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Abstract—As the IoT-Edge-Cloud hierarchy is evolving into a
mature ecosystem, large-scale Sensing-as-a-Service (SaS) based
services with stringent job service level objectives (SLOs)
are expected to emerge as dominant cloud services. A viable
business model for SaS must be inherently multi-tier by design
and work in a confederated environment involving a large
number of voluntary stakeholders who may appear at different
tiers. It must also honor privacy and autonomous control
of stakeholder resources. This calls for a fully distributed,
SLO-aware job resource allocation and scheduling platform
to be developed. In this paper, we propose a tail-latency-SLO-
aware job resource allocation and scheduling platform for SaS,
called JADE. It is a four-tier platform, i.e., cloud, edge cluster,
edge, and IoT tiers. To honor the privacy and autonomy of
control for individual stakeholders at different tiers, the JADE
design follows the design principle of separation of concerns
among tiers. Central to its design is to develop a decompo-
sition technique that decomposes SaS service requirements,
in particular, the job tail-latency SLO, into task performance
budgets for individual sensing tasks mapped to each lower tier.
This makes it possible to allow each lower tier to manage its
own resources autonomously to meet the sensing task budgets
and hence the SaS service requirements, while preserving its
privacy and autonomy of control. Finally, preliminary testing
results based on both simulation and an initial prototype of
JADE are presented to demonstrate the promising prospects
of the solution.

Keywords-multi-tier; tail latency-SLO Aware; scheduling;
resource allocation;

I. INTRODUCTION

As the IoT-Edge-Cloud hierarchy is evolving into a mature

ecosystem in terms of its social and geographical scales, and

sensing, computing, and storage capabilities, the cloud is

expanding its reach to every corner of the world. This gives

rise to the opportunity of developing a whole new category

of cloud services, generally known as Sensing-as-a-Service

(SaS) [21], [27], [29]. With SaS, a user would have access

to sensor data from any part or even the entire world in

real time at his/her fingertips. SaS allows users to share

a wide variety of sensed data through the IoT-edge-cloud

ecosystem. It starts with a user making request to the cloud,

This work was supported by the US NSF under Grant No. CCF XPS-
1629625, CCF SHF-1704504 and CCF SHF2008835.

which in turn, dispatches sensing tasks to the edge and IoT

devices in the areas of interest to pull the sensed data up the

hierarchy. As a wide variety of sensing data have become

available, opportunities arise to develop SaS services of

economic, social and political significance, e.g., (in decreas-

ing order of time criticality) earthquake detection and alert

[3], object detection and tracking [17], utility monitoring

[20], human temperature monitoring for virus detection and

prediction [12], and data harvesting for business analytics

[19]. To support such applications, especially those with

stringent tail-latency SLOs (e.g., earthquake detection and

alert and object detection and tracking), however, we argue

that a fully distributed, tail-latency-SLO-aware job resource

allocation and scheduling platform must be in place first.

First, SaS is in essence a crowdsourcing system [29]

involving many loosely coupled stakeholders. For exam-

ple, a four-layer SaS business model [21] is composed of

a sensor-and-sensor-owner layer, a sensor-publisher layer,

an extended-service-provider layer, and a user layer. The

individual sensor owners in the sensor-and-sensor-owner

layer voluntarily subscribe and publish sensing data with

one or more publishers in the sensor-publisher layer. An

extended service provider in the extended-service-provider

layer serves as an agent on behalf of a user in the user

layer to make a request for the desired sensing data from

different publishers. Clearly, due to privacy concerns, a

sensor owner may not be willing to provide the device-level

details to its publisher, which in turn, may not be allowed

to expose the identities and whereabouts of its subscribers

(i.e., sensors) to extended service providers. This means

that an extended service provider cannot explicitly allocate

sensing resources to meet a user request or job1 SLO, as

it does not have control over or even the knowledge about

the sensing resource availability. The existing SLO-aware

job scheduling and resource orchestration solutions for both

datacenters (e.g., Kubernetes [7], Messos [18], and YARN

[1]) and IoT-edge-cloud ecosystem (e.g., [15], [22], [28])

1In general, a request may involve multiple rounds of jobs to be executed
one at a time. To limit the exposure, in this paper, we only consider single-
round requests. In this case, the terms ”request” and ”job” can be used
interchangeably.
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are simply not up to the task, as they all assume that all the

computing/sensing resources can be centrally managed and

allocated (see Section II for details).

