j).

Proof. One only needs to gather all the estimates that we have obtained so far. The only point worth noting
is that, in the case k > n/2, the constant in the estimate turns out to be

1— 2n/2—k n/2—k

———— 10|l rny + ————= 10| L1 (R -
k—n/2 101l (R)+k_n/2|| Il ®ny. O

All these preparatory estimates allow us to obtain a bound on the operators Pf , for 1 = 1,2, that comprise
the components of the Poincaré—type operator Py.

Corollary 15 (bound on P{). If { € N and % < { < n we have

1P{ fllz2) < Cn, Ol fllz2 - (10)

On the other hand, if { € N and 1 <1 < 5 we have

n—2¢0 n
|Q‘ 2(n—20) |Q‘ 2(n—20)

Proof. In the case % < £ <n we use the first case of Theorem 14, to obtain

|1P{ fll L2 < C(n, L)

||P1£f|\L2(Q) < 1011wy | fll2 = C(n, O fll 2 )-

_
t—n/2

This shows (10). In the case, 1 < /¢ < % we use the second case of Theorem 14 to obtain

p anf B 2n/q7€ 1-5
1P fliiey < (€00 + (Z1l0lim@n ) (Fomrelflloen ) | Iflzz
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with ¢ > n/f and 8 = Using that |0/ ®n) < C(n)/|B| we get

2(q 1)
IP{ fllz20) < DIz,

where

2n—éc(n) B on/q—t 1-8 [e] B
p=cwo+ () (7n) ()
Let us write now

_a=2 1 LN ey roe
6_2((]—1)_2<1 q—l)_2<1 n—€>+2<n—€ q—1>'

We choose ¢ = n/l + e with

CA? 2

- - A=ni-1
T—c4 g (/1B /

We assume that |Q|/|B] is sufficiently large so that 1 —CA > 1/2 which will imply that 0 < ¢ < A. We then
see that

1 ( e 1 ) B 1
2\n—t q-1) log(|/|B])
Consequently,

n—20

D<C(n0)+e (2"‘;C<n)>’3 <£2_/;—/2> 1-6 (%> =1

With these choices, we get that

, Jq = e S e 2 A2
M e T+ AT T+ A
Moreover,
1 = q/2 1) = n + el < n
TUI T T o T 1 2¢0 = 2(n—0)
Hence,
21\ FF ([ T
D < C(n,?) 1+< log )
| B ®1B|

This proves (11). O

Corollary 16 (bound on 9;Pf). If £ € N and 52 < { < n we have

R
R|10; P fllz20) + 10 P5 fllr2@) < C(n7£);||f“L2(Q)- (12)



16 J. Guzmdn, A.J. Salgado / J. Math. Anal. Appl. 502 (2021) 125246

On the other hand, if ¢ € N and 1 < { < ”T*Q we have

R ‘Q| pty |Q| Pl oy )
R|0; P{ f|lz20) + 10;Ps fll 2y < C(n, 4) 1+ log I fll2c)-  (13)

|B] ®1B]
Proof. If %52 < ¢ < n we use the first case of Theorem 9 to get
. 2)/2 2n/2—€
10; Py fllL2(0) < {2(”_ 2C (¢, p) + m”@%”umw] [ fllz2 (0

< C(n,0) {C(qﬁl,p) - ﬂ [FAIZIGE

where we used that ¢; = 6 and (1). Using (1) again yields

C(n
b1 p) = <om;>wwmmﬂ+pzﬂmpmw<;), (14)

and as a consequence we finally get

Cn, )R

R||0; P f|l20) < £l 2

Similarly,

n/2—¢
{—n/2+1
< C(n, ) [Cea, p) + 10502l L1 ®my] 1 fllL202)-

10; P fllz2) < |20 272C(ha, p) + 19id2llLr®ny | 1 fllz2(0)

Using that ¢o(2) = 20(2), we can easily show that C(¢2, p) + [|0;h2||L1rn) < C(n). Consequently,

10; P fllz2 0y < C(n, 0| £l 220

This proves (12).
If1<s< "7_2 then by Theorem 9 we have

10;P{ fllz2(0y < DI fll 2o,
with

(n—2)/2 2nt T onrt o
D=2 Clo1,p) + <€+ 719501l ) |Q|) (m”aﬂblHLl(R")) :

Here p >n/({+ 1), and v = Using (14) and (1) this reduces to

pl)

1

on—¢ v on/p—L - |Q‘ el
14 ik
(/) (F) ()

SR RN S W R i S A G
773 p—1)" 2 n—(+1)) 2\n-((+1) p-1)°

D< C(n,?)

