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PROCDATA: AN R PACKAGE FOR PROCESS DATA ANALYSIS

Abstract

Process data refer to data recorded in log files of computer-based items. These
data, represented as timestamped action sequences, keep track of respondents’ response
problem-solving behaviors. Process data analysis aims at enhancing educational
assessment accuracy and serving other assessment purposes by utilizing the rich
information contained in response processes. The R package ProcData presented in this
article is designed to provide tools for inspecting, processing, and analyzing process
data. We define an S3 class ‘proc’ for organizing process data and extend generic
methods summary and print for ‘proc’. Feature extraction methods for process data
are implemented in the package for compressing information in the irregular response
processes into regular numeric vectors. ProcData also provides functions for making
predictions from neural-network-based sequence models. In addition, a real dataset of
response processes from the climate control item in the 2012 Programme for

International Student Assessment is included in the package.

Key words: process data analysis, multidimensional scaling, autoencoder, sequence

model
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1. Introduction

With the advancement of technology, computer-based assessments have become popular in
measuring complex human skills such as problem solving skills. In these assessments, participants
are often asked to accomplish real-life tasks in a simulated environment. As a participant
interacts with a computer to complete the tasks, the entire interaction process is recorded in a log
file. Each process includes actions such as mouse clicks and keystrokes and timestamps at which
these actions took place. Such data describe the process of responding to an item and are thus
called response process data, or in short, process data.

Naturally, process data contain substantially more information concerning each respondent
than traditional dichotomous or polytomous item responses. A response process not only
indicates whether the final answer to the item is correct or not but also details how the problem is
solved. The detailed information enables researchers to compare behavior patterns in successful
and unsuccessful responses, detect abnormal behaviors, and study other problems that are
otherwise difficult or even impossible to study (Ren et al., [2019; Stadler, Fischer, & Greiff, [2019;
C. Wang, Xu, Shang, & Kuncel, 2018). It has also been quantitatively verified that the variables
constructed from process data have higher prediction power for a wide range of variables that are
directly or indirectly related to problem-solving behaviors (X. Tang, Wang, He, Liu, & Ying,
2020; [X. Tang, Wang, Liu, & Ying, [2020; Zhang, Tang, He, Liu, & Ying, 2021)). Moreover, with
an appropriate design of the scoring rule, process-data-based assessment substantially improves
assessment reliability compared to the item-response-theory-based (IRT-based) scores (Zhang,
Wang, Qi, Liu, & Ying, 2021). In particular, the process-data-based score of one item is as
accurate as the IRT-based score of three items. In addition, differential item functioning may be
reduced or even completely removed by looking into the response processes and making use of the
information appropriately. There are many other ways that researchers may make use of process
data and they are yet to be discovered.

Process data analysis has gained prominence in the past few years. Various methods have
been developed. He and von Davier (2016) and Qiao and Jiao (2018]) found that n-grams of

action sequences are useful for predicting the item performance and for clustering respondents.
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Chen, Li, Liu, and Ying| (2019) analyzed process data through an event history analysis approach.
Recently, two generic feature extraction methods have been developed to automatically construct
informative features from process data (X. Tang, Wang, He, et al., |2020; |X. Tang, Wang, Liu, &
Ying, [2020)). These methods transform response processes into real-valued vectors (features)
without losing too much information. One of the two methods is based on multidimensional
scaling and the other is based on a type of neural networks called autoencoder. Besides
autoencoders, other neural networks such as recurrent neural networks (RNNs) have also been
found potentially useful for analyzing process data (S. Tang, Peterson, & Pardos| 2016).

Although the methodology development has been prosperous, software for analyzing process
data has not been developed in parallel. Due to the special structure of response processes, few
existing packages for analyzing real-valued or categorical time series are applicable to process
data analysis. Recently, a Python library glassPy (Hao, Smith, Mislevy, von Davier, & Bauer,
2016) is developed for analyzing game/simulation-based assessment log files. This library focuses
on processing and summarizing the raw log files in extensive markup language (XML). It also
includes tools for visualizing the summarized information. As far as the authors’ knowledge, there
is currently no software implementing advanced statistical and machine learning methods
designed for process data. The lack of software implementation hinders the applications of the
state-of-the-art methods and slows down the roll-out of scientific discovery. We try to fill in this
gap by developing an R package ProcData. This package provides easy-to-use tools for basic
exploration and operation of process data. It also includes functions implementing the
state-of-the-art methods for process data analysis. ProcData is available at the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=ProcData and under
development on GitHub at https://github.com/xytangtang/ProcDatal

The remaining sections of this article are organized as follows. In Section [2, we describe the
state-of-the-art methods implemented in ProcData. We select a set of important elements of the
ProcData package and present them in Section [3] A case study of the climate control item in

PISA 2012 is presented in Section [4| to demonstrate the usage of the package{ﬂ A summary is

lprocData 0.2.5 is used to produce the results in the case study. This version is available on


http://CRAN.R-project.org/package=ProcData
https://github.com/xytangtang/ProcData
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included in Section [l

2. Methods

In this article, a response process is represented by o = (s,t). Each response process consists
of two sequences, an action sequence s = (s1,...,sr) and a timestamp sequence t = (¢1,...,tr)
where L denotes the length of the response process, that is, the total number of actions taken
during the process. The action sequence s records the actions taken by the respondent to solve
the item in order. Each element in s is one of the M possible actions, a1, ..., aps, in the item. We
call A= {ay,...,apn} the action set of the item. The timestamp sequence t records the time of
actions in s from inception and therefore 0 < ¢, <ty < --- <tr. For a set of response processes
01,...,0y of N respondents, the length of a process is likely to vary across observations. We
write o; = (si, ti), si = (Si1,--.,8ir,), and t; = (t;1,...,tir;), where L; denotes the length of the
response process for 0;, 1 =1,...,N.