Second, for large-scale SaS services, a job may spawn up

to hundreds of millions of sensing tasks to be dispatched

to geographically dispersed edge nodes and/or IoT devices.

Whether the job SLO can be met or not is determined by the

task response time of the slowest task, a key challenge in job

resource allocation and scheduling is to meet the stringent

tail-latency SLO for a given service, a de facto SLO for

user-facing applications, the task response time budget is

a strong function of NJ , i.e., the number of sensing tasks

the job spawns, also known as job fanout degree, which

may vary significantly from one job to another [26]. For

example, as explained in [16], consider a system where the

mean task response time is 10ms but with a 99th-percentile

latency of one second. Then, for jobs with fanout degree

one, only 1% of the jobs will be slower than one second.

However, for jobs with fanout degree 100, 63% of the jobs

will be slower than one second. Consequently, to meet a

given tail-latency SLO, the task response time budget (e.g.,

in terms of both mean and variance of the task response time)

or the task resource demands for tasks belonging to jobs

with different job fanout degrees are different! This makes

job scheduling extremely challenging, as jobs with different

fanout degrees require different task resource allocations.

To the best of our knowledge, no existing job resource

allocation and scheduling solution is capable of providing

job tail-latency-SLO guarantee for jobs with job fanout

degree larger than one. To make things worse, for SaS,

the job fanout degree, NJ , is unknown at the time a job

is initially scheduled. For example, for the aforementioned

four-layer business model, upon receiving a user request,

an extended service provider will dispatch sensing tasks to

a selected number of publishers, denoted as N , to meet

the sensing coverage requirement of the user. Each of these

publishers, i, for i = 1, ..., N , may in turn, dispatch sensing

subtasks corresponding to the task received to a selected

number of subscribers or sensors for sensing, denoted as

ni, that meets the required sensing coverage associated with

that task. Clearly, for the sake of privacy and autonomy

of control, ni is determined by publisher i, meaning that

NJ =
∑N

i ni is unknown to the job scheduler at the time

the job is scheduled at the extended service provider. These

two challenges, again, call for a fully distributed solution to

be developed.

To tackle the above challenges, this paper takes a first step

towards developing a Job-tail-latency-SLO-Aware resource

allocation and scheduling platform for SaS over IoT-EDdgE-

Cloud Hierarchy (JADE). JADE is a four-tier platform, i.e.,

cloud, edge cluster, edge, and IoT tiers, in line with the

multi-tier SaS business models. In JADE, the cloud (e.g., an

extended service provider in the aforementioned four-layer

business model) that receives a request from a user (e.g.,

in the user layer) dispatches sensing tasks of the request

to a set of edge clusters (e.g., a set of publishers), each of

which in turn, dispatches sensing subtasks of the received

task to a set of edge nodes and their respective IoT pools

for sensing (e.g., in the sensor-and-sensor-owner layer). To

honor the autonomy of control and privacy of individual

stakeholders who may appear at different tiers, JADE is

fully distributed by design, which strictly follows the design

principle of separation of concerns among tiers. Namely,

while the cloud tier determines to which edge clusters the

sensing tasks need to be dispatched, it is the responsibility

of each edge cluster to decide to which edge nodes in the

cluster the sensing subtasks need to be further dispatched

and how resources need to be allocated at those edge nodes.

The core of the JADE design requires the development of an

SaS-requirement decomposition technique that allows SaS

service requirements, including user request SLO, to be

decomposed into task performance budgets at the cloud tier

and in turn, a task performance budget for a task into subtask

performance budgets for individual subtasks at the edge clus-

ter tier, which finally determines how resources need to be

allocated at the edge. This makes it possible to allow lower

tiers to manage their own resources autonomously to meet

the task/subtask budgets and hence the SaS-requirements,

without having to expose their identities and device-level

resource details to their upper tiers. Finally, to prove JADE

concept and its promising prospects, preliminary testing

results based on both simulation and a prototype of JADE

are presented.

II. RELATED WORK

First, we note that the existing datacenter job scheduling

and resource orchestration solutions that can provide job

performance assurance, e.g., Kubernetes [7], Mesos [18],

and YARN [1] cannot be adopted as job resource allocation

and scheduling platforms for SaS for two reasons.

