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Never is the difference between thermal equilibrium and turbulence so dramatic, as when a quadratic
invariant makes the equilibrium statistics exactly Gaussian with independently fluctuating modes. That
happens in two very different yet deeply connected classes of systems: incompressible hydrodynamics and
resonantly interacting waves. This work presents the first detailed information-theoretic analysis of turbulence
in such strongly interacting systems. The analysis involves both energy and entropy and elucidates the
fundamental roles of space and time in setting the cascade direction and the changes of the statistics along it.
We introduce a beautifully simple yet rich family of discrete models with triplet interactions of neighboring
modes and show that it has quadratic conservation laws defined by the Fibonacci numbers. Depending
on how the interaction time changes with the mode number, three types of turbulence were found: single
direct cascade, double cascade, and the first-ever case of a single inverse cascade. We describe quantitatively
how deviation from thermal equilibrium all the way to turbulent cascades makes statistics increasingly
non-Gaussian and find the self-similar form of the one-mode probability distribution. We reveal where the
information (entropy deficit) is encoded and disentangle the communication channels between modes, as
quantified by the mutual information in pairs and the interaction information inside triplets.

DOI: 10.1103/PhysRevX.11.021063 Subject Areas: Fluid Dynamics, Nonlinear Dynamics,
Statistical Physics

I. INTRODUCTION

The existence of quadratic invariants and Gaussianity
of equilibrium in a strongly interacting system may seem
exceptional. Indeed, generic systems have no invariants
except Hamiltonian. Strongly interacting systems have
nonquadratic Hamiltonians, so that equilibrium Gibbs
distribution (the exponent of the Hamiltonian) is generally
non-Gaussian. And yet two very distinct wide classes of
physical systems have quadratic invariants and Gaussian
statistics at thermal equilibrium. The first class is the family
of hydrodynamic models, starting from the celebrated
hydrodynamic Euler equation and including many equa-
tions for geophysical, astrophysical, and magnetohydrody-
namic flows. The second class, as will be described in this
paper, contains systems of resonantly interacting waves.
We show that the discretized models of the first class
exactly correspond to the second one. We shall consider
one particular (arguably the simplest) family of such
models and describe far-from equilibrium (turbulent) states
of such systems.

One calls turbulence a state of any system, where many
degrees of freedom are deviated far from thermal equilib-
rium. Therefore, studies of turbulence encompass a wide
variety of phenomena in nature and industry, from pipe
flows to ripples on a puddle. It can be studied from the
viewpoint of a mathematician, engineer, or a physicist.
Here, we employ the perspective of statistical physics,
which is interested in fundamental principles that determine
statistical distributions in turbulence and thermal equilib-
rium. We shall use both the traditional viewpoint of
cascades and the relatively recent viewpoint of information
theory; that is, we address both energy and entropy of
turbulence. So far, the statistical physics approach to
turbulence was to a large extent devoted to two quite
distinct classes: systems of interacting waves like those on
the surface of the ocean or a puddle and incompressible
vortical flows where no waves are possible. Here, we build
a bridge between these two classes and show that discrete
models of a certain kind can describe both.
On the one hand, the vorticity, ω ¼ ∇ × v, of an

isentropic flow of incompressible fluid satisfies the Euler
equation: ∂ω=∂t ¼ ∇ × ðv × ωÞ. Quite similar are two-
dimensional hydrodynamic models, where a scalar field a
(vorticity, temperature, potential) is linearly related to
the stream function ψ of the velocity carrying the
field: ∂a=∂t ¼ −ðv · ∇Þa, v ¼ ð∂ψ=∂y;−∂ψ=∂xÞ, ψðrÞ ¼R
dr0jr − r0jm−2aðr0Þ. For the 2D Euler equation, m ¼ 2.
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Other cases include surface geostrophic (m ¼ 1), rotating
shallow fluid, or magnetized plasma (m ¼ −2), etc. After
Fourier transform,

_ak ¼
X
q

½k × q�q−maqak−q: ð1Þ

All such equations have quadratic nonlinearity and quad-
ratic invariants. Then, it was suggested [1] to model
different cases of fluid turbulence by the chains of ordinary
differential equations having quadratic invariant gijuiuj and
these properties:

_ui ¼ Γi
jlujul; Γi

il ¼ 0 ¼ gikΓk
jl þ glkΓk

ji þ gjkΓk
li: ð2Þ

On the other hand, consider resonantly interacting waves
with the general Hamiltonian,

Hw ¼
X
i

ωijbij2 þ
X
ijl

ðVl;ijb�i b
�
jbl þ V�

l;ijbibjb
�
l Þ; ð3Þ

where Vl;ij ≠ 0 only if ωi þ ωj ¼ ωl. By the gauge trans-
formation, ai ¼ bi expð{ωitÞ, we can turn the equations
of motion, { _bi ¼ ∂Hw=∂b�i into a system of the type
[Eqs. (1) and (2)]:

{ _ai ¼
X
jl

ðV�
i;jlajal þ 2Vl;ija�jalÞ: ð4Þ

This means that quadratic and cubic parts of the
Hamiltonian are conserved separately. If such a system
is brought into contact with thermostat, it is straight-
forward to show that the statistics is Gaussian:
lnPfaig ∝ −

P
i ωijaij2.

Our interest in resonances is connected to that in non-
equilibrium. Thermal equilibrium does not distinguish
between resonant and nonresonant interactions because
of the detailed balance: Whatever correlations can be built
over time between resonantly interacting modes, the
reverse process destroying these correlations is equally
probable. This is not true far away from thermal equilib-
rium, especially in turbulence.
Neglecting nonresonant and accounting only resonant

interactions is the standard approach to weakly interacting
systems, even though the weak nonlinearity assumption
breaks for resonant modes. Weak turbulence theory gets
around this by considering continuous distribution and
integrating over resonances to get the kinetic wave equa-
tion, which describes nonlinear evolution that is slow
compared to linear oscillations with wave frequencies
[2–5]. There is a tendency in theoretical statistical physics
to restrict consideration to two opposite limits: Either treat
few modes or infinitely many. That preference is even
stronger in the studies of nonequilibrium. And yet, not only
most of the real-world phenomena fall in between these

limits, but, as we show here, one learns some fundamental
lessons comparing equilibrium and nonequilibrium states of
systems with a finite number of degrees of freedom, where
phase coherence can play a prominent role. Condensed
matter physics taught us a similar lesson by discovering the
world of mesoscopic phenomena, where the system size was
made smaller than the phase coherence length.
The previous treatment of mode discreteness was focused

