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Abstract—As the IoT-Edge-Cloud hierarchy is evolving into a
mature ecosystem, large-scale Sensing-as-a-Service (SaS) based
services with stringent job service level objectives (SLOs)
are expected to emerge as dominant cloud services. A viable
business model for SaS must be inherently multi-tier by design
and work in a confederated environment involving a large
number of voluntary stakeholders who may appear at different
tiers. It must also honor privacy and autonomous control
of stakeholder resources. This calls for a fully distributed,
SLO-aware job resource allocation and scheduling platform
to be developed. In this paper, we propose a tail-latency-SLO-
aware job resource allocation and scheduling platform for SaS,
called JADE. It is a four-tier platform, i.e., cloud, edge cluster,
edge, and IoT tiers. To honor the privacy and autonomy of
control for individual stakeholders at different tiers, the JADE
design follows the design principle of separation of concerns
among tiers. Central to its design is to develop a decompo-
sition technique that decomposes SaS service requirements,
in particular, the job tail-latency SLO, into task performance
budgets for individual sensing tasks mapped to each lower tier.
This makes it possible to allow each lower tier to manage its
own resources autonomously to meet the sensing task budgets
and hence the SaS service requirements, while preserving its
privacy and autonomy of control. Finally, preliminary testing
results based on both simulation and an initial prototype of
JADE are presented to demonstrate the promising prospects
of the solution.

Keywords-multi-tier; tail latency-SLO Aware; scheduling;
resource allocation;

I. INTRODUCTION

As the IoT-Edge-Cloud hierarchy is evolving into a mature
ecosystem in terms of its social and geographical scales, and
sensing, computing, and storage capabilities, the cloud is
expanding its reach to every corner of the world. This gives
rise to the opportunity of developing a whole new category
of cloud services, generally known as Sensing-as-a-Service
(SaS) [21], [27], [29]. With SaS, a user would have access
to sensor data from any part or even the entire world in
real time at his/her fingertips. SaS allows users to share
a wide variety of sensed data through the IoT-edge-cloud
ecosystem. It starts with a user making request to the cloud,
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which in turn, dispatches sensing tasks to the edge and IoT
devices in the areas of interest to pull the sensed data up the
hierarchy. As a wide variety of sensing data have become
available, opportunities arise to develop SaS services of
economic, social and political significance, e.g., (in decreas-
ing order of time criticality) earthquake detection and alert
[3], object detection and tracking [17], utility monitoring
[20], human temperature monitoring for virus detection and
prediction [12], and data harvesting for business analytics
[19]. To support such applications, especially those with
stringent tail-latency SLOs (e.g., earthquake detection and
alert and object detection and tracking), however, we argue
that a fully distributed, tail-latency-SLO-aware job resource
allocation and scheduling platform must be in place first.
First, SaS is in essence a crowdsourcing system [29]
involving many loosely coupled stakeholders. For exam-
ple, a four-layer SaS business model [21] is composed of
a sensor-and-sensor-owner layer, a sensor-publisher layer,
an extended-service-provider layer, and a user layer. The
individual sensor owners in the sensor-and-sensor-owner
layer voluntarily subscribe and publish sensing data with
one or more publishers in the sensor-publisher layer. An
extended service provider in the extended-service-provider
layer serves as an agent on behalf of a user in the user
layer to make a request for the desired sensing data from
different publishers. Clearly, due to privacy concerns, a
sensor owner may not be willing to provide the device-level
details to its publisher, which in turn, may not be allowed
to expose the identities and whereabouts of its subscribers
(i.e., sensors) to extended service providers. This means
that an extended service provider cannot explicitly allocate
sensing resources to meet a user request or job! SLO, as
it does not have control over or even the knowledge about
the sensing resource availability. The existing SLO-aware
job scheduling and resource orchestration solutions for both
datacenters (e.g., Kubernetes [7], Messos [18], and YARN
[1]) and IoT-edge-cloud ecosystem (e.g., [15], [22], [28])

'In general, a request may involve multiple rounds of jobs to be executed
one at a time. To limit the exposure, in this paper, we only consider single-
round requests. In this case, the terms “request” and “job” can be used
interchangeably.
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are simply not up to the task, as they all assume that all the
computing/sensing resources can be centrally managed and
allocated (see Section II for details).