First, such solutions assume that the entire datacenter is

owned by a single stakeholder, i.e., the datacenter service

provider. As such, the server resources for all the servers

are under the full control of a resource manager (RM).

Hence, by working with RM, a job scheduler can spawn

tasks for a job to those servers with the right amounts of

resources allocated to meet the job performance target. Here

we must note that a two-tier variant of YARN, known as

YARN federation [?], that groups servers in a cluster into

sub-clusters appears to match well with the multi-tier SaS

business models. In reality, however, they are fundamentally

different models. While the YARN federation improves the

scalability of YARN by distributing jobs (not tasks) to

different sub-clusters, each running a local RM, a multi-tier

SaS model requires that the tasks (not jobs) be distributed

to different sub-clusters at the next tier. Furthermore, the

YARN federation requires that RMs in different sub-clusters

exchange sub-cluster resource availability information to
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facilitate the possible migration of some of the tasks for

the job to some sub-clusters other than the one the job

is mapped to. Obviously, the YARN federation does not

intend to preserve the privacy and autonomy of control for

individual sub-clusters, an essential requirement of the multi-

tier SaS business models.

Second, the above datacenter solutions are not capable

of providing effective resource allocation for jobs with tail-

latency SLO. This is simply because no existing solution

is capable of determining the task performance budget or

task resource demands for jobs with any given job fanout

degree. As a result, to ensure that all the jobs for a given

service will meet the tail-latency SLO for that service, the

current practice is to overprovision the resources to ensure

that the worst-case scenario, i.e., the job with the largest job

fanout degree, will meet the tail-latency SLO, resulting in

inefficient resource utilization [23].

There are some existing orchestration platforms being

proposed for the IoT-Edge-Cloud ecosystem, e.g., [15], [22],

[28]. Although mostly multi-tier by design, they all require

that the resource availability information from the IoT and

edge tiers to be conveyed to the cloud tier for centralized

control. They also assume that resource orchestration is

under the control of a single stakeholder, at least at the edge

and cloud tiers. Moreover, they are not concerned with tail-

latency-SLO-aware job scheduling and resource allocation.

We also note that some open-source projects that pur-

posely target IoT and edge computing exist, including two

lightweight versions of Kubernetes [7] (i.e., K3S [6] and

KubeEdge [5]) and several projects under the Linux Foun-

dation Edge organization (LF Edge) [14] (e.g., Akraino,

EdgeX, Fledge, EVE, and Open Horizon). While KubeEdge

allows a Kubernetes master running in a cloud to gain

control over its worker nodes at the edge, K3S runs in an

edge cluster where it orchestrates the resource allocation

among all the edge nodes in the cluster. However, as

lightweight versions of Kubernetes, both solutions inherit

the aforementioned features of Kubernetes, making them

unsuitable for SaS. LF Edge ”will create a common frame-

work for hardware and software standards and best practices

critical to sustaining current and future generations of IoT

and edge devices” [13]. Its projects are not targeting a given

use case or business model, but rather the building blocks

that can be used to enable various use cases and business

models and hence, are orthogonal and complementary to

JADE. For example, JADE may incorporate EdgeX for

standard-based communications between IoT devices and

edge nodes; Open Horizon for dynamically adding, deleting

or swapping containerized task modules associated with

different SaS services at the edge nodes, where the resources

are constrained; and/or EVE/K3S for resource orchestration

at the edge-cluster tier. Finally, we also note that none of

the open source projects has addressed tail-latency-SLO-

guaranteed job resource allocation and scheduling.

Next, we also note that commercial IoT-cloud develop-

ment platforms, e.g., IBM IoT foundation [4], AWS IoT

[2], Azure IoT suite [8], provide tools and services that

enable developers to integrate their IoT devices into the

cloud. However, such platforms are likely to be used by

a single stakeholder only who owns all the IoT devices and

is tied to a single cloud account.

Finally, many commercial SaS systems exist, e.g., Lean-

Heat [10], an IoT-based energy monitoring and analysis sys-

tem for optimized heat distribution to houses and apartments;

NetSuite [9], an inventory tracking and alert system; VN

Cloud [11], a vending machine management system, just

to name a few. However, such systems are proprietary and

vertically designed from bottom up for a specific sensing

application and stakeholder, making it difficult, if not impos-

sible, for them to be adopted to serve as a common platform

involving many stakeholders and shared by different SaS

services.