We write
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We choose p =n/(¢ + 1) + ¢ with

cA? 2 1

‘Tioca ~oe(UIB)T AT s o1

We assume that |€2|/|B] is sufficiently large so that 1 —CA > 1/2 which will imply that 0 < ¢ < A. We then
see that

1 ( 41 1 ) B 1
2\n—(+1) p—1) log(|Q/|B])’
Consequently,

n—2(L+1)

R ( ‘Q| ) 2(n—€—1)
Bl

1—

n—0\ 7 n/p—~
D<cmol+%z )( 2 )

P {+1 {—n/p+1
We see that these choices yield

(0 +1)% (0+1)2%€ (€ +1)2A2
— = > > .
= e 2 nr @+ A = v (i DA

Moreover,

n+ell+1) n
m—(+1)+2(l+1) ~ 2(n—(L+1))

l-y=0p-1/2p=3

As a consequence,

on/p—t N\ 'Y Q] \ T==1
s < C(n,0) (log =2 .
(o) =cwn (e pz)

Thus,

n—2(£+1

(e+1) n
D < 1+ — log — ,
p |B] |B]

which shows that
n—2(£+1)

( n
R |Q| 2(n—€—1) |Q| 2(n—£€—1)
R||0; Pf £l 12y < C(n, )= 1+(—> (log—

Similarly, we can show that

n—2(£

(e+1) n
Q| 2(n—2—1) |Q| 2(n—2—1)
Pl iz < 4 (4 log -

This proves (13). O
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8.1.3. The final estimate
All the preliminary estimates of the previous section make obtaining a first order estimate for P, almost
immediate.

Theorem 17 (bound on Py). Let Q be a bounded domain that is star shaped with respect to a ball B. Set
R = diam(Q2), and p = diam(B). Then, for £ € {1,...,n}, the operator P;, defined in (6), satisfies

R
|Peflm(a) < C(”,e);ﬁHfHLZ(Q),
where C(n,£) is a constant that only depends on n and ¢ and k = (2, B, R, p) is such that,

1. If 20 > n, then

2. If 20 =n—1 or 20 =n, then

(|Q|>(l m)

B B

K=\ = 0g T .
B B

Proof. From (8) we have that, for any j € {1,...,n},

3. If 20 <n —2, then

10, Pefllz20) < 1PLfllzz0) + RIO;PLf |l 12(0) + 10;P2 [l 2 (0)-
Then, the result follows from Corollaries 15 and 16. O

The most important consequence of this estimate is one of the main results in this work. Namely, an
estimate on Cp, 1.

Corollary 18 (estimate on Cp, 1). Let Q be a bounded domain that is star shaped with respect to a ball B.
Set R = diam(Q)), and p = diam(B). Then, for £ € {1,...,n}, the operator Py, defined in (5) satisfies

R
|P[u|H1(QwA271) < C(n, K);HHUHL%Q,A‘Z%
where C(n,f) is a constant that only depends on n and ¢ and k = k(§2, B, R, p) is as in Theorem 17.
Proof. It suffices to apply the estimate of Theorem 17 to each one of the components of Pyu. O

Due to its importance in applications, we specialize Corollary 18 to n = 3 and closed forms. We state it
in the language of vector calculus.

Corollary 19 (n = 3). Let Q be a bounded domain that is star shaped with respect to a ball B. Set R =
diam(Q?), and p = diam(DB).
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1. Let v € L*(2,R3) be an irrotational vector field, i.e.,
V xv=0.

There is p € HY(Q) such that

1| o1\
Vo =v, IVellLzrsy < C log +—; 13| VIlL2(,r3)

where the constant C' is independent of v, 1, and B.
2. Let w € L?(2,R3) be a solenoidal vector field, i.e.,

divw = 0.

There is v € HY(Q,R3) such that
R
VXv=w, ||VV||L2(Q,R3><3) < C;HWHL%Q,R?’)y

where the constant C' is independent of w, Q, and B.
3. Let f € L*(Q), then there is v € H*(Q,R?) such that

. R
divv = f, [V VL2 raxs) < C;”f”L?(Q)v
where the constant C' is independent of w, €, and B.

8.2. Second order estimates

Let us now describe how our techniques can be used to estimate the continuity constant in the case
that u € H*(Q, A*) with k € N. The starting point is again the operator P, defined in (6). The change of
variables z = z + (y — z)/(1 — s) reveals (compare with formula (3.9) of [12])

1

Pf(x /9 —zm)/sz_lf(sx—i—(l — 8)z)dsdz,

0

and, therefore, if @ € N is a multiindex of length &

9P, f(z) = ()av . /9 /E_la,;"_”[f(sx—i—(l—s)z)]dsdz

v<

f/zme(z)/sfflag[f(sﬁ (1—5)z)]dsdz

0

= ( )aV (an) [ 002) / SO g0 f (s 4 (1 5)z) dsdz
0

v<a

1

- / 2mf(2) / SR sz 4 (1 — s)2) dsdz,

0
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where the sum is over all multiindices v € N™ such that v; < ; for all i € {1,...,n} and

Let us now introduce the change of variables y = sz 4+ (1 — $)z in each integral to obtain

orisa) = 3 (1) wn)

v<a

1

_ 1tk Y=\ Tm — Ym an ds
/3 /0<x+1_8) 1, 0 f(y)dyi(l_s)n
0

_ @ 0" (wm) P07 fl(2) + PO £ (@),

v<a

{=1+]a—v| Y=\ ga-—v _ds
s /9<x+1 S)@ f(y)dy(l_s)n

o—__

where the operators PF, for i = 1,2 and k € N are defined in (7). Thus, in much similarity to (8), we have
that

0;0°Pof () = 6, PLTH[0° f](2) + (a) 0" ()05 PL 102 f ()
0<rv<a

(15)
+0;Py (0% fl(2).

