
PROCDATA: AN R PACKAGE FOR PROCESS DATA ANALYSIS

Xueying Tang

university of arizona

Susu Zhang

university of illinois at urbana-champaign

Zhi Wang, Jingchen Liu and Zhiliang Ying

columbia university

June 29, 2021

Correspondence should be sent to

E-Mail: jcliu@stat.columbia.edu

Psychometrika Submission June 29, 2021 2

PROCDATA: AN R PACKAGE FOR PROCESS DATA ANALYSIS

Abstract

Process data refer to data recorded in log files of computer-based items. These

data, represented as timestamped action sequences, keep track of respondents’ response

problem-solving behaviors. Process data analysis aims at enhancing educational

assessment accuracy and serving other assessment purposes by utilizing the rich

information contained in response processes. The R package ProcData presented in this

article is designed to provide tools for inspecting, processing, and analyzing process

data. We define an S3 class ‘proc’ for organizing process data and extend generic

methods summary and print for ‘proc’. Feature extraction methods for process data

are implemented in the package for compressing information in the irregular response

processes into regular numeric vectors. ProcData also provides functions for making

predictions from neural-network-based sequence models. In addition, a real dataset of

response processes from the climate control item in the 2012 Programme for

International Student Assessment is included in the package.

Key words: process data analysis, multidimensional scaling, autoencoder, sequence

model

Psychometrika Submission June 29, 2021 3

1. Introduction

With the advancement of technology, computer-based assessments have become popular in

measuring complex human skills such as problem solving skills. In these assessments, participants

are often asked to accomplish real-life tasks in a simulated environment. As a participant

interacts with a computer to complete the tasks, the entire interaction process is recorded in a log

file. Each process includes actions such as mouse clicks and keystrokes and timestamps at which

these actions took place. Such data describe the process of responding to an item and are thus

called response process data, or in short, process data.

Naturally, process data contain substantially more information concerning each respondent

than traditional dichotomous or polytomous item responses. A response process not only

indicates whether the final answer to the item is correct or not but also details how the problem is

solved. The detailed information enables researchers to compare behavior patterns in successful

and unsuccessful responses, detect abnormal behaviors, and study other problems that are

otherwise difficult or even impossible to study (Ren et al., 2019; Stadler, Fischer, & Greiff, 2019;

C. Wang, Xu, Shang, & Kuncel, 2018). It has also been quantitatively verified that the variables

constructed from process data have higher prediction power for a wide range of variables that are

directly or indirectly related to problem-solving behaviors (X. Tang, Wang, He, Liu, & Ying,

2020; X. Tang, Wang, Liu, & Ying, 2020; Zhang, Tang, He, Liu, & Ying, 2021). Moreover, with

an appropriate design of the scoring rule, process-data-based assessment substantially improves

assessment reliability compared to the item-response-theory-based (IRT-based) scores (Zhang,

Wang, Qi, Liu, & Ying, 2021). In particular, the process-data-based score of one item is as

accurate as the IRT-based score of three items. In addition, differential item functioning may be

reduced or even completely removed by looking into the response processes and making use of the

information appropriately. There are many other ways that researchers may make use of process

data and they are yet to be discovered.

Process data analysis has gained prominence in the past few years. Various methods have

been developed. He and von Davier (2016) and Qiao and Jiao (2018) found that n-grams of

action sequences are useful for predicting the item performance and for clustering respondents.

Psychometrika Submission June 29, 2021 4

Chen, Li, Liu, and Ying (2019) analyzed process data through an event history analysis approach.

Recently, two generic feature extraction methods have been developed to automatically construct

informative features from process data (X. Tang, Wang, He, et al., 2020; X. Tang, Wang, Liu, &

Ying, 2020). These methods transform response processes into real-valued vectors (features)

without losing too much information. One of the two methods is based on multidimensional

scaling and the other is based on a type of neural networks called autoencoder. Besides

autoencoders, other neural networks such as recurrent neural networks (RNNs) have also been

found potentially useful for analyzing process data (S. Tang, Peterson, & Pardos, 2016).

Although the methodology development has been prosperous, software for analyzing process

data has not been developed in parallel. Due to the special structure of response processes, few

existing packages for analyzing real-valued or categorical time series are applicable to process

data analysis. Recently, a Python library glassPy (Hao, Smith, Mislevy, von Davier, & Bauer,

2016) is developed for analyzing game/simulation-based assessment log files. This library focuses

on processing and summarizing the raw log files in extensive markup language (XML). It also

includes tools for visualizing the summarized information. As far as the authors’ knowledge, there

is currently no software implementing advanced statistical and machine learning methods

designed for process data. The lack of software implementation hinders the applications of the

state-of-the-art methods and slows down the roll-out of scientific discovery. We try to fill in this

gap by developing an R package ProcData. This package provides easy-to-use tools for basic

exploration and operation of process data. It also includes functions implementing the

state-of-the-art methods for process data analysis. ProcData is available at the Comprehensive R

Archive Network (CRAN) at http://CRAN.R-project.org/package=ProcData and under

development on GitHub at https://github.com/xytangtang/ProcData.

The remaining sections of this article are organized as follows. In Section 2, we describe the

state-of-the-art methods implemented in ProcData. We select a set of important elements of the

ProcData package and present them in Section 3. A case study of the climate control item in

PISA 2012 is presented in Section 4 to demonstrate the usage of the package1. A summary is

1ProcData 0.2.5 is used to produce the results in the case study. This version is available on

http://CRAN.R-project.org/package=ProcData
https://github.com/xytangtang/ProcData

Psychometrika Submission June 29, 2021 5

included in Section 5.

2. Methods

In this article, a response process is represented by o = (s, t). Each response process consists

of two sequences, an action sequence s = (s1, . . . , sL) and a timestamp sequence t = (t1, . . . , tL)

where L denotes the length of the response process, that is, the total number of actions taken

during the process. The action sequence s records the actions taken by the respondent to solve

the item in order. Each element in s is one of the M possible actions, a1, . . . , aM , in the item. We

call A = {a1, . . . , aM} the action set of the item. The timestamp sequence t records the time of

actions in s from inception and therefore 0 ≤ t1 ≤ t2 ≤ · · · ≤ tL. For a set of response processes

o1, . . . ,oN of N respondents, the length of a process is likely to vary across observations. We

write oi = (si, ti), si = (si1, . . . , siLi), and ti = (ti1, . . . , tiLi), where Li denotes the length of the

response process for oi, i = 1, . . . , N .

A major technical difficulty for process data analysis is that response processes cannot be

conveniently organized as a matrix. Thus standard statistical methods are not directly applicable

to process data. Feature extraction methods have been shown useful for exploratory process data

analysis. These methods compress response processes into vectors of a prespecified dimension.

These vectors are deemed as features of the response processes and are readily incorporated in

traditional statistical models such as regression models. Furthermore, the extracted features are

less noisy than the original response processes whose high noise level constitutes another challenge

of direct analysis of process data. In this section, we describe two unsupervised feature extraction

methods (X. Tang, Wang, He, et al., 2020; X. Tang, Wang, Liu, & Ying, 2020) and an RNN-based

supervised learning model for response processes. We begin the discussion by briefly introducing

RNNs, a key building block in these methods. We refer readers to Goodfellow, Bengio, and

Courville (2016) and Patterson and Gibson (2017) for a more thorough description of neural

networks.

CRAN at https://cran.r-project.org/src/contrib/Archive/ProcData/ or on Github at https://github.com/

xytangtang/ProcData/tree/95a3658?.

https://cran.r-project.org/src/contrib/Archive/ProcData/
https://github.com/xytangtang/ProcData/tree/95a3658?
https://github.com/xytangtang/ProcData/tree/95a3658?

Psychometrika Submission June 29, 2021 6

2.1. Introduction to neural networks

Artificial neural networks or, in short, neural networks are nonlinear models describing

relationships among variables. Each neural network is essentially a parameterized family of

nonlinear functions. Its structure is specially designed to achieve a specific modeling aim while

being flexible.

=========================

Insert Figure 1 about here

=========================

RNNs are a class of artificial neural networks often used for processing sequential

information. Unlike the feedforward neural network (FNN; Goodfellow et al., 2016, Chapter 6)

that treats an input as a simple vector, RNNs have a special structure to utilize the sequential

information in the data. As depicted in Figure 1, an RNN has three components: inputs, hidden

states, and outputs, each of which is a multivariate time series. The inputs x1, . . . ,xL are

K(I)-dimensional vectors. The hidden states m1, . . . ,mL are K(H)-dimensional and can be viewed

as the memory that helps process the input information sequentially. The hidden state evolves as

the elements in the input are processed. Each ml summarizes the information in the input

sequence up to step l by integrating the current information xl with the previous memory ml−1,

that is, ml is a function of xl and ml−1

ml = f(xl,ml−1), (1)

for l = 1, . . . , L. The initial hidden state m0 is often set to be the zero vector. To extract the

information useful for subsequent tasks from the memory, a K(O)-dimensional output vector yl is

produced as a function of the hidden state ml at each step l,

yl = g(ml). (2)

Both f and g are specified as a parametric family of functions with parameters to be estimated

based on data. Various choices of f and g have been proposed to compute the hidden states and

Psychometrika Submission June 29, 2021 7

the outputs. Two most widely used ones are the long-short-term-memory (LSTM) unit and the

gate recurrent unit (GRU). They are designed to mitigate the vanishing or exploding gradient

problem of a basic RNN (Bengio, Simard, & Frasconi, 1994). We refer the readers to Hochreiter

and Schmidhuber (1997) and Cho et al. (2014) for the expressions of LSTM and GRU.

RNNs take input process sequences of different lengths. Note that the functions f and g in

(1) and (2) are the same across time steps. Therefore, the total number of parameters for an

RNN does not depend on the sequence length.

2.2. Autoencoder Feature Extraction

Autoencoders (Goodfellow et al., 2016, Chapter 14) are a class of neural networks aiming at

reconstructing the input in the output. It consists of two components (Figure 2), an encoder that

maps the complex and/or high dimensional input to a low dimensional vector and a decoder that

reconstructs the input from the low dimensional vector. The low-dimensional vector produced by

the encoder contains condensed information to rebuild the input. Therefore, its elements can be

treated as features of the input data.

=========================

Insert Figure 2 about here

=========================

X. Tang, Wang, Liu, and Ying (2020) proposed to extract features from the action sequences

in process data by means of a sequence autoencoder (SeqAE) . The structure of the action SeqAE

is depicted in Figure 3. Its encoder consists of three steps. In the first step, each unique action in

A is associated with a numeric vector (embedding) in RK so that an input action sequence is

transformed into a sequence of K-dimensional embeddings. In the second step, an RNN is used to

sequentially summarize the information in the embedding sequence up to a time step. In the last

step, the last vector in the output of the encoder RNN is retained as the feature vector. The

decoder of the action SeqAE also consists of three steps. In the first step, the feature vector is

repeated to form a sequence of vectors which are then passed into another RNN in the second

step to obtain another sequence of vectors. Each vector in this latter sequence contains the

Psychometrika Submission June 29, 2021 8

information of the action at the corresponding time step. In the last step, for l = 1, . . . , L, a

probability distribution ŝl = (ŝ(1)
l , ŝ

(2)
l , . . . , ŝ

(M)
l) on A is constructed at time step l using a

multinomial logit model (MLM). The output vector yl of the decoder RNN is used as the

covariates in the MLM. The MLMs at different time steps share the parameters. In both the

encoder RNN and the decoder RNN, K(I) = K(H) = K(O) = K.

=========================

Insert Figure 3 about here

=========================

X. Tang, Wang, Liu, and Ying (2020) focused on the action sequences in process data. The

idea of action SeqAE can be easily extended to the time sequences or both action and time

sequences to construct a time SeqAE or an action-time SeqAE. As shown in Figure 4, the

structure of a time SeqAE resembles that of an action SeqAE. RNNs are used in both encoder

and decoder to summarize the sequential information. However, because timestamps are numeric,

in a time SeqAE, an embedding step is not needed in the encoder and the timestamps are

reconstructed through a linear model instead of a multinomial logit model. An action-time SeqAE

can be constructed by combining an action SeqAE and a time SeqAE as shown in Figure 5.