Second, for large-scale SaS services, a job may spawn up
to hundreds of millions of sensing tasks to be dispatched
to geographically dispersed edge nodes and/or IoT devices.
Whether the job SLO can be met or not is determined by the
task response time of the slowest task, a key challenge in job
resource allocation and scheduling is to meet the stringent
tail-latency SLO for a given service, a de facto SLO for
user-facing applications, the task response time budget is
a strong function of Ny, i.e., the number of sensing tasks
the job spawns, also known as job fanout degree, which
may vary significantly from one job to another [26]. For
example, as explained in [16], consider a system where the
mean task response time is 10ms but with a 99th-percentile
latency of one second. Then, for jobs with fanout degree
one, only 1% of the jobs will be slower than one second.
However, for jobs with fanout degree 100, 63% of the jobs
will be slower than one second. Consequently, to meet a
given tail-latency SLO, the task response time budget (e.g.,
in terms of both mean and variance of the task response time)
or the task resource demands for tasks belonging to jobs
with different job fanout degrees are different! This makes
job scheduling extremely challenging, as jobs with different
fanout degrees require different task resource allocations.
To the best of our knowledge, no existing job resource
allocation and scheduling solution is capable of providing
job tail-latency-SLO guarantee for jobs with job fanout
degree larger than one. To make things worse, for SaS,
the job fanout degree, N, is unknown at the time a job
is initially scheduled. For example, for the aforementioned
four-layer business model, upon receiving a user request,
an extended service provider will dispatch sensing tasks to
a selected number of publishers, denoted as N, to meet
the sensing coverage requirement of the user. Each of these
publishers, ¢, for ¢ = 1, ..., N, may in turn, dispatch sensing
subtasks corresponding to the task received to a selected
number of subscribers or sensors for sensing, denoted as
n;, that meets the required sensing coverage associated with
that task. Clearly, for the sake of privacy and autonomy
of control, n; is determined by publisher 7, meaning that
Ny = va n; is unknown to the job scheduler at the time
the job is scheduled at the extended service provider. These
two challenges, again, call for a fully distributed solution to
be developed.

To tackle the above challenges, this paper takes a first step
towards developing a Job-tail-latency-SLO-Aware resource
allocation and scheduling platform for SaS over loT-EDdgE-
Cloud Hierarchy (JADE). JADE is a four-tier platform, i.e.,
cloud, edge cluster, edge, and IoT tiers, in line with the
multi-tier SaS business models. In JADE, the cloud (e.g., an
extended service provider in the aforementioned four-layer
business model) that receives a request from a user (e.g.,
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in the user layer) dispatches sensing tasks of the request
to a set of edge clusters (e.g., a set of publishers), each of
which in turn, dispatches sensing subtasks of the received
task to a set of edge nodes and their respective IoT pools
for sensing (e.g., in the sensor-and-sensor-owner layer). To
honor the autonomy of control and privacy of individual
stakeholders who may appear at different tiers, JADE is
fully distributed by design, which strictly follows the design
principle of separation of concerns among tiers. Namely,
while the cloud tier determines to which edge clusters the
sensing tasks need to be dispatched, it is the responsibility
of each edge cluster to decide to which edge nodes in the
cluster the sensing subtasks need to be further dispatched
and how resources need to be allocated at those edge nodes.
The core of the JADE design requires the development of an
SaS-requirement decomposition technique that allows SaS
service requirements, including user request SLO, to be
decomposed into task performance budgets at the cloud tier
and in turn, a task performance budget for a task into subtask
performance budgets for individual subtasks at the edge clus-
ter tier, which finally determines how resources need to be
allocated at the edge. This makes it possible to allow lower
tiers to manage their own resources autonomously to meet
the task/subtask budgets and hence the SaS-requirements,
without having to expose their identities and device-level
resource details to their upper tiers. Finally, to prove JADE
concept and its promising prospects, preliminary testing
results based on both simulation and a prototype of JADE
are presented.