A major technical difficulty for process data analysis is that response processes cannot be
conveniently organized as a matrix. Thus standard statistical methods are not directly applicable
to process data. Feature extraction methods have been shown useful for exploratory process data
analysis. These methods compress response processes into vectors of a prespecified dimension.
These vectors are deemed as features of the response processes and are readily incorporated in
traditional statistical models such as regression models. Furthermore, the extracted features are
less noisy than the original response processes whose high noise level constitutes another challenge
of direct analysis of process data. In this section, we describe two unsupervised feature extraction
methods (X. Tang, Wang, He, et al., 2020; X. Tang, Wang, Liu, & Ying, [2020) and an RNN-based
supervised learning model for response processes. We begin the discussion by briefly introducing
RNNs, a key building block in these methods. We refer readers to [Goodfellow, Bengio, and
Courville| (2016]) and [Patterson and Gibson| (2017)) for a more thorough description of neural

networks.

CRAN at https://cran.r-project.org/src/contrib/Archive/ProcData/ or on Github at https://github.com/
xytangtang/ProcData/tree/95a36587.


https://cran.r-project.org/src/contrib/Archive/ProcData/
https://github.com/xytangtang/ProcData/tree/95a3658?
https://github.com/xytangtang/ProcData/tree/95a3658?
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2.1. Introduction to neural networks

Artificial neural networks or, in short, neural networks are nonlinear models describing
relationships among variables. Each neural network is essentially a parameterized family of
nonlinear functions. Its structure is specially designed to achieve a specific modeling aim while

being flexible.

RNNs are a class of artificial neural networks often used for processing sequential
information. Unlike the feedforward neural network (FNN; Goodfellow et al., 2016, Chapter 6)
that treats an input as a simple vector, RNNs have a special structure to utilize the sequential
information in the data. As depicted in Figure [I] an RNN has three components: inputs, hidden
states, and outputs, each of which is a multivariate time series. The inputs x1,...,x, are

(H)_dimensional and can be viewed

KU_dimensional vectors. The hidden states my, ..., my, are K
as the memory that helps process the input information sequentially. The hidden state evolves as
the elements in the input are processed. Each m; summarizes the information in the input

sequence up to step I by integrating the current information x; with the previous memory m;_1,

that is, my; is a function of x; and m;_;

my = f(x;, m_1), (1)

for I =1,..., L. The initial hidden state my is often set to be the zero vector. To extract the

(0)

information useful for subsequent tasks from the memory, a K'*~’)-dimensional output vector y; is

produced as a function of the hidden state m; at each step [,

Yy = g(my). (2)

Both f and g are specified as a parametric family of functions with parameters to be estimated

based on data. Various choices of f and g have been proposed to compute the hidden states and
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the outputs. Two most widely used ones are the long-short-term-memory (LSTM) unit and the
gate recurrent unit (GRU). They are designed to mitigate the vanishing or exploding gradient
problem of a basic RNN (Bengio, Simard, & Frasconi, [1994). We refer the readers to Hochreiter
and Schmidhuber| (1997) and [Cho et al.| (2014) for the expressions of LSTM and GRU.

RNNs take input process sequences of different lengths. Note that the functions f and ¢ in
and are the same across time steps. Therefore, the total number of parameters for an

RNN does not depend on the sequence length.

2.2. Autoencoder Feature Extraction

Autoencoders (Goodfellow et al.l 2016, Chapter 14) are a class of neural networks aiming at
reconstructing the input in the output. It consists of two components (Figure , an encoder that
maps the complex and/or high dimensional input to a low dimensional vector and a decoder that
reconstructs the input from the low dimensional vector. The low-dimensional vector produced by
the encoder contains condensed information to rebuild the input. Therefore, its elements can be

treated as features of the input data.

X. Tang, Wang, Liu, and Ying| (2020) proposed to extract features from the action sequences
in process data by means of a sequence autoencoder (SeqAE) . The structure of the action SeqAE
is depicted in Figure [3] Its encoder consists of three steps. In the first step, each unique action in
A is associated with a numeric vector (embedding) in R¥ so that an input action sequence is
transformed into a sequence of K-dimensional embeddings. In the second step, an RNN is used to
sequentially summarize the information in the embedding sequence up to a time step. In the last
step, the last vector in the output of the encoder RNN is retained as the feature vector. The
decoder of the action SeqAE also consists of three steps. In the first step, the feature vector is
repeated to form a sequence of vectors which are then passed into another RNN in the second

step to obtain another sequence of vectors. Each vector in this latter sequence contains the



PSYCHOMETRIKA SUBMISSION June 29, 2021 8

information of the action at the corresponding time step. In the last step, for [ =1,...,L, a
probability distribution §; = (§l(1), §l(2), - ,§Z(M)) on A is constructed at time step [ using a

multinomial logit model (MLM). The output vector y; of the decoder RNN is used as the
covariates in the MLM. The MLMs at different time steps share the parameters. In both the
encoder RNN and the decoder RNN, KU = k(1) = g(0) = [

X. Tang, Wang, Liu, and Ying| (2020) focused on the action sequences in process data. The
idea of action SeqAE can be easily extended to the time sequences or both action and time
sequences to construct a time SeqAE or an action-time SeqAE. As shown in Figure [4] the
structure of a time SeqAE resembles that of an action SeqAE. RNNs are used in both encoder
and decoder to summarize the sequential information. However, because timestamps are numeric,
in a time SeqAE, an embedding step is not needed in the encoder and the timestamps are
reconstructed through a linear model instead of a multinomial logit model. An action-time SeqAE

can be constructed by combining an action SeqAE and a time SeqAFE as shown in Figure

Given the structure of a SeqAE, the parameters of the autoencoder, including the
embeddings, the parameters in the encoder and decoder RNNs, and the parameters in the
multinomial logit model and the linear model, are estimated by minimizing the discrepancy

between the input sequences and the output sequences. To be more specific, the estimated
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parameter vector ) is obtained by minimizing
F(T’) = 25(0%51‘;77)’ (3)
1€Q
where 6 = (8,t) denotes the output of a SeqAE for input o, (0, ) is a function measuring the
discrepancy between o and 6, and 7 is a vector containing all parameters to be estimated in the
SeqAE. For an action SeqAE,
5 ; L\ y- 2(0)
0(0,0) = 04(s,8) = -7 ZZ 1{s; = a;j}log(5,"").
I=1j=1

For a time SeqAE,
L
8(0,0) = &i(t,8) = > (1 —1)*.