=========================

Insert Figure 4 about here

=========================

=========================

Insert Figure 5 about here

=========================

Given the structure of a SeqAE, the parameters of the autoencoder, including the

embeddings, the parameters in the encoder and decoder RNNs, and the parameters in the

multinomial logit model and the linear model, are estimated by minimizing the discrepancy

between the input sequences and the output sequences. To be more specific, the estimated

Psychometrika Submission June 29, 2021 9

parameter vector η̂ is obtained by minimizing

F (η) =
∑
i∈Ω

δ(oi, ôi;η), (3)

where ô = (ŝ, t̂) denotes the output of a SeqAE for input o, δ(o, ô) is a function measuring the

discrepancy between o and ô, and η is a vector containing all parameters to be estimated in the

SeqAE. For an action SeqAE,

δ(o, ô) = δa(s, ŝ) = − 1
L

L∑
l=1

M∑
j=1

1{sl = aj} log(ŝ(j)
l).

For a time SeqAE,

δ(o, ô) = δt(t, t̂) =
L∑

l=1
(tl − t̂l)2.

For an action-time SeqAE,

δ(o, ô) = waδa(s, ŝ) + wtδt(t, t̂),

where w = (wa, wt) assigns different weights on the discrepancy between action sequences and the

discrepancy between time sequences. The objective function (3) is usually minimized via

gradient-based stochastic approximation (Hinton, Srivastava, & Swersky, 2014; Kingma & Ba,

2015; Robbins & Monro, 1951; Zeiler, 2012). Since neural networks are often over-parametrized,

the algorithm is usually stopped before convergence to avoid overfitting. A widely used early

stopping method monitors the value of the objection function on a validation set. After running

the algorithm long enough, one uses the parameter value producing the lowest monitored value as

the estimate.

2.3. Multidimensional Scaling Feature Extraction

Multidimensional scaling (MDS) (Borg & Groenen, 2005) is a technique often used for

dimension reduction and data visualization. Its goal is to embed objects in a space in such a way

that the dissimilarity between objects is approximated by the distance between their embedded

features. Similar objects are located close to each other while dissimilar objects are far apart.

Given a dissimilarity measure that comprehensively characterizes the difference between objects,

the object coordinates obtained from MDS can be viewed as features describing the latent

Psychometrika Submission June 29, 2021 10

attributes of the objects. Given a dissimilarity measure d and the latent feature dimension K,

features of a set of response processes o1, . . . ,on are a solution to the optimization problem

min
θ1,...,θN∈RK

∑
1≤i<j≤n

(dij − ‖θi − θj‖)2, (4)

where dij = d(oi,oj) is the dissimilarity between response processes oi and oj , θi is the feature

vector of response process oi, and ‖x‖ =
√

x>x.

X. Tang, Wang, He, et al. (2020) consider the optimal symbol similarity (OSS) measure

proposed in Gómez-Alonso and Valls (2008). For two response processes oi and oj , the OSS

measure is

dOSS(oi,oj) = fOSS(si, sj) + gOSS(si, sj)
Li + Lj

, (5)

where fOSS(si, sj) quantifies the dissimilarity among the actions that appear in both si and sj

and gOSS(si, sj) is the count of actions appearing in only one of si and sj . More precisely,

fOSS(si, sj) =
∑

a∈Cij

∑Ka
ij

k=1 |sa
i (k)− sa

j (k)|
max{Li, Lj}

, (6)

and

gOSS(si, sj) =
∑

a∈Uij

La
i +

∑
a∈Uji

La
j , (7)

where sa denotes the sequence consisting of chronologically ordered positions of action a in action

sequence s, La is the length of sa, sa(k) represents the kth element of sa, and Ka
ij = min{La

i , L
a
j}.

The OSS measure only takes the action sequences into account when characterizing the

differences between two response processes. To account for the difference in both action sequences

and time sequences, a time-weighted version of OSS (TOSS) can be considered. The length of a

response process in OSS is replaced by the total response time of the response process in TOSS

and La is replaced by the total time spent on a. In (6), |sa
i (k)− sa

j (k)| is the difference between

the positions of the kth appearance of a in si and sj . In TOSS, this quantity is replaced by the

difference between the two corresponding timestamps. Namely,

dTOSS(oi,oj) = fTOSS(oi,oj) + gTOSS(oi,oj)
tiLi + tjLj

, (8)

Psychometrika Submission June 29, 2021 11

where

fTOSS(oi,oj) =
∑

a∈Cij

∑Ka
ij

k=1 |tisa
i (k) − tjsa

j (k)|
max{tiLi , tjLj}

, (9)

and

gTOSS(oi,oj) =
∑

a∈Uij

∑
l:sil=a

(til − ti,l−1) +
∑

a∈Uji

∑
l:sjl=a

(tjl − tj,l−1). (10)

Given the dissimilarity function d, the solution to (4) is approximated by performing an

eigenvalue decomposition of the matrix −1
2JD(2)J where J = I− 1

N 1>1 and D(2) = (d2
ij). This is

called classical MDS. The computational complexity of the algorithm is O(N3), which is very

expensive if the number of processes N is large. Moreover, the N ×N dissimilarity matrix D

consumes a large amount of memory. Paradis (2018) proposed an algorithm to perform MDS for

a large N . This algorithm first chooses a small subset Ω of the objects and obtains θ̂i, i ∈ Ω by

performing classical MDS on this subset. Then it minimizes

F (θi) =
∑
j∈Ω

(dij − ‖θi − θ̂j‖)2 (11)

by the BFGS method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) for each

i 6∈ Ω. In this way, only the dissimilarities for O(ÑN) pairs of objects are calculated where Ñ is

the subset size and the eigenvalue decomposition for a large matrix is avoided.

The MDS feature extraction method requires specifying K, the number of features to be

extracted. In X. Tang, Wang, He, et al. (2020), K is selected by k-fold cross-validation. The

authors also recommended performing principal component analysis on the extracted feature to

obtain more interpretable features.

2.4. Sequence Models

The feature extraction methods described above are designed to capture the variations

among response processes. We further present a sequence model that extracts features for some

specific variable of interest. As depicted in Figure 6, a sequence model has two parts. The first

part is identical to the encoder. It embeds a response process to a fixed dimensional vector θ via

an RNN. In the second part, instead of reconstructing the response process, the sequence model

utilizes a generalized linear model (GLM) to predict the target variable y given θ. Thus, the

Psychometrika Submission June 29, 2021 12

feature vector is trained to explain the target variable instead of the variations in response

processes. Besides GLMs, other supervised learning models such as FNNs can also be used in the

second part to describe a more complex relationship between θ and y.

=========================

Insert Figure 6 about here

=========================

Figure 6 illustrates the structure of the sequence model when the information in both the

action sequence and the timestamp sequence is considered. Similar structures have been used for

sentiment analysis in natural language processing (X. Wang, Liu, Sun, Wang, & Wang, 2015).

The parameters in the sequence model includes the embedding, the parameters in the RNN,

and the parameters in the GLM or FNN. Given a set of response processes and the corresponding

values of the target variable, the parameters can be estimated by the maximum likelihood

approach or, equivalently, minimizing the discrepancy between the observed y and the estimated

mean value ŷ based on the model. More specifically, the estimated value of the parameters

minimizes

F (η) =
∑
i∈Ω

δ(yi, ŷi), (12)

where δ(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) if y is binary and δ(y, ŷ) = (y − ŷ)2 if y is

continuous. Similar to SeqAE, the objective function (12) can be optimized by stochastic

approximation with early stopping. Once the parameters in the sequence model is estimated, the

model output ŷ is a prediction of the response variable. The output of the first part of the model

are the features most relevant to the target response variable.

3. The ProcData Package

We develop the ProcData package to provide tools for process data analysis. ProcData

defines an S3 object for process data and includes functions for data processing, inspection, and

modeling. The main features of ProcData is summarized in Table 1. The details of these features

are described in Sections 3.1–3.5.

Psychometrika Submission June 29, 2021 13

=========================

Insert Table 1 about here

=========================

As described in Section 2, some methods for process data require construction and training of

neural networks. ProcData relies on R package keras for achieving this functionality. The keras

package is an R interface to a high level neural network API developed for fast experimentation of

neural networks in Python. The functions in ProcData that are built on functions in keras are

marked by † in Table 1. If keras is not installed properly, calling these functions will lead to an

error while other functions in ProcData can still be used normally. The installation guide of the

keras package can be found at https://keras.rstudio.com/. Note that a successful

installation of keras requires an installation of Python.

3.1. Data Input and Output

ProcData includes a dataset from the climate control item in PISA 2012. The dataset

contains the response processes and the dichotomous response outcomes of 16,763 students. The

item interface is described later in Section 4 and is available online 2. The data is loaded as

follows.

library("ProcData")

data("cc_data")

The data object cc data is a list of two elements, seqs and responses. The response outcomes

are contained in responses as a numeric vector. The response processes are stored in seqs as an

object of class ‘proc’, which will be specified in Section 3.2.

=========================

Insert Figure 7 about here

=========================

2http://www.oecd.org/pisa/test-2012/testquestions/question3/

https://keras.rstudio.com/

Psychometrika Submission June 29, 2021 14

=========================

Insert Figure 8 about here

=========================

To read and write datasets on hard drive, ProcData provides functions for data input and

output. Process data are usually stored as comma separated values (CSV) files in either “single”

or “multiple” style. In both styles, all the action sequences form a column (action column) and all

the timestamp sequences form another column (time column). In the “single” style, the process

for one respondent takes up a single row in the CSV file. The entire action sequence of the

respondent is stored as one entry of the action column. The timestamp sequence of the

respondent is stored in the corresponding entry of the time column. Figure 7 presents a CSV file

storing five response processes in the “single” style. In the “multiple” style, each action in the

process and its timestamp occupy one row in the CSV file. A process of length L takes up L

consecutive rows. A CSV file that stores two response processes in the “multiple” style is

displayed in Figure 8. The two response processes are the same as the first two shown in Figure 7.

In ProcData, functions read.seqs() and write.seqs() read and write process data from

and to a CSV file. The file style is specified via argument style as shown in the sample code

below. Reading and writing files require specification of id var, action var, and time var,

which are the column names for respondent identity number, action sequence, and timestamp

sequence, respectively. The separator of the elements in the action sequence and the timestamp

sequence is provided via step sep if the file to read or write is in the single style.

write.seqs(cc_data$seqs, file="seqs_format_multiple.csv", style = "multiple",

id_var="ID", action_var="Action", time_var="Time")

write.seqs(cc_data$seqs, file="seqs_format_single.csv", style = "single",

id_var="ID", action_var="Action", time_var="Time", step_sep=",")

seqs_multiple <- read.seqs("seqs_format_multiple.csv", style = "multiple",

id_var = "ID", action_var = "Action", time_var = "Time")

seqs_single <- read.seqs("seqs_format_single.csv", style = "single", id_var = "ID",

action_var = "Action", time_var = "Time", step_sep = ",")

Psychometrika Submission June 29, 2021 15

3.2. S3 class ‘proc’

ProcData defines an S3 class ‘proc’ for organizing process data. An object of class ‘proc’ is a

list of two elements, action seqs and time seqs. In a ‘proc’ object storing response processes

o1, . . . ,on, action seqs is a list with elements s1, . . . , sn and time seqs is a list with elements

t1, . . . , tn. The names of the elements in action seqs and time seqs are the identity of the

respondents. If the timestamp sequences are not available, time seqs is set to NULL. The seqs

element in cc data is a ‘proc’ object.

An object of class ‘proc’ is printed by the print method for class ‘proc’, print.proc().

The function prints response processes one by one in an easy-to-read format. For each process,

the action sequence and the timestamp sequence are aligned and are printed horizontally. One

can print either the first several processes or a selected subset of the processes in the ‘proc’

object. The format of the printed processes is demonstrated below.

ARE000000300079

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

Event start 1_1_1 reset 0_0_1 reset 0_1_0 reset 1_0_0 end

Time 0.0 113.2 119.1 122.0 135.4 138.5 147.8 149.8 157.0

We also extend the summary method for class ‘proc’. Function summary.proc() returns a list

containing various summary statistics of the action sequences and the timestamp sequences in the

‘proc’ object.

3.3. Sequence Manipulation

=========================

Insert Table 2 about here

=========================

Process data often contain a large amount of noise and data cleaning is often necessary

before further analysis. Table 2 lists the functions provided in ProcData for cleaning data in

‘proc’ objects. Their basic usage is demonstrated below.