II. RELATED WORK

First, we note that the existing datacenter job scheduling
and resource orchestration solutions that can provide job
performance assurance, e.g., Kubernetes [7], Mesos [18],
and YARN [1] cannot be adopted as job resource allocation
and scheduling platforms for SaS for two reasons.

First, such solutions assume that the entire datacenter is
owned by a single stakeholder, i.e., the datacenter service
provider. As such, the server resources for all the servers
are under the full control of a resource manager (RM).
Hence, by working with RM, a job scheduler can spawn
tasks for a job to those servers with the right amounts of
resources allocated to meet the job performance target. Here
we must note that a two-tier variant of YARN, known as
YARN federation [?], that groups servers in a cluster into
sub-clusters appears to match well with the multi-tier SaS
business models. In reality, however, they are fundamentally
different models. While the YARN federation improves the
scalability of YARN by distributing jobs (not tasks) to
different sub-clusters, each running a local RM, a multi-tier
SaS model requires that the tasks (not jobs) be distributed
to different sub-clusters at the next tier. Furthermore, the
YARN federation requires that RMs in different sub-clusters
exchange sub-cluster resource availability information to
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facilitate the possible migration of some of the tasks for
the job to some sub-clusters other than the one the job
is mapped to. Obviously, the YARN federation does not
intend to preserve the privacy and autonomy of control for
individual sub-clusters, an essential requirement of the multi-
tier SaS business models.

Second, the above datacenter solutions are not capable
of providing effective resource allocation for jobs with tail-
latency SLO. This is simply because no existing solution
is capable of determining the task performance budget or
task resource demands for jobs with any given job fanout
degree. As a result, to ensure that all the jobs for a given
service will meet the tail-latency SLO for that service, the
current practice is to overprovision the resources to ensure
that the worst-case scenario, i.e., the job with the largest job
fanout degree, will meet the tail-latency SLO, resulting in
inefficient resource utilization [23].

There are some existing orchestration platforms being
proposed for the IoT-Edge-Cloud ecosystem, e.g., [15], [22],
[28]. Although mostly multi-tier by design, they all require
that the resource availability information from the IoT and
edge tiers to be conveyed to the cloud tier for centralized
control. They also assume that resource orchestration is
under the control of a single stakeholder, at least at the edge
and cloud tiers. Moreover, they are not concerned with tail-
latency-SLO-aware job scheduling and resource allocation.

We also note that some open-source projects that pur-
posely target IoT and edge computing exist, including two
lightweight versions of Kubernetes [7] (i.e., K3S [6] and
KubeEdge [5]) and several projects under the Linux Foun-
dation Edge organization (LF Edge) [14] (e.g., Akraino,
EdgeX, Fledge, EVE, and Open Horizon). While KubeEdge
allows a Kubernetes master running in a cloud to gain
control over its worker nodes at the edge, K3S runs in an
edge cluster where it orchestrates the resource allocation
among all the edge nodes in the cluster. However, as
lightweight versions of Kubernetes, both solutions inherit
the aforementioned features of Kubernetes, making them
unsuitable for SaS. LF Edge “will create a common frame-
work for hardware and software standards and best practices
critical to sustaining current and future generations of IoT
and edge devices” [13]. Its projects are not targeting a given
use case or business model, but rather the building blocks
that can be used to enable various use cases and business
models and hence, are orthogonal and complementary to
JADE. For example, JADE may incorporate EdgeX for
standard-based communications between IoT devices and
edge nodes; Open Horizon for dynamically adding, deleting
or swapping containerized task modules associated with
different SaS services at the edge nodes, where the resources
are constrained; and/or EVE/K3S for resource orchestration
at the edge-cluster tier. Finally, we also note that none of
the open source projects has addressed tail-latency-SLO-
guaranteed job resource allocation and scheduling.

368

Next, we also note that commercial IoT-cloud develop-
ment platforms, e.g., IBM IoT foundation [4], AWS IoT
[2], Azure IoT suite [8], provide tools and services that
enable developers to integrate their IoT devices into the
cloud. However, such platforms are likely to be used by
a single stakeholder only who owns all the IoT devices and
is tied to a single cloud account.