Figure 1: JADE Architecture, highlighted with architectural

details for one edge cluster that covers two separate IoT

sensing areas

III. JADE

In this paper, we consider both query-based long-run (or

long-run in short) and on-demand SaS services with tail-

latency SLOs. Enabling a long-run SaS service involves (a)

initial resource allocation; and (b) run-time job scheduling

and resource scaling to adapt to load changes. For an on-

demand SaS service, a user request will trigger both (a) and

(b) at run-time. In the following subsections, we first give

an overview of JADE, then we discuss the decomposition

technique that enables (a) and (b).
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A. JADE Overview

JADE adopts a four-tier architecture, as shown in Fig.

1. Each edge node (e.g., a server in a cloudlet) services

a pool of IoT devices with possibly more than one type

of sensing capability in an area. In turn, a group of edge

nodes covering one or more areas forms an edge cluster

with a master server (e.g., again a server in a cloudlet).

The edge-cluster master manages edge and IoT resources in

the edge cluster autonomously without exposing IoT/edge

device-level details to the cloud tier. A JADE master running

in the cloud tier is mainly responsible for initiating job

resource allocation and scheduling for all SaS services

running on JADE. The JADE operator (e.g., an extended

service provider) owns the JADE master. It may either own

or have contractual agreements with the owners of the edge-

cluster masters, which in turn, may own or have contractual

agreements with the owners of the edge nodes, and so on.

In this paper, we focus on the JADE design in the top

three tiers, assuming that the data sensing mechanism is

publish-and-subscribe-based, meaning that the sensed data

from an IoT pool are periodically pushed to or fetched by

the associated edge node and recorded in its data repository.

With this mechanism, a sensing subtask arriving at the edge

node retrieves sensed data directly from the data repository

of the edge node, rather than from the IoT pool.

Each edge node in an edge cluster registers with the edge-

cluster master its information, which may include the edge

node ID, a list of available types of sensing data it is willing

to share (e.g., temperature, humidity, and video) and for each

type, a list of sensing features, e.g., in terms of the available

degrees of sensing fidelity; sensing frequency; and the area

covered. As one can see, the registered information does not

include the identity and device-level details (e.g., CPU and

memory) of individual IoT devices behind each edge node.

The master in each edge cluster runs two software

modules, i.e., a K3S master [6] with the extension to

have a northbound and westbound APIs for communication

with the JADE master and the other module, i.e., Jadelet,

the client-side software of JADE, respectively. The K3S

master and K3S agents (i.e., the client-side software of

K3S) running in individual edge nodes are responsible for

the initial (run-time) pod resource allocation for micro-

services that implement subtask workflow for a long-run (on-

demand) SaS service and for pod scaling at runtime, upon

receiving a scaling request from the Jadelet. Note that as a

lightweight version of Kubernetes, K3S [6] is designed for

resource orchestration in an edge cluster environment where

the computing and memory resources are limited. Without

reinventing the wheels, we repurposed it as the resource

orchestration solution for each edge cluster in JADE.

The Jadelet module is responsible for processing tasks

received from the JADE master and for per-edge-node

queuing and dispatching of the subtasks to the edge nodes

(see the embedded diagram in Fig. 1). Based on the regis-

tration information obtained from its edge nodes, the Jadelet

registers and updates with the JADE master in the cloud a

summary of its overall sensing capabilities in similar formats

as those received from an edge node. Again, the identities

and detailed device-level resource availabilities of the edge

nodes in the edge cluster are not conveyed to the JADE

master.

The JADE master in the cloud tier is mainly responsible

for initiating initial resource allocation for long-run services;

job scheduling for long-run services; and joint job schedul-

ing and resource allocation for on-demand services.

B. Job Resource Allocation

In this section, we propose an SaS-requirement

decomposition technique that decomposes the job resource

allocation for both long-run and on-demand services into a

two-tier process, one at the cloud tier and the other at the

edge-cluster tier. For on-demand services, since job resource

allocation must be done jointly with the job scheduling,

both of them are presented in this section. A job scheduling

solution for long-run services will be presented in the next

section.