Psychometrika Submission June 29, 2021 16

obtain processes 4, 8, 12, ..., 40 from cc_data

seqs <- sub_seqs(cc_data$seqs, ids = 4*1:10)

remove repetitive actions in the response processes

seqs1 <- remove_repeat(seqs)

remove action "0_0_0"

seqs2 <- remove_action(seqs1, actions = "0_0_0")

rename "reset" with "RESET"

seqs3 <- replace_action(seqs2, old_action = "reset", new_action = "RESET")

combine actions "0_0_1" and "0_0_2" into a new action "BOTTOM_MOVE_ONE"

seqs4 <- combine_actions(seqs2, old_actions = c("0_0_1", "0_0_2"),

new_action = "BOTTOM_MOVE_ONE")

3.4. Feature Extraction

3.4.1. Feature Extraction via Multidimensional Scaling

In ProcData, seq2feature mds() extracts feature from process data via MDS. It takes a

‘proc’ object (seqs), the number of features to be extracted (K), and some other control

arguments to calculate the dissimilarity matrix for the input response processes and then

performs MDS.

The dissimilarity measure is specified via dist type. In particular, two dissimilarity

measures in Section 2.3 are implemented with dist type = "oss action" and dist type =

"oss both" standing for OSS and TOSS, respectively. Users may also use their own dissimilarity

measure by providing the dissimilarity matrix through seqs.

In seq2feature mds(), the objective function (4) is optimized by either calling function

cmdscale() in R to perform the classical MDS or applying the large sample size algorithm

(Paradis, 2018). By default, seq2feature mds() uses the classical MDS if there are fewer than

5000 response processes and the large sample size algorithm otherwise. One may also choose the

algoritm by setting method = "small" for the classical MDS or method = "large" for the other

algorithm.

Psychometrika Submission June 29, 2021 17

Following the recommendation in X. Tang, Wang, He, et al. (2020), seq2feature mds()

performs principal component analysis on the extracted features to enhance the interpretability of

the features. This can be turned off by setting pca = FALSE. By default, seq2feature mds()

returns a list containing the latent features (theta) and the value of the optimized objective

function (loss). The dissimilarity matrix (dist mat) is returned if return dist = TRUE.

ProcData also provides a function chooseK mds() to select the feature dimension by k-fold

cross-validation.

3.4.2. Sequence Autoencoder Feature Extraction

In ProcData, function seq2feature seq2seq() is provided to extract K features from a

given set of response processes (seqs) via SeqAEs. The SeqAE type is specified through argument

ae type as "action" (default), "time", or "action time". As described in Section 2.2, RNNs

are a critical component in SeqAEs. In seq2feature seq2seq(), the choice of the recurrent units

("lstm" or "gru") in the encoder and decoder RNNs is set by argument rnn type.

By default, the original timestamp sequences are used for constructing time SeqAEs and

action-time SeqAEs in seq2feature seq2seq(). The inter-arrival time sequences are used by

setting cumulative = FALSE. The natural logorithm of the timestamps or the inter-arrival time is

used if log = TRUE.

The objective function (3) is minimized by stochastic approximation with early stopping as

described in Section 2.2. The algorithms available are stochastic gradient descent

(optimizer name = "sgd"; Robbins & Monro, 1951), Adam (optimizer name = "adam";

Kingma & Ba, 2015), AdaDelta (optimizer name = "adadelta"; Zeiler, 2012), and RMSprop

(optimizer name = "rmsprop" Hinton et al., 2014). The (baseline) step size is set by argument

step size. The training and validation sets are specified in samples train and samples valid,

respectively.

The training time of SeqAEs varies from a few minutes to a few hours depending on the

number of possible actions in the item and the number of features to be extracted. In

seq2feature seq2seq(), one sets verbose = TRUE to print out and monitor the training

progress.

Psychometrika Submission June 29, 2021 18

3.5. Sequence Models

In ProcData, function seqm() constructs and fits a sequence model described in Section 2.4

with a target response variable y whose type is set by response type. Currently, y can be either

a binary variable ("binary") or a continuous variable ("scale"). The dimensions of the action

embeddings and the output of the RNN are specified through K emb and K rnn, respectively. By

default, seqm() uses a generalized linear model to predict y based on the RNN output.

Alternatively, one may use an FNN for this predictive model.

As a default choice, seqm() extracts features only from the action sequences. Timestamp

sequences, if available, can be incorporated by setting include time = TRUE. In this case, the

logarithms of the inter-arrival time sequences are used by default. To use the original timestamp

sequences, set time interval = FALSE and log time = FALSE.

Function seqm() returns an object of class ‘seqm’, which is a list containing the neural

network architecture, the estimated parameters, and other information about modeling fitting.

The key elements of a ‘seqm’ object are a character string describing the neural network structure

(structure) and a matrix giving the training and validation loss at the end of each epoch for

convergence check (history). Once a sequence model is fit, prediction and feature extraction are

performed by predict.seqm(), the predict method of ‘seqm’ objects.

4. Examples

In this section, we demonstrate the ProcData package through a case study of the climate

control item in PISA 2012. The dataset cc data is included in the package. In the

demonstration, we extract features from the response processes and use them to predict

respondents’ task accomplishment. Furthermore, we investigate the behavior patterns in response

processes related to task accomplishment.

4.1. PISA Climate Control Item

The climate control item is part of the Programme for International Student Assessment

(PISA) 2012 for assessing students’ problem solving skills. Figure 9 is a screenshot of the item

Psychometrika Submission June 29, 2021 19

interface. In the simulated environment, there is a new air conditioner with no instructions.

Students are asked to figure out which climate variable, temperature or humidity, that each of the

three controls on the air conditioner influences. They can slide the control bars through the

simulation interface and read how the temperature and humidity change. In the process, how the

controls are moved and what buttons are clicked are recorded in the log files. For example, if a

student clicked the “APPLY” button after moving the top control to “+” and the middle control

to “−−”, then action “1 -2 0” along with the time elapsed since the start of the item, say 5.4

seconds, are recorded. A recorded process with action sequence (“start”, ‘1 0 0”, “RESET”,

“0 0 -2”, “end”) and timestamp sequence (0.0, 4.9, 6.3, 10.6, 12.5) indicates that the student

moved the top control to “+” and clicked “APPLY” 4.9 seconds after the item started. The

positions of the three controls were reset by a click of the “RESET” button 1.4 seconds later.

Then the bottom control was moved to “−−” and “APPLY” was clicked again 10.6 seconds after

the item started. The total response time is 12.5 seconds.

=========================

Insert Figure 9 about here

=========================

4.2. Data preprocessing

We randomly sample 2000 response processes from dataset cc data for our analysis. Given a

vector of randomly sampled indices, subsetting a ‘proc’ object can be easily done using

sub seqs() provided in ProcData. In the subset, 53.7% of the respondents answered the item

correctly. The sampled processes are then split into training, validation, and test sets.

randomly sample a subset of size 2000 from cc_data

set.seed(12345)

n <- 2000

idx <- sample(1:length(cc_data$responses), n)

seqs <- sub_seqs(cc_data$seqs, idx)

y <- cc_data$responses[idx]

Psychometrika Submission June 29, 2021 20

proportion of incorrect (0) and correct (1) answers

table(y) / n

split sampled processes into training, validation, and test set

n_train <- 1000; n_valid <- 500; n_test <- 500

index_train <- sample(1:n, n_train)

index_valid <- sample(setdiff(1:n, index_train), n_valid)

index_test <- setdiff(1:n, c(index_train, index_valid))

The following code demonstrates the summary method for ‘proc’ objects.

seqs_summary <- summary(seqs)

number of unique actions

seqs_summary$n_action

action set

seqs_summary$actions

range of sequence lengths

range(seqs_summary$seq_length)

action transition probability matrix

trans_mat <- seqs_summary$trans_count

trans_mat <- trans_mat / rowSums(trans_mat)

The output shows that there are 128 unique actions in the 2000 response processes. The process

length ranges from 3 to 183. Figure 10 presents a 25× 25 submatrix of the 128× 128 full action

transition probability matrix trans mat. The 25 actions corresponding to the submatrix are

randomly selected from the action set. The dark diagonal of the submatrix indicates that

respondents tend to repeat an action several times before taking a different action.

=========================

Insert Figure 10 about here

=========================

Psychometrika Submission June 29, 2021 21

4.3. Unsupervised feature extraction

We begin the illustration of feature extraction with the intuitive action count features

obtained as follows.

get_action_counts <- function(x, actions) sapply(actions, function(a) sum(x == a))

theta_action <- t(sapply(seqs$action_seqs, get_action_counts,

actions = seqs_summary$actions))

The output object theta action is a 2000× 128 matrix. The rows are feature vectors for

different respondents. The columns correspond to the actions in the action set. The elements in a

feature vector are the counts of the corresponding actions in the response process. Using these

action features as covariates, we fit a logistic regression for the response outcome via glm() on the

training and validation set combined. The prediction accuracy of the fitted model on the test set

is 0.766.

Next, we extract features from response processes through multidimensional scaling. The

number of features are chosen by five-fold cross-validation. We only consider the action sequences

here and set dist type = "oss action". We set return dist = TRUE and chooseK mds()

returns the dissimilarity matrix for later use to avoid repeated calculations. The returned

dissimilarity matrix and the selected number of features are then passed to seq2feature mds()

for feature extraction.

mds_K_res <- chooseK_mds(seqs, 1:10*10, dist_type = "oss_action",

return_dist = TRUE)

K <- mds_K_res$K; K

mds_res <- seq2feature_mds(mds_K_res$dist_mat, K = K)

As a result, 40 MDS features are extracted. These features are used similarly as the action count

features to fit a logistic regression for the response outcome. The prediction accuracy based on

MDS features is 0.81, which is slightly higher than that obtained from the model based on action

count features. We further investigate the glm output and refit a logistic regression with the first

MDS only. We find that including this single feature yields a prediction accuracy of 0.8.

Psychometrika Submission June 29, 2021 22

Now we examine the behavior patterns associated with the first MDS feature. We order the

response processes according to the value of their first feature and use the print method for class

‘proc’ to display the response processes with the highest and lowest values.

o_mds1 <- order(mds_res$theta[,1])

response processes corresponding to the lowest feature values

print(seqs, index = head(o_mds1))

response processes corresponding to the highest feature values

print(seqs, index = tail(o_mds1))

The output of the above code is included in Appendix. The response processes corresponding to

the highest feature values are often very short, meaning that little meaningful interaction with

computer interface is made. Respondents with this type of behaviors are unlikely to answer the

question correctly. The response processes corresponding to the lowest feature values are often

longer. However, their lengths are not the longest according to Figure 11 where the value of the

first feature is plotted against the logarithm of the length of the corresponding process. A closer

look at the response processes with the lowest values of the feature reveals that these respondents

often move one control bar at a time. This “varying-one-thing-at-a-time” strategy is efficient to

get the correct answer.

=========================

Insert Figure 11 about here

=========================

We further extract features by constructing an action SeqAE. Below is an example of

extracting action SeqAE features by seq2feature seq2seq() in ProcData.

ae_res <- seq2feature_seq2seq(seqs, ae_type = "action", K = K,

rnn_type = "gru", samples_train = index_train,

samples_valid = index_valid, verbose = TRUE)

We set verbose = TRUE to print out the epoch number during the training of the autoencoder so

that we can monitor the training progress. The extracted SeqAE features stored in ae res$theta

Psychometrika Submission June 29, 2021 23

are used to predict the task accomplishment. The prediction accuracy is 0.836, slightly higher

than that of the model with MDS features.

4.4. Feature extraction with targeted variables via sequence model

We demonstrate the usage of seqm() and other relevant functions in this section. We still use

the task accomplishment as the target variable. The training and validation sets are used for

fitting the sequence model while the testing set is used for evaluating the prediction performance

of the fitted model. The response processes used for model fitting and testing are obtained by

subsetting the ‘proc’ object seqs with function sub seqs() in ProcData.

seqs_train <- sub_seqs(seqs, c(index_train, index_valid))

seqs_test <- sub_seqs(seqs, index_test)

y_train <- y[c(index_train, index_valid)]

y_test <- y[index_test]

We first consider predicting y from the action sequence in a response process. The sequence

model that fulfills this task can be fitted by calling function seqm().

seqm_res <- seqm(seqs_train, y_train, response_type = "binary",

K_emb = 5, K_rnn = 5, n_epoch = 20,

max_len = max(seqs_summary$seq_length),

index_valid = n_train + 1:n_valid)

Since the response outcome is a binary variable, we specify response type = "binary". n epoch

is the total number of epochs to be run for estimating the parameters. In each epoch, the chosen

stochastic approximation algorithm goes through the entire training set once.