The bounds on each one of these operators were already obtained in Sections 3.1.1 and 3.1.2. Unfortu-
nately, since they heavily depend on the order of the operator, there is no clear way that one can explicitly
estimate the middle term in this last expression. For this reason, we will content ourselves with a second
order estimate in the case of sufficiently large £. The remaining cases can be treated with a detailed analysis
similar to that of Section 3.1.3. We skip this for brevity.

Theorem 20 (estimate on Cp, ). Let 2 be a bounded domain that is star shaped with respect to a ball B.
Set R = diam(Q?), and p = diam(B). Then, for ¢ € {1,...,n}, such that 2¢ > n the operator Py, defined in
(5), satisfies

1
[Peu|g2(,ae-1) < C(n7£);||u||Hl(Q,Aé),
where C(n,£) is a constant that only depends on n and £.

Proof. Clearly, it suffices to estimate each one of the terms in (15) for k = 1 and multiindices v such that
| — v| = 0. Appealing to Theorems 9 and 14 with k = £ + 1 then we get that

[Peu|pr2(q,ae-1) < (C1 + Co + Cs)||ull g1(a,a0),
with

1

Cl:£+1—n/2’
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and, for ¢ = 2,3,

n/2—0—1

— O (p) = 2(n—2)/2 i
Ci=Cil0) =2 D12 p) + 5

10,9l 1 (R

where ¢(z) = z,,,0(z) for i = 2 and ¢(z) = 0(z) for ¢ = 3. Estimates (14) and properties of § show that

CQSC(TL), CgS@
1%

This is the claimed estimate. O
4. The Bogovskii-type operators

In this section we obtain bounds on the Bogovskii-type operator defined in (4). To keep the presentation
within reasonable limits, many of the computations will be skipped as they repeat much of what we have

already accomplished for the Poincaré—type operator in previous sections.
A simple change of variables allows us to write

1
— - d
Bou(x /1—3"6/ (y—i—u)uJu(y)d —S,
s S sn
0

so that, if uw(z) = >, ur(x)day, then

0 1
m T—=Y\ Tm — Ym ds
e = 3 Y (-0m = o (e ) T )y
0

I m=1

The computations presented above show that, to accomplish our goals, it suffices to consider, for m €
{1,...,n} and f € L?(R™) such that supp f C Q the operator

1
Qef(z / / <y+ x;y> xm;ymf(y) dyg- (16)
0

We, first of all, observe that Q¢ f(z) = —Q%g(z) + Q5f(z) where, g(y) = yf(y) and for k € N,

1

Ja-sr o

0

with

As a consequence,

0;Quf () = —0;Q1g(x) + 9;Q5f (x), (18)
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where g(y) = yf(y). Thus, for k£ € N we need to estimate the following type of operator:

Qhe(a) = lim / = [0y |o (v 222 ot any,

We write Q5v(z) = Qg’Lv(x) + Qg’Uv(x) where

£,L . ¢,L
QG ’U(x) = 1513)1 Q37€U<$),

and

o= oo fo oo 52) o

As in the case of the Poincaré operator, we estimate each one of these separately. It is interesting to note
that the techniques used here are, in a sense, dual to those needed in previous section.

L
4.1. Bound for Q4
We begin by bounding Qg’L. This will be accomplished via the Fourier transform.

Lemma 21 (Fourier transform). We have that

QF(e) = 2migy [ (s = )" Bs€)0((1 - 5)e) ds. (19)
0

Proof. We take the Fourier transform:

/// s —1)"19; [¢( yﬂ v(y)e‘%i“j—j dy dz. (20)

We integrate by parts to obtain

Making the change of variables z = y + *=¥ we get

Q5Eoe) = 2rigy [(s =1 [[ epe e+ day s
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Thus,
Q5 Lv(€) =2mig;

(s — 1) 4d(s6) / o(y)e2m0-E gy s

=2mi; [ (s — 1" H(s€)d((1 — 8)¢) ds.

™ m
Nl =

The identity (19) follows by taking the limit ¢ L 0. O

Lemma 22 (estimate on Qg’L), It holds that

1Q5 vl r2(0) < cns1-20C(0, )|Vl L2 () (21)

2

. 1
where ¢ = maxo<i<1 I

Proof. By using (19), the Cauchy—Schwarz inequality, and Lemma 4 we get

QL6 <27C(, p)le| / 11— 52001 3(s8) [B((1 - 5)6)|? ds.
0

Hence, we obtain

Using the change of variables 7 = (1 — s)&, we see that

12
oL
Qa v

L2(R)

<20C(0.) [ 161 [ 1= 5200 15(s8) [0((1 ~ )P ds dg
0

2

HQQ% 52 ds dn.