on the sparseness of resonances for the particular cases when
resonant surfaces ωk þ ωq ¼ ωjkþqj did not pass through
integer lattice determined by a box [5,6]. Yet in many cases
resonance surfaces lay in the lattice. For example, in a quite
generic case of quadratic dispersion relation, ωk ∝ k2,
Pythagorean theorem makes the resonance surface for
three-wave interactions just perpendicular to any wave
vector, so that in any rectangular box resonantly interacting
triads fill the lattice of the box eigen modes.
The class of model Eqs. (1), (2), and (4) is ideally suited

for the comparative analysis of thermal equilibrium and
turbulence. We show here that such analysis sheds light on
the most fundamental aspects of turbulence, particularly the
roles of spatial and temporal scales in determining cascade
directions and buildup of intermittency. We consider the
particular subclass of models that allow only neighboring
interactions, and find it the most versatile tool to date to
study turbulence as an ultimate far-from-equilibrium state.
We carry here such detailed study of the known types of
direct-only and double cascades with unprecedented numeri-
cal resolution. Even more important, our models allow for an
inverse-only cascade never encountered before.

II. FIBONACCI TURBULENCE

We consider a subclass of the model Eqs. (1), (2), and (4)
which is Hamiltonian with a local interaction:

H ¼
X
i

Viða�i a�iþ1aiþ2 þ aiaiþ1a�iþ2Þ: ð5Þ

The equations of motion { _ai ¼ ∂H=∂a�i are as follows:

{ _ai ¼ Vi−2ai−1ai−2 þ Vi−1a�i−1aiþ1 þ Via�iþ1aiþ2: ð6Þ

This family of models (each characterized by Vi) can have
numerous classical and quantum applications, since i can
be denoting real-space sites, spectral modes, masses of
particles, number of monomers in a polymers, etc. The
Hamiltonian describes, in particular, decay and coalescence
of waves or quantum particles, breakdown and coagulation
of particles or polymerization of polymers, etc., when
interactions of comparable entities are dominant. In par-
ticular, the model describes the resonant interaction
of waves whose frequencies are the Fibonacci numbers
Fi ¼ f1; 1; 2; 3; 5;…g defined by the identity Fi þ Fiþ1 ¼
Fiþ2 with F0 ¼ 0. Indeed, such waves are described by the
Hamiltonian
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H0 ¼
X
i

½Fijaij2 þ Viða�i a�iþ1aiþ2 þ aiaiþ1a�iþ2Þ�: ð7Þ

The first term corresponds to the linear terms in the
equations of motion, while the second term represents
the only possible resonant interactions, since no noncon-
secutive Fibonacci numbers sum into another Fibonacci
number (Zeckendorf theorem). For any real t, the
Hamiltonian (7) is invariant under the Uð1Þ × Uð1Þ trans-
formation ai → aie{Fit due to Fi þ Fiþ1 ¼ Fiþ2. The trans-
formation (to the wave envelopes) reduces the equation of
motion _ai ¼ ∂H0=∂a�i to Eq. (6).
If i are spectral parameters, they are usually understood

as shell numbers. That means that one can define
wave numbers as k ¼ Fi ¼ ½ϕi − ð−ϕÞ−i�= ffiffiffi

5
p

, where ϕ ¼
ð1þ ffiffiffi

5
p Þ=2 is the golden mean. It plays here the role of an

intershell ratio, since asymptotically at jij ≫ 1, the wave
number depends exponentially on the mode number:
Fi ∝ ϕjij. The model Eq. (6) thus belongs to the class of
the so-called shell models [7], that is, model Eq. (2) with
neighboring interactions. Coefficients of shell models are
chosen to have one or two quadratic integrals of motion. In
particular, the Sabra shell model [8,9] for a particular
choice of coefficients (not surprisingly, connected by the
golden ratio) coincides with model Eq. (6), which is
Hamiltonian and has the cubic integral of motion,
model Eq. (5).
It is straightforward to show that for arbitrary Vi, the

dynamical equations (6) conserve a one-parameter family
of quadratic invariants (generalizations of the Manley-
Rowe invariants for three-wave interactions):

F k ¼
X
i¼1

Fiþk−1jaij2; ð8Þ

where k could be of either sign if we define negative
Fibonacci numbers: F−j ¼ ð−1Þjþ1Fj. All invariants can
be obtained as linear combinations of any two of them. For
example, the first two integrals are positive, independent,
and in involution:

F 1 ¼
X
i¼1

Fijaij2; F 2 ¼
X
i¼1

Fiþ1jaij2: ð9Þ

In a closed system, the microcanonical equilibrium is
P ¼ δðH − CÞδðF 1 − C1ÞδðF 2 − C2Þ. We now add dis-
sipation and white-in-time pumping:

_ai ¼ −{∂H=∂a�i þ ξi − γiai: ð10Þ

Here, hξia�ji ¼ δijPi=2. It is straightforward to show, also
in a general case [Eqs. (3) and (4)], that such forcing
on average does not change the cubic Hamiltonian,
since hξiaiþ1a�iþ2i ¼ Pih∂ðaiþ1a�iþ2Þ=∂a�i i ¼ 0 for any i.
Denoting Hi ¼ 2ReðVia�i ai−1ai−2Þ, we then obtain

P
i dhHii=dt ¼ −

P
iðγi þ γi−1 þ γi−2ÞhHii, which must

be zero in a steady state. At least when all sums
γi þ γi−1 þ γi−2 are the same,

P
ihHii ¼hHi ¼ 0 (one

can probably imagine exotic cases where separate
hHii ≠ 0 but we shall not consider them). If pumping
and damping are in a detailed balance, so thatP

k αkFiþk−1 ¼ γi=Pi for every i, the thermal equilibrium
distribution is Gaussian: P ¼ expð−P

k αkF kÞ—is a
steady solution of the Fokker-Planck equation:

∂tP ¼ fP;Hg þ
X
i

½Pi∂ai∂a�i
þ γið∂aiai þ ∂a�i

a�i Þ�P

∝
X
i

�
2γi − Pi

X
k

αkFiþk

�
¼ 0:

