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MINIMIZERS FOR THE CAHN-HILLTARD ENERGY FUNCTIONAL
UNDER STRONG ANCHORING CONDITIONS*
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Abstract. We study analytically and numerically the minimizers for the Cahn—Hilliard energy
functional with a symmetric quartic double-well potential and under a strong anchoring condition
(i-e., the Dirichlet condition) on the boundary of an underlying bounded domain. We show a bifur-
cation phenomenon determined by the boundary value and a parameter that describes the thickness
of a transition layer separating two phases of an underlying system of binary mixtures. For the case
that the boundary value is exactly the average of the two pure phases, if the bifurcation parameter is
larger than or equal to a critical value, then the minimizer is unique and is exactly the homogeneous
state. Otherwise, there are exactly two symmetric minimizers. The critical bifurcation value is in-
versely proportional to the first eigenvalue of the negative Laplace operator with the zero Dirichlet
boundary condition. For a boundary value that is larger (or smaller) than that of the average of
the two pure phases, the symmetry is broken and there is only one minimizer. We also obtain the
bounds and morphological properties of the minimizers under additional assumptions on the domain.
Our analysis utilizes the notion of the Nehari manifold and connects it to the eigenvalue problem
for the negative Laplacian with the homogeneous boundary condition. We numerically minimize the
functional E by solving the gradient-flow equation of E, i.e., the Allen—Cahn equation, with the des-
ignated boundary conditions, and with random initial values. We present our numerical simulations
and discuss them in the context of our analytical results.
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1. Introduction. We consider the Cahn—Hilliard functional for the free energy
of a binary mixture [8]

(1.1) Bl :/Q S1vul + W) de, e H'(@).

Here, Q is a bounded domain in R? (d = 2 or 3) with a C? boundary, x > 0 is a
constant, and W is a double-well potential with two equal depth minima at v = u~
and u = ut, respectively, where 4~ and u™ are given distinct real numbers. We call
u~ and uT the two pure phases. To be concrete, we consider the quartic double-well
potential

(1.2) W(u) =y(u—u)?(u—ut)? (u eR),

where v > 0 is a constant. Such form of a double-well potential is also generally used
in application. Common examples include (1) W (u) = 18u?(u — 1)? with v~ = 0 and
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ut =1, where the prefactor 18 is chosen so that

/le/mdu:la

and (2) W(u) = (1/4)(u?® — 1)? with u™ = —1 and u™ = 1.

If the energy F[u] is small and the system described by the function u is not in a
single, pure phase, then it decomposes the system region 2 into mainly two regions
or phases {u = u~} and {u = u™}, respectively. The parameter x > 0, if it is small,
then characterizes the width of the transition layer where u changes from u =~ u~
to u &~ ut. To be more precise, the thickness of the transition layer is O(y/k) as
0 < k < 1. Indeed, it is known that as k — 0 the functional £ =: E, converges in
some sense to the area functional (with a possible multiplicity constant); cf. [36, 39].
Recently, Dai, Li, and Lu [16] proved that, as k — 0, the first variation of the Cahn—
Hilliard functional converges to the mean curvature which is the first variation of the
area functional.

The Cahn—Hilliard functional, and the related Cahn—Hilliard equation and Allen—
Cahn equation that govern the dynamics of relaxing the Cahn-Hilliard energy with
respect to the H~1(2) and L?(£2) inner product, respectively, have been useful mod-
eling tools to understand many physical properties of an underlying system of binary
mixtures or other two-phase material. Such properties include the phase separation,
coarsening dynamics, and pattern formation. An important issue arising from such
modeling of the system confined spatially in a region {2 is the treatment of the in-
teraction of the mixture with the boundary 02. Mathematically, this corresponds
to boundary conditions on u. A common choice of such a boundary condition is the
Neumann condition in which 0,u = Vu-n is prescribed on the boundary 9€), where n
is the exterior unit normal at the boundary 092 (cf., e.g., [3, 1, 2, 7, 19, 26, 32, 38, 40]).
Enforcing the homogeneous (i.e., zero) Neumann condition is equivalent to requiring
Vu to be perpendicular to the normal vector n of 0€2. Since Vu is perpendicular to the
level surfaces of u, we see that a necessary condition resulting from the zero Neumann
condition is that, near the boundary 052, the level surfaces of u are perpendicular to
0f). Thus the geometric shape of 9 affects u. Periodic boundary conditions are also
commonly used in the related studies, particularly computational studies (cf., e.g.,
[9, 11, 14, 15, 23, 28, 30, 31, 12, 41)]).