)

1
2
<2nC(o,p) [ [ 11— sPin0n g 03( il
R™) / 1-s

L2(

s
1-s

Another change of variables t = gives

1
2
1 ~ V2
<2nco) [ [ gl [@m)| [Cn)? dr .
L2(R") J Ll !

L
ché v

Thus, applying (20) and Lemma 4, we get

The result follows from Plancherel’s theorem. O

2

—

0L
Qa v

~12
< C?L+1_21C(¢7p)2 HU||L2(R") :
L2(R™)
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U
4.2. Bound for Qg
We now bound Qg’U. This is the operator where we need to argue differently depending on the size of £.

Lemma 23 (LP(Q)—-estimate). Consider p > 1 such that n/p — €+ 1> 0. If v € LP(R™) and is supported in
Q, then

oU 2t-n/p
1Qs vllLe(o) < m”ajwhl(ﬂ)uvﬂmm)- (22)
Moreover, assuming that m > 0 then
1Q5" vl e () < 2192 110 ¢ll v (0 10l] Lo - (23)
Proof. We first prove (22). We can write
1
Q5w = [=9r [ 230 (v T7Y) vtmran (24)
1/2

We do the change of variables z = y + £=¥ then we get

1

If we raise to power p, integrate, and use the Minkowski’s inequality for integrals we get

p 1/p
HQa V|| Lr () <2//|1—s| 10,6(2) (/‘ ( ) dx) dsdz.

SZ—T
1—s

/p
105 oo <2//|1 s ma,000) [ 1oapaz)  ass

) ‘ dsdz. (25)

Then, applying the change of variables z =

we get

Hence, we get

1
105l 2oy <2loll oy / / 11— 8|5 510;0(2)| ds dz
1

—2[olo(o 056l 1cs) [ 1ol s
1
2
2@777,/1)

:mHU||LP(Q)||3J¢HL1(B)~
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The result (22) follows by applying the triangle inequality.
Inequality (23) easily follows from (24) and using that fl ls ,ﬂrl ds <2t o

We can now apply the Riesz—Thorin interpolation theorem in conjunction with Lemma 23 to obtain an
L?-bound. Again we must distinguish two cases depending on the size of £.

Corollary 24 (estimate for Qg’U). Letv e L*(Q). If n/2+ 1> (, then

ol— n/2

@5

LRI ' 26
L(Q) n/2 €+1” il o) vl 2 o) (26)

On the other hand, if n/2 +1 < £, then for every p < ;%7 < 2 it holds

9l—n/p 5 2
1Q5 vl L2() < <m||aj¢||u(m) (2£‘Q|Haj¢”L°°(Q)) *lollzz)- (27)

‘d

Proof. We repeat the arguments that were used in the proofs of Corollary 7 and Proposition 8. For brevity
we skip the details. O

We can now prove the main result concerning the estimates on 9, Q5.
Lemma 25 (bound on 9;Q5). Let f € L*(2). If n/2+ 1 > { then
19;Q5 I 22() < C(n, )| f]l 2 (- (28)

On the other hand, if n/2 +1 < ¢, then

Q 2([141) Q (z 1)
10305 2oy < €)1+ (105 (1)) (|'B'|) I/ lage- (20)

Proof. First assume that n/2 4+ 1 > ¢ and using (21) and (26) we obtain

2Z7n/2

HanngLz(Q) < (Cn+1—2ec(¢2,/3) + n2—i+1

||6j¢2||p<m) T

Then we can easily show that C(@2, p) + [|0;||L1(0) < C(n) and so (28) holds.
Next, assume that n/2 + 1 < ¢ and using (21) and (27) we get

L (20 N e
n/p—Ll+1 B L)

Here we also used that [|0;¢2] ) < “(B"‘) and that C(¢2,p) < C(n). We write

() ()

€ where e = (7

10;Q5f | 22y < C(n,0)

and choose p = ;%7 —
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We thus have that

2(6—=1)—n 2(6—1)—n

Q‘ |Q‘ 2(0-1) ‘Q| 20=1)
25| ) < 200-p/2)¢ ( ) < C(n,?) (—
( |B| |B| |B|

Also, we notice that

1 p _p pl°g<%)
n/p—LC+1 n—pl—1) €el—-1) 20—-1)"

which allows us to estimate

(2= ) (e () =t ()™

This concludes the proof. O

We now bound the term involving 9;Q¥.

Lemma 26 (bound on 9;Q%). Let f € L*(2) and g(y) = yf(y). If n/2+1 > { then

R
10,Q19l 120) < C(nag);”f”LQ(Q)' (31)

On the other hand, if n/2 +1 < ¢, then

R Q 2([:1) Q 2(2 1)
o5 @il < €02 (14 (10g (51 (|'B|) I£lzage- (32)

Proof. First assume that n/2 4+ 1 > ¢ and using (21) and (26) we obtain

2£—n/2

o3 Qhalen < (enin-aeClon, o) + -3y

||aj¢1||p<m) gl e

Then we can easily show that C(¢1,p) + (001 10) < Ci)")
lgllz2() < R fllL2(q)- This proves (31).
Next, assume that n/2 + 1 < ¢ and using (21) and (27) we get

C(n,? ot=n/p p/2 10| 1-p/2
10,Qll 20 < <p )[H(m) (zfg) ol 2o

Here we also used that [|0;¢1]| Lo () < Plg\) 1001 Lo () < (— and that C(¢1,p) < (") . Proceeding as

we did in the proof of (29), and using that [|g||z2(q) < R||f||L2(Q) proves (32). O

and since f is supported in Q we have

We are ready to prove the main estimate regarding the components that comprise the Bogovskii-type
operator By.