=1
For an action-time SeqAE,

0(0,0) = we0a(8, 8) + wd (¢, f),

where w = (wg, w;) assigns different weights on the discrepancy between action sequences and the
discrepancy between time sequences. The objective function is usually minimized via
gradient-based stochastic approximation (Hinton, Srivastava, & Swerskyl, 2014; |[Kingma & Ba,
2015; [Robbins & Monro, [1951; Zeiler) 2012). Since neural networks are often over-parametrized,
the algorithm is usually stopped before convergence to avoid overfitting. A widely used early
stopping method monitors the value of the objection function on a validation set. After running
the algorithm long enough, one uses the parameter value producing the lowest monitored value as

the estimate.

2.8. Multidimensional Scaling Feature Extraction

Multidimensional scaling (MDS) (Borg & Groenen, [2005)) is a technique often used for
dimension reduction and data visualization. Its goal is to embed objects in a space in such a way
that the dissimilarity between objects is approximated by the distance between their embedded
features. Similar objects are located close to each other while dissimilar objects are far apart.
Given a dissimilarity measure that comprehensively characterizes the difference between objects,

the object coordinates obtained from MDS can be viewed as features describing the latent
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attributes of the objects. Given a dissimilarity measure d and the latent feature dimension K,

features of a set of response processes o1, ..., 0, are a solution to the optimization problem
: 2
min Y (dij — [0 — ;) (4)
01,....0NER 1<i<j<n

where d;; = d(0;,0;) is the dissimilarity between response processes o; and o0;, 6; is the feature
vector of response process o;, and ||x|| = VxTx.

X. Tang, Wang, He, et al.| (2020)) consider the optimal symbol similarity (OSS) measure
proposed in |(Gomez-Alonso and Valls (2008). For two response processes o; and 0;, the OSS
measure is

_ foss(si, s;) + goss(si, 85)

doss(0i, 05) = I L, ; (5)
i j

where foss(si, sj) quantifies the dissimilarity among the actions that appear in both s; and s;

and goss(Si, sj) is the count of actions appearing in only one of s; and s;. More precisely,

Saccy, S st (k) — s (k)] )
max{L;, L;} ’ (©)

foss(8i, 85) =

and

gOSS(Sivsj) = Z L;,l+ Z L?a (7)

a€l;; a€Uj;
where s® denotes the sequence consisting of chronologically ordered positions of action a in action
sequence s, L? is the length of s%, s*(k) represents the kth element of s, and Ki = min{L?, L;L}
The OSS measure only takes the action sequences into account when characterizing the
differences between two response processes. To account for the difference in both action sequences
and time sequences, a time-weighted version of OSS (TOSS) can be considered. The length of a
response process in OSS is replaced by the total response time of the response process in TOSS
and L is replaced by the total time spent on a. In (6]), [s?(k) — (k)| is the difference between

the positions of the kth appearance of a in s; and s;. In TOSS, this quantity is replaced by the

difference between the two corresponding timestamps. Namely,

fross(0i,05) + gross(0;, 0}
dTOSS(Oiaoj) = ( : ]) ( : ])7 (8)
tir, +t;r;
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where K
Yaecy; Lk tise (k) = Ljso ()|

max{t;r,, t;r,}

: (9)

fross(0i,05) =

and

gross(0i,0)) = > Y (tu—tig—)+ Y. > (ti—tji—1). (10)

a€l;; l:sy=a a€Uy; l:sji=a

Given the dissimilarity function d, the solution to (4)) is approximated by performing an
eigenvalue decomposition of the matrix —%JD@)J where J =TI — £171 and D® = (dfj) This is
called classical MDS. The computational complexity of the algorithm is O(N?3), which is very
expensive if the number of processes N is large. Moreover, the N x N dissimilarity matrix D
consumes a large amount of memory. Paradis| (2018)) proposed an algorithm to perform MDS for
a large N. This algorithm first chooses a small subset 2 of the objects and obtains 0;,ic by
performing classical MDS on this subset. Then it minimizes

F(6:) = (dij — 16: — 8;])° (11)
JEQ

by the BFGS method (Broyden, |1970; [Fletcher, [1970; |Goldfarb, [1970; Shanno, 1970) for each
i & Q. In this way, only the dissimilarities for 0(1\7 N) pairs of objects are calculated where N is
the subset size and the eigenvalue decomposition for a large matrix is avoided.

The MDS feature extraction method requires specifying K, the number of features to be
extracted. In|X. Tang, Wang, He, et al.| (2020), K is selected by k-fold cross-validation. The
authors also recommended performing principal component analysis on the extracted feature to

obtain more interpretable features.

2.4. Sequence Models

The feature extraction methods described above are designed to capture the variations
among response processes. We further present a sequence model that extracts features for some
specific variable of interest. As depicted in Figure [0 a sequence model has two parts. The first
part is identical to the encoder. It embeds a response process to a fixed dimensional vector 6 via
an RNN. In the second part, instead of reconstructing the response process, the sequence model

utilizes a generalized linear model (GLM) to predict the target variable y given 6. Thus, the
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feature vector is trained to explain the target variable instead of the variations in response
processes. Besides GLMs, other supervised learning models such as FNNs can also be used in the

second part to describe a more complex relationship between 6 and y.