The convergence of the training process is examined by a plot of the loss function values at

the end of each epoch stored in seqm res$history (Figure 12). We then make predictions based

on the fitted model by calling the predict method for ‘seqm’ objects.

seq_pred_res <- predict(seqm_res, new_seqs = seqs_test)

mean(as.numeric(seq_pred_res > 0.5) == y_test)

Psychometrika Submission June 29, 2021 24

The resulting prediction accuracy is 0.836.

=========================

Insert Figure 12 about here

=========================

To conclude the section, we present an example for both action sequences and time

sequences. Time sequences are incorporated in addition to the action sequences by setting

include time = TRUE in seqm(). Other settings remain.

seqm_res2 <- seqm(seqs_train, y_train, response_type = "binary",

include_time = TRUE, K_emb = 5, K_rnn = 5, n_epoch = 20,

max_len = max(seqs_summary$seq_length),

index_valid = n_train + 1:n_valid)

seq_pred_res2 <- predict(seqm_res2, new_seqs = seqs_test)

mean(as.numeric(seq_pred_res2 > 0.5) == y_test)

The resulting prediction accuracy is 0.734, much lower than what we obtained previously.

Although time sequences can provide more information, they at the same time introduce an

excessive amount of noise, which can reduce the prediction accuracy. It is also possible that the

current sequence model is not able to efficiently incorporating the information in timestamp

sequences, causing a decreased prediction performance.

5. Summary

ProcData is an R package designed for process data analysis. It is applicable to process data

generated by a wide range of human-computer interfaces. ProcData includes an S3 class "proc"

for organizing response processes. Functions for inspecting and processing "proc" objects are also

included in the package. More importantly, two unsupervised learning feature extraction methods

and the neural-network-based sequence models are implemented in ProcData. These tools are

easy to use. The functions for each method integrate the major steps of the method while

allowing the flexibility to change the settings to some degree. In particular, the functions for

Psychometrika Submission June 29, 2021 25

neural-network-based methods wrap several function calls for constructing and training of neural

network and thus simplify the application of these methods.

The feature extraction methods implemented in ProcData require little knowledge of the

item designs. These methods compress the information in response processes into fixed-dimension

real-valued vectors that can be analyzed using conventional statistical tools. The sequence model

describes the relationship between response processes and a target variable. It can be used to

make predictions of the target variable from response processes. This model can also be used to

extract from response processes the features that are most relevant to the target variable.

The extracted features can be used in various psychometric applications. For instance,

process-data-based scoring rules can be constructed based on the extracted features. The specific

functional form is obtained by, for example, regressing a reliable estimate of the target scale on

the features (Zhang, Wang, et al., 2021). The extracted features are also useful for exploratory

analysis of response processes (Zhang, Tang, et al., 2021). The prediction based framework used

in Section 4 can be adapted to exploring whether the response processes provide information on

the variable of interest. If positive results are obtained from the preliminary analysis, more efforts

can be devoted to examining the exact characteristics in the response processes that contribute to

the effect.

Most of the existing methodology development for process data focuses on extracting

information from the response processes produced by a single item. ProcData follows suit.

Although features extracted from multiple items can be aggregated together in the subsequent

analysis, methods that directly synthesize information in multiple items are much more preferable

and could be helpful for understanding the relationship among items. Process data analysis is an

active and quickly rising field. We envision to include more state-of-the-art methods in future

versions of ProcData.

Psychometrika Submission June 29, 2021 26

Appendix

This appendix contains the output of print() in Section 4.3.

> # response processes corresponding to the lowest feature values

> print(seqs, index = head(o_mds1))

’proc’ object of 2000 processes

AUT000007001735

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -2_0_0 -1_0_0 0_1_0 0_2_0 0_-1_0 0_-2_0 0_0_1

Time 0.0 57.4 60.6 62.8 67.1 79.6 81.1 83.3 85.3 97.2

Step 11 Step 12 Step 13 Step 14

Event 0_0_2 0_0_-1 0_0_-2 end

Time 98.6 100.7 102.5 119.5

BRA000083118946

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2_0 0_-1_0 0_-2_0

Time 0.0 141.7 151.2 157.7 164.6 182.1 185.1 188.8 194.2 196.3

Step 11 Step 12 Step 13 Step 14 Step 15 Step 16

Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 end

Time 204.0 206.6 209.4 215.9 218.6 240.4

KOR000006202016

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 2_0_0 1_0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2_0 0_-1_0 0_-2_0

Time 0.0 46.1 52.4 56.4 59.2 62.5 67.3 69.3 70.3 72.4

Step 11 Step 12 Step 13 Step 14 Step 15 Step 16

Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 end

Psychometrika Submission June 29, 2021 27

Time 78.9 81.1 84.1 86.6 89.0 94.6

PRT000009602769

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -1_0_0 -2_0_0 0_1_0 0_2_0 0_-1_0 0_0_1 0_0_2

Time 0.0 73.1 82.5 89.2 94.3 109.5 114.8 119.8 128.8 131.4

Step 11

Event end

Time 139.7

ESP000073120436

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2_0 0_-1_0 0_-2_0

Time 0.0 69.0 73.4 77.0 80.8 94.8 100.3 102.6 105.1 107.1

Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17

Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 reset end

Time 116.9 118.9 121.9 125.1 127.2 136.0 140.6

> # response processes corresponding to the highest feature values

> print(seqs, index = tail(o_mds1))

’proc’ object of 2000 processes

BGR000010603028

Step 1 Step 2 Step 3

Event start 1_1_1 end

Time 0.0 39.7 49.9

AUS000012802387

Step 1 Step 2 Step 3

Psychometrika Submission June 29, 2021 28

Event start 1_1_1 end

Time 0.0 56.4 60.8

HRV000007702394

Step 1 Step 2 Step 3

Event start 1_1_1 end

Time 0.0 67.4 116.9

BGR000010903115

Step 1 Step 2 Step 3

Event start 1_1_1 end

Time 0.0 211.3 237.4

IRL000006501691

Step 1 Step 2 Step 3

Event start 1_1_1 end

Time 0.0 125.9 136.6

Psychometrika Submission June 29, 2021 29

References

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5 (2), 157–166.

Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications.

New York, NY: Springer Science & Business Media. doi: 10.1007/0-387-28981-X

Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms 1.

general considerations. IMA Journal of Applied Mathematics, 6 (1), 76–90.

Chen, Y., Li, X., Liu, J., & Ying, Z. (2019). Statistical analysis of complex problem-solving

process data: An event history analysis approach. Frontiers in Psychology, 10 , 486. doi:

10.3389/fpsyg.2019.00486

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,

Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical

machine translation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (pp. 1724–1734). Association for Computational Linguistics. doi:

10.3115/v1/D14-1179

Fletcher, R. (1970). A new approach to variable metric algorithms. The computer journal, 13 (3),

317–322.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational means.

Mathematics of computation, 24 (109), 23–26.

Gómez-Alonso, C., & Valls, A. (2008). A similarity measure for sequences of categorical data

based on the ordering of common elements. In V. Torra & Y. Narukawa (Eds.), Modeling

decisions for artificial intelligence (pp. 134–145). Berlin, Heidelberg: Springer Berlin

Heidelberg. doi: https://doi.org/10.1007/978-3-540-88269-5 13

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Hao, J., Smith, L., Mislevy, R., von Davier, A., & Bauer, M. (2016). Taming log files from

game/simulation-based assessments: Data models and data analysis tools. ETS Research

Report Series, 2016 (1), 1–17.

He, Q., & von Davier, M. (2016). Analyzing process data from problem-solving items with

Psychometrika Submission June 29, 2021 30

n-grams: Insights from a computer-based large-scale assessment. In Y. Rosen, S. Ferrara, &

M. Mosharraf (Eds.), Handbook of research on technology tools for real-world skill

development (pp. 749–776). Hershey, PA: Information Science Reference. doi:

10.4018/978-1-4666-9441-5.ch029

Hinton, G., Srivastava, N., & Swersky, K. (2014). RMSProp: Divide the gradient by a running

average of its recent magnitude.

https://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture slides lec6.pdf.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9 (8),

1735–1780. doi: 10.1162/neco.1997.9.8.1735

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of

the 3rd international conference on learning representations.

Paradis, E. (2018). Multidimensional scaling with very large datasets. Journal of Computational

and Graphical Statistics, 27 (4), 935–939.

Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s approach. ” O’Reilly Media,

Inc.”.

Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic.

Frontiers in Psychology, 9 , 2231. doi: 10.3389/fpsyg.2018.02231

Ren, Y., Luo, F., Ren, P., Bai, D., Li, X., & Liu, H. (2019). Exploring multiple goals balancing in

complex problem solving based on log data. Frontiers in Psychology, 10 , 1975. doi:

10.3389/fpsyg.2019.01975

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of

Mathematical Statistics, 22 (3), 400–407. doi: 10.1214/aoms/1177729586

Shanno, D. F. (1970). Conditioning of quasi-newton methods for function minimization.

Mathematics of computation, 24 (111), 647–656.

Stadler, M., Fischer, F., & Greiff, S. (2019). Taking a closer look: An exploratory analysis of

successful and unsuccessful strategy use in complex problems. Frontiers in Psychology, 10 ,

777. doi: 10.3389/fpsyg.2019.00777

Tang, S., Peterson, J. C., & Pardos, Z. A. (2016). Deep neural networks and how they apply to

sequential education data. In Proceedings of the third (2016) acm conference on learning@

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Psychometrika Submission June 29, 2021 31

scale (pp. 321–324). doi: 10.1145/2876034.2893444

Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data

via multidimensional scaling. Psychometrika, 1–20. doi:

https://doi.org/10.1007/s11336-020-09708-3

Tang, X., Wang, Z., Liu, J., & Ying, Z. (2020). An exploratory analysis of the latent structure of

process data via action sequence autoencoders. British Journal of Mathematical and

Statistical Psychology. doi: https://doi.org/10.1111/bmsp.12203

Wang, C., Xu, G., Shang, Z., & Kuncel, N. (2018). Detecting aberrant behavior and item

preknowledge: a comparison of mixture modeling method and residual method. Journal of

Educational and Behavioral Statistics, 43 (4), 469–501. doi: 10.3102/1076998618767123

Wang, X., Liu, Y., Sun, C., Wang, B., & Wang, X. (2015, July). Predicting polarities of tweets by

composing word embeddings with long short-term memory. In Proceedings of the 53rd

annual meeting of the association for computational linguistics and the 7th international

joint conference on natural language processing (volume 1: Long papers) (pp. 1343–1353).

Beijing, China: Association for Computational Linguistics. Retrieved from

https://www.aclweb.org/anthology/P15-1130 doi: 10.3115/v1/P15-1130

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701 .

Zhang, S., Tang, X., He, Q., Liu, J., & Ying, Z. (2021). External correlates of adult digital

problem-solving behavior: Log data analysis of a large-scale assessment. Retrieved from

https://arxiv.org/pdf/2103.15036.pdf

Zhang, S., Wang, Z., Qi, J., Liu, J., & Ying, Z. (2021). Accurate assessment via process data.