Theorem 27 (bound on Q). Let Q be a bounded domain that is star shaped with respect to a ball B. Set
R = diam(Q?), and p = diam(B). Then, for £ € {1,...,n}, the operator Qg, defined in (16), satisfies
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R
|Qef (o) < C(n,f);'inHm(Q),
where C(n,?) is a constant that only depends on n and ¢, and k = k(, B, R, p) is such that,

1. If ¢ <n/2+1, then

2. If ¢t >n/2+1, then

‘Q| ([‘n. : |Q| 2(@(;1)7n
2(£—1 2(0—1
S (bg (@)) (E)

Proof. It suffices to gather the previously obtained estimates for and @Qg f and (%Qf g. O

As a consequence we obtain the second main result of this work. An estimate on the continuity constant
for the Bogovskii-type operators By.

Corollary 28 (estimate on Cg,1). Let Q be a bounded domain that is star shaped with respect to a ball B.
Set R = diam(QQ), and p = diam(B). Then, for £ € {1,...,n}, the operator By, defined in (4), satisfies

R
Beu| g1 (q,ae-1) < O(nvg);HHUHLQ(QAZ)a
where C(n,£) is a constant that only depends on n and ¢ and k = k(Q, B, R, p) is as in Theorem 27.

Once again due to its importance in applications, we specialize Corollary 28 to n = 3 and closed forms.
We also state our result in the language of vector calculus.

Corollary 29 (n = 3). Let Q be a bounded domain that is star shaped with respect to a ball B. Set R =
diam(Q), and p = diam(B).

1. Let v € L*(Q,R3) be an drrotational vector field with zero tangential trace, i.e.,
V xv=0, vxn=0.
There is p € HE(Q) such that
Vo=v.  [Velamy < O IVlimes)

where the constant C' is independent of v, 1, and B.
2. Let w € L?(2,R3) be a solenoidal vector field with zero normal trace, i.e.,

divw = 0, w-n=0.
There is v € HL(Q,R3) such that
R
VXv=w, ||Vv||L2(Q7R3X3) < C;||W||L2(Q,R3)7

where the constant C' is independent of w, €, and B.
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3. Let f € L*() be such that

then there is v € HL(Q,R3) such that

) R |Q| 1/4 |Q‘ 3/2
divv = \Y% xs) < O— [ — log — 2
i f, Vv L2 raxsy < <|B|> g 15| I1fllz2 ),

where the constant C' is independent of w, 2, and B.
Notice that, in the previous result, the third item is precisely the content of [16, Theorem 3.2].
5. A chain of star shaped domains

Let us now extend the technique to estimate the constants in our operators to more general domains.
To do so we will follow some ideas presented in [29] to decompose domains but in a much simpler setting.
Our techniques for the case of no boundary conditions were also inspired by the proof of the so—called
Mayer—Vietoris theorem as presented in [28, Theorem 15.9].

Let us begin by presenting the class of domains €2 to which our results shall apply. Essentially, we will deal
with a chain of domains over which the estimate can be extended. We will assume that 2 is a contractible
domain, such that there is N € N for which

where:

e For each i € {1,..., N} the domain €, is star shaped with respect to a ball B; C ;.

o For every i,j € {1,..., N} with |i — j| > 1 we have Q; N Q; = 0.

o Forie{l,...,N =1} let Q;11/2 = QN Qi1 # 0. Then Q145 is star shaped with respect to a ball
Biy1/2 C Qg2 B

o We have a partition of unity subject to this decomposition. In other words, there are {¢;}¥.; C C*°(9Q),
such that 0 < ¢; <1, ¢; =0in Q\ Q; and Zfilgm =1in Q.

o Finally, we impose a restriction on the way the sets can intersect, in the sense that for i € {1,..., N}
and any multiindex o € N

Ca,i
d|'04\

?

10% il oo () <

)

where d; = min{diam(£;_1/5), diam(£2;11/2)}. We comment that this last assumption is common in the
domain decomposition literature; see [37, Assumptions 3.1, 3.2].