That solution realizes maximum entropy for given values of
the invariants. The distribution is exactly Gaussian despite
the system being described by a cubic Hamiltonian and
thus strongly interacting. The only restriction on the
numbers αk is normalization. In particular, when only α1 ¼
1=2T is nonzero, we get the equilibrium equipartition with
the occupation numbers ni ≡ hjaij2i ¼ Pi=2γi ¼ T=Fi.
In a turbulent cascade, the fluxes of the quadratic

invariants can be expressed via the third cumulant.
Gauge invariance and Zeckendorf theorem ensure that
the triple cumulants are nonzero only for consecutive
modes in the inertial range:

Ji ≡ Imha�i ai−1ai−2i; ð11Þ

Fiþk−1
dhjaij2i

dt
¼ 2Fiþk−1ðVi−2Ji − Vi−1Jiþ1 − ViJiþ2Þ
¼ Πkði − 1Þ − ΠkðiÞ ¼ −∂iΠkðiÞ: ð12Þ

The right-hand side is the discrete divergence of the flux

ΠkðmÞ≡ −
Xm
i

Fiþk−1
dhjaij2i

dt

¼ 2FmþkVm−1Jmþ1 þ 2Fmþk−1VmJmþ2 ð13Þ

defined up to a constant, independent of m.
The third order cumulants are zero in equilibrium, but in

turbulence they are nonzero to carry the flux. In the inertial
interval, the flux must be constant and its divergence zero.
For our class of models, we are able to find analytically the
form of the third cumulant (the analog of Kolmogorov’s
4=5 law for fluid turbulence):

Jm ¼ CFM−mþ1=Vm−2; ð14Þ

where real constant C and integer M can be of either sign.
Let us substitute Eq. (14) into Eq. (13) and show that all the
fluxes are nonzero constants independent of m:
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ΠkðmÞ ¼ 2FmþkVm−1CFM−m=Vm−1

þ 2Fmþk−1VmCFM−m−1=Vm ¼ CFMþk−1: ð15Þ

The last equality follows from the Cassini identity:
FmFn þ Fm−1Fn−1 ¼ Fmþn−1. All the fluxes have the same
sign for any k, that is, all the integrals F k flow in the same
direction for such solutions. We shall show in the next
section what kind of fine-tuning is needed to get a double
cascade when both cascades carry the same integrals.
In Ref. [8], the (quadric) spectral flux of the (cubic)
Hamiltonian was also defined, but pumping does not
produce it, so that hHi ¼ 0 in a steady turbulent state,
as well as in thermal equilibrium.
Every model of our family is completely characterized

by specifying the dependence of Vi on i. While thermal
equilibrium does not depend on Vi and is universal for the
whole family, turbulence depends on Vi, as clear from
Eq. (14). In what follows, we shall consider the power-law
dependence Vi ¼ Fα

i , which turns into exponential depend-
ence Vi ≈ ϕiα for i ≫ 1. Therefore, the single real param-
eter α determines the model. Our choice of particular values
for α below will make the connection between wave and
hydrodynamical turbulence through the Fibonacci model
more explicit.

III. CASCADE DIRECTION

To get an analytic insight into our turbulence, particu-
larly, to understand the flux direction, consider an invariant
subspace of solutions with purely imaginary ak ¼ iρk
for all k:

∂ρi
∂t ¼ Vi−2ρi−1ρi−2 − Vi−1ρi−1ρiþ1 − Viρiþ1ρiþ2: ð16Þ

In this case, H≡ 0. The invariant subspace owes its
existence to the invariance of Eq. (6) with respect to the
symmetry a → −a�.
Consider the chain running between some integers

M and N, either positive or negative, and assume
Vi=Vi−1¼ϕα. Then for ρi¼Aϕiβ and Mþ1<i<N−1
we obtain

∂ρi
∂t ¼ A2Vi−2ϕ

2iβðϕ−3β − ϕα − ϕ2αþ3βÞ: ð17Þ

The right-hand side of Eq. (17) turns into zero for
β ¼ −ð1þ αÞ=3, which defines a steady solution ρi ¼
ϕ−ið1þαÞ=3 (also with the replacement ϕ → −1=ϕ). This
solution can describe either direct or inverse cascade, since
the symmetry ρ → −ρ, t → −t means that one reverses the
flux by changing the sign of ρ in this case. Indeed, consider
the evolution from the initial state where all amplitudes are
zero except the first two ρM; ρMþ1. The first term in Eq. (16)
then will produce ρMþ2 of the same sign as VMρMρMþ1,

which makes the flux positive, as it should be for a direct
cascade. Alternately, by pumping the last two modes,
the last term of Eq. (16) produces a negative flux.
Which cascade can be realized in reality: direct, inverse,
or both? Physically, it is clear that the sign of the flux must
be determined by the only parameter α, that is, by how
mode interaction depends on the mode number. Indeed,
for α ¼ 1=2, the scaling of the flux steady solution
coincides with that of the thermal equilibrium: hρii ¼ 0,
hρiρji ¼ niδij ¼ δijT=Fi ∝ ϕ−i, for i ≫ 1. Such a state can
be excited, for instance, by an imaginary pumping acting on
every mode in detailed balance with dissipation. Physical
common sense suggests that the cascade must carry the
conserved quantity

P
i Fiρ

2
i from excess to scarcity [3,10].

For α > 1=2 the steady solution ρ2i ¼ ϕ−2ð1þαÞi=3 decays
with i faster than the equipartition ρ2i ∝ 1=Fi ∝ ϕ−i, so that
it must correspond to a direct cascade. By the same token,
we must have an inverse cascade for α < 1=2. Of course,
such consideration is a plausible argument, not a rigorous
proof of the cascade sign. Getting a little ahead of
ourselves, mention here that we observe a double-cascade
turbulence exactly at α ¼ 1=2.
In a general complex case, arguing that the cascade

changes direction when α crosses 1=2 is even less straight-
forward. The flux constancy determines the third moment,
which only bounds the product of the second and fourth
moments (the claim that it bounds the square root of the
products of three second moments made in Ref. [11] is
incorrect). Yet a plausible argument can be made as
follows. The input rate of F k is equal to Π ¼ PFpþk−1
where p is the position of the pumping. The input rate must
be equal to the dissipation rate Π ¼ 2γdFdþk−1nd for any
choice of γd taken at the dissipation position d. In order for
nd to smoothly match the cascade, one must choose γd
comparable to the nonlinear interaction time: γd ≃ VdJ