In this work, we consider the Dirichlet boundary condition in which the value of
u at each point of the boundary 9 is prescribed (or the trace of u on the boundary
0N is prescribed). Mathematically this means we have a prescribed function g defined
on Jf2, and u needs to match g on the boundary. The Dirichlet boundary condition
u = g on 0f) requires a pointwise match, which is the strongest possible match.
Thus we call it the strong anchoring condition. There are other ways to measure
how well u matches g on the boundary. For instance, we may require the L?(Q)-
norm |lu — g||z2(a0) to be sufficiently small, say smaller than a prescribed tolerance.
We call such matches weak anchoring conditions. Strong anchoring conditions are
critical in physical modeling. For instance, such conditions can describe the ambient
medium which is at rest relative to front motion inside the confined region € [18]. Such
boundary conditions also come into play in systems where the patterns are modulated
through templates on the boundary (cf. [33] and references therein).

We notice that only a few studies have been concerned with the Dirichlet boundary
conditions, particularly in terms of the analysis of the minimizers of the functional or
solution to the corresponding equation. For instance, Du and Nicolaides [18] proposed

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/21 to 137.110.37.83. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

MINIMIZERS FOR THE CAHN-HILLIARD ENERGY FUNCTIONAL 2301

a finite element scheme for the 1D Cahn-Hilliard equation using Dirichlet boundary
conditions with the total energy decreasing in time. Bronsard and Hilhorst [5] studied
the limiting behavior of the solution to the Cahn—Hilliard equation with the Dirichlet
boundary condition using energy-type methods. Bates and Han [4] studied the ex-
istence, uniqueness, and continuous dependence on initial data of the solution for a
nonlocal Cahn-Hilliard equation with Dirichlet boundary conditions on a bounded do-
main. Li et al. [34] presented a conservative numerical method for the Cahn-Hilliard
equation with Dirichlet boundary conditions in complex domains. Garcke and Lam
[25] established the well-posedness of the system equipped with Dirichlet boundary
conditions for regular potentials with polynomial growth of order less than six and
also the existence and uniqueness of weak solutions for some singular potentials.

Our main results of analysis consist of two parts.

(1) If the boundary value is the average of the two pure phases, then there is a
bifurcation of the minimizer for the Cahn—Hilliard energy functional. Such
bifurcation depends on the value of x/~. If this value is larger than or equal
to a critical value that is inversely proportional to the first eigenvalue of the
negative Laplace operator with the homogeneous Dirichlet boundary condi-
tion, then the minimizer is unique and is exactly the homogeneous state.
Otherwise, there are exactly two symmetric minimizers.

(2) For a boundary value that is in between the average of the two pure phases
and one of them, the symmetry is broken, and there is only one minimizer
which is in the same range.

Our analysis utilizes the notion of the Nehari manifold and connects it to the eigen-
value problem for the negative Laplacian with the homogeneous boundary condition.
To gain insight into our analysis, we carry out numerical simulations. We minimize
the Cahn—Hilliard functional F by solving the gradient-flow equation, i.e., the Allen—
Cahn equation, with the strong anchoring boundary conditions. We use uniformly
distributed random initial values and seek positive solutions.

The rest of the paper is organized as follows: In section 2, we state our main
theorems. In section 3, we introduce the notion of the Nehari manifold and prove
some of its properties that will be used in proving our main theorems. In sections 4
and 5, we prove our main theorems. In section 6, we present numerical simulations to
showcase the theoretical results. Finally, in section 7, we draw conclusions and point
out directions for further explorations.

2. Main theorems. Let g € H'/2(99). Using the direct method in the calculus
of variations, one can prove that the Cahn-Hilliard energy functional E defined in
(1.1) has a minimizer in the admissible set
(2.1) Ag:={ue H(Q): u=gondQ};
see, for instance, [20, 21]. Due to the nonconvexity of W (u), the minimizer is generally
not unique. Every minimizer u € A, satisfies the time-independent Allen-Cahn
equation
(2.2) — kAu+ W'(u) =0 in

in the sense that

(2.3) (0E[u],v) = /Q [k«Vu - Vv + W (u)v]dr =0 Yo € HY(Q).
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Note that the first equality above defines the first variation 6 E[u] : H}(Q) — R of the
energy functional F at u as a bounded linear functional of H(Q), i.e., SE[u] € H=(Q)
(the dual space of HE(Q)).

In this paper, we study the morphology of minimizers for £ when the boundary
data g satisfy one of the following three conditions on 9€):

(i) g(z) = “Jr;’f for all x € 0%;

(ii) “% < g(x) <ut for all x € 9%

(iii) v~ < g(x) < “+'2*'"7 for all x € 0.
One example of such a boundary function g is given by

9(z) = go() == a(x)u™ + (1 — a(z))u” on 09,

where 0 < a(z) < 1 is a function on 99.

The study of case (i) is motivated in part by discussions in [17] on the existence
of positive solution for nonlinear elliptic problems. In this case, since the boundary
condition

+ _
(2.4) u= % on 0N
keeps the symmetry of the functional E, there may exist more than one minimizer
for E, but only when the parameter  is small enough. Indeed, the parameter & is
a bifurcation parameter, with a critical value 4y/A;, where A; is the first eigenvalue
for the negative Laplace operator in €2 with the homogeneous Dirichlet boundary
condition

(2.5) —Au = Au in Q,
(2.6) u=0 on 0f.