Cloud Tier: Consider the case where a tenant wants

to deploy a long-run service over JADE. The tenant may

provide the following information to the JADE operator

for initial resource provisioning: {λ, {p, xp}, S, {Ck, Tk}},

where λ is the desired query (or job) throughput; {p, xp}
pair represents the tail-latency SLO in terms of the

pth-percentile job latency of xp time units; S is the

expected average size of the total sensing area per query;

{Ck, Tk} (for k = 1, ...,K) represents a set of K possible

configurations of pod resources2, Ck’s, one of which is

to be selected and allocated at the edge nodes, and the

corresponding measured average subtask execution times,

Tk’s (as an SaS service developer, the tenant is responsible

for providing such information). For a tenant who wants to

request for an on-demand service, he/she may submit a job

directly to the JADE master with the following information:

{{p, xp}, S, {Ck, Tk}}. It differs from that of long-run

services in that λ = 0, since an on-demand service is over

as soon as its one-time job is fulfilled, and S defines the

exact areas where the sensing data need to be collected.

Upon receiving the above information from a tenant for

a long-run (on-demand) service, based on S and the infor-

mation it has on record regarding the sensing capabilities

and areas individual edge clusters cover, the JADE master

estimates an expected average number of edge clusters, N̄

(an exact number of edge clusters, N ), the job will fan out

to.

2Here a pod is the smallest containerized resource that implements the
complete subtask runtime. Multiple pods may be allocated to run subtasks
in parallel.
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From the JADE master’s point of view, the job execution

process can be mathematically modeled as a black-box

Fork-Join model, with the average job arrival rate, λ (λ = 0
for on-demand services). Each job spawns N̄ (N ) tasks

to be dispatched to N̄ (N ) black-box fork nodes (i.e., the

edge clusters) to be processed with barrier synchronization,

meaning that the job is not finished until the slowest task

finishes. In our recent work [23]–[25], we were able to

show that for the black-box Fork-Join model, the job

tail-latency SLO in terms of {p, xp} can be translated into

a task budget pair, {E(nf ), V (nf )}, for each of the nf

tasks spawned by the job, which are dispatched to nf

Fork nodes simultaneously to be queued and processed,

where E(nf ) and V (nf ) are the maximum allowable mean

and variance of the task response time in order to meet

the job SLO. So instead of attempting to directly allocate

the edge resources, which is not viable at the cloud tier,

with N̄ (N ) and {p, xp}, the JADE master estimates the

task budget pair, {E(N̄), V (N̄)} ({E(N), V (N)}) based

on the above result. Furthermore, for long-run services,

based on N̄ and λ, the JADE master also estimates the

expected average task arrival rate, λi (note that λi = 0
for on-demand services), at any given edge cluster i. It

then sends each edge cluster with a request that includes

{{E(N̄), V (N̄)}, Si, λi, {Ck, Tk}} for the long-run service

or a task to each of those N edge clusters together with

{{E(N), V (N)}, Si, {Ck, Tk}} for the on-demand service,

where Si is the expected sub-area in edge cluster i to be

covered.

Edge-Cluster Tier: Upon receiving a resource allocation

request for the long-run service (a task for the on-demand

service), with Si, the Jadelet in edge cluster i first estimates

a fanout degree of the request (task) ni, i.e., the number of

subtasks to be dispatched.

Second, the Jadelet finds the least-cost pod configuration

that meets task budget, {E(N̄), V (N̄)} ({E(N), V (N)}),

as follows. Assume that each of the ni queues is modeled

as an M/M/1 queuing server3 [31] with average service

time Tk for pod of configuration Ck. It is well-known

[31] that for this queuing server, the subtask response time

distribution Fi,k(t) can be exactly expressed as, Fi,k(t) =

1 − e−(T−1

k
−λi)t (λi = 0 for on-demand services). Then

based on the extreme value theorem [30], the task response

time distribution can be approximately (exactly) given as

Fni

i,k. This allows both ei,k(ni) and vi,k(ni), the mean and

variance of the task response time for configuration Ck, for

k = 1, 2, ...,K, to be calculated. Then, the pod configuration

Ck is considered feasible if and only if ei,k(ni) ≤ E(N̄)

3Namely, the FIFO queuing server with Poisson arrival process and
exponential service time distribution. This queuing model is expected to be
reasonably accurate as long as the pod resources are carefully configured
to ensure that the service time is short-tailed and hence can be model by
exponential distribution.