1=3
d ≃

VdðΠ=VdFdÞ1=3. This gives an order-of-magnitude esti-
mate nd ≃ ðΠ=VdFdÞ2=3. Such reasoning can be applied to
every i, which in turn gives the estimate for the spectrum of
occupation numbers:

ni ≃ ðΠ=ViFiÞ2=3: ð18Þ

Since the direction of the flux is toward the occupation
numbers that are lower than thermal equilibrium, ni ∝ F−1

i ,
then again we see that the flux changes direction when
Vi ∝ F1=2

i . The dimensionless degree of non-Gaussianity
on such a spectrum,

ξ≡ Ji
n3=2i

≃
Π

ViFin
3=2
i

; ð19Þ

must be independent of i. For the spectrum close to
equilibrium, ξ ∝ F3=2

i =ViFi ¼ F1=2
i =Vi.
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Figures 1 and 2 confirm these predictions. We place the
pumping at a single mode, i ¼ p, between two dissipation
regions on the ends, letting the system to choose the
cascade direction. The system Eq. (10) with pumping
and damping has been evolved numerically using LSODE

solver [12]. At each step, random Gaussian noise of power
P is applied to the pumping-connected mode injecting
flux Πp ¼ PFp. Damping with γL and γR is applied to the
two leftmost and two rightmost modes, respectively.

For α ¼ 1=2 (Vi ¼
ffiffiffiffiffi
Fi

p
), the system is weakly distorted

from equilibrium, with a constant flux on each side of the
pumping. For α ≠ 1=2 we find that the invariants are
absorbed only on one end of the spectrum. For α > 1=2
(Vi ¼ Fi), we have a thermal equilibrium to the left of
pumping and the direct cascade Eq. (18) with a constant ξ
to the right. In the opposite case (α < 1=2, Vi ¼ const), we
find an inverse cascade Eq. (18) with constant ξ to the left
and equilibrium equipartition to the right of pumping. In
both cases, the damping on the flux side is carefully
selected to avoid buildup in the spectrum (the damping
on the equilibrium side can be then set to zero to establish
cleaner scaling). We have chosen Vi ¼ Fi and Vi ¼ const
because they qualitatively correspond to the Kolmogorov
scaling of the direct energy cascade in incompressible
turbulence and to the inverse wave action cascade in deep
water turbulence, respectively.
Thermal equilibrium at the scales exceeding the pump-

ing scale together with a direct cascade at smaller scales
have been predicted and observed [13]. To the best of our
knowledge, nobody has seen before an inverse-only cas-
cade together with a thermal equilibrium on the other side
of the pumping, neither in hydrodynamic-type systems nor
in wave turbulence or shell models. Inverse cascades play a
prominent role in geophysics and astrophysics, from
creation of planetary jets to Jupiter Great Red Spot and
stormy seas. In all known cases inverse cascades appear in
systems with at least two conserved quantities that scale
differently. All our conserved quantities (8) scale the same
in the limit i ≫ 1. Probably closest to our findings are the
results of Tom and Ray [14] who observed an inverse
cascade in the limiting case of a shell model with two
invariants having the same scaling. Their inverse cascade
had normal scaling and run from fast to slow modes; the
direct cascade was not resolved, but was likely present.
Our observation poses the question: can one find another

class of systems with a single conservation law and the
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turbulent spectrum less steep than equilibrium. In weak
wave turbulence, this requires the sum of the space
dimensionality and the scaling exponent of the three-wave
interaction to be less than the frequency scaling exponent
[3]. We do not know such a physical system, nor are we
aware of any fundamental law that forbids its existence.
Remark that the connection between the cascade direction,
its stability and steepness relative to equipartition, has been
firmly established in the weak turbulence theory [3,10]. In
all known examples, the formal turbulent solution with a
wrong flux sign is not realized; the system chooses instead
to stay close to equipartition with a slight deviation that
provides for the flux in the right direction [3,15]. Similarly,
when we place pumping and damping at the “wrong” ends
of a finite chain, our system heats up, staying close to
thermal equilibrium.
It is important that our system is a one-dimensional chain,

as well as shell models, so that there is no space and
consequently no distinction in the phase volume (number of
modes) between infrared and ultraviolet parts of the spec-
trum. The directions along the chain are only distinguished
temporally, i.e., in terms of growth or decay of the typical
interaction time. The same combination V2

i =Fi ∝ ϕ2α−1

determines the i dependence of the inverse interaction time
both for the equilibrium, Vib

1=2
i ¼ ViF

−1=2
i T1=2, and for a

cascade, ViðΠ=ViFiÞ1=3 ¼ ðV2
i =FiÞ1=3Π1=3. As the above

consideration shows, the cascade proceeds from slow modes
to fast modes in Fibonacci turbulence. Similarly, in shell
models [11,16,17] (albeit with parameters and conservation
laws distinct from our model), a cascade proceeding from
fast modes to slow modes was never observed. It was argued
that this is because the fast modes act like thermal noise on
the slow ones, which must lead to equilibrium [16]. That this
cannot be generally true follows from the existence of the
inverse energy cascade in 2D incompressible turbulence and
from numerous examples in weak wave turbulence where
nonlinear interaction time either grows or decays along the
cascade. Moreover, the formation of the cascade spectrum
proceeds from fast to slow modes (and not necessarily from
pumping to damping), according to the information-theory
argument [18].
Why is the flux direction unambiguously related to the

cascade acceleration in shell models in general and in our
model in particular, in distinction from other cases? The
argument can be made by considering capacity, a measure
that tells at which end the conserved quantity is stored—
perturbations are known to run toward that end [3]. For
example, the power-law energy density spectrum ϵk ∝ k−s

in d dimensions has the total energy
R
ϵkddk—at which end

it diverges is determined by the sign of d − s. This is
generally unrelated to the direction of the energy cascade,
determined by the sign of s, which tells whether the
spectrum is more or less steep than the equipartition.
However, in shell models the exponential character of i
dependencies makes the total energy

P
i Fijaij2 determined

by either the last or the first term of the sum, which solely
depends on whether Fijaij2 is steeper than equipartition or
not, that is, by the sign of the flux.
Which direction, then, does the cascade go in the

symmetric case Vi ¼
ffiffiffiffiffi
Fi

p
? Now the naive cascade solution

(18) coincides with thermal equipartition Fini ¼ const, and
the interaction time is independent of the mode number
for such ni. If we start from thermal equilibrium and
apply pumping to some intermediate mode, the system
develops cascades in both directions. The left panel of
Fig. 1 shows that the pumping at site p inside the interval
ð1; NÞ generates left and right fluxes in the proportion
ΠL=ΠR ≃ ðN − pÞ=p. This seems natural as in the shorter
interval the steeper spectrum falls away from the pumping,
which must correspond to a larger flux. This means that if
we want to keep the flux constant while increasing p or
N − p, we need to keep constant the ratio ðN − pÞ=p.
We end this section with a general remark. Fibonacci

Hamiltonian is not symmetric with respect to reversing the
order of modes, it sets the preferred direction, which is
physically meaningful since the frequencies of two lower
modes sum into the frequency of a high one. Yet, as we see
in the case ViF

−1=2
i ¼ const, direct and inverse cascades

are pretty symmetric. So, it is natural to conclude that
indeed the i dependence of ViF

−1=2
i determines which way

cascade goes.