Notice that the conditions of our decomposition guarantee that, for every x € €,
1<#{i:xzeQ} <2

where by #S we denote the cardinality of the set S.
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The estimates of Corollary 18 and 28 depend on the geometric characteristics of the domain. Specifically
on the ratio of the diameter of the domain and the ball, and the ratio of their measures. Let us denote by
Cp the constant in these estimates for a domain D. Then we set

=g
2

)

N W
DN | Ut

T{l,...,N}U{
and

Cr =max{Cq, :t €T}, (33)
Dt = max {diam(Q;) : t € T}, (34)
dr = min {diam (%) : t € T}, (35)
Cs =max{Cq, : |a| <2,i€{l,...,N —1}}. (36)

We also need to recall Poincaré’s inequality as stated, for example, in [22, equation (7.44)].
Lemma 30 (Poincaré inequality I). Lett € T, £ € {0,...,n}, v € H(Q, A?). Then we have that
llvllz2(0,) < C(n) diam () |v] g1 (q, A0,
where the constant C(n) only depends on n.

The next result is well known, and is also sometimes referred to as Poincaré’s inequality. Of importance
to us here is an estimate on the value of the constant. This result, in the language of vector fields, was
presented in [16, Section 5]. For completeness, we provide a proof.

Lemma 31 (Poincaré inequality II). Let t € T, and u € H* (S, A®) be such that th *u = 0. Then, there is
a constant Kp, such that

||UHLZ(Q“A0) < KPf, diam(Qt)|u\H1(Qt7A0).

Moreover, the constant Kp, can be bounded by

|Qt| 2(;11) |Qt‘ 2(7;121)
14 (log (24 el
+<%Q&| B ’

where the constant C' depends only on the dimension n, Ry = diam(§;) and p, = diam(By).

Kp, <cft
Pt

Proof. Since xu € L?(£;, A™) has zero average, we can deduce from Corollary 28 (with ¢ = n) the existence
of v € H} (2, A"~1) such that dv = *u and, since x is an isometry,

Q 3T
(1 (1))

with a constant C' that depends only on the dimension. Now,

nw;qu:/ﬁAﬂ_:/uAmzz/dwu

Qt t t

n—2

(1)
| By

Ry
|U|H1(Qt,A”*1) S C*
Pt

] |ull 22, ,A0) (37)

< Clulgro,,a0 vl L2 @,,am -1,
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where the constant C' depends only on the dimension. Since v € H}(Q, A"~ 1), using Lemma 30 and estimate
(37) the result follows. O

Having realized that the constants Kp, can be bound, once again, by geometric characteristics of our
domains, we set

Cp=max{Kp, :t€T}. (38)
5.1. Using the Poincaré operator
Our result about estimating the continuity constant for more general domains then reads as follows.
Interestingly, the value of the constant is independent of N. This, of course, provided the value of the
constants defined in (33)—(36) and (38) is also independent of N.
Theorem 32 (estimate on a chain: without boundary conditions). Let 0 satisfy all the previously stated

conditions, £ € {1,...,n} and u € L?(2, AY) be such that du = 0. Then, there is v € H' (2, A*~1) such that
dv = u and, moreover,

|U|H1(Q7Azf1) < C(C’]I‘,D’]I‘,d’]{‘,CS)||U||L2(Q,A£).

An upper bound for the constant in this estimate is given by

4
2 ( CrCpDy >
C(C’]I‘,D’]I‘,d’]{‘,CS)SQC’]I‘ \/1+3QCS( dx +1) , €22

1, (=1.

Proof. Let, for the time being, £ > 2. Since, by assumption, all the {Q;}Y, are star shaped with respect to
a ball, a combination of Theorem 1 and Corollary 18 yield the existence of n; € H(Q;, A°~!) such that, in
their domain of definition dn; = u, and

il 1 (0, 001y < Ot llullp2(q,,a0)-

Notice that we can add and subtract a suitable constant to 7; to conclude, via Poincaré inequality, that

17l 2,001y < CpDT|mil 10, a0-1) < CpDTCOT ||ul[12(0,,A0)-

While this provides a solution to the problem locally, the issue at hand is that, for ¢ € {1,...,N — 1},
ni, Ni+1 may not coincide on the intersection €2;; /5. Thus, we must make a local correction.
Let ¢ € {1,..., N — 1} and notice that,

d(mi —mi+1) =0 on Qiyq/a. (39)

Since by assumption §2;,,/5 is star shaped with respect to a ball, we can apply again Theorem 1 and
Corollary 18 to find w;41/2 € H*(Q41/2, A*"2) such that

dwiy12 =mi —Miv1 on Qiyq1n

and
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lwit1/2ll22(9,11 0.00-2) < CPDT|Wit1/2|H1 (044 j0.00-2)
< CpDrCrlni — niv1llLe(@,y, o.ne-1)

< QC%D%C% ”“HLZ(QiUQHl,AZy

Here we used Poincaré’s inequality twice. Set ¢9 = 0 = ¢y 41 and w_;/2 =0 = wy41/2. We then define, for
1<i<N,

vi =0 + d(@i—1wi—1y2 — Gir1wig12)  in Q.
We see that dv; = dn; = u in Q;. Moreover, in ;14/2,

Vig1 — v =M1 + d(Giwiy1/2)) — (1 — A(Pig1wit1/2))
=(niv1 — i) + d((di + diy1)wir12) = (ivr — M) + d(wig1/2) = 0.