For cases (ii) and (iii), it turns out there is a unique minimizer for E. In other words,
the choice of boundary conditions breaks the symmetry of the energy functional E.
We summarize these results in the following two theorems.

THEOREM 2.1 (the case g = (ut +u7)/2 on 99). Assume g = (uy +u_)/2 on
oN.
(i) If & > 4v/)1, then the constant function v = (ut +u™)/2 is the only mini-
mizer for E in Ay, and

ut —um)?
min{Efu] : v € Ay} = wf)Kﬂ

(i) If k < 4y/\1, then there are exactly two minimizers, Upos and Uneg, for E in

Ay, and
min {Efu] : u € A} < 20 ;“7)2 ).
Moreover, these two minimizers Upos and Uncg Satisfy
Upos + Uneg =~ +ut i Q
and
U < Upeg < # < Upos < uT in .
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Remark. Suppose g = (ug+u_)/2 on 9. Suppose also that € is axial symmetric
with respect to a hyperplane, say,

L:={z=(z;,2') €eR: 2y =0 and 2’ = (29,...,24) },

in the sense that (z1,2') € Q if and only if (—z1,2') € Q. Then it follows from a
classical result of Gidas, Ni, and Nirenberg [27] (see also [29]) that the solution wg pos
is an even function with respect to L, that is,

Ugpos(—T1, ") = Ug pos(z1,2") V(z1,2') € Q.

Furthermore,
Otg pos

Ee (z1,2") <0 if z1 > 0.
1

If 2 is a ball, say, & = B(0, R), then the solution u, os is radially symmetric, and

Oug,pos

<0 if0<r<R.
or

Similar results hold for the solution g neg-

THEOREM 2.2 (the case (vt +u7)/2<g<ut ondQoru” <g< (ut+u7)/2
on 0R)). Let g € C(092).
(i) If (um +u")/2 < g <ut on 0N, then there exists a unique minimizer g pos
for E in Ay. Moreover,

ng}lng < Ug,pos < ut in .

(i) Ifu™ <g< (ut+u")/2 on IQ, then there exists a unique MINIMizer Ug neg
for E in Ay. Moreover,

U < Ugneg < max g in Q.

To simplify the notation, we will rescale all the parameters in the Cahn—-Hilliard
functional and the boundary data g. We set

2u— (ut +u~
ﬁ::u(u—f—u)

(27) )
(2.8) § = 29;%?“_).

Then u € A¢y+44-)/2 if and only if 4 € H} (), and more generally u € A, if and
only if @ € Aj. Moreover,

(2.9) Elu] = y(u™ — u*)z/Q [§|Vﬁ2 + i(fﬂ —1)?| dx,

where & = x/(47). We shall then consider the Cahn—Hilliard functional in the specific
form of the integral above.
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3. The Nehari manifold. We consider the functional
1
(3.1) Elu] :/ [ |Vul? + (u —1)?| dz, u € H(Q).
Q
We define the associated Nehari manifold [6]
S ={ue Hy(Q) : (§E[u],u) =0} .
Thus, by (2.3), u € S if and only if u € H} () and
(3.2) / [k|Vul? + W (u)u] dz = 0.
Q

It is clear that 0 € S and every critical point of F lies in S.
LEMMA 3.1. The set S is bounded in H}(Q).
Proof. Let u € S. We have by the definition of S that

(3.3) O—/ (5| Vul* + u* — u?) dx

u? ?
[KVU|2++ (2—1) —1] dx
<R|Vu|2 — 1) dx.

Thus A
3
/ <11|Vu|2 + u) dzr < Q.
Q 4
Hence
Q
1Vl 2o < )
K
and
4, 1/4
fullzzy < 19l < (5107 )
This completes the proof. ]

Let E|s be the restriction of the energy functional F on the Nehari manifold S.
We shall classify the local minimizers for E|g and show that some local minimizers of
E|s are actually critical points of E. For each u € H(£2), we denote

F, = {su:s R} = Span{u}

and call it the fiber associated to u. We define the fibering map (see, e.g., [6])

D, (s) := E[su] Vs e R.

Clearly, if u is a local minimizer of E, then &, has a local minimum at s = 1.

The first and second derivatives of the fibering map ®,, are related to the first and
second variations of E at u, respectively. Let u € H*(). The first variation 6 E[u] is
defined in (2.3). The second variation 62E[u] : H}(Q) x H (2) — R of the functional
FE at u is defined by

(3.4) 82 Elu](v,w) = /Q [kVv - Vw + W (u)vw]de  Yo,w € H}(Q).
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LEMMA 3.2. If u € H}(Q), then
(3.5) P! (s) = (0E[su],u) = /Q [sk|Vul? + W (su)u] dz,
(3.6) " (s) = 62 F[su](u,u) = /Q [k|Vul* + W’ (su)u?] da.