Retrieved from https://arxiv.org/pdf/2103.15034.pdf

https://www.aclweb.org/anthology/P15-1130
https://arxiv.org/pdf/2103.15036.pdf
https://arxiv.org/pdf/2103.15034.pdf

Psychometrika Submission June 29, 2021 32

Figures

Input

Output

Hidden
State m0 m1 m2 · · ·

x1 x2

y1 y2 yL
<latexit sha1_base64="lRGGPXmsJ5E9zasUE7YELB43CZA=">AAAB+XicbVC7TsMwFL3hWcorwMgSUSExVUlBgrGChYGhSPQhtVHkOE5r1bEj26kURf0TFgYQYuVP2Pgb3DYDtBzJ8tE598rHJ0wZVdp1v6219Y3Nre3KTnV3b//g0D467iiRSUzaWDAheyFShFFO2ppqRnqpJCgJGemG47uZ350QqajgTzpPiZ+gIacxxUgbKbDtQShYpPLEXEU+DR4Cu+bW3TmcVeKVpAYlWoH9NYgEzhLCNWZIqb7nptovkNQUMzKtDjJFUoTHaEj6hnKUEOUX8+RT59wokRMLaQ7Xzlz9vVGgRM3CmckE6ZFa9mbif14/0/GNX1CeZppwvHgozpijhTOrwYmoJFiz3BCEJTVZHTxCEmFtyqqaErzlL6+STqPuXdYbj1e15m1ZRwVO4QwuwINraMI9tKANGCbwDK/wZhXWi/VufSxG16xy5wT+wPr8ASeik/4=</latexit>

mL
<latexit sha1_base64="0TYygkvJ5HnVN/g2MWBHIk9Lddk=">AAAB+XicbVBLSwMxGMz6rPW16tFLsAieym4V9Fj04sFDBfuAdlmy2WwbmseSZAtl6T/x4kERr/4Tb/4bs+0etHUgZJj5PjKZKGVUG8/7dtbWNza3tis71d29/YND9+i4o2WmMGljyaTqRUgTRgVpG2oY6aWKIB4x0o3Gd4XfnRClqRRPZpqSgKOhoAnFyFgpdN1BJFmsp9xeOZ+FD6Fb8+reHHCV+CWpgRKt0P0axBJnnAiDGdK673upCXKkDMWMzKqDTJMU4TEakr6lAnGig3yefAbPrRLDRCp7hIFz9fdGjrguwtlJjsxIL3uF+J/Xz0xyE+RUpJkhAi8eSjIGjYRFDTCmimDDppYgrKjNCvEIKYSNLatqS/CXv7xKOo26f1lvPF7VmrdlHRVwCs7ABfDBNWiCe9ACbYDBBDyDV/Dm5M6L8+58LEbXnHLnBPyB8/kDFU6T8g==</latexit>

xL
<latexit sha1_base64="m3vzMej5tXlGbn1OSbmRuhn6cMc=">AAAB+XicbVC7TsMwFL0pr1JeAUaWiAqJqUoKEowVLAwMRaIPqY0ix3Fbq44d2U5FFfVPWBhAiJU/YeNvcNoM0HIky0fn3CsfnzBhVGnX/bZKa+sbm1vl7crO7t7+gX141FYilZi0sGBCdkOkCKOctDTVjHQTSVAcMtIJx7e535kQqajgj3qaED9GQ04HFCNtpMC2+6FgkZrG5sqeZsF9YFfdmjuHs0q8glShQDOwv/qRwGlMuMYMKdXz3ET7GZKaYkZmlX6qSILwGA1Jz1COYqL8bJ585pwZJXIGQprDtTNXf29kKFZ5ODMZIz1Sy14u/uf1Uj249jPKk1QTjhcPDVLmaOHkNTgRlQRrNjUEYUlNVgePkERYm7IqpgRv+curpF2veRe1+sNltXFT1FGGEziFc/DgChpwB01oAYYJPMMrvFmZ9WK9Wx+L0ZJV7BzDH1ifPyYbk/0=</latexit>

Figure 1.

Structure of recurrent neural networks. At each time step, the hidden state mt is obtained by synthesizing the current

xt and the previous hidden state mt−1.

Input OutputFeature
�

✓
<latexit sha1_base64="gcD6HpZLYrWvxuFQllmXrfDBBs8=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQKupKCG5cV7AOaUCaTaTt0MgkzN0II9VfcuFDErR/izr9x0mahrQeGOZxzL3PmBIngGhzn21pb39jc2q7sVHf39g8O7aPjro5TRVmHxiJW/YBoJrhkHeAgWD9RjESBYL1gelv4vUemNI/lA2QJ8yMylnzEKQEjDe2aF8Qi1FlkrtyDCQMyG9p1p+HMgVeJW5I6KtEe2l9eGNM0YhKoIFoPXCcBPycKOBVsVvVSzRJCp2TMBoZKEjHt5/PwM3xmlBCPYmWOBDxXf2/kJNJFPjMZEZjoZa8Q//MGKYyu/ZzLJAUm6eKhUSowxLhoAodcMQoiM4RQxU1WTCdEEQqmr6opwV3+8irpNhvuRaN5f1lv3ZR1VNAJOkXnyEVXqIXuUBt1EEUZekav6M16sl6sd+tjMbpmlTs19AfW5w+lF5Vm</latexit>

O
<latexit sha1_base64="GaKRjcxSBA8vmj115Ee3A9y0aWc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL95MwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6ljjNc=</latexit> Ô

<latexit sha1_base64="CgG4XkIA04mjX5kaRkzGz/ScOCA=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04s0K9gPaUDbbTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsGpVqxhtMSaXbATVcipg3UKDk7URzGgWSt4LRzdRvPXFthIofcJxwP6KDWISCUbRSszukSO56pbJbcWcgy8TLSRly1Hulr25fsTTiMTJJjel4boJ+RjUKJvmk2E0NTygb0QHvWBrTiBs/m107IadW6ZNQaVsxkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xwys9EnKTIYzZfFKaSoCLT10lfaM5Qji2hTAt7K2FDqilDG1DRhuAtvrxMmtWKd16p3l+Ua9d5HAU4hhM4Aw8uoQa3UIcGMHiEZ3iFN0c5L8678zFvXXHymSP4A+fzBwQijsI=</latexit>

Encoder Decoder

Figure 2.

Structure of autoencoders. The encoder φ transforms the input o into a low-dimensional vector θ and the decoder ψ

reconstructs o from θ. The low-dimensional vector θ is the feature vector of o.

Psychometrika Submission June 29, 2021 33

Embedding
Multinomial

Logit
Model

RNN RNN

Encoder Decoder

Feature

s1

s2

· · ·
sL<latexit sha1_base64="VAKl4UIByYuRj8lTUPWnMCZVzds=">AAACHnicbVA9T8MwEHX4LOGrwMhiUSExVUkBwVjBwsBQJPohNVXlONfWquNEtoNURfklLPwVFgYQQmKCf4ObZoCWk3x6fvfu7Ht+zJnSjvNtLS2vrK6tlzbsza3tnd3y3n5LRYmk0KQRj2THJwo4E9DUTHPoxBJI6HNo++Prab39AFKxSNzrSQy9kAwFGzBKtKH65XPPhyETKZGSTLKUZrbqu55ncs1kjwaRVvn11vZABIWuX644VScPvAjcAlRQEY1++dMLIpqEIDTlRKmu68S6Z6ZpRjlktpcoiAkdkyF0DRQkBNVL8/UyfGyYAA8iaY7QOGd/d6QkVGoS+kYZEj1S87Up+V+tm+jBZS9lIk40CDp7aJBwrCM89QoHTALVfGIAoZKZv2I6IpJQbRy1jQnu/MqLoFWruqfV2t1ZpX5V2FFCh+gInSAXXaA6ukEN1EQUPaJn9IrerCfrxXq3PmbSJavoOUB/wvr6AbQrojY=</latexit>

x1

x2

· · ·
xL<latexit sha1_base64="jBe4W4GL5k1ZKeaNgeheEHLKNy4=">AAACOXicbVDLSsNAFJ3UV62vqks3wSK4KkkVdFl048JFBfuAJoTJ5KYdOpmEmYlYQn/LjX/hTnDjQhG3/oCTNgvbemHg3HMfc+7xE0alsqxXo7Syura+Ud6sbG3v7O5V9w86Mk4FgTaJWSx6PpbAKIe2oopBLxGAI59B1x9d5/XuAwhJY36vxgm4ER5wGlKClaa8asvxYUB5hoXA40lGJhUnwmroh9njxLMd52/ayFMSxErO87cVB3hQrPCqNatuTcNcBnYBaqiIlld9cYKYpBFwRRiWsm9biXL1NkUJA60nlZBgMsID6GvIcQTSzaaXT8wTzQRmGAv9uDKn7N+JDEdSjiNfd+Z65WItJ/+r9VMVXroZ5UmqgJPZR2HKTBWbuY1mQAUQxcYaYCKo1mqSIRaYKG12RZtgL568DDqNun1Wb9yd15pXhR1ldISO0Smy0QVqohvUQm1E0BN6Qx/o03g23o0v43vWWjKKmUM0F8bPL7SsrqU=</latexit>

✓1

✓2

· · ·
✓L

<latexit sha1_base64="NQPUPKc6Y/Id7KxcVYySBsqKxKE=">AAACVHicdVFNS8MwGE7r99RZ9eilOARPo52CHodePHiY4FRYx0jTd1tYmpTkrTDKfqQeBH+JFw+mWw/q9IWQh+d5v/IkzgQ3GATvjruyura+sblV297Zre95+wcPRuWaQZcpofRTTA0ILqGLHAU8ZRpoGgt4jCfXpf74DNpwJe9xmkE/pSPJh5xRtNTAm0QxjLgsqNZ0OivYrBbFSiRmmtqriHAMSGeDMIr+5FslzxKF5p+E21oEMqm6D7xG0Azm4S+DsAINUkVn4L1GiWJ5ChKZoMb0wiDDvu2GnAmwq+YGMsomdAQ9CyVNwfSLuSkz/8QyiT9U2h6J/pz9XlHQ1JTb2syU4tj81kryL62X4/CyX3CZ5QiSLQYNc+Gj8kuH/YRrYCimFlCmud3VZ2OqKUP7DzVrQvj7ycvgodUMz5qtu/NG+6qyY5MckWNySkJyQdrkhnRIlzDyQj4c4jjOm/Pprrhri1TXqWoOyY9w618aGLX1</latexit>

y1

y2

· · ·
yL

<latexit sha1_base64="58dinbKw98yoYAMfnr+paoCpucQ=">AAACOXicbVDLSsNAFJ3UV62vqEs3wSK4KkkVdFl048JFBfuAppTJ5KYdOpmEmYkQQn/LjX/hTnDjQhG3/oCTNos+vDBw7rmPOfd4MaNS2fabUVpb39jcKm9Xdnb39g/Mw6O2jBJBoEUiFomuhyUwyqGlqGLQjQXg0GPQ8ca3eb3zBELSiD+qNIZ+iIecBpRgpamB2XQ9GFKeYSFwOsnIpOKGWI28IEsnA8d159N6nhI/UnKRv6+4wP1ixcCs2jV7GtYqcApQRUU0B+ar60ckCYErwrCUPceOVV9vU5Qw0HoSCTEmYzyEnoYchyD72fTyiXWmGd8KIqEfV9aUnZ/IcChlGnq6M9crl2s5+V+tl6jgup9RHicKOJl9FCTMUpGV22j5VABRLNUAE0G1VouMsMBEabMr2gRn+eRV0K7XnIta/eGy2rgp7CijE3SKzpGDrlAD3aEmaiGCntE7+kRfxovxYXwbP7PWklHMHKOFMH7/ALmkrqg=</latexit>

ŝ1

ŝ2

· · ·
ŝL

<latexit sha1_base64="iOHtToTjld3Rzm45IE5hzywuFm8=">AAACMHicbZDLSsNAFIYnXmu9VV26CRbBVUmqoMuiC124qGAv0JQymZy2QyeTMHMilNBHcuOj6EZBEbc+hdM2SG09MPDxn8uc8/ux4Bod581aWl5ZXVvPbeQ3t7Z3dgt7+3UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g6txvvEASvNI3uMwhnZIe5J3OaNopE7h2vOhx2VKlaLDUcpGea9PMdWjjut5v1weMwsi1DPibd4DGWSdnULRKTmTsBfBzaBIsqh2Cs9eELEkBIlMUK1brhNj20xDzgSYNRINMWUD2oOWQUlD0O10cvDIPjZKYHcjZZ5Ee6LOdqQ01HoY+qYypNjX87mx+F+ulWD3op1yGScIkk0/6ibCxsgeu2cHXAFDMTRAmeJmV5v1qaIMjcd5Y4I7f/Ii1Msl97RUvjsrVi4zO3LkkByRE+KSc1IhN6RKaoSRR/JC3smH9WS9Wp/W17R0ycp6DsifsL5/AMG2qp0=</latexit>