Figure [6] illustrates the structure of the sequence model when the information in both the
action sequence and the timestamp sequence is considered. Similar structures have been used for
sentiment analysis in natural language processing (X. Wang, Liu, Sun, Wang, & Wang, 2015)).

The parameters in the sequence model includes the embedding, the parameters in the RNN,
and the parameters in the GLM or FNN. Given a set of response processes and the corresponding
values of the target variable, the parameters can be estimated by the maximum likelihood
approach or, equivalently, minimizing the discrepancy between the observed y and the estimated
mean value § based on the model. More specifically, the estimated value of the parameters
minimizes

F(n) =Y 6y, 0i), (12)

1€Q
where 6(y,9) = —ylog()) — (1 — y)log(1 — §) if y is binary and 6(y, §) = (y — §)? if y is
continuous. Similar to SeqAE, the objective function can be optimized by stochastic
approximation with early stopping. Once the parameters in the sequence model is estimated, the
model output ¢ is a prediction of the response variable. The output of the first part of the model

are the features most relevant to the target response variable.

3. The ProcData Package

We develop the ProcData package to provide tools for process data analysis. ProcData
defines an 83 object for process data and includes functions for data processing, inspection, and
modeling. The main features of ProcData is summarized in Table[I] The details of these features

are described in Sections B.1H3.5
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As described in Section [2, some methods for process data require construction and training of
neural networks. ProcData relies on R package keras for achieving this functionality. The keras
package is an R interface to a high level neural network API developed for fast experimentation of
neural networks in Python. The functions in ProcData that are built on functions in keras are
marked by T in Table |1} If keras is not installed properly, calling these functions will lead to an
error while other functions in ProcData can still be used normally. The installation guide of the
keras package can be found at https://keras.rstudio.com/. Note that a successful

installation of keras requires an installation of Python.

3.1. Data Input and Output

ProcData includes a dataset from the climate control item in PISA 2012. The dataset
contains the response processes and the dichotomous response outcomes of 16,763 students. The
item interface is described later in Section [l and is available online Bl The data is loaded as

follows.

library("ProcData")

data("cc_data")

The data object cc_data is a list of two elements, seqs and responses. The response outcomes
are contained in responses as a numeric vector. The response processes are stored in seqgs as an

object of class ‘proc’, which will be specified in Section [3.2]

*http://www.oecd.org/pisa/test-2012/testquestions/question3/


https://keras.rstudio.com/
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To read and write datasets on hard drive, ProcData provides functions for data input and
output. Process data are usually stored as comma separated values (CSV) files in either “single”
or “multiple” style. In both styles, all the action sequences form a column (action column) and all
the timestamp sequences form another column (time column). In the “single” style, the process
for one respondent takes up a single row in the CSV file. The entire action sequence of the
respondent is stored as one entry of the action column. The timestamp sequence of the
respondent is stored in the corresponding entry of the time column. Figure [7] presents a CSV file
storing five response processes in the “single” style. In the “multiple” style, each action in the
process and its timestamp occupy one row in the CSV file. A process of length L takes up L
consecutive rows. A CSV file that stores two response processes in the “multiple” style is
displayed in Figure [§] The two response processes are the same as the first two shown in Figure

In ProcData, functions read.seqs() and write.seqs() read and write process data from
and to a CSV file. The file style is specified via argument style as shown in the sample code
below. Reading and writing files require specification of id_var, action_var, and time var,
which are the column names for respondent identity number, action sequence, and timestamp
sequence, respectively. The separator of the elements in the action sequence and the timestamp

sequence is provided via step_sep if the file to read or write is in the single style.

write.seqgs(cc_data$seqs, file="seqs_format_multiple.csv", style = "multiple",

id_var="ID", action_var="Action", time_var="Time")

write.seqs(cc_data$seqs, file="seqs_format_single.csv", style "single",
id_var="ID", action_var="Action", time_var="Time", step_sep=",")
seqs_multiple <- read.seqs("seqs_format_multiple.csv", style = "multiple",

id_var = "ID", action_var = "Action", time_var = "Time")

seqs_single <- read.seqs("seqs_format_single.csv", style "single", id_var = "ID",

action_var = "Action", time_var = "Time", step_sep = ",")
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3.2. 88 class ‘proc’

ProcData defines an S3 class ‘proc’ for organizing process data. An object of class ‘proc’ is a
list of two elements, action_seqs and time_seqs. In a ‘proc’ object storing response processes
01,...,0,, action_seqgs is a list with elements sy, ..., s, and time_seqs is a list with elements
ti,...,t,. The names of the elements in action_seqs and time_seqs are the identity of the
respondents. If the timestamp sequences are not available, time_seqgs is set to NULL. The seqs
element in cc_data is a ‘proc’ object.

An object of class ‘proc’ is printed by the print method for class ‘proc’, print.proc().
The function prints response processes one by one in an easy-to-read format. For each process,
the action sequence and the timestamp sequence are aligned and are printed horizontally. One
can print either the first several processes or a selected subset of the processes in the ‘proc’

object. The format of the printed processes is demonstrated below.

ARE000000300079
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9
Event start 1_1_1 reset 0_0_1 reset 0_1 0 reset 1 _0_0 end

Time 0.0 113.2 119.1 122.0 135.4 138.5 147.8 149.8 157.0

We also extend the summary method for class ‘proc’. Function summary.proc() returns a list
containing various summary statistics of the action sequences and the timestamp sequences in the

‘proc’ object.