Here we used that ¢;12 and ¢;_1 vanish on €, /5 and that ¢; + ¢;11 = 1 on ;1 /5. Consequently, we can
define v € H' (2, A*~!) by v

q, = v; for every i. We also have
dv = dv; = u.

It remains then to provide a bound on the seminorm of v. To this end,

N

VRS Sl A
i=1

N N
<2y 7:l51 0, a1y + 2 > ld(giiwi—1y — Git1Wit1/2) |7 (@ a1y
=1 =1

Since every point z € {2 belongs to at most two subsets

N N
Z |ﬂz’|§{1(szi,Affl) < 012r Z Hu“i%szi,Af) < 2012r||u||%2(9,/¢)- (40)
i=1 i=1

We also have

N N
QZ | d(dirwim1/2 — Piv1wir1y2)|F g, a1y < 82 | d(¢i+1wz‘+1/2)ﬁ{l(g,m/z,[\f—l)-
i=1 i=1

Now, on every ;1 /2,

| d(Git1wit1/2) (0, p.00-1) = |pir1 dwi1/2 + ddipr Awiyiyo HY (Quy1)0.A0 )
<|Git1(m = Nit1) [ H1(Qusr 000 1)

+ | doiv1 Awitij2lar(Q,y, 0.001),

with
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Pit1(Mi = Nit )| 51 (1 pre=1) SO — Mit 1] H1 (441 0.00-1)
+1/ /

Cs
+ %Hnl - ni+1HL2(Qi+1/2’A(71)

CpDr

<2CsCr <1 + > lull 2,000 1,00)5

and

| diy1 A wi"rl/?‘Hl(QHl/szZ*l)

S S
= o WWit1/211L2(Q441/2,A471) o Wit 1/21HY (R4 /2,47 1)
< &2 |lw I PG dy |w | Py

2CsCpD1C% (CpDry
< dr : A [l 22 @000 .40)-

Therefore, using that Ct > 1,

C1CpDr 2
| (@it 1/2Wit1/2) H1(0, ) jp0e-1) < 2CsCr (T + 1) ullL2 (0,000,400

Using, once again, that every point x € € belongs to at most two subsets
N
2
82 | d(¢i+1wi+1/2)|H1(Qi+1/2,A£—1)

i=1

CrCoD 4 N—-1
<16C%C3 (u + 1)

2
dr ; HUHLQ(QNQMLM)
CrCpD !
<610363 (C29EPE 1) ullsqo pe,
T

Gathering (40) and (41)

CrCpD *
h@mﬂgs2eﬁ+mﬁﬁ(“ugT+Q>wﬁmﬂy

which is the claimed estimate in the case ¢ > 2.

(41)

Now let us turn to the case £ = 1. In this case, (39) implies that 7; — 7,41 is a constant on €, /5 which

we denote by b;. Hence, we define constants ¢; recursively satisfying

Cit+1 = C; + bit1,

(42)

with ¢; = 0. Then we set v; = n; + ¢; on ;. We see that dv;, = dn; = uw on Q;. Moreover, v;41 — v; =
(Mit1 + Cit1) — (i + i) = 0 on Q41 /5. Therefore, we define v € H'(Q,A%) by v|g, = v; for every 4. In this

case, we have

N N
0[5 0,00 §Z Vil Fr1.(q; a0y < 22 19l %1 ;20
i=1 =1

Combining this with (40) gives the estimate in the case £ =1. O
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Remark 33 (L%-bounds). Although we only focused on an estimate for the H'-seminorm we could have also
obtained an estimate for the L?>-norm. The L? estimate in the case of £ € {2,...,n} would have followed
easily. In the case £ = 1, however, the estimate would not have been so well behaved since the constants in
(42) would have more dependence on each other. As a consequence, at least with our technique, the constant
in the L?~bound would depend linearly on N when ¢ = 1.

5.2. Using the Bogovskit operator

In this section we use the Bogovskil operator, which we estimated in Corollary 28, to prove estimates
on a chain or star shaped domains for functions that have boundary conditions. We shall only consider the
cases £ € {1,...,n — 1}. The result for £ = n was proved in [29, Corollary 3.1] in much greater generality
(e.g. LP norms and allowing the cardinality of the subdomains {€2;} in the decomposition to be countable
and having more overlap). In fact, the result £ = n is very special in the sense that the constant seems to
be worst behaved. One key difference is that in the case £ = n one has to correct forms to make them have
average zero. In contrast, in the case 1 < £ < n, one has to correct the forms to make them have vanishing
exterior derivative.

For this reason, we need to provide an additional condition to our decomposition. From the previous
assumptions we already had that ¢; vanishes on 9€; \ 9. We make this slightly stronger as follows:

o The function ¢; vanishes in a neighborhood of 9€; \ 9.
We then begin with an auxiliary result. The proof of this result is presented in Appendix B.

Lemma 34 (vanishing trace). Leti € {1,...,N—1}, L€ {l,...,n—1}, andu € LZ(QHl/g,AZ) be such that
du = 0. Define w = d(¢iy1u), then tro,., ,, w = 0.