Finally, many commercial SaS systems exist, e.g., Lean-
Heat [10], an IoT-based energy monitoring and analysis sys-
tem for optimized heat distribution to houses and apartments;
NetSuite [9], an inventory tracking and alert system; VN
Cloud [11], a vending machine management system, just
to name a few. However, such systems are proprietary and
vertically designed from bottom up for a specific sensing
application and stakeholder, making it difficult, if not impos-
sible, for them to be adopted to serve as a common platform
involving many stakeholders and shared by different SaS
services.

Edge Cluster

Task Scheduler

Figure 1: JADE Architecture, highlighted with architectural
details for one edge cluster that covers two separate IoT
sensing areas

III. JADE

In this paper, we consider both query-based long-run (or
long-run in short) and on-demand SaS services with tail-
latency SLOs. Enabling a long-run SaS service involves (a)
initial resource allocation; and (b) run-time job scheduling
and resource scaling to adapt to load changes. For an on-
demand SaS service, a user request will trigger both (a) and
(b) at run-time. In the following subsections, we first give
an overview of JADE, then we discuss the decomposition
technique that enables (a) and (b).
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A. JADE Overview

JADE adopts a four-tier architecture, as shown in Fig.
1. Each edge node (e.g., a server in a cloudlet) services
a pool of IoT devices with possibly more than one type
of sensing capability in an area. In turn, a group of edge
nodes covering one or more areas forms an edge cluster
with a master server (e.g., again a server in a cloudlet).
The edge-cluster master manages edge and IoT resources in
the edge cluster autonomously without exposing IoT/edge
device-level details to the cloud tier. A JADE master running
in the cloud tier is mainly responsible for initiating job
resource allocation and scheduling for all SaS services
running on JADE. The JADE operator (e.g., an extended
service provider) owns the JADE master. It may either own
or have contractual agreements with the owners of the edge-
cluster masters, which in turn, may own or have contractual
agreements with the owners of the edge nodes, and so on.

In this paper, we focus on the JADE design in the top
three tiers, assuming that the data sensing mechanism is
publish-and-subscribe-based, meaning that the sensed data
from an IoT pool are periodically pushed to or fetched by
the associated edge node and recorded in its data repository.
With this mechanism, a sensing subtask arriving at the edge
node retrieves sensed data directly from the data repository
of the edge node, rather than from the IoT pool.

Each edge node in an edge cluster registers with the edge-
cluster master its information, which may include the edge
node ID, a list of available types of sensing data it is willing
to share (e.g., temperature, humidity, and video) and for each
type, a list of sensing features, e.g., in terms of the available
degrees of sensing fidelity; sensing frequency; and the area
covered. As one can see, the registered information does not
include the identity and device-level details (e.g., CPU and
memory) of individual IoT devices behind each edge node.

The master in each edge cluster runs two software
modules, i.e., a K3S master [6] with the extension to
have a northbound and westbound APIs for communication
with the JADE master and the other module, i.e., Jadelet,
the client-side software of JADE, respectively. The K3S
master and K3S agents (i.e., the client-side software of
K3S) running in individual edge nodes are responsible for
the initial (run-time) pod resource allocation for micro-
services that implement subtask workflow for a long-run (on-
demand) SaS service and for pod scaling at runtime, upon
receiving a scaling request from the Jadelet. Note that as a
lightweight version of Kubernetes, K3S [6] is designed for
resource orchestration in an edge cluster environment where
the computing and memory resources are limited. Without
reinventing the wheels, we repurposed it as the resource
orchestration solution for each edge cluster in JADE.

The Jadelet module is responsible for processing tasks
received from the JADE master and for per-edge-node
queuing and dispatching of the subtasks to the edge nodes
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(see the embedded diagram in Fig. 1). Based on the regis-
tration information obtained from its edge nodes, the Jadelet
registers and updates with the JADE master in the cloud a
summary of its overall sensing capabilities in similar formats
as those received from an edge node. Again, the identities
and detailed device-level resource availabilities of the edge
nodes in the edge cluster are not conveyed to the JADE
master.