3.8. Sequence Manipulation

Process data often contain a large amount of noise and data cleaning is often necessary
before further analysis. Table [2]lists the functions provided in ProcData for cleaning data in

‘proc’ objects. Their basic usage is demonstrated below.
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# obtain processes 4, 8, 12, ..., 40 from cc_data

seqs <- sub_seqs(cc_data$seqs, ids = 4%1:10)

# remove repetitive actions in the response processes

seqsl <- remove_repeat (segs)

# remove action "0_0_0"

seqs2 <- remove_action(seqsl, actions = "0_0_0")

# rename '"reset" with "RESET"

seqs3 <- replace_action(seqs2, old_action = "reset", new_action = "RESET")
# combine actions "0O_0_1" and "0_0_2" into a new action "BOTTOM_MOVE_ONE"
seqs4 <- combine_actions(seqs2, old_actions = c("0_0_1", "0_0_2"),

new_action = "BOTTOM_MOVE_ONE")

3.4. Feature Extraction

8.4.1. Feature Extraction via Multidimensional Scaling

In ProcData, seq2feature mds() extracts feature from process data via MDS. It takes a

‘proc’ object (seqs), the number of features to be extracted (K), and some other control
arguments to calculate the dissimilarity matrix for the input response processes and then
performs MDS.

The dissimilarity measure is specified via dist_type. In particular, two dissimilarity

measures in Section are implemented with dist_type = "oss_action" and dist_type =

16

"oss_both" standing for OSS and TOSS, respectively. Users may also use their own dissimilarity

measure by providing the dissimilarity matrix through segs.
In seq2feature mds (), the objective function is optimized by either calling function

cmdscale() in R to perform the classical MDS or applying the large sample size algorithm

(Paradis|, 2018). By default, seq2feature_mds() uses the classical MDS if there are fewer than

5000 response processes and the large sample size algorithm otherwise. One may also choose the

algoritm by setting method = "small" for the classical MDS or method = "large" for the other

algorithm.
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Following the recommendation in X. Tang, Wang, He, et al. (2020), seq2feature mds ()
performs principal component analysis on the extracted features to enhance the interpretability of
the features. This can be turned off by setting pca = FALSE. By default, seq2feature mds ()
returns a list containing the latent features (theta) and the value of the optimized objective
function (loss). The dissimilarity matrix (dist_mat) is returned if return dist = TRUE.
ProcData also provides a function chooseK.mds() to select the feature dimension by k-fold

cross-validation.

3.4.2. Sequence Autoencoder Feature Extraction

In ProcData, function seq2feature_seq2seq() is provided to extract K features from a
given set of response processes (seqs) via SeqAEs. The SeqAE type is specified through argument
ae_type as "action" (default), "time", or "action_time". As described in Section RNNs
are a critical component in SeqAEs. In seq2feature_seq2seq(), the choice of the recurrent units
("1stm" or "gru") in the encoder and decoder RNNs is set by argument rnn_type.

By default, the original timestamp sequences are used for constructing time SeqAEs and
action-time SeqAEs in seq2feature_seq2seq(). The inter-arrival time sequences are used by
setting cumulative = FALSE. The natural logorithm of the timestamps or the inter-arrival time is
used if log = TRUE.

The objective function is minimized by stochastic approximation with early stopping as
described in Section The algorithms available are stochastic gradient descent
(optimizer name = "sgd"; Robbins & Monro, (1951)), Adam (optimizer name = "adam";
Kingma & Bay, 2015)), AdaDelta (optimizer name = "adadelta"; Zeiler, [2012), and RMSprop
(optimizer name = "rmsprop" Hinton et al.| [2014)). The (baseline) step size is set by argument
step_size. The training and validation sets are specified in samples_train and samples_valid,
respectively.

The training time of SeqAEs varies from a few minutes to a few hours depending on the
number of possible actions in the item and the number of features to be extracted. In
seq2feature_seq2seq(), one sets verbose = TRUE to print out and monitor the training

progress.
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3.5. Sequence Models

In ProcData, function seqm() constructs and fits a sequence model described in Section
with a target response variable y whose type is set by response_type. Currently, y can be either
a binary variable ("binary") or a continuous variable ("scale"). The dimensions of the action
embeddings and the output of the RNN are specified through K_emb and K_rnn, respectively. By
default, seqm() uses a generalized linear model to predict y based on the RNN output.
Alternatively, one may use an FNN for this predictive model.

As a default choice, seqm() extracts features only from the action sequences. Timestamp
sequences, if available, can be incorporated by setting include_time = TRUE. In this case, the
logarithms of the inter-arrival time sequences are used by default. To use the original timestamp
sequences, set time_interval = FALSE and log_time = FALSE.

Function seqm() returns an object of class ‘seqm’, which is a list containing the neural
network architecture, the estimated parameters, and other information about modeling fitting.
The key elements of a ‘seqm’ object are a character string describing the neural network structure
(structure) and a matrix giving the training and validation loss at the end of each epoch for
convergence check (history). Once a sequence model is fit, prediction and feature extraction are

performed by predict.seqm(), the predict method of ‘seqm’ objects.

4. Examples

In this section, we demonstrate the ProcData package through a case study of the climate
control item in PISA 2012. The dataset cc_data is included in the package. In the
demonstration, we extract features from the response processes and use them to predict
respondents’ task accomplishment. Furthermore, we investigate the behavior patterns in response

processes related to task accomplishment.

4.1. PISA Climate Control Item

The climate control item is part of the Programme for International Student Assessment

(PISA) 2012 for assessing students’ problem solving skills. Figure @] is a screenshot of the item
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interface. In the simulated environment, there is a new air conditioner with no instructions.
Students are asked to figure out which climate variable, temperature or humidity, that each of the
three controls on the air conditioner influences. They can slide the control bars through the
simulation interface and read how the temperature and humidity change. In the process, how the
controls are moved and what buttons are clicked are recorded in the log files. For example, if a
student clicked the “APPLY” button after moving the top control to “+” and the middle control

[13

to “——" then action “1_-2_0” along with the time elapsed since the start of the item, say 5.4
seconds, are recorded. A recorded process with action sequence (“start”, ‘1.0.0”, “RESET”,
“0-0_-27, “end”) and timestamp sequence (0.0,4.9,6.3,10.6,12.5) indicates that the student
moved the top control to “+” and clicked “APPLY” 4.9 seconds after the item started. The
positions of the three controls were reset by a click of the “RESET” button 1.4 seconds later.