IV. ALONG THE CASCADES AND
AWAY FROM EQUILIBRIUM

As we have seen, thermal equilibrium statistics is exactly
Gaussian with no correlation between modes, despite
strong interaction (which actually establishes equiparti-
tion). The reason for the absence of correlation is appa-
rently the detailed balance that cancels them. We do not
expect such cancellations in nonequilibrium states. In all
cases of strong turbulence known before, the degree of non-
Gaussianity increases along a direct cascade and stays
constant along an inverse cascade [19,20]. As we shall
show now, non-Gaussianity always increases along the
cascades in our one-dimensional chains.
We present first the symmetric case, where the system is

close to the equilibrium equipartition with the temperature
set by pumping and slowly changing with the mode
number: niFi ≈ ðPFpÞ2=3fðiÞ. The slow function fðiÞ
can be suggested by the analogy with the 2D enstrophy
cascade [21,22] as fðiÞ ∝ ln2=3 Fi ∝ i2=3, counting from the
damping region. This gives the dimensionless cumulant
ξ ∝ 1=i. This hypothesis is supported by the right panel of
the Fig. 1, which shows that ξ grows along both cascades
by a power law in i rather than exponentially. Let us stress
that count always starts from the dissipation region, where
we have the balance condition Π ¼ γdFdþk−1nd and where
γd ≃ VdJ

1=3
d ≃ VdðΠ=VdFdÞ1=3 according to the dynamical

estimate. This sets the nonlinearity parameter of order unity
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at the damping region and decaying toward pumping; the
longer the interval, the smaller is ξ at any fixed distance
from the pumping region. The limit of long intervals may
then be amenable to an analytical treatment. Indeed, Fig. 3
demonstrates that as the interval increases, the higher
cumulants remain small over longer and longer intervals
starting from pumping. Despite the model having ultralocal
interactions (every mode participates in only three adjacent
interacting triplets), the cascade formation is very nonlocal.
It is somewhat similar to thermal conduction: if we keep the
flux but increase the distance, the distribution gets closer to
the thermal equilibrium at every point.
Turning to asymmetric (one-cascade) cases, we see the

cumulants higher than third growing with Fi by a power
law instead of logarithmic. Rather than look for scaling in
the mode number i, we find it more natural to use Fi

(playing the role of frequency); at large i one has Fi ≈ ϕi,
where ϕ is the golden mean. Traditional study of turbulence
in general and shell models in particular was focused on
the single-mode moments (analog of structure functions),

hjaijqi ∝ F
−ζq
i , whose anomalous scaling exponents

ΔðqÞ ¼ qζ3=3 − ζq give particular measures of how non-
Gaussianity grows along the cascade. For Vi ¼ Fα

i , the flux
law gives Ji ∝ Π=ViFi, that is, ζ3 ¼ αþ 1. The anomalous
scaling is observable in numerics for the single-cascade
cases α ¼ 0 and α ¼ 1, as shown in the right panel of
Fig. 6. This seems to be the first case of an anomalous
scaling in an inverse cascade, with the anomalous dimen-
sions having the opposite signs to those in direct cascades.
The exponents start fairly small but grow fast with q. The
anomalous exponents ΔðqÞ can be related to the statistical
Lagrangian conservation laws [23,24] in fluid turbulence;
no comparable physical picture was developed for shell
models. Without physical guiding, the set of the anomalous
exponents is not very informative, all the more that they
characterize only one-mode distribution.
Here, we suggest a complementary set of three infor-

mation-theoretic measures, which shed a new light on the
turbulent statistics emerging along the cascade. The main
distinction of any nonequilibrium state is that it has lower

entropy than the thermal equilibrium at the same energy.
Turbulence has the entropy that is much lower, which
means that a lot of information is processed to excite the
turbulence state. We pose the following question: Where is
the information that distinguishes turbulence from equilib-
rium encoded?

V. WHERE IS THE INFORMATION ENCODED?

First, the information is encoded in a single-mode
statistics, which is getting more non-Gaussian deeper in
the cascade. This must be reflected in the decay of the one-
mode entropy, Si ¼ SðxiÞ ¼ Sðjaij= ffiffiffiffi

ni
p Þ, with the growth

of ji − pj. This can be computed using the multifractal

formalism: the moments hxqi i ∝ F
−ζqþqζ2=2
i in the limit of

large ji − pj correspond to the multifractal distribution,

PðxiÞ ∝
Z

gðxi=Fh
i Þx−1i exp½fðhÞ lnFi�dh; ð20Þ

where g is the probability distribution of xi on the
subset with the scaling exponent h and fðhÞ ¼
minqðζq − qζ2=2 − qhÞ, that is, fðhÞ is the Legendre
transform of ζðqÞ. The entropy is then

Si ¼ −
Z

dxP lnP ∝ ½Δ0ð0Þ − Δð2Þ=2� lnFi:

This decay is logarithmic in frequency Fi, that is, linear in i,
as indeed can be seen in Fig. 6, where i is counted from
pumping. Noticing that Δð1Þ ≈ Δð2Þ and assuming quad-
ratic dependence for q ≤ 3, we estimate Δ0ð0Þ ≈ 3Δð1Þ=2
and observe that the dashed lines in the right panel of
Fig. 6 with the slopes Δð1Þ lnϕ by the order of magnitude
represent the entropy decay in the inertial interval in both
direct and inverse cascades.
Second, the information is encoded in the correlations of

different modes. It is natural to assume that correlations are
strongest for modes in interacting triplets, ai; aiþ1; aiþ2.
Disentangling of information encoded can be done by using
structured groupings [25–27]:

Xn
i¼1

SðaiÞ −
X
ij

Sðai; ajÞ þ
X
ijk

Sðai; aj; akÞ

−
X
ijkl

Sðai; aj; ak; alÞ þ � � � þ ð−1Þnþ1Sða1;…; anÞ;