Theorem 35 (estimate on a chain: with boundary conditions). Let Q satisfy all the previously stated con-

ditions, £ € {1,...,n — 1} and u € L*(Q,A*) be such that du = 0 and trgqu = 0. Then, there is
v € HE(Q,A*"1) such that dv = u and, moreover,

|U‘H1(Q,A@*1) < C(CTaD'H‘;dT7CS)HU||L2(Q,AL’)~

An upper bound for the constant in this estimate is given by

D2
C(CT,DT,dT,CS) < 4C7 \/2 + C%C(n)2d—%rq2r

Proof. By Lemma 34 we have that traq,,,,, d(¢it1u).

Define W; = Uj<;<i};, and let 51‘4—1 = 0 be the function that coincides with ¢;y1 in ©;1/2, equals
zero in Wi\ Q;44 /2 and equals one in Q \ W;. The additional assumption we imposed in the decomposition
guarantees that ¢;,1 € CY(Q). Then, since du = 0 in €,

/ d(piy1u) = / d(fip1u) = (troq u, dis1) = 0.
Qi1 )o Q

Hence, using Theorem 1 and Corollary 28 we obtain w;y1/5 € H} (Qi_i_l/g,AZ), such that dw;;i/2 =
d(pir1u) on Q41,9 with the estimate
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|wit1/2ll22(Qp1 000 < C() DT Wit1/2|m1 (044, 0,00
Dy
< C(n)DrCr || d(is1u)ll2(o,, 0.0e1) < CSC(”)%CT||UHL2(Qi+1/2,A"')~
We thus have

d(psu) = d(wi—1/2 — wiy1/2) in Q.
Here we used that —d(w;q1/2) = —d(¢iy1u) = d(giu) in Q;11/5. We also used that ¢; = 1 on Q;\(2;_1/2U
Qit1/2). Again, using Theorem 1 and Corollary 28 we can find v; € HE (4, A*~1) such that dv; = ¢u +
wi+1/2 — wi—l/Z; with the bound

il (;a0) < Crll@in+ wivij2 — wim1y2llL2(9,,, .00

We then define v = Zf\il v; € HY(Q, A"1) and see that

N N
dszdvi:quiu:u on 2.
i=1 i=1

Moreover,
N
|U|%11(Q,A[*1) SQZ \Uiﬁ{l(m,/\@fl)
i=1
N
<16C% Y~ (il 20, ac) + lwis1/2llt2,,, 5.00))
=1

D2
<16C3% (2 + CéC(n)Qd—gfc%) [l 20, a0
T
which gives the desired estimate. O

Appendix A. An alternative proof of Lemma 10

For diversity in our arguments let us show a direct proof of Lemma 10. The change of variables z = x+¥==

1—s
gives that
1
V@< [0 [olr(sn (1= 5] dzds,
1/2
so that
. 1/2
||P0k,UfHL2(Q) S / Skffl /G(Z) /|f(51' + (1 — S)Z)de' dzds
1/2 Q

1/2

- / k12 / () / f@2dz | dzds,
Q

1/2
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where we again used that (2 is star shaped with respect to a ball, so that if z € Q and z € suppf C B, then
Z = sz + (1 —s)z € Q. With this technique then the same estimate can be concluded.

Appendix B. Proof of Lemma 34

Intuitively it is clear that the result holds. To see this, we observe that can write ;1o = ToUT'; UT
where I'g = 0Q N 0Q; 4172, I'1 = (004172 N 0)\I'g and 'y = (095412 N OQi11)\I'o. Note that ¢;1 =1
on I'y and ¢;+1 = 0 on I'y. Thus, we have that tro0, ., s d¢;+1 = 0 in I'y UT2. We now note that, since
du = 0, we have d(¢;11u) = d¢;11 Au and as a consequence tro0, d(di1u) = tragi+1/2(d¢i+1 Au) =
troo, ,,, dgit1/Atrag, , ,, u. Here we used that the trace operator (or more generally a pullback) respects the
wedge product [28, Lemma 14.16 (b)]. Since troo,,,,, u =0 on I'g and we showed that traq,,,,, ddiy1 =0
on I't Uy, we conclude that traq,, , d(¢i+1u) = 0.

Let us now be more rigorous in our reasoning.

Proof. Notice, first of all, that since w € LQ(QiH/z,AZ) and dw = 0, the trace " s well defined.
By definition, if ¢ € H! (QiH/Q“,w—e—z)7

|(tra,,, ,, w, )| = /w/\dwz /u/\ dgiy1 A dip

Kit1/2 i+1/2

= /UA ddis1 A dip|,
Q

where we used that du =0 in €/, and $i+1 has the same meaning as in the proof of Theorem 35.
Observe now that de; 11 A dyp = —d(de;+1 A1) so that, invoking the fact that du = 0 in €, we obtain

|<trQi+1/2 w, w>| = ’(trﬂ U, d%H—l A 1/)> =0,
where in the last step we used that dq~3i+1 A€ HY(Q, A1), O
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