Then the bottom control was moved to “——" and “APPLY” was clicked again 10.6 seconds after

the item started. The total response time is 12.5 seconds.

4.2. Data preprocessing

We randomly sample 2000 response processes from dataset cc_data for our analysis. Given a
vector of randomly sampled indices, subsetting a ‘proc’ object can be easily done using
sub_seqs () provided in ProcData. In the subset, 53.7% of the respondents answered the item

correctly. The sampled processes are then split into training, validation, and test sets.

# randomly sample a subset of size 2000 from cc_data
set.seed(12345)

n <- 2000

idx <- sample(1:length(cc_data$responses), n)

seqs <- sub_seqs(cc_data$seqgs, idx)

y <- cc_data$responses[idx]
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# proportion of incorrect (0) and correct (1) answers

table(y) / n

# split sampled processes into training, validation, and test set
n_train <- 1000; n_valid <- 500; n_test <- 500

index_train <- sample(1l:n, n_train)

index_valid <- sample(setdiff(1:n, index_train), n_valid)

index_test <- setdiff(1:n, c(index_train, index_valid))
The following code demonstrates the summary method for ‘proc’ objects.

seqs_summary <- summary (seqs)

# number of unique actions
seqs_summary$n_action

# action set

seqs_summary$actions

# range of sequence lengths

range (seqs_summary$seq_length)

# action transition probability matrix
trans_mat <- seqs_summary$trans_count

trans_mat <- trans_mat / rowSums(trans_mat)

The output shows that there are 128 unique actions in the 2000 response processes. The process
length ranges from 3 to 183. Figure [10] presents a 25 x 25 submatrix of the 128 x 128 full action
transition probability matrix trans_mat. The 25 actions corresponding to the submatrix are
randomly selected from the action set. The dark diagonal of the submatrix indicates that

respondents tend to repeat an action several times before taking a different action.
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4.8. Unsupervised feature extraction

We begin the illustration of feature extraction with the intuitive action count features

obtained as follows.

get_action_counts <- function(x, actions) sapply(actions, function(a) sum(x == a))
theta_action <- t(sapply(seqs$action_seqs, get_action_counts,

actions = seqs_summary$actions))

The output object theta_action is a 2000 x 128 matrix. The rows are feature vectors for
different respondents. The columns correspond to the actions in the action set. The elements in a
feature vector are the counts of the corresponding actions in the response process. Using these
action features as covariates, we fit a logistic regression for the response outcome via glm() on the
training and validation set combined. The prediction accuracy of the fitted model on the test set
is 0.766.

Next, we extract features from response processes through multidimensional scaling. The
number of features are chosen by five-fold cross-validation. We only consider the action sequences
here and set dist_type = "oss_action". We set return_dist = TRUE and chooseK mds()
returns the dissimilarity matrix for later use to avoid repeated calculations. The returned
dissimilarity matrix and the selected number of features are then passed to seq2feature mds ()

for feature extraction.

mds_K_res <- chooseK_mds(seqs, 1:10%10, dist_type = "oss_action",
return_dist = TRUE)
K <- mds_K res$K; K

mds_res <- seq2feature_mds (mds_K_res$dist_mat, K = K)

As a result, 40 MDS features are extracted. These features are used similarly as the action count
features to fit a logistic regression for the response outcome. The prediction accuracy based on

MDS features is 0.81, which is slightly higher than that obtained from the model based on action
count features. We further investigate the glm output and refit a logistic regression with the first

MDS only. We find that including this single feature yields a prediction accuracy of 0.8.
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Now we examine the behavior patterns associated with the first MDS feature. We order the
response processes according to the value of their first feature and use the print method for class

‘proc’ to display the response processes with the highest and lowest values.

o_mds1 <- order (mds_res$thetal,1])
# response processes corresponding to the lowest feature values
print(seqs, index = head(o_mds1))
# response processes corresponding to the highest feature values

print (seqs, index = tail(o_mds1))

The output of the above code is included in Appendix. The response processes corresponding to
the highest feature values are often very short, meaning that little meaningful interaction with
computer interface is made. Respondents with this type of behaviors are unlikely to answer the
question correctly. The response processes corresponding to the lowest feature values are often
longer. However, their lengths are not the longest according to Figure [11| where the value of the
first feature is plotted against the logarithm of the length of the corresponding process. A closer
look at the response processes with the lowest values of the feature reveals that these respondents
often move one control bar at a time. This “varying-one-thing-at-a-time” strategy is efficient to

get the correct answer.

We further extract features by constructing an action SeqAE. Below is an example of

extracting action SeqAE features by seq2feature_seq2seq() in ProcData.

ae_res <- seq2feature_seq2seq(seqs, ae_type = "action", K = K,
rnn_type = "gru'", samples_train = index_train,

samples_valid = index_valid, verbose = TRUE)

We set verbose = TRUE to print out the epoch number during the training of the autoencoder so

that we can monitor the training progress. The extracted SeqAE features stored in ae_res$theta
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are used to predict the task accomplishment. The prediction accuracy is 0.836, slightly higher
than that of the model with MDS features.

4.4. Feature extraction with targeted variables via sequence model

We demonstrate the usage of seqm() and other relevant functions in this section. We still use
the task accomplishment as the target variable. The training and validation sets are used for
fitting the sequence model while the testing set is used for evaluating the prediction performance
of the fitted model. The response processes used for model fitting and testing are obtained by

subsetting the ‘proc’ object seqs with function sub_seqs() in ProcData.

seqs_train <- sub_seqs(seqs, c(index_train, index_valid))
seqs_test <- sub_seqs(seqs, index_test)
y_train <- y[c(index_train, index_valid)]

y_test <- y[index_test]

We first consider predicting y from the action sequence in a response process. The sequence

model that fulfills this task can be fitted by calling function seqm().

seqm_res <- seqm(seqs_train, y_train, response_type = "binary",
K emb = 5, K_rnn = 5, n_epoch = 20,
max_len = max(seqs_summary$seq_length),

index_valid = n_train + 1:n_valid)

Since the response outcome is a binary variable, we specify response_type = "binary". n_epoch
is the total number of epochs to be run for estimating the parameters. In each epoch, the chosen
stochastic approximation algorithm goes through the entire training set once.