ð21Þ

where Sða1;…; anÞ is the entropy of the joint n-mode
distribution. For n ¼ 1, this gives the one-mode entropy Si
which measures the total amount of information one can
obtain by measuring or computing one-mode statistics.
While the entropy itself depends on the units or para-
metrization, all the quantities (21) for n > 1 are
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FIG. 3. Fourth and sixth moments for α ¼ 1=2 and center
pumping in 40-mode system, with γL ¼ γR ¼ 3, P ¼ 0.1, and in
the 60-mode system with γL ¼ γR ¼ 30, P ¼ 1.
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independent of units and invariant with respect to simulta-
neous reparametrization of every single variable. For n ¼ 2,
we have the widely used mutual information,

Iij ¼ SðaiÞ þ SðajÞ − Sðai; ajÞ;

which measures the amount of information one can learn
about one mode by measuring another, that is, characterizes
the correlation between two modes. It is interesting that all
pairs in the triplet have comparable mutual information in
the direct cascade (Vi ¼ Fi), while Ii;iþ1 exceeds notice-
ably Ii;iþ2 in the inverse cascade (Vi ¼ 1), see the upper
right panel in Fig. 8. One can also define the total
(multimode) mutual information as the relative entropy
between the true joint distribution and the product distri-
bution: Iða1;…; akÞ ¼

P
k
i¼1 SðaiÞ − Sða1;…; akÞ. It is

positive and monotonically decreases upon averaging over
any of its arguments. As we see from Fig. 8, the changes
along the cascade in one-mode entropy and in two-mode
and three-mode mutual information are comparable, that is,
one obtains a comparable amount of information about
turbulence from these quantities.
To see how much more information one gets by

measuring or computing the three modes simultaneously
compared to separately by pairs, one needs to use the
measure of the irreducible information encoded in triplets,
as given by the third member of the hierarchy (21). It is
called interaction information in the classical statistics
and topological entanglement entropy in the quantum
statistics [25,28]:

IIi ¼ SðaiÞ þ Sðaiþ1Þ þ Sðaiþ2Þ þ Sðai; aiþ1; aiþ2Þ
− Sðai; aiþ1Þ − Sðai; aiþ2Þ − Sðaiþ1; aiþ2Þ

¼ Ii;iþ1 þ Ii;iþ2 þ Iiþ1;iþ2 − Ii;iþ1;iþ2

¼ Iði; iþ 1Þ − Iði; iþ 1jiþ 2Þ: ð22Þ

Here, the last term is computed using the probability
distribution of the two modes i, iþ 1, conditioned on a
fixed amplitude of the third mode, iþ 1. Interaction
information measures the influence of the third variable
on the amount of information shared between the other two
and could be of either sign. Positive IIðX; Y; ZÞ measures
the redundancy in the information about Y obtained by
measuring X and Z separately, while the negative one
measures synergy which is the extra information about Y
received by knowing X and Z together. While we cannot
prove it mathematically, it seems physically plausible that
systems with three-mode interaction must demonstrate
synergy. Indeed, one finds a strong synergy for the cascades
close to thermal equilibrium at Vi ¼

ffiffiffiffiffi
Fi

p
as seen in Fig. 7.

The two-mode mutual information is much smaller than
both the one-mode entropy and the absolute value of the
interaction information, which is negative, that is, much

more information is encoded in three modes than in the
pairs separately.
Let us stress that both the mutual information and the

interaction information are symmetric, that is, they measure
the degree of correlation rather than causal relationship or
cascade direction.
We compute the entropies and mutual information as

follows. First, we obtain the probability distribution in 4D
space (x2i−2; x

2
i−1; x

2
i ; θiÞ and integrate it to get correspond-

ing 1D and 2D distributions. Here, θi ¼ φi − φi−1 − φi−2,
where φi is the phase of mode i, and xi ¼ jaij= ffiffiffiffi

ni
p

, while
ni ¼ hjaij2i is the direct average. Mutual information and
information interaction are computed directly from entro-
pies, S ¼ −ΣP log2 P, obtained for these distributions,
since all normalization factors cancel out in subtraction.
The entropy for an individual mode, however, is presented
relative to the Gaussian entropy based on the average
occupation number obtained for the binned, staircase
distribution for x2i . We use the bin sizes Δx2i ¼ 1 for
α ¼ 0 and α ¼ 1, and Δx2i ¼ 1=2 for α ¼ 1=2. In all cases
Δθ ¼ 2π=32.
Far from equilibrium, we find synergy for the modes

close to the pumping and redundancy for damping, see the
last panel of Fig. 8. That means that the interaction
information passes through zero in the inertial interval.
There even seems to be a tendency to stick to zero in the
inertial interval but this requires further studies with the
number of modes exceeding our present abilities. (Our
computations are done with a record number of modes, up
to 80, while previous studies were mostly done for 20–30.
The interaction times decrease exponentially with the mode
number, which imposes heavy requirements on the com-
putational time step. On top of that one needs very long
runs to collect enough statistics to reliably represent the
three-mode probability distribution in four-dimensional
space.) With the present set of data we can suggest that
most of the information about the three-mode correlation is
in the sum of the pair correlations in the triplet. This is more
pronounced in the direct cascade than in the inverse
cascade. Since the requirements on statistics grow expo-
nentially with the dimensionality, the suggestion that one
can get most of the information (or at least a large part of it)
from lower-dimensional probability distributions is great
news for turbulence measurements and modeling. To put it
simply, comparable amounts of information can be brought
from one-mode and from three-mode measurements in
direct and inverse cascades; most of that information can
be inferred from two-mode measurements. It remains to be
seen to what degree this property of small (asymptotically
zero?) interaction information is a universal feature of
strong turbulence.
Insets in Figs. 4 and 5 show the probability distribution

of the relative phase θi, which is closely related to the flux
(skewness), proportional to hjaiai−1ai−2j sin θii. The prob-
ability maxima are then at positive and negative angles for
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direct and inverse cascades, respectively. Also, the i
dependence of the phase distributions is in accordance
with the changes in skewness along i. In the two-cascade
symmetric case, the distribution is flat (the phases are

random) near the pumping, and the phase correlations
appear along the cascades, as can be seen comparing the
last panel of Fig. 1 with the inset in the right panel of Fig. 4.
In the one-cascade cases, both skewness and the form of the
spectrum are practically independent of the mode number,
as seen from Figs. 2 and 5.
The fact that the deviations from Gaussianity grow along