The JADE master in the cloud tier is mainly responsible
for initiating initial resource allocation for long-run services;
job scheduling for long-run services; and joint job schedul-
ing and resource allocation for on-demand services.

B. Job Resource Allocation

In this section, we propose an SaS-requirement
decomposition technique that decomposes the job resource
allocation for both long-run and on-demand services into a
two-tier process, one at the cloud tier and the other at the
edge-cluster tier. For on-demand services, since job resource
allocation must be done jointly with the job scheduling,
both of them are presented in this section. A job scheduling
solution for long-run services will be presented in the next
section.

Cloud Tier: Consider the case where a tenant wants
to deploy a long-run service over JADE. The tenant may
provide the following information to the JADE operator
for initial resource provisioning: {\, {p,z,}, S, {Ck,Tx}},
where A is the desired query (or job) throughput; {p,x,}
pair represents the tail-latency SLO in terms of the
pth-percentile job latency of z, time units; S is the
expected average size of the total sensing area per query;
{Ck,Tx} (for k =1, ..., K) represents a set of K possible
configurations of pod resources?, Cy’s, one of which is
to be selected and allocated at the edge nodes, and the
corresponding measured average subtask execution times,
T}.’s (as an SaS service developer, the tenant is responsible
for providing such information). For a tenant who wants to
request for an on-demand service, he/she may submit a job
directly to the JADE master with the following information:
{p,zp}, S, {Ck, Ti.}}. It differs from that of long-run
services in that A\ = 0, since an on-demand service is over
as soon as its one-time job is fulfilled, and S defines the
exact areas where the sensing data need to be collected.

Upon receiving the above information from a tenant for
a long-run (on-demand) service, based on S and the infor-
mation it has on record regarding the sensing capabilities
and areas individual edge clusters cover, the JADE master
estimates an expected average number of edge clusters, N
(an exact number of edge clusters, V), the job will fan out
to.

2Here a pod is the smallest containerized resource that implements the
complete subtask runtime. Multiple pods may be allocated to run subtasks
in parallel.
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From the JADE master’s point of view, the job execution
process can be mathematically modeled as a black-box
Fork-Join model, with the average job arrival rate, A (A = 0
for on-demand services). Each job spawns N (V) tasks
to be dispatched to N (N) black-box fork nodes (i.e., the
edge clusters) to be processed with barrier synchronization,
meaning that the job is not finished until the slowest task
finishes. In our recent work [23]-[25], we were able to
show that for the black-box Fork-Join model, the job
tail-latency SLO in terms of {p,z,} can be translated into
a task budget pair, {E(ny),V(ny)}, for each of the ny
tasks spawned by the job, which are dispatched to ny
Fork nodes simultaneously to be queued and processed,
where E(ny) and V(ny) are the maximum allowable mean
and variance of the task response time in order to meet
the job SLO. So instead of attempting to directly allocate
the edge resources, which is not viable at the cloud tier,
with N (N) and {p,z,}, the JADE master estimates the
task budget pair, {E(N),V(N)} ({E(N),V(N)}) based
on the above result. Furthermore, for long-run services,
based on N and )\, the JADE master also estimates the
expected average task arrival rate, \; (note that \; = 0
for on-demand services), at any given edge cluster ¢. It
then sends each edge cluster with a request that includes
{{E(N),V(N)},Si, \i, {Ck, Ti} } for the long-run service
or a task to each of those N edge clusters together with
{{E(N),V(N)},S;,{Ck, Ty }} for the on-demand service,
where S; is the expected sub-area in edge cluster ¢ to be
covered.

Edge-Cluster Tier: Upon receiving a resource allocation
request for the long-run service (a task for the on-demand
service), with .S;, the Jadelet in edge cluster ¢ first estimates
a fanout degree of the request (task) n;, i.e., the number of
subtasks to be dispatched.

Second, the Jadelet finds the least-cost pod configuration
that meets task budget, {E(N),