The convergence of the training process is examined by a plot of the loss function values at
the end of each epoch stored in seqm res$history (Figure[12). We then make predictions based

on the fitted model by calling the predict method for ‘seqm’ objects.

seq_pred_res <- predict(seqm_res, new_seqs = seqs_test)

mean(as.numeric(seq_pred_res > 0.5) == y_test)
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The resulting prediction accuracy is 0.836.

To conclude the section, we present an example for both action sequences and time
sequences. Time sequences are incorporated in addition to the action sequences by setting

include_time = TRUE in seqm(). Other settings remain.

seqm_res2 <- seqm(seqs_train, y_train, response_type = "binary",
include_time = TRUE, K_emb = 5, K_rnn = 5, n_epoch = 20,
max_len = max(seqs_summary$seq_length),
index_valid = n_train + 1:n_valid)

seq_pred_res2 <- predict(seqm_res2, new_seqs = seqs_test)

mean (as.numeric(seq_pred_res2 > 0.5) == y_test)

The resulting prediction accuracy is 0.734, much lower than what we obtained previously.
Although time sequences can provide more information, they at the same time introduce an
excessive amount of noise, which can reduce the prediction accuracy. It is also possible that the
current sequence model is not able to efficiently incorporating the information in timestamp

sequences, causing a decreased prediction performance.

5. Summary

ProcData is an R package designed for process data analysis. It is applicable to process data
generated by a wide range of human-computer interfaces. ProcData includes an S3 class "proc"
for organizing response processes. Functions for inspecting and processing "proc" objects are also
included in the package. More importantly, two unsupervised learning feature extraction methods
and the neural-network-based sequence models are implemented in ProcData. These tools are
easy to use. The functions for each method integrate the major steps of the method while

allowing the flexibility to change the settings to some degree. In particular, the functions for



PSYCHOMETRIKA SUBMISSION June 29, 2021 25

neural-network-based methods wrap several function calls for constructing and training of neural
network and thus simplify the application of these methods.

The feature extraction methods implemented in ProcData require little knowledge of the
item designs. These methods compress the information in response processes into fixed-dimension
real-valued vectors that can be analyzed using conventional statistical tools. The sequence model
describes the relationship between response processes and a target variable. It can be used to
make predictions of the target variable from response processes. This model can also be used to
extract from response processes the features that are most relevant to the target variable.

The extracted features can be used in various psychometric applications. For instance,
process-data-based scoring rules can be constructed based on the extracted features. The specific
functional form is obtained by, for example, regressing a reliable estimate of the target scale on
the features (Zhang, Wang, et al., 2021)). The extracted features are also useful for exploratory
analysis of response processes (Zhang, Tang, et al., [2021)). The prediction based framework used
in Section [f] can be adapted to exploring whether the response processes provide information on
the variable of interest. If positive results are obtained from the preliminary analysis, more efforts
can be devoted to examining the exact characteristics in the response processes that contribute to
the effect.

Most of the existing methodology development for process data focuses on extracting
information from the response processes produced by a single item. ProcData follows suit.
Although features extracted from multiple items can be aggregated together in the subsequent
analysis, methods that directly synthesize information in multiple items are much more preferable
and could be helpful for understanding the relationship among items. Process data analysis is an
active and quickly rising field. We envision to include more state-of-the-art methods in future

versions of ProcData.
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Appendix
This appendix contains the output of print () in Section

> # response processes corresponding to the lowest feature values
> print(seqs, index = head(o_mds1))

’proc’ object of 2000 processes

AUT000007001735
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10
Event start 100 200 -2.00-1000_10 020 0_-1.00_-200_0_1
Time 0.0 57.4 60.6 62.8 67.1 79.6 81.1 83.3 85.3 97.2
Step 11 Step 12 Step 13 Step 14
Event 0_.0_2 0_0_-1 0_0_-2 end
Time 98.6 100.7 102.5 119.5

BRA0O00083118946
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10
Event start 1_0_0 2_.0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2.0 0_-1_00_-2_0
Time 0.0 141.7 151.2 157.7 164.6 182.1 185.1 188.8 194.2 196.3
Step 11 Step 12 Step 13 Step 14 Step 15 Step 16
Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 end

Time 204.0 206.6 209.4 215.9 218.6 240.4

KOR000006202016
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10
Event start 2_0_0 100 -1_0_.0 -2_0_0 reset 0_1.0 020 0_-100_-20
Time 0.0 46.1 52.4 56.4 59.2 62.5 67.3 69.3 70.3 72.4
Step 11 Step 12 Step 13 Step 14 Step 15 Step 16

Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 end
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Time 78.9 81.1 84.1 86.6 89.0 94.6

PRT000009602769
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10
Event start 1_0_.0 2.0.0 -1.0.0-2_.000_10 0.2.0 0_-1.00.0_1 0.0_2
Time 0.0 73.1 82.5 89.2 94.3 109.5 114.8 119.8 128.8 131.4
Step 11
Event end

Time 139.7

ESP000073120436
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10
Event start 1_0_0 200 -1_0_.0 -2_0_0 reset 0_.1.0 0.2 0 0_-100_-20
Time 0.0 69.0 73.4 77.0 80.8 94.8 100.3 102.6 105.1 107.1
Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17
Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 reset end

Time 116.9 118.9 121.9 125.1 127.2 136.0 140.6

> # response processes corresponding to the highest feature values
> print(seqs, index = tail(o_mdsl))

’proc’ object of 2000 processes

BGR000010603028
Step 1 Step 2 Step 3
Event start 1_1_1 end

Time 0.0 39.7 49.9

AUS000012802387

Step 1 Step 2 Step 3
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Event start 1_1_1 end

Time 0.0 56.4 60.8

HRV0O00007702394
Step 1 Step 2 Step 3
Event start 1_1_1 end

Time 0.0 67.4 116.9

BGR000010903115
Step 1 Step 2 Step 3
Event start 1_1_1 end

Time 0.0 211.3 237.4

IRLO00006501691
Step 1 Step 2 Step 3
Event start 1_1_1 end

Time 0.0 125.9 136.6
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FIGURE 1.