(E(N)) and vi,k(ni) ≤ V (N̄) (V (N)). From all the feasible

configurations Ck’s, the Jadelet will then select the one with

the least cost and inform the K3S master to allocate pod

resources at the edge nodes accordingly. Upon receiving

the acknowledgment from the K3S master, the Jadelet will

report back to the JADE master the completion of resource

allocation or dispatch the sensing subtasks to those edge

nodes, for long-run or on-demand services, respectively. If,

on the other hand, no feasible configuration is found or an

edge node does not accept any of the feasible configurations,

the Jadelet will report the failure of resource allocation

to the JADE master. In this case, the JADE master may

renegotiate with the tenant on possible relaxation of the SaS-

requirements in terms of job throughput, tail-latency SLO,

or sensing coverage and then repeat the resource allocation

process.

C. Job Scheduling for Long-run Services

Again, this is a two-tier scheduling process.

Cloud Tier: The job scheduling process at this tier is

the same as the one for on-demand services. Namely, the

job may come with the sensing requirements in terms of

{{p, xp}, S}, in addition to possibly other requirements,

such as sensing fidelity. With S, the JADE master decides

the job fanout degree N and then estimates the task budget,

{E(N), V (N)}, before dispatching tasks to the selected

edge clusters.

Edge-Cluster Tier: Similar to the case of on-

demand services, upon receiving a sensing task with

{Si, {E(N), V (N)}, the Jadelet in edge cluster i first

decides ni, the task fanout degree, based on Si. Second, the

Jadelet dispatches the subtasks to the queues corresponding

to those ni edge nodes. Meanwhile, the Jadelet compares

{e(ni), v(ni)}, the most recently measured mean and

variance of the task response time for tasks with fanout

degree ni, against {E(N), V (N)}, to predict whether

the edge cluster is likely to be under utilized (e.g.,

e(ni) + v(ni) << E(N) − V (N)) or overloaded (e.g.,

e(ni) + v(ni) > E(N) + V (N)). If it is, the Jadelet

issues a request to its counterpart, the K3S master, for pod

resource scaling (an algorithm to do so effectively is yet to

be developed). Note that in our solution, JADE does not

reject a task even if it may not meet the task budget. This is

because given the problem size that JADE has to deal with,

it must have a mechanism (to be developed) in place to deal

with the unexpected long subtask/task delays (due to, e.g.,

hardware/software failures) at the edge cluster/cloud tiers,

e.g., by setting up timeouts for subtasks/tasks. So, although

doing so may cause the violation of SLO for some jobs,

it is expected that it will not have a long lasting negative

effect on the overall job performance.

Finally, we note that the above solution requires that

the Jadelet continuously measures and updates the mean,
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Figure 2: The design diagram for JADE, highlighted with

the details of one edge cluster

e(ni), and variance, v(ni), of the task response time for all

possible task fanout degrees ni’s. Since a task response time

can be easily estimated by taking the different between the

measured task completion time and the measured task fanout

time, which are available from the log files, the overhead for

doing so should be easily manageable.

IV. PROTOTYPING

In this section, we describe an initial implementation of

JADE. Fig. 2 depicts the design. We consider two types of

long-run SaS services that allow users to query temperature

and humidity of the sensed areas, respectively. One tempera-

ture sensor and one humidity sensor are physically connected

to a Raspberry Pi Model 3b+, a single board computer,

forming a pool of two IoT sensing devices connecting to

a Raspberry Pi edge node. Multiple replicas of this IoT-

edge node are created to enable an edge cluster. The edge-

cluster master, including the K3S master and Jadelet with

per-SaS-service and per-edge-node FIFO queues, runs in

Dell PowerEdge T30. Accordingly, the measurement-based

mechanism for task budget estimation proposed in Section

is implemented.

K3S successfully allocates the pods for the two SaS

services in the edge nodes through the control path given

in Fig. 2. Note that while the control path is for resource

allocation, the data path is for job scheduling.