✓
✓
· · ·
✓

<latexit sha1_base64="RPynL3wh5lSwDOH7/+bm/iL+RHs=">AAACTnicdVFNS8MwGE7n16xfU49eikPwNFoV9Dj04lHBzcE6Rpq+24JpUpK3wij9hV7Emz/DiwdFNJs96KYvhDw8z/uVJ1EquEHff3YqC4tLyyvVVXdtfWNzq7a90zYq0wxaTAmlOxE1ILiEFnIU0Ek10CQScBvdXUz023vQhit5g+MUegkdSj7gjKKl+jUIIxhymVOt6bjIWeGGkRKxGSf2ykMcAdIiDP9jWazQ/C27Ici47Nuv1f2GPw1vHgQlqJMyrvq1pzBWLEtAIhPUmG7gp9iz3ZAzAbZ3ZiCl7I4OoWuhpAmYXj61o/AOLBN7A6XtkehN2Z8VOU3MZFebmVAcmVltQv6ldTMcnPVyLtMMQbLvQYNMeKi8ibdezDUwFGMLKNPc7uqxEdWUof0B15oQzD55HrSPGsFx4+j6pN48L+2okj2yTw5JQE5Jk1ySK9IijDyQF/JG3p1H59X5cD6/UytOWbNLfkWl+gU3trfp</latexit>

✓ = ✓L
<latexit sha1_base64="lBBLP7onlXWjdbmWaxH6kUCXnso=">AAACFHicbVDLSsNAFJ34rPUVdelmsAiCUJIq6EYounHhooJ9QBPCZDJth04ezNwIJfQj3Pgrblwo4taFO//GSZuFtj0wzOGce7n3Hj8RXIFl/RhLyyura+uljfLm1vbOrrm331JxKilr0ljEsuMTxQSPWBM4CNZJJCOhL1jbH97kfvuRScXj6AFGCXND0o94j1MCWvLMU8ePRaBGof4yBwYMyBhf4QWqd+eZFatqTYDniV2QCirQ8MxvJ4hpGrIIqCBKdW0rATcjEjgVbFx2UsUSQoekz7qaRiRkys0mR43xsVYC3IulfhHgifq3IyOhyjfUlSGBgZr1cnGR102hd+lmPEpSYBGdDuqlAkOM84RwwCWjIEaaECq53hXTAZGEgs6xrEOwZ0+eJ61a1T6r1u7PK/XrIo4SOkRH6ATZ6ALV0S1qoCai6Am9oDf0bjwbr8aH8TktXTKKngP0D8bXLyL/n38=</latexit>

Figure 3.

Structure of an action SeqAE that reconstructs an action sequence s = (s1, . . . , sL) as a sequence of probability

distributions ŝ1, . . . , ŝL on the action set A. The encoder embeds the action sequence into a sequence of real-valued

vectors which is then processed by an RNN. The last output vector of the RNN is the feature vector θ of the action

sequence. The decoder reconstructs the action sequence from a sequence of θ’s via an RNN and a multinomial logistic

model.

Psychometrika Submission June 29, 2021 34

Linear
ModelRNN RNN

Encoder Decoder

Feature

✓1

✓2

· · ·
✓L

<latexit sha1_base64="NQPUPKc6Y/Id7KxcVYySBsqKxKE=">AAACVHicdVFNS8MwGE7r99RZ9eilOARPo52CHodePHiY4FRYx0jTd1tYmpTkrTDKfqQeBH+JFw+mWw/q9IWQh+d5v/IkzgQ3GATvjruyura+sblV297Zre95+wcPRuWaQZcpofRTTA0ILqGLHAU8ZRpoGgt4jCfXpf74DNpwJe9xmkE/pSPJh5xRtNTAm0QxjLgsqNZ0OivYrBbFSiRmmtqriHAMSGeDMIr+5FslzxKF5p+E21oEMqm6D7xG0Azm4S+DsAINUkVn4L1GiWJ5ChKZoMb0wiDDvu2GnAmwq+YGMsomdAQ9CyVNwfSLuSkz/8QyiT9U2h6J/pz9XlHQ1JTb2syU4tj81kryL62X4/CyX3CZ5QiSLQYNc+Gj8kuH/YRrYCimFlCmud3VZ2OqKUP7DzVrQvj7ycvgodUMz5qtu/NG+6qyY5MckWNySkJyQdrkhnRIlzDyQj4c4jjOm/Pprrhri1TXqWoOyY9w618aGLX1</latexit>

y1

y2

· · ·
yL

<latexit sha1_base64="58dinbKw98yoYAMfnr+paoCpucQ=">AAACOXicbVDLSsNAFJ3UV62vqEs3wSK4KkkVdFl048JFBfuAppTJ5KYdOpmEmYkQQn/LjX/hTnDjQhG3/oCTNos+vDBw7rmPOfd4MaNS2fabUVpb39jcKm9Xdnb39g/Mw6O2jBJBoEUiFomuhyUwyqGlqGLQjQXg0GPQ8ca3eb3zBELSiD+qNIZ+iIecBpRgpamB2XQ9GFKeYSFwOsnIpOKGWI28IEsnA8d159N6nhI/UnKRv6+4wP1ixcCs2jV7GtYqcApQRUU0B+ar60ckCYErwrCUPceOVV9vU5Qw0HoSCTEmYzyEnoYchyD72fTyiXWmGd8KIqEfV9aUnZ/IcChlGnq6M9crl2s5+V+tl6jgup9RHicKOJl9FCTMUpGV22j5VABRLNUAE0G1VouMsMBEabMr2gRn+eRV0K7XnIta/eGy2rgp7CijE3SKzpGDrlAD3aEmaiGCntE7+kRfxovxYXwbP7PWklHMHKOFMH7/ALmkrqg=</latexit>

✓
✓
· · ·
✓

<latexit sha1_base64="RPynL3wh5lSwDOH7/+bm/iL+RHs=">AAACTnicdVFNS8MwGE7n16xfU49eikPwNFoV9Dj04lHBzcE6Rpq+24JpUpK3wij9hV7Emz/DiwdFNJs96KYvhDw8z/uVJ1EquEHff3YqC4tLyyvVVXdtfWNzq7a90zYq0wxaTAmlOxE1ILiEFnIU0Ek10CQScBvdXUz023vQhit5g+MUegkdSj7gjKKl+jUIIxhymVOt6bjIWeGGkRKxGSf2ykMcAdIiDP9jWazQ/C27Ici47Nuv1f2GPw1vHgQlqJMyrvq1pzBWLEtAIhPUmG7gp9iz3ZAzAbZ3ZiCl7I4OoWuhpAmYXj61o/AOLBN7A6XtkehN2Z8VOU3MZFebmVAcmVltQv6ldTMcnPVyLtMMQbLvQYNMeKi8ibdezDUwFGMLKNPc7uqxEdWUof0B15oQzD55HrSPGsFx4+j6pN48L+2okj2yTw5JQE5Jk1ySK9IijDyQF/JG3p1H59X5cD6/UytOWbNLfkWl+gU3trfp</latexit>

t1
t2
· · ·
tL

<latexit sha1_base64="XAytxnvPgBXixzw3aQMsiVI+Xn8=">AAACHnicbVBNS8NAEN34WeNX1aOXYBE8laQqeix68eChgv2AppTNZtou3WzC7kQoob/Ei3/FiwdFBE/6b9y2OWjrwA5v37yZ3XlBIrhG1/22lpZXVtfWCxv25tb2zm5xb7+h41QxqLNYxKoVUA2CS6gjRwGtRAGNAgHNYHg9qTcfQGkey3scJdCJaF/yHmcUDdUtnvsB9LnMqFJ0NM7Y2Mau5/smV0z2WRijnl5vbR9kmOu6xZJbdqfhLAIvByWSR61b/PTDmKURSGSCat323AQ7ZhpyJmBs+6mGhLIh7UPbQEkj0J1sut7YOTZM6PRiZY5EZ8r+7shopPUoCowyojjQ87UJ+V+tnWLvspNxmaQIks0e6qXCwdiZeOWEXAFDMTKAMsXNXx02oIoyNI7axgRvfuVF0KiUvdNy5e6sVL3K7SiQQ3JETohHLkiV3JAaqRNGHskzeSVv1pP1Yr1bHzPpkpX3HJA/YX39ALkFojk=</latexit>

t̂1
t̂2
· · ·
t̂L

<latexit sha1_base64="9ybYrVmB/d5kt6E+5juBIZD3fOk=">AAACMHicbZDLSsNAFIYnXmu9VV26CRbBVUmqoMuiC124qGAv0JQymZy2QyeTMHMilNBHcuOj6EZBEbc+hdM2SG09MPDxn8uc8/ux4Bod581aWl5ZXVvPbeQ3t7Z3dgt7+3UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g6txvvEASvNI3uMwhnZIe5J3OaNopE7h2vOhx2VKlaLDUcpGea9PMcVRx/W8Xy6PmQUR6hnxNu+BDLLOTqHolJxJ2IvgZlAkWVQ7hWcviFgSgkQmqNYt14mxbaYhZwLMGomGmLIB7UHLoKQh6HY6OXhkHxslsLuRMk+iPVFnO1Iaaj0MfVMZUuzr+dxY/C/XSrB70U65jBMEyaYfdRNhY2SP3bMDroChGBqgTHGzq836VFGGxuO8McGdP3kR6uWSe1oq350VK5eZHTlySI7ICXHJOamQG1IlNcLII3kh7+TDerJerU/ra1q6ZGU9B+RPWN8/xqWqoA==</latexit>

✓ = ✓L
<latexit sha1_base64="lBBLP7onlXWjdbmWaxH6kUCXnso=">AAACFHicbVDLSsNAFJ34rPUVdelmsAiCUJIq6EYounHhooJ9QBPCZDJth04ezNwIJfQj3Pgrblwo4taFO//GSZuFtj0wzOGce7n3Hj8RXIFl/RhLyyura+uljfLm1vbOrrm331JxKilr0ljEsuMTxQSPWBM4CNZJJCOhL1jbH97kfvuRScXj6AFGCXND0o94j1MCWvLMU8ePRaBGof4yBwYMyBhf4QWqd+eZFatqTYDniV2QCirQ8MxvJ4hpGrIIqCBKdW0rATcjEjgVbFx2UsUSQoekz7qaRiRkys0mR43xsVYC3IulfhHgifq3IyOhyjfUlSGBgZr1cnGR102hd+lmPEpSYBGdDuqlAkOM84RwwCWjIEaaECq53hXTAZGEgs6xrEOwZ0+eJ61a1T6r1u7PK/XrIo4SOkRH6ATZ6ALV0S1qoCai6Am9oDf0bjwbr8aH8TktXTKKngP0D8bXLyL/n38=</latexit>

Figure 4.

Structure of a time SeqAE that reconstructs a timestamp sequence t = (t1, . . . , tL) as t̂ = (t̂1, . . . , t̂L) . The encoder

processes the timestamp sequence by an RNN. The last output vector of the RNN is the feature vector θ of the

timestamp sequence. The decoder reconstructs the timestamp sequence from a sequence of θ’s via an RNN and a

linear model.