Structure of recurrent neural networks. At each time step, the hidden state m; is obtained by synthesizing the current

x; and the previous hidden state m:_1.
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FIGURE 2.
Structure of autoencoders. The encoder ¢ transforms the input o into a low-dimensional vector 8 and the decoder ¥

reconstructs o from 8. The low-dimensional vector @ is the feature vector of o.
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FIGURE 3.
Structure of an action SeqAE that reconstructs an action sequence s = (s1,...,sr) as a sequence of probability
distributions $1,...,5r on the action set .A. The encoder embeds the action sequence into a sequence of real-valued

vectors which is then processed by an RNN. The last output vector of the RNN is the feature vector 8 of the action
sequence. The decoder reconstructs the action sequence from a sequence of 8’s via an RNN and a multinomial logistic

model.
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FIGURE 4.
Structure of a time SeqAE that reconstructs a timestamp sequence t = (t1,...,tr) as £ = (f1,...,%1) . The encoder
processes the timestamp sequence by an RNN. The last output vector of the RNN is the feature vector € of the
timestamp sequence. The decoder reconstructs the timestamp sequence from a sequence of 8’s via an RNN and a

linear model.
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FIGURE 5.
Structure of action-time autoencoders. The encoder embeds the action sequence into a sequence of real-valued vectors,
which is combined with the timestamp sequence and passed to an RNN. The last output of the RNN is the feature
vector 6 of the action sequence and the timestamp sequence. The decoder reconstructs both the action sequence and

the timestamp sequence from a sequence of real-valued vectors processed by an RNN.
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Embedding

FIGURE 6.
Structure of sequence models. A sequence model embeds an action sequence into a sequence of real-valued vectors
and combines it with the timestamp sequence. The combined sequence is then processed by an RNN, the last output
of which is the feature vector @ of the response process related to the response variable. A GLM or FNN is used to

describe the relationship between 6 and the response variable y.

= A | B C D E F
1 |Country Gender Age ID Action Time
2 |UsS F 18 101 Start,CHECK_A,End 0,6803,8774
3 |us v 35 102 Start,0PT1_1,0PT2_1,RUN,CHECK_D,End  0,18263,21010,22034,42015,44132
4 |US F 31 103 Start,OPT1_3,0PT2_2,RUN,CHECK_A,End  0,71910,75087,81733,105105,129596
5 |p v 22 104 Start,0PT1_1,0PT2_2,RUN,0OPT1_3,0PT2_2, 0,81733,95466,98860,105105,106560,111(
6 |IP F 40 105 Start,CHECK_C,End 0,3325,3568
7
FIGURE 7.

Screenshot of a CSV file storing response processes in “single” style.
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Screenshot of a CSV file storing response processes in “multiple” style.

A A | B | C | D E | F

1 |Country Gender Age ID Action Time

2 |US F 18 101 Start 0
3 |US F 18 101 CHECK_A 6803
4 |US F 18 101 End 8774
5 |US M 35 102 Start 0
6 |US M 35 102 OPT1_1 18263
7 |US M 35 102 OPT2_1 21010
8 |Us M 35 102 RUN 22034
9 |US M 35 102 CHECK_D 42015
10 |US M 35 102 End 44132

FIGURE 8.

37
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CLIMATE CONTROL

You have no instructions for your new air conditioner.
You need to work out how to use it.

You can change the top, central and bottom controls on
the left by using the sliders (<). The initial setting for
each control is indicated by A.

By clicking APPLY, you will see any changes in the
temperature and humidity of the room in the
temperature and humidity graphs. The box to the left of
each graph shows the current level of temperature or
humidity.

Question : CLIMATE CONTROL

Top Control

June 29, 2021

[ g

Central Control
h 1 -

——
B

Bottom Control
h N -,

—t—
-~ - A 4+

APPLY

Find whether each control influences temperature and humidity by changing

the sliders. You can start again by clicking RESET.

Draw lines in the diagram on the right to show what each control influences.
To draw a line, click on a control and then click on either Temperature or

Humidity. You can remove any line by clicking on it.

FIGURE 9.

++

Top Control

Central
Control

Bottom
Control

Temperature

[25]

Humidity

Screenshots of the climate control item in PISA 2012.

RESET
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Action transition probability matrix for 25 randomly selected actions in the climate control item.
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FIGURE 11.

Plot of the first MDS feature against the logarithm of process length in the climate control item example.
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FIGURE 12.

The value of the sequence model objective function on the training and the validation sets at the end of each epoch

in the climate control item example.
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Tables

TABLE 1.

Summary of ProcData features. The functions marked by T depend on the keras package.

Topic Objects
Data structure proc, print.proc, summary.proc
Data input and output read.seqs, write.seqgs, cc_data

remove_repeat, remove_action,

Process manipulation
replace_action, combine_actions

seq2feature_mds, chooseK mds,

Feature extraction
seq2feature,seq25eqT, choose}(,squSeqT

Sequence model seqm', predict.seqm'

TABLE 2.

Functions for sequence manipulation.

Function Description

sub_seqs () subsetting a set of response processes
remove_repeat () removing consecutive repeated actions and their timestamps
replace_action() renaming an action
remove_action()  removing a set of actions and their timestamps

combine actions() combining a given pattern of consecutive actions into a single action
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