Proof. By the definition of ®,, and (2.3), we have

B! (5) = }llil&) D, (s + hf)L —D,(s)
— lim E[(s+ h)u] — E[su]
h—0 h

= (§E[sul], u)

= / [sk|Vul® + W (su)u] d,
Q
leading to (3.5). Taking another derivative, we obtain that
P!l (s) = / [6|Vul* + W (su)u?] dz = 6> E[su](u, u),
Q

leading to (3.6). |

COROLLARY 3.3. Ifu € H} () \ {0} and s € R\ {0}, then su € S if and only if
P! (s) =0.

Proof. We have by (3.5) that
@) (5) = (0F[sul,u) = ~ (0F[sul, su),

implying the assertion. O

Thus, 0 # v € S if and only if s = 1 is a stationary point of ®,(s), i.e., u is
a critical point of E restricted on the fiber F,. It is therefore natural to split the
manifold S into three parts, S*,S5~, and S°, corresponding to when u is a local
minimum, local maximum, and point of inflection of E along the fiber F,. Hence, we
define

St ={ueS:8Elu)(u,u) >0},
S™={ueS:8Eu)(u,u) <0},
5% ={ueS:6°FElu)(u,u) =0} .

LEMMA 3.4. Let ug € S — S° be a local minimizer for E|s. Then §E[ug] = 0.

Proof. If up is a local minimizer for E|g, then ug is a solution to the following
optimization problem:

Minimize E[u] among all u € Hy ()

subject to I'[u] := / [£]Vul* + W (u)u] dz = 0.
0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Then there exists a Lagrange multiplier ¢ € R such that dE[ug] = udl|ug] in the
sense that

(3.7) (0Eugl, vy = p (6T [ug], v) Vv € H} ().
Since ug € S C H (), we have
(3.8) 0 = (§E[uo), uo) = p (0T [ug], uo) -

On the other hand,

(0T [uo], uo) = /Q [2/@|Vuo|2 + W (ug)ul + W' (ug)uo) da

= / [H\VUOF + W”(uo)ug] dx by (3.2)
Q

= (52E[UQ](U(),U0)
#0 since ug & S°.

This and (3.8) imply that g = 0, and hence by (3.7)
(6E[ug],v) =0 Vv € H} ().

That is, §E[ug] = 0. O
COROLLARY 3.5. We have

S = {u € Hi(Q): / (5|Vu]* + u* —u?) dz = 0} ,
Q

St = {u €S :/ (5|Vul? + 3u* — u?) dz > O}
Q

z{uES:/u4dx>O}
Q

={ueS:u+#0},

S:{UGS:/u4dx<0}:®,

Q

SO{UESZ/U4dIO}{O}.
Q

Proof. By (1.2), W/(u) = —u + u®. Thus the expression of S follows from its
definition; cf. (3.2). Now, u € S if and only if u € HJ () and

/H\Vu|2dm:/ (u® —u?) dz.
Q Q

Since W”(u) = 3u? — 1, we thus obtain the expression of ST, S~, and S° by their

definitions and the formula of the second variation (3.4). |
LEMMA 3.6. Let u € Hi(Q) \ {0}.
(i) If
(3.9 / (k|Vul? —u?) dz > 0,
Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/21 to 137.110.37.83. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

MINIMIZERS FOR THE CAHN-HILLIARD ENERGY FUNCTIONAL 2307

then ®, has no positive critical points or positive turning points, ®,, is mono-
tonically increasing in s > 0, and

lim ®,(s) = cc.

i) I
(3.10) / (k| Vul* = u?) dz <0,
Q

then ®,, has exactly one positive critical point

1/2

(3.11) o = l_ Jo (51Vu|? — u?) da

Jout dx ’

P! (sy) >0, and s,u € ST.
Proof. Since W (u) = (u? — 1)?/4, we have by (3.5) and (3.6) that

D! (s) = / [s (k| Vu|® — u?) + s’u*] da,
Q

P! (s) = / (k| Vul* — u? + 3s*u*) da.
Q

Therefore, ®/,(s) = 0 if and only if s =0 or

e o (k|Vu|? — u?) dx
Jout dx )

If (3.9) holds true, then
@;(3)233/u4dx>0 Vs >0
Q

and

<I>Z(s)2352/u4dx>0 Vs > 0.
Q

These imply the assertion of part (i). If (3.10) holds true, then s, defined in (3.11) is
the unique solution to @ (s) = 0 for s € (0,00). Moreover,

P! (s,,) = —2/ (k| Vul* = u?) dz > 0.
Q

By Corollary 3.3, s,u € S. By Corollary 3.5, s,u € S*. Part (ii) is proved. O

4. Proof of Theorem 2.1. By the change of variables (2.7), (2.8), and (2.9),
we will consider the rescaled functional E defined in (3.1). Note that the parameter
k in the energy F defined in (2.9) is k/(4+) with x and ~ in the original functional E
defined in (1.1).