Psychometrika Submission June 29, 2021 35

Embedding

Multinomial
Logit
ModelRNN RNN

Encoder Decoder

Feature

s1

s2

· · ·
sL<latexit sha1_base64="VAKl4UIByYuRj8lTUPWnMCZVzds=">AAACHnicbVA9T8MwEHX4LOGrwMhiUSExVUkBwVjBwsBQJPohNVXlONfWquNEtoNURfklLPwVFgYQQmKCf4ObZoCWk3x6fvfu7Ht+zJnSjvNtLS2vrK6tlzbsza3tnd3y3n5LRYmk0KQRj2THJwo4E9DUTHPoxBJI6HNo++Prab39AFKxSNzrSQy9kAwFGzBKtKH65XPPhyETKZGSTLKUZrbqu55ncs1kjwaRVvn11vZABIWuX644VScPvAjcAlRQEY1++dMLIpqEIDTlRKmu68S6Z6ZpRjlktpcoiAkdkyF0DRQkBNVL8/UyfGyYAA8iaY7QOGd/d6QkVGoS+kYZEj1S87Up+V+tm+jBZS9lIk40CDp7aJBwrCM89QoHTALVfGIAoZKZv2I6IpJQbRy1jQnu/MqLoFWruqfV2t1ZpX5V2FFCh+gInSAXXaA6ukEN1EQUPaJn9IrerCfrxXq3PmbSJavoOUB/wvr6AbQrojY=</latexit>

x1

x2

· · ·
xL<latexit sha1_base64="jBe4W4GL5k1ZKeaNgeheEHLKNy4=">AAACOXicbVDLSsNAFJ3UV62vqks3wSK4KkkVdFl048JFBfuAJoTJ5KYdOpmEmYlYQn/LjX/hTnDjQhG3/oCTNgvbemHg3HMfc+7xE0alsqxXo7Syura+Ud6sbG3v7O5V9w86Mk4FgTaJWSx6PpbAKIe2oopBLxGAI59B1x9d5/XuAwhJY36vxgm4ER5wGlKClaa8asvxYUB5hoXA40lGJhUnwmroh9njxLMd52/ayFMSxErO87cVB3hQrPCqNatuTcNcBnYBaqiIlld9cYKYpBFwRRiWsm9biXL1NkUJA60nlZBgMsID6GvIcQTSzaaXT8wTzQRmGAv9uDKn7N+JDEdSjiNfd+Z65WItJ/+r9VMVXroZ5UmqgJPZR2HKTBWbuY1mQAUQxcYaYCKo1mqSIRaYKG12RZtgL568DDqNun1Wb9yd15pXhR1ldISO0Smy0QVqohvUQm1E0BN6Qx/o03g23o0v43vWWjKKmUM0F8bPL7SsrqU=</latexit>

✓1

✓2

· · ·
✓L

<latexit sha1_base64="NQPUPKc6Y/Id7KxcVYySBsqKxKE=">AAACVHicdVFNS8MwGE7r99RZ9eilOARPo52CHodePHiY4FRYx0jTd1tYmpTkrTDKfqQeBH+JFw+mWw/q9IWQh+d5v/IkzgQ3GATvjruyura+sblV297Zre95+wcPRuWaQZcpofRTTA0ILqGLHAU8ZRpoGgt4jCfXpf74DNpwJe9xmkE/pSPJh5xRtNTAm0QxjLgsqNZ0OivYrBbFSiRmmtqriHAMSGeDMIr+5FslzxKF5p+E21oEMqm6D7xG0Azm4S+DsAINUkVn4L1GiWJ5ChKZoMb0wiDDvu2GnAmwq+YGMsomdAQ9CyVNwfSLuSkz/8QyiT9U2h6J/pz9XlHQ1JTb2syU4tj81kryL62X4/CyX3CZ5QiSLQYNc+Gj8kuH/YRrYCimFlCmud3VZ2OqKUP7DzVrQvj7ycvgodUMz5qtu/NG+6qyY5MckWNySkJyQdrkhnRIlzDyQj4c4jjOm/Pprrhri1TXqWoOyY9w618aGLX1</latexit>

y1

y2

· · ·
yL

<latexit sha1_base64="58dinbKw98yoYAMfnr+paoCpucQ=">AAACOXicbVDLSsNAFJ3UV62vqEs3wSK4KkkVdFl048JFBfuAppTJ5KYdOpmEmYkQQn/LjX/hTnDjQhG3/oCTNos+vDBw7rmPOfd4MaNS2fabUVpb39jcKm9Xdnb39g/Mw6O2jBJBoEUiFomuhyUwyqGlqGLQjQXg0GPQ8ca3eb3zBELSiD+qNIZ+iIecBpRgpamB2XQ9GFKeYSFwOsnIpOKGWI28IEsnA8d159N6nhI/UnKRv6+4wP1ixcCs2jV7GtYqcApQRUU0B+ar60ckCYErwrCUPceOVV9vU5Qw0HoSCTEmYzyEnoYchyD72fTyiXWmGd8KIqEfV9aUnZ/IcChlGnq6M9crl2s5+V+tl6jgup9RHicKOJl9FCTMUpGV22j5VABRLNUAE0G1VouMsMBEabMr2gRn+eRV0K7XnIta/eGy2rgp7CijE3SKzpGDrlAD3aEmaiGCntE7+kRfxovxYXwbP7PWklHMHKOFMH7/ALmkrqg=</latexit>

ŝ1

ŝ2

· · ·
ŝL

<latexit sha1_base64="iOHtToTjld3Rzm45IE5hzywuFm8=">AAACMHicbZDLSsNAFIYnXmu9VV26CRbBVUmqoMuiC124qGAv0JQymZy2QyeTMHMilNBHcuOj6EZBEbc+hdM2SG09MPDxn8uc8/ux4Bod581aWl5ZXVvPbeQ3t7Z3dgt7+3UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g6txvvEASvNI3uMwhnZIe5J3OaNopE7h2vOhx2VKlaLDUcpGea9PMdWjjut5v1weMwsi1DPibd4DGWSdnULRKTmTsBfBzaBIsqh2Cs9eELEkBIlMUK1brhNj20xDzgSYNRINMWUD2oOWQUlD0O10cvDIPjZKYHcjZZ5Ee6LOdqQ01HoY+qYypNjX87mx+F+ulWD3op1yGScIkk0/6ibCxsgeu2cHXAFDMTRAmeJmV5v1qaIMjcd5Y4I7f/Ii1Msl97RUvjsrVi4zO3LkkByRE+KSc1IhN6RKaoSRR/JC3smH9WS9Wp/W17R0ycp6DsifsL5/AMG2qp0=</latexit>

✓
✓
· · ·
✓

<latexit sha1_base64="RPynL3wh5lSwDOH7/+bm/iL+RHs=">AAACTnicdVFNS8MwGE7n16xfU49eikPwNFoV9Dj04lHBzcE6Rpq+24JpUpK3wij9hV7Emz/DiwdFNJs96KYvhDw8z/uVJ1EquEHff3YqC4tLyyvVVXdtfWNzq7a90zYq0wxaTAmlOxE1ILiEFnIU0Ek10CQScBvdXUz023vQhit5g+MUegkdSj7gjKKl+jUIIxhymVOt6bjIWeGGkRKxGSf2ykMcAdIiDP9jWazQ/C27Ici47Nuv1f2GPw1vHgQlqJMyrvq1pzBWLEtAIhPUmG7gp9iz3ZAzAbZ3ZiCl7I4OoWuhpAmYXj61o/AOLBN7A6XtkehN2Z8VOU3MZFebmVAcmVltQv6ldTMcnPVyLtMMQbLvQYNMeKi8ibdezDUwFGMLKNPc7uqxEdWUof0B15oQzD55HrSPGsFx4+j6pN48L+2okj2yTw5JQE5Jk1ySK9IijDyQF/JG3p1H59X5cD6/UytOWbNLfkWl+gU3trfp</latexit>

t1
t2
· · ·
tL

<latexit sha1_base64="XAytxnvPgBXixzw3aQMsiVI+Xn8=">AAACHnicbVBNS8NAEN34WeNX1aOXYBE8laQqeix68eChgv2AppTNZtou3WzC7kQoob/Ei3/FiwdFBE/6b9y2OWjrwA5v37yZ3XlBIrhG1/22lpZXVtfWCxv25tb2zm5xb7+h41QxqLNYxKoVUA2CS6gjRwGtRAGNAgHNYHg9qTcfQGkey3scJdCJaF/yHmcUDdUtnvsB9LnMqFJ0NM7Y2Mau5/smV0z2WRijnl5vbR9kmOu6xZJbdqfhLAIvByWSR61b/PTDmKURSGSCat323AQ7ZhpyJmBs+6mGhLIh7UPbQEkj0J1sut7YOTZM6PRiZY5EZ8r+7shopPUoCowyojjQ87UJ+V+tnWLvspNxmaQIks0e6qXCwdiZeOWEXAFDMTKAMsXNXx02oIoyNI7axgRvfuVF0KiUvdNy5e6sVL3K7SiQQ3JETohHLkiV3JAaqRNGHskzeSVv1pP1Yr1bHzPpkpX3HJA/YX39ALkFojk=</latexit>

(x1, t1)
(x1, t2)

· · ·
(x1, tL)

<latexit sha1_base64="M5oDxGoPaYrb80pUm8CukXHGB5w=">AAACTnicbVFBi9NAFJ5Ud61xd6169DJYhBaWknQFPRa97MFDBdstNCVMJi/t0MkkzLwsW0J+oRfx5s/YiwdFdNLmoG0/GPj4vvfevPkmyqUw6HnfndaDhyenj9qP3Sdn5xdPO8+eT01WaA4TnslMzyJmQAoFExQoYZZrYGkk4SZaf6j9m1vQRmTqM25yWKRsqUQiOEMrhR0IIlgKVTKt2aYqeeX2gpThKkrKuyr0LymGfj8IDtVhrQY8ztAcsz/23QBU3MwNO11v4G1BD4nfkC5pMA4734I440UKCrlkxsx9L8eFnYaCS6jcoDCQM75mS5hbqlgKZlFu46joa6vENMm0PQrpVv23o2SpMZs0spX11mbfq8Vj3rzA5N2iFCovEBTfXZQUkmJG62xpLDRwlBtLGNfC7kr5imnG0f6Aa0Pw9598SKbDgX81GH560x29b+Jok5fkFekRn7wlI3JNxmRCOPlC7slP8sv56vxwfjt/dqUtp+l5Qf5Dq/0XfWCzWw==</latexit>

t̂1
t̂2
· · ·
t̂L

<latexit sha1_base64="9ybYrVmB/d5kt6E+5juBIZD3fOk=">AAACMHicbZDLSsNAFIYnXmu9VV26CRbBVUmqoMuiC124qGAv0JQymZy2QyeTMHMilNBHcuOj6EZBEbc+hdM2SG09MPDxn8uc8/ux4Bod581aWl5ZXVvPbeQ3t7Z3dgt7+3UdJYpBjUUiUk2fahBcQg05CmjGCmjoC2j4g6txvvEASvNI3uMwhnZIe5J3OaNopE7h2vOhx2VKlaLDUcpGea9PMcVRx/W8Xy6PmQUR6hnxNu+BDLLOTqHolJxJ2IvgZlAkWVQ7hWcviFgSgkQmqNYt14mxbaYhZwLMGomGmLIB7UHLoKQh6HY6OXhkHxslsLuRMk+iPVFnO1Iaaj0MfVMZUuzr+dxY/C/XSrB70U65jBMEyaYfdRNhY2SP3bMDroChGBqgTHGzq836VFGGxuO8McGdP3kR6uWSe1oq350VK5eZHTlySI7ICXHJOamQG1IlNcLII3kh7+TDerJerU/ra1q6ZGU9B+RPWN8/xqWqoA==</latexit>

Linear
Model

✓ = ✓L
<latexit sha1_base64="lBBLP7onlXWjdbmWaxH6kUCXnso=">AAACFHicbVDLSsNAFJ34rPUVdelmsAiCUJIq6EYounHhooJ9QBPCZDJth04ezNwIJfQj3Pgrblwo4taFO//GSZuFtj0wzOGce7n3Hj8RXIFl/RhLyyura+uljfLm1vbOrrm331JxKilr0ljEsuMTxQSPWBM4CNZJJCOhL1jbH97kfvuRScXj6AFGCXND0o94j1MCWvLMU8ePRaBGof4yBwYMyBhf4QWqd+eZFatqTYDniV2QCirQ8MxvJ4hpGrIIqCBKdW0rATcjEjgVbFx2UsUSQoekz7qaRiRkys0mR43xsVYC3IulfhHgifq3IyOhyjfUlSGBgZr1cnGR102hd+lmPEpSYBGdDuqlAkOM84RwwCWjIEaaECq53hXTAZGEgs6xrEOwZ0+eJ61a1T6r1u7PK/XrIo4SOkRH6ATZ6ALV0S1qoCai6Am9oDf0bjwbr8aH8TktXTKKngP0D8bXLyL/n38=</latexit>

Figure 5.

Structure of action-time autoencoders. The encoder embeds the action sequence into a sequence of real-valued vectors,

which is combined with the timestamp sequence and passed to an RNN. The last output of the RNN is the feature

vector θ of the action sequence and the timestamp sequence. The decoder reconstructs both the action sequence and

the timestamp sequence from a sequence of real-valued vectors processed by an RNN.