our inverse cascade, in distinction from all the inverse
cascades known before, calls for reflection. We used to
think about the anomalous scaling and intermittency in
spatial terms: Direct cascades proceed inside the force
correlation radius, which imposes nonlocality, while in
inverse cascades one effectively averages over many small-
scale fluctuations, which bring scale invariance [19,20].
The emphasis on the spatial features was reinforced by the
success of the Kraichnan’s model of passive tracer turbu-
lence, where it has been shown that the spatial (rather than
temporal) structure of the velocity field is responsible for an
anomalous scaling and intermittency of the tracer. There is
no space in our case, so apparently it is all about time.
Indeed, as we have seen, all our cascades propagate from
slow to fast modes, which leads to the buildup of non-
Gaussianity and correlations. As a result, the entropy of
every mode decreases and the intermode information grows
along the cascade. This diminishes the overall entropy
compared to the entropy of the same number of modes in
thermal equilibrium with the same total energy.
Despite qualitative similarity, there is a quantitative differ-

ence between our direct and inverse cascades. Figures 5
and 6 show that the one-mode statistics and its moments
faster deviate from Gaussian as one proceeds along the
inverse cascade than the direct one. And yet one can see from
Figs. 6 and 7 that the one-mode entropy is essentially the
same in both cascades, as well as the mutual information
between two neighboring modes and the three-mode mutual
information. The mutual information between non-
neighboring modes I13 is about twice smaller, as seen in
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Fig. 8. This difference can probably be related to the
dynamics, which in our system is the coalescence of two
neighboring modes into the next one and the inverse process
of decay of one into two. In the dynamical equation (16),
only one (first) term is responsible for the direct process (and
the direct cascade), while two terms are responsible for the
inverse process (and the inverse cascade).
An important distinction between double-cascade and

single-cascade turbulence in our system is the dependence
on the system size. The degree of non-Gaussianity of the

complex amplitudes is fixed in the dissipation regions of
the double cascade, so that in the thermodynamic limit
the statistics is Gaussian in the inertial intervals. On the
contrary, the statistics of the amplitudes is fixed at the
forcing scale for a single cascade, and it deviates more and
more from Gaussianity as one goes along the cascade.
We end this section by a short remark on the production

balance of the total entropy S ¼ −hln ρða1;…; aNÞi. Here,
ρða1;…; aNÞ is the full N-mode probability distribution
function. Since wave interaction does not change the total
entropy, then the entropy absorption by the dissipation
must be equal to the entropy production by the pumping
[18,29]:

P
Z Y

i

daida�i
2ρ

���� ∂ρ
∂ap

����
2

¼ 2
X
k

γk; : ð23Þ

For a single-cascade cases (Vi ¼ 1 and Vi ¼ Fi), the
energy balance PFp ¼ 2γFdnd means that the left-hand
side of Eq. (23) must be much larger than the Gaussian
estimate P=np [18]. It may seem to contradict our numeri-
cal finding that the pumping-connected mode ap has its
one-mode statistics close to Gaussian. Of course, there are
nonzero triple correlation and the mutual information with
two neighboring modes in the direction of the cascade. Yet,
since ξ ≃ 1, then the triple moment Jp ≃ n3=2p both in direct
and inverse cascades, so that the contribution to the left-
hand side of Eq. (23) is comparable with P=np. We
conclude then that even the pumping-connected mode
must have strong correlations with many other modes.
Since the triple correlation function of nonadjacent modes
are zero, such correlations must be encoded in higher
cumulants. That deserves further study.

VI. KOLMOGOROV MULTIPLIERS
AND SELF-SIMILARITY

An unbounded decrease of entropy along a single
cascade prompts one to ask whether the total entropy of
turbulence is extensive (that is, proportional to the number
of modes) or grows slower than linear with the number of
modes, so there could be some “area law of turbulence”
(like for the entropy of black holes). This question can
be answered with the help of the so-called Kolmogorov
multipliers σi ¼ ln jai=ai−1j [30]. Figure 9 shows that in
our cascades the multipliers have universal statistics inde-
pendent of i, similar to shell models [31–34]. One conse-
quence of the scale invariance of the statistics of the
multipliers is that the entropy of the system is extensive,
that is, proportional to the number of modes. Of course, the
entropy depends on the representation. From the informa-
tion theory viewpoint, the Kolmogorov multipliers realize
representation by (almost) independent component, that is,
allow for maximal entropy. In other words, computing or
measuring turbulence in terms of multipliers gives maximal
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information per measurement [the absolute maximum is
achieved by using the flat distribution, that is, the variable
uðσÞ defined by du ¼ PðσÞdσ].
The amplitudes are expressed via the multipliers:

Xk ¼ ln xk ¼ ln
jakjffiffiffiffiffi
nk

p ¼ ln xp þ
Xpþk

i¼pþ1

σi þ
1

2
log

np
nk
:

The first term is due to the pumping-connected mode,
which correlates weakly with σi in the inertial interval. As
shown below, the correlation between multipliers decays
fast with the distance between them. That suggests that the
statistics of the amplitude logarithm at large k must have
asymptotically a large-deviation form:

lnPðXkÞ ¼ −kHðXk=kÞ: ð24Þ

Indeed, the three upper curves in the top row of Fig. 5
collapse in these variables, as shown in the bottom row of
Fig. 9. The self-similar distribution of the logarithm of
amplitude, Eq. (24), is a dramatic simplification in com-
parison with the general multifractal form (20). Technically,
it means that gðxk=Fh

kÞ ¼ gðeXk−kh lnϕÞ is such a sharp
function that the integral in Eq. (20) is determined by the

single Xk-dependent value, hðXkÞ ¼ Xk=k lnϕ. We then
identify f ¼ −H= lnϕ.
The self-similarity of the amplitude distribution (plus

the independence of the phase distribution on the mode
number) is great news, since it allows one to predict the
statistics of long cascades (at higher Reynolds number)
from the study of shorter ones. In our case, Fig. 9 shows
that 28th mode already has the form close to asymptotic.
Self-similarity and finite correlation radius of the
Kolmogorov multipliers have been also established exper-
imentally for Navier-Stokes turbulence [35]. To avoid
misunderstanding, let us stress that the self-similarity is
found for the probability distribution of the logarithm of the
amplitude, which does not contradict the anomalous scal-
ing of the amplitude moments with the exponents ζq
determined by the Legendre transform of f or H.
If the multipliers were statistically independent, one

would compute lnPðXÞ ¼ −kHðX=kÞ or ζq proceeding
from PðσÞ by a standard large-deviation formalism:
HðyÞ ¼ minz½zy −GðzÞ�, where GðzÞ ¼ ln

R
dσezσPðσÞ.