Case 1: k > 1/A;. We need to prove that u = 0 is the unique minimizer of the
functional E defined in (3.1) over H}(2) and that the minimum energy is |Q|/4.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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We recall that Ay > 0 is the smallest eigenvalue of the eigenvalue problem (2.5)
and (2.6). By Rayleigh’s principle, we have

Vul|? dz
an e B wems).
Q

Hence

/Q|vu|2dsz1/Qu2dx Yu € Hi(Q).

If K > 1/A1, we have for any u € H}(Q) that
1 5 o ut+l
Elu] = —(k|Vul* —u*) + dx
0 \2 4

1 u? 1
> (kA — D 4 — + -
_/Q<2(m\1 Ju” + 1 +4>dx

1
> 219l

The equality holds if and only if v = 0. Therefore, © = 0 is the unique minimizer of
E defined in (3.1) and the minimum value is |€2|/4. Part (i) of Theorem 2.1 is proved.

Case 2: 0 < k < 1/A;. We need to prove that there are exactly two minimizers,

Upos and Upeg, Of the energy functional (3.1) in H}(£2), the minimum energy value is
less than |€2]/4, and

(4.2) Upos + Uneg = 0 in Q,
(4.3) — 1 < tneg <0 < tUpos < 1 in Q.

We prove all these in three steps. But first we note that there exists u* € H}(Q) that

minimizes the energy functional E defined in (3.1) over H{(f); cf. Theorem 3.3 in
[13].

Step 1. An estimate of the minimum energy. Let 11 be an eigenfunction corre-
sponding to A;. Then we have

/\v¢1|2dx=A1/¢fda:.
Q Q

Hence

/ (5|V | = 97) do = (kA — 1)/ Yidr < 0.
Q Q

We define sy, by (3.11) with ¢ replacing u. Then, by Lemma 3.6, sy, 11 € ST C S.
Hence, by the expression of elements in S in Corollary 3.5, we have

TR Gt + (s ) = (597 do =0,
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Thus
E[Swﬂ/fl] = / {g|v(8w1¢1)|2 + i((swld;l)‘l _ 2(5111177[}1)2 +1)| da
Q
1
=1 /Q [1= (s, ¢1)"] da
19l [fo(sVen]? = v3) da]”
-4 Jo vidx
I N (Y TN
B T
12
4
Therefore,
(4.4) E[u*] = min {E[u] ‘u € H&(Q)} < Elsy, 1] < %

Step 2. Properties of minimizers tupos and Uneg. We define upos = [u*| € H ()
and Upeg = —|u*| € HF(Q). Since |[Vu*| = |Vupos| = [Vineg| a.e., and W(u) =
(u? — 1)?/4 is an even function, we have Elupos] = Eluneg] = Elu*]. That is, both
Upos aNd Uneg are minimizers for F over H(Q). Clearly,

Upos = 0,  Uneg <0, and Upos + Uneg =0 in Q.

We now obtain the bounds for these minimizers. We will only analyze the bounds for
Upos, since the bound for unes can be obtained by the relation uneg = —Upos-
Consider nonnegative solutions for the Euler-Lagrange equation for E in Hg (€):

(4.5) —kAu+u® —u=0 inQ,
(4.6) u=0 on 0%,
(4.7 u>0 in Q.

This system has a trivial solution u = 0. Since upes is a minimizer for E in Hg (),
Upos 1S & nontrivial weak solution for (4.5)—(4.7). By the Sobolev embedding theorem
with the space dimension d = 2 or 3, we have f 1= upes — ud., € L*(€2). Then by the
regularity theory for —kAupes = f, we see that u € H?(€2). By the Sobolev embedding
theorem again we have u € C%#(Q) for B = 1/2 if d = 3 for any 3 € (0,1) if d = 2.
For the interior regularity, we can use a bootstrap argument to show that u € H”.(Q)
for any positive integer m, and hence u € C*°(Q2). Thus u € C*(Q) N C%4(Q).

CLAIM 1. upes is a positive solution to (4.5)—(4.7). That is, upes > 0 in Q.

Proof of Claim 1. If not, then there exists o € § such that upes(xo) = 0. Let
UV = —Upos. Then v < 0in © and v attains a nonnegative maximum at zo. But since
Upos satisfies (4.5), we have

KAV —cv = —v > 0, with ¢ = v? > 0.

By the maximum principle [21, 29], we conclude that v = constant. Since v = 0 on
02, we must have v = 0 in , i.e., upes = 0 in . This contradicts the fact that the
0 function is not a minimizer as its energy is |Q|/4, which is strictly greater than the
minimum energy by (4.4). Claim 1 is proved. d
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Claim 1 also eliminates the existence of minimizers that have both positive and
negative parts. Indeed, if v is a minimizer that has both positive and negative parts,
then there exists xg € Q such that v(z¢) = 0, and hence |v(zo)| = 0. But since |v]
is a nonnegative minimizer, by Claim 1, |v| must be strictly positive in . This is a
contradiction.