Psychometrika Submission June 29, 2021 36

Embedding

RNN
GLM

or
FNN

w1

w2

· · ·
wL

<latexit sha1_base64="6NV4zjal71G0nS1EGK/WOATHvqY=">AAACKHicbVDLSsNAFJ3UV42vqEs3wSK4KkkVdGfRjQsXFewDmhAmk0k7dDITZiZKCf0cN/6KGxFFuvVLnLRZaOuBYQ7n3Mu994QpJVI5ztSorKyurW9UN82t7Z3dPWv/oCN5JhBuI0656IVQYkoYbiuiKO6lAsMkpLgbjm4Kv/uIhSScPahxiv0EDhiJCYJKS4F15YWcRnKc6C9/mgSu55kLUqOQUMSVXPbuAqvm1J0Z7GXilqQGSrQC692LOMoSzBSiUMq+66TKz6FQBFE8Mb1M4hSiERzgvqYMJlj6+ezQiX2ilciOudCPKXum/u7IYSKL5XRlAtVQLnqF+J/Xz1R86eeEpZnCDM0HxRm1FbeL1OyICIwUHWsCkSB6VxsNoYBI6WxNHYK7ePIy6TTq7lm9cX9ea16XcVTBETgGp8AFF6AJbkELtAECz+AVfIBP48V4M76M6by0YpQ9h+APjO8f5wKntg==</latexit>

ŷ
<latexit sha1_base64="w+iFDfZr5auycRgfsFh1uEmS04Y=">AAAB73icbVDLSgNBEOyNr7i+oh69DAbBU9iNgh6DXjxGMA9IljA7mU2GzD6c6RWWJT/hxYMiXv0db/6Nk2QPmljQUFR1093lJ1JodJxvq7S2vrG5Vd62d3b39g8qh0dtHaeK8RaLZay6PtVcioi3UKDk3URxGvqSd/zJ7czvPHGlRRw9YJZwL6SjSASCUTRS1+6PKebZdFCpOjVnDrJK3IJUoUBzUPnqD2OWhjxCJqnWPddJ0MupQsEkn9r9VPOEsgkd8Z6hEQ259vL5vVNyZpQhCWJlKkIyV39P5DTUOgt90xlSHOtlbyb+5/VSDK69XERJijxii0VBKgnGZPY8GQrFGcrMEMqUMLcSNqaKMjQR2SYEd/nlVdKu19yLWv3+stq4KeIowwmcwjm4cAUNuIMmtICBhGd4hTfr0Xqx3q2PRWvJKmaO4Q+szx/nbY/i</latexit>

(x1, t1)

(x2, t2)

· · ·
(xL, tL)

<latexit sha1_base64="o78r5fBadCLYdKmxTAaLXxXj89U=">AAACT3icbZHPT9swFMedbkAJvwIcd7FWTQKEqiQc4FjBZQcOTKKA1FSR47wUC8eJ7BdEFfU/5LLd9m/sssMQwinRNMqeZOmrz/fZfv46KaUw6Ps/nc6Hj0vLK91Vd219Y3PL2965MkWlOQx5IQt9kzADUigYokAJN6UGlicSrpO7s8a/vgdtRKEucVrCOGcTJTLBGVoUe1mUwESoesLwFvTBzN2LciuTrH6YxcEhxTjYj6I3NGxo2NCIpwWaBfu8sc/33QhU+vfY2Ov5fX9e9L0IWtEjbV3E3o8oLXiVg0IumTGjwC9xXDONgkuYuVFloGT8jk1gZKViOZhxPc9jRr9YktKs0HYppHP6746a5cZM88R2NnObRa+B//NGFWYn41qoskJQ/PWirJIUC9qES1OhgaOcWsG4FnZWym+ZZhztF7g2hGDxye/FVdgPjvrht7A3OG3j6JJP5DPZIwE5JgPylVyQIeHkkfwif8iT89357Tx32taO04pd8qY6qy8ucrIx</latexit>

x1

x2

· · ·
xL

<latexit sha1_base64="cn/T/Gfjj2UQfxnAuB6n/r0CRa0=">AAACOnicbVC7TsMwFHV4lvIqMLJEVEiIoUrCAGMFCwNDK9GH1FSV49y0Vh0nsh1EFfW7WPgKNgYWBhBi5QNw2gj1wZUsnXvuw+ceL2ZUKst6NVZW19Y3Ngtbxe2d3b390sFhU0aJINAgEYtE28MSGOXQUFQxaMcCcOgxaHnDm6zeegAhacTv1SiGboj7nAaUYKWpXqnuetCnPO1jNQBxPi66oUZekD6Oe7brzqZOlhI/UnKevyu6wP2/Db1S2apYkzCXgZ2DMsqj1iu9uH5EkhC4IgxL2bGtWHVTLBQlDLSiREKMyRD3oaMhxyHIbjo5fWyeasY3g0jox5U5YWcnUhxKOQo93Zkplou1jPyv1klUcNVNKY8TBZxMPwoSZqrIzHw0fSqAKDbSABNBtVaTDLDARGm3i9oEe/HkZdB0KvZFxak75ep1bkcBHaMTdIZsdImq6BbVUAMR9ITe0Af6NJ6Nd+PL+J62rhj5zBGaC+PnF2Fmrl4=</latexit>

t1

t2

· · ·
tL<latexit sha1_base64="XetS/Bo9NgDC8pKSfAUZ20lHkV0=">AAACJXicbVBNS8NAEN3Urxq/qh69BIsgHkpSD3rwUPTiwUMF+wFNKZvNtC7dbMLuRCihf8aLf8WLB4sInvwrbtsgWn2wzOO9GXbmBYngGl33wyosLa+srhXX7Y3Nre2d0u5eU8epYtBgsYhVO6AaBJfQQI4C2okCGgUCWsHwauq3HkBpHss7HCXQjehA8j5nFI3UK134AQy4zAYU70GdjO0Mxz3P92e1aqrPwhh1LtzYPsjwu7lXKrsVdwbnL/FyUiY56r3SxA9jlkYgkQmqdcdzE+xmVCFnAsa2n2pIKBvSAXQMlTQC3c1mV46dI6OETj9W5kl0ZurPiYxGWo+iwHRGZkG96E3F/7xOiv3zbsZlkiJINv+onwoHY2camRNyBQzFyBDKFDe7OuyeKsrQBGubELzFk/+SZrXinVaqt9Vy7TKPo0gOyCE5Jh45IzVyTeqkQRh5JM/klUysJ+vFerPe560FK5/ZJ79gfX4BPqSlFg==</latexit>

s1

s2

· · ·
sL

<latexit sha1_base64="knfubvE7+IiBI8DQm5rCHCN9gZA=">AAACJXicbVDLSsNAFJ3UV42vqEs3wSKIi5LUhS5cFN24cFHBPqAJZTK5bYdOJmFmIpTQn3Hjr7hxYRHBlb/iNA2irQeGezjnXubeEySMSuU4n0ZpZXVtfaO8aW5t7+zuWfsHLRmngkCTxCwWnQBLYJRDU1HFoJMIwFHAoB2MbmZ++xGEpDF/UOME/AgPOO1TgpWWetaVF8CA8myA1RDE2cTM5KTnel5ea7p6JIyVLIQ70wMe/jT3rIpTdXLYy8QtSAUVaPSsqRfGJI2AK8KwlF3XSZSfYaEoYTAxvVRCgskID6CrKccRSD/Lr5zYJ1oJ7X4s9OPKztXfExmOpBxHge6M9IJy0ZuJ/3ndVPUv/YzyJFXAyfyjfspsFduzyOyQCiCKjTXBRFC9q02GWGCidLCmDsFdPHmZtGpV97xau69V6tdFHGV0hI7RKXLRBaqjW9RATUTQE3pBb2hqPBuvxrvxMW8tGcXMIfoD4+sbObulEw==</latexit>

✓ = wL
<latexit sha1_base64="8PLWfmpKsrxxB3Qd3J17JaX/x/I=">AAACD3icbVC7SgNBFJ2NrxhfUUubwaBYhd0oaCMEbSwsIpgHZJdldnaSDJl9MHNXCcv+gY2/YmOhiK2tnX/jbJIiJh4Y5nDOvdx7jxcLrsA0f4zC0vLK6lpxvbSxubW9U97da6kokZQ1aSQi2fGIYoKHrAkcBOvEkpHAE6ztDa9zv/3ApOJReA+jmDkB6Ye8xykBLbnlY9uLhK9Ggf5SGwYMSIYv8az6mLm3brliVs0x8CKxpqSCpmi45W/bj2gSsBCoIEp1LTMGJyUSOBUsK9mJYjGhQ9JnXU1DEjDlpON7MnykFR/3IqlfCHisznakJFD5croyIDBQ814u/ud1E+hdOCkP4wRYSCeDeonAEOE8HOxzySiIkSaESq53xXRAJKGgIyzpEKz5kxdJq1a1Tqu1u7NK/WoaRxEdoEN0gix0juroBjVQE1H0hF7QG3o3no1X48P4nJQWjGnPPvoD4+sXGBedUg==</latexit>

Figure 6.

Structure of sequence models. A sequence model embeds an action sequence into a sequence of real-valued vectors

and combines it with the timestamp sequence. The combined sequence is then processed by an RNN, the last output

of which is the feature vector θ of the response process related to the response variable. A GLM or FNN is used to

describe the relationship between θ and the response variable y.

Figure 7.

Screenshot of a CSV file storing response processes in “single” style.

Psychometrika Submission June 29, 2021 37

Figure 8.

Screenshot of a CSV file storing response processes in “multiple” style.

Psychometrika Submission June 29, 2021 38

Figure 9.

Screenshots of the climate control item in PISA 2012.

Psychometrika Submission June 29, 2021 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1_
−2

_1

0_
−2

_−
1

−2
_0

_0

−2
_2

_0

2_
−2

_2

0_
0_

2

−1
_2

_0

0_
1_

−1

0_
1_

2

0_
−1

_2

1_
0_

−2

0_
−2

_−
2

1_
2_

0

−1
_−

2_
−1

1_
1_

2

−2
_0

_2

1_
−1

_−
1

2_
1_

2

2_
2_

2

2_
2_

−2

2_
1_

−2

−1
_0

_2

−2
_0

_−
2

2_
−1

_−
2

−1
_−

2_
0

1_−2_1

0_−2_−1

−2_0_0

−2_2_0

2_−2_2

0_0_2

−1_2_0

0_1_−1

0_1_2

0_−1_2

1_0_−2

0_−2_−2

1_2_0

−1_−2_−1

1_1_2

−2_0_2

1_−1_−1

2_1_2

2_2_2

2_2_−2

2_1_−2

−1_0_2

−2_0_−2

2_−1_−2

−1_−2_0

Figure 10.

Action transition probability matrix for 25 randomly selected actions in the climate control item.

Psychometrika Submission June 29, 2021 40

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●●

●

● ●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

−0
.4

−0
.2

0.
0

0.
2

log (process length)

F
irs

t M
D

S
 F

ea
tu

re

Figure 11.

Plot of the first MDS feature against the logarithm of process length in the climate control item example.

Psychometrika Submission June 29, 2021 41

5 10 15 20

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Epoch

Lo
ss

training
validation

Figure 12.

The value of the sequence model objective function on the training and the validation sets at the end of each epoch

in the climate control item example.

Psychometrika Submission June 29, 2021 42

Tables

Table 1.

Summary of ProcData features. The functions marked by † depend on the keras package.

Topic Objects

Data structure proc, print.proc, summary.proc

Data input and output read.seqs, write.seqs, cc data

Process manipulation
remove repeat, remove action,

replace action, combine actions

Feature extraction
seq2feature mds, chooseK mds,

seq2feature seq2seq†, chooseK seq2seq†

Sequence model seqm†, predict.seqm†

Table 2.

Functions for sequence manipulation.

Function Description

sub seqs() subsetting a set of response processes

remove repeat() removing consecutive repeated actions and their timestamps

replace action() renaming an action

remove action() removing a set of actions and their timestamps

combine actions() combining a given pattern of consecutive actions into a single action

	Introduction
	Methods
	Introduction to neural networks
	Autoencoder Feature Extraction
	Multidimensional Scaling Feature Extraction
	Sequence Models

	The ProcData Package
	Data Input and Output
	S3 class `proc'
	Sequence Manipulation
	Feature Extraction
	Feature Extraction via Multidimensional Scaling
	Sequence Autoencoder Feature Extraction

	Sequence Models

	Examples
	PISA Climate Control Item
	Data preprocessing
	Unsupervised feature extraction
	Feature extraction with targeted variables via sequence model

	Summary