Such derivation would express hjakjqi via heqσki, which
is impossible since the former moments exist for all q,
while the latter do not because of the exponential tails of
PðσÞ, see also Refs. [35,36].
Therefore, to describe properly the scaling of the

amplitudes one needs to study correlations between multi-
pliers. Physically, it is quite natural that the law of the
distribution change along the cascade must be encoded in
correlations between the steps of the cascade. Indeed, we
find that the neighboring multipliers are dependent, albeit
weakly, as expressed in their mutual information (tradi-
tionally used pair correlation function [32,33,35] is not a
proper measure of correlation for non-Gaussian statistics).
We find that for the inverse cascade, Iðσi; σiþ1Þ ≃ 0.23,
IIðσi;σiþ1;σiþ2Þ≃−0.1. For the direct cascade, Iðσi; σiþ1Þ≃
0.3, IIðσi; σiþ1; σiþ2Þ ≃ −0.08. No discernible Iðσi; σiþkÞ
were found for k > 1. While σi and σiþ2 are practically
uncorrelated, there is some small synergy in a triplet.
To appreciate these numbers, let us present for com-

parison the statistics of the Kolmogorov multipliers in
thermal equilibrium. Normalized for zero mean and unit
variance, we have

PðσÞ ¼
Z Z

∞

0

dxdye−x−yδ

�
σ−

1

2
ln
x
y

�
¼ 1

2cosh2 σ
;

Pðσi;σiþ1Þ ¼
8e4σiþ2σiþ1

½1þ e2σið1þ e2σiþ1Þ�3 : ð25Þ

That gives Iðσi; σiþ1Þ ¼ ln 2 − 1=2 ≈ 0.19.
Figure 9 shows that the equilibrium Gaussian statistics of

independent amplitudes perfectly represents the statistics
of a single multiplier. The joint probability distribution
function Pðσi; σiþ1Þ are shown in Fig. 10 for thermal
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FIG. 9. Top: probability distributions of the Kolmogorov
multipliers σi ¼ ln jai=ai−1j for different positions in the inverse
(left) and direct (right) turbulent cascades. Solid lines correspond
to the thermal equilibrium PðσÞ ¼ 1=2 cosh2ðσ − σ̄Þ, where σ̄ ¼
−ð1=3Þ lnϕ for the inverse cascade and σ̄ ¼ −ð2=3Þ lnϕ for the
direct one. Bottom: probability distributions of X ¼ ln jakj2
collapse to the large-deviation form far away from the pumping,
that is, for large k ¼ ji − pj.
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equilibrium and for two cascades. Again, the Gaussian
statistics represents turbulence remarkably well. The
differences between the three cases are most pronounced
around the peak at the origin, while the distant contours are
hardly distinguishable. In plain words, the probabilities of
strong fluctuations of the multipliers are the same in
thermal equilibrium as in turbulence cascades. This is
remarkably different from the statistics of the complex
amplitudes, which demonstrate most difference between
the three cases for strong fluctuations and for high
moments. There seems to be a certain duality between
fluctuations of the amplitudes and multipliers: strong
fluctuations of the multipliers correspond to weakly corre-
lated amplitudes, while strong fluctuations of the ampli-
tudes may require their strong correlations and thus
correspond to multipliers close to their mean values.
Whether this duality can be exploited for an analytic
treatment remains to be seen. The information about the
anomalous scaling exponents of the amplitudes in turbu-
lence must be encoded in the correlations between multi-
pliers. Note that the mutual information Iðσi; σiþ1Þ
for both cascades (I ¼ 0.23 and I ¼ 0.30) is not that
much higher than in thermal equilibrium (I ¼ 0.19 bits).
Physicists tend to be much excited about any broken
symmetry; it is refreshing to notice that relatively little
information is needed to encode the broken scale invari-
ance in turbulence. How to decode this information from
the joint statistics of multipliers remains the task for the
future.

VII. DISCUSSION

The most surprising finding of our work is the existence
of an inverse-only cascade and its anomalous scaling. In all
cases known before, an inverse cascade appears only as an
outlet for an extra invariant that cannot be transferred along
the direct cascade with other invariant(s). In a truly weak
turbulence, when the whole statistics is close to Gaussian, an
inverse-only cascade is indeed impossible, since it would
require an environment that provides rather than extracts
entropy,which contradicts the second lawof thermodynamics
[18,29]. Here, we have shown that an inverse-only cascade is
possible in a strong turbulence. As far as an anomalous
scaling is concerned, we relate it to the change of the
interaction time along the cascade. All the inverse cascades
known before run from fast to slowmodes and have a normal
scaling. In our case, as in all shell models, cascades always
proceed from slow to fast modes. Apparently, this is the
reason that non-Gaussianity increases along all our cascades,
and an anomalous scaling takes place in both single inverse
and single direct cascades. Indeed, proceeding from fast to
slow modes (in inverse cascades known before) involves an
effective averaging over fast degrees of freedom, which
diminishes intermittency. On the contrary, our cascades build
up intermittency as they proceed.
Another unexpected conclusion follows from the entropy

production balance in a steady turbulent state: Even though
the marginal statistics of the pumping-connected mode
(averaged over all other modes) can be close to Gaussian,
the correlations of that mode with other modes cannot
be weak.
Most of the present work is devoted to disentangling of

the information encoded in strong turbulence. It is pre-
dicted that in weak turbulence most of the information is
encoded in the three-mode statistics [18], and Fig. 7
confirms this prediction. Yet in strong turbulence, we find
that as much information is encoded in one-mode as in two-
mode statistics, while three-mode statistics does not add
much. This could be of practical importance for turbulence
studies since it is much more difficult to collect, store,
and analyze statistics for three-mode and multimode dis-
tributions. Another important lesson is that measuring or
computing mode amplitudes (or velocity structure func-
tions) brings diminishing returns, that is, less and less
information, as one goes deep into the cascade. The
maximal information is encoded in the statistics of the
Kolmogorov multipliers. Most of that information is
encoded in the statistics of a single multiplier; less than
10% is encoded in the correlation of neighbors. How to
decode it is the task for the future.
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