CLAIM 2. upes < 1 in Q.

Proof of Claim 2. Since upos = 0 on 0§, upos must attain its maximum at some
interior point zg € . Then upes(xo) > 0 and Aupes(xp) < 0. Consequently by (4.5)
we get

upos(xO)3 - HAupos(xO) + upos(xO) S upos(l‘O)-

Hence upos(20)? < 1 and upos(z9) < 1. Consequently upos(z) < 1 for all z € Q.

To show that upes < 1 for all Q, we need only to show that upes(zo) < 1. If not,
then upes(zo) = 1. Define v = upos — 1. Then —1 < v < 0in Q and v(z) = 0 is the
nonnegative maximum of v in Q. By (4.5), we have

kA — (v+1)(v+2)v =0.

Since (v + 1)(v + 2) > 0, by the maximum principle we conclude that v = constant.
Since v(zg) = 0, we get v = 0 and upos = 1, contradicting the fact that upes = 0 on
9. Claim 2 is proved. ]

Step 3. Uniqueness of a positive minimizer. We will prove the uniqueness of
positive minimizer by contradiction. Recall that all minimizers of E are in S. By the
expression of element in S in Corollary 3.5, we have for any u € .S

1 4
(4.8) Eul== [ 1—-u")dx.
4 Ja

Suppose there are two positive minimizers uy,us € HE(Q) for Efu], and u; # ug in
the sense that
Hz € Q:ui(x) # ua(x)}] > 0.

Then
Elui] = Elug] = inf{E[u] : u € Hj(Q)}.

Define

Q1 :={x e Q:ui(z) > u(x)},
Dy :={z € Q:u(x) <uz(x)}.

Correspondingly, we define for all u € H{ (£2)

(4.9) Eifu] = /Q [;vm? + i(u2 - 1)2} de, i=1,2.

i

Then Eu] = E1[u] + Ez[u]. If Q1 or 2 is of measure zero, say |Q2| = 0, then
up > ug  a.e. in §) and Hz € Q:ui(x) > uz(x)}] > 0.

So, by (4.8) and u1 > us > 0 in Q, we have

(4.10) Efu] = i/ﬂ(l —udyde < i/ﬂ(l — ) da = Elus),
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a contradiction. Thus we must have [Q1] > 0 and |Q2] > 0.
We now analyze the identity

E1 [Ul] + E2 [’Lbﬂ = E1 [UQ} + E2 [UQ] =inf F

by considering three cases.
(a) If Eq[u1] = Eq[uz], then Es[u;] = Esfus]. Define

Ul in Ql,

(4.11) w = max{uy, uz} = { us i Q.

Then it is easy to show [21, 22] that w € H}(Q) and

(4 12) Vo — { Vu1 a.e. in Ql,

Vus a.e. in Qs.

So
Elw] = E1[u1] + Exluz] = Eilug] + E2[ug] = Efug] = inf E.

Thus w is a minimizer for £ and w € S. But w > v > 0 a.e. in  and
Hz € Q:w(z) > ui(x)}| > 0. Hence,

E[w]:i/ﬂ(l—w‘l)da:<i/@(l—u‘f)dsz[ul]:infE,

a contradiction.
(b) If Ei[ui] < Eifug], then Es[ui] > Es[ug]. Again we consider w defined by
(4.11). Then

Elw] = Eifu1] + Ea[uz] < Er[ug] + Eafus] = Efug] = inf E,

a contradiction.
(c) If Ei[u1] > Eiug], then Eslui] < Es[us]. Consider

L . _ (75 in Ql,
(4.13) wo = min{uy, us} = { wy in Qs

Then wy € H}(Q) and
E[wg] = E1 [UQ] + EQ[’U,l] < El [’U,l] + EQ[’U,l] = E[’U,l] = inf E,

a contradiction.
The proof of Theorem 2.1 is complete.

5. Proof of Theorem 2.2. By (2.7), (2.8), and (2.9), the two cases in Theo-
rem 2.2 are simplified as follows: (i) 0 < g < 1, and (ii) —1 < g < 0. Let uj be a
minimizer for E in A,.

Case 0 < g < 1. Since Ellu|] = Eu] for any u € H'(2), we define uy pos =
lug| > 0; then ug pos € Ay and Elug pos] = Elug]. Thus ug es is a minimizer for £
in Ay. The proofs for the bound and the uniqueness of upes in the previous section
have nothing to do with the boundary condition of upes. So using the same proofs,

we establish that ug pos is the unique minimizer for E in A, and 0 < ug pos < 1.
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Since g pos is & solution to the Euler-Lagrange equation

(5.1) —kAu4u® —u=0 inQ,
: u=g on
(5.2) g o9,
by (5.1) and 0 < ug pos < 1, we have
(5.3) KAUg pos = U o5 — Ugpos < 0 in €.