Multiple replicas of the above edge cluster with pre-

loaded pods are then generated to form a multi-edge-cluster-

based JADE platform, shown in Fig. 3. The current prototype

only allows the JADE master to perform job scheduling

through the data path without run-time resource scaling.
Since the sensors have no native computing, storage, or

power, we configure the host (Physical Side in Fig. 2) system
in Raspberry Pi to poll the sensors every 5 minutes and
store the data in its local storage. The following are some
examples of the stored raw temperature data:

[{"TIME":"2020-02-19 00:00:39","Temperature":21.7},

{"TIME":"2020-02-19 00:01:06","Temperature":21.6},

{"TIME":"2020-02-19 00:05:39","Temperature":21.6},

...

{"TIME":"2020-02-19 15:13:19","Temperature":21.6}]

Figure 3: JADE Prototype

In turn, the sensing task from the pod in the edge node
fetches the raw data from the storage, which are then
processed in the pod. Below is an example of the processed
data,

{"data":{"Temperature":{"Max":21.7,"Min":20,

"Avg":20.85300751879699},"Size":266}}

Note that the data may not contain entire records but only

fields needed to satisfy the subtask. The request itself may

also be designed to select a specific window or range of

data.

Finally, the processed data is sent back to the corre-

sponding pod in the edge-cluster master. Upon receiving the

processed data from both edge nodes, the pod forwards the

data up to the cloud without further processing.

V. TESTING

In this section, we test by simulation whether JADE can

indeed provide job tail-latency SLO guarantee or not.

Consider JADE with 100 edge clusters and 1000 edge

nodes per edge cluster and jobs for a given long-run SaS

service with fixed fanout degrees of N=100 and ni=1000

for jobs and tasks, respectively. Further assume that the

subtask service time that includes the sensing data retrieval

and processing times in an edge node follows an exponential

distribution with mean service time of 1 time unit (the unit

can be millisecond, second, and so on). Also assume that the

job flow follows a Poisson arrival process, which implies that

all the subtask queues are M/M/1 queuing servers.

We consider two different tail-latency SLOs, i.e., the 99th-

percentile job response times of 30 and 100 time units

for cases I and II, respectively. It can be shown that with

the M/M/1 queuing for subtasks in an edge cluster, the

ratio of the mean and variance of task response time is

approximately a constant, independent of the load, or the job

arrival rate, λ. In this case, according to [23], whether a tail-

latency SLO can be met is uniquely determined by E(N),
i.e., the budget for the mean task response time, which takes

values of 10.86 (Budget I) and 28.95 (Budget II) time units

for cases I and II, respectively. It means that if the mean task

response time for case I (II) is no more than 10.86 (28.95)

time units, the 99th percentile tail latency should be no more

than 30 (100) time units.
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(a) (b)

Figure 4: (a) Simulated tail latency and the tail latency

SLOs of 30 and 100 time units; and (b) Simulated mean

job response time and mean job response time budgets of

10.86 and 28.95 time units

Figure 4 gives the simulation results. For case I, one can

see from Figure 4 (b) that the simulated mean task response

time is within budget I when the load is smaller than or equal

to 45%. The corresponding results in Figure 4 (a) shows that

the simulated tail latency meets the tail latency SLO at the

load of 47% or lower. Similarly, in case II, the simulated

mean job response time is within budget II at the load of

82% or lower and the corresponding tail latency meets the

tail latency SLO of 100 time units at the load of 84% or

lower. Although a comprehensive evaluation is needed, these

results do suggest that the decomposition technique can

indeed provide the tail-latency SLO guarantee with possibly

a small percentage of resource overprovisioning, e.g., only

2% for both cases studied.

VI. CONCLUSIONS

This paper proposes JADE, a job resource allocation

and scheduling platform that supports job-SLO-guaranteed

Sensing-as-a-Service (SaS) over IoT-Edge-Cloud hierarchy.

It is a highly scalable, four-tier distributed solution. At

the core of JADE is the development of a decomposition

technique to allow SaS requirements including job SLO to be

translated into task/subtask performance budgets at the edge-

cluster/edge tiers. This makes it possible to allow each lower

tier to manage its own resources autonomously to meet the

sensing task budgets and hence the SaS requirements, while

preserving its privacy and autonomy of control. Finally,

preliminary testing results based on both simulation and an

initial prototype of JADE are presented to demonstrate the

promising prospects of the solution.
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