Thus ug pos cannot attain its minimum over Q at an interior point of Q. Consequently,

nalgzng < Ugpos <1 in Q.

Case —1 < g < 0. We define ug neg = —|uj| < 0. The rest of the proof is similar
to that of (i).
The proof of Theorem 2.2 is complete. ]

6. Numerical simulations. In this section, we present some numerical simu-
lations to showcase the properties of the energy minimizers that we have described in
Theorem 2.1. To find the minimum of E, we solve the equation of the L2-gradient
flow of F, that is, the Allen—Cahn equation

(6.1) % = kAu — W'(u),

with the homogeneous Dirichlet boundary condition v = 0 on 992. Our goal is to
eventually reach an equilibrium state, or its numerical approximation, of (6.1) and
hope that the equilibrium state is a minimizer of E. In principle, it is possible for the
gradient flow to get stuck at local minimizers of £. When we consider only positive
solutions of (6.1), we expect, however, that our numerical solutions may approximate
global minimizers.

We choose a square domain Q = (0,L) x (0, L) with L = /27 so that A\; = 1.
We use the forward Euler finite difference scheme for the time discretization and the
standard 5-point central differencing scheme for the discretization of the Laplacian
operator:

ulttt —
(6.2) -

n n n n n n

U j wity g tug i — A et gy 'on
= K p) - W (u ).

At h

0,J

The parameters are h = L/128 and At = 1 x 10~%. The time step is small enough
for our numerical simulations to be stable; see, e.g., [37] for stability conditions for
parabolic equations. Since our interest is to find minimizers u of E which solve (2.2),
we define the error term err™ by

n n — n. n . n.
Uiy j Uy — A g g

63)  errji=n o — W ().

We assign random initial values for u° and run the simulations from ¢ = 0 to at least
t =50 and ||err™||s < 1 x 1077, whichever comes later. When both criteria are met,
we consider the solution u™ as an equilibrium state of (6.1) and treat ™ as a minimizer
of E. We use two types of random initial values. The first consists of random initial
values uniformly distributed in [—0.5,0.5]. The second consists of positive random
initial values uniformly distributed in [0,1]. Since in our setting A\; = 1, the critical
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Fi1c. 6.1. Surface plots of the positive minimizer of the functional E for different values of k.
Left: k = 0.05; middle: k = 0.50; right: k = 0.90.

o
o os 1 15 2 25 3 35 4

Fi1c. 6.2. Contour plots of the positive minimizer of the functional E for different values of k.
Left: k = 0.05; middle: k = 0.50; right: k = 0.90.

value for x is 1. To clarify the dependence of energy on x, we denote the energy by
E", and the positive and negative minimizers by ug,; and uye,.

In Figures 6.1 and 6.2, we plot the surface and contour of the positive minimizer
of the functional F, respectively, for different values of the parameter . In Figure 6.3
(left), we plot the minimum energy min F vs. the parameter k. In Figure 6.3 (right),
we plot the profiles of the positive minimizer uy, along the diagonal y = z of the
domain.

Here are our observations from our numerical simulations:

(i) For k > 1, for both types of initial values, the numerical solution converges

to the constant solution u = 0. The energy E”[u"] approaches E[0] = ||/4.
(ii) For 0 < k < 1, if initial values are between [—0.5,0.5], then the solutions u™

can converge to either a positive solution ug,s or a negative solution uy.,. In
addition, upe, = —Upeg-
(iii) For 0 < Kk < 1, up, is symmetric with respect to = = L/2, y = L/2, y = z,

and y = L — z and attains its maximum at the center of the domain; see
Figures 6.1 and 6.2. In addition, the contours are concentric. This is the
symmetry property stated in the remark after Theorem 2.1.

(iv) The minimum energy is a strictly increasing function of x € (0,1) and is
a constant for k > 1; see Figure 6.3 (left). This can be easily proved by
observing for 0 < ky < kg < 1, E®[ugl ] < E®[uf2 ] < E*2[uf2 ], since uf2,
is not a constant.

(v) The positive minimizers ug. also exhibit a monotonicity for 0 < k < 1; see
Figures 6.1 and 6.3 (right). The study of this phenomenon is beyond the
scope of this paper.
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profiles of u for different x

K

FI1G. 6.3. Left: min E vs. k. The dashed line corresponds to the value |Q|/4. For k > 1, min E
remains a constant that is equal to |Q]/4. For 0 < k < 1, min E < [Q|/4. The value min E decreases
as k decreases. Right: the profiles of the posiltive minimizer uj.g along the diagonal y = x of the
domain. From bottom to top: k = 0.95, 0.90, 0.85, ...,0.05.

For k = 1 we observe that the solution u™ converges very slowly to the equilibrium
solution v = 0. A heuristic spectral analysis indicates that it is an intrinsic feature

of the Allen-Cahn equation (6.1) with W(u) = 1(u? — 1)2. Namely, the Allen-Cahn

equation (6.1) resolves the lowest frequency very slowly when x = 1/A\;. Let A\; and
{®:} be the eigenvalues and the normalized eigenfunctions for the negative Laplace
operator with homogeneous Dirichlet boundary condition, i.e.,

—Ap; = \i¢; in Q, ¢i =0 on 09, and / 2 (z) dx = 1.
Q

Then we can decompose the solution u(xz,t) for (6.1) as u(z,t) = > .o, a;(t)¢;(x).
Since W' (u) = u® —u, we also write u® = >"° | B;(t)¢;(x). Plugging these expressions
into (6.1), we have

Yo aidgi@) =D (1= rhi)ai(t) = Bi(1)) i)

i=1 =1

For each mode we have an ODE

aj(t) = (1= kAi)ai(t) — Bi(t),

whose solution satisfies

t
a;(t) = e” XDt o (1) — / e” A== B, (5)ds YVt > tg > 0

to

for any fixed tyg > 0. For the lowest frequency mode ¢ = 1, if Kk = 1, since \; = 1 we
have

(64) Oél(t) == Oél(to) - /t 61 (S) ds.
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By our theoretical result in Theorem 2.1, we know that u approaches 0. Suppose at
time ¢ > o that u is of magnitude O(e) for some 0 < € < 1 and a4 (o) # 0. Then

an(to) = /Qu(to,a?)¢1(x) dz ~ 0(e),
Bu(t) = /Qu(t,x)3¢1(x) dz ~ O(%).

By (6.4), heuristically it takes at least a period of time O(e~2) to drive ay(t) into
the magnitude of O(g2). Afterward 31 ~ O(g%) and it takes a period of time O(s~%)
to drive a; from O(e?) into the magnitude of O(e3). If K # 1, then for i = 1
we do not encounter this slowdown issue for a;(t) because of the exponential term
— (kA1 —1)t

e Oll(to).

For all other modes i > 2, we do not have such a slow resolution issue. If k # 1/)\;
for all i > 2, then the exponential term e~ ("}~1’q;(ty) will dominate. If k = 1/);
for some i > 2, then since \; > Ay, we have k < 1/A;. By Theorem 2.1 we know
ufios > 01in Q. So if u is close to uf,, then 8; = [, u¢; dz is of magnitude O(1), and

a;(t) can be resolved in reasonable time by (6.4) (with the subscript 1 replaced by ).

7. Discussions. In this paper, we study the minimizers of the Cahn—Hilliard
energy functional under some strong anchoring conditions that are related to the two
pure phases that define the double well in the functional. We have found a bifurcation
phenomenon for the minimizers when the boundary value is exactly the average of
the two pure phases. In such a case, depending on the bifurcation parameter, there
can be a unique minimizer or there can be two distinct minimizers. If the boundary
value is in between one pure phase and the average of the two pure phases, then the
minimizer is unique and is also within the same range. Therefore, our analysis indeed
shows a significant effect of the strong anchoring conditions to the minimizers of the
Cahn—Hilliard functional. Our numerical simulations indeed confirm our analysis.

Our work is a first step toward detailed analysis of the minimizers of Cahn—
Hilliard energy functional under strong anchoring conditions. There are, however,
many more interesting problems along the lines of our analysis. First, it is natural to
extend our work to more general Dirichlet boundary data that are related to the two
phases u_ and u,. For instance, it will be interesting to understand the morphology
of minimizers when the boundary value is a convex combination of the two phases
u_ and w4 with volume fractions A € (0,1) and 1 — A, respectively. Second, we have
not considered the mass conservation in our current study. In fact, in our setting,
the total mass in the domain  (i.e., the integral of u on ) is not constrained to be
a constant. We have showed the bifurcation phenomenon based on the sign of the
boundary value and the value of the parameter . If the total mass in €2 is constrained
to be a constant, then we expect that such a constraint will play some essential roles in
the morphology and properties of the minimizers. Third, the existence of multiple and
structured energy minimizers due to a special strong anchoring condition motivates
strongly a new study of the kinetics pathways through which the system goes from
one of the minimizers to the other. Important in application, such kinetics is often
understood through the study of the dynamics of an underlying system, i.e., the time-
dependent equations, such as the Cahn—Hilliard or Allen—Cahn equations. However,
variational methods, particularly energy minimization methods, can often provide
the information of minimizers and saddle points, and further the transition paths
and energy barriers [42, 10]. Last but not least, if there is phase separation on the
boundary in addition to the phase transition in the bulk domain, and if these two
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processes interact and mutually influence each other, a dynamic boundary condition
is needed. See [24, 35] and references therein for details. This is another direction for
our future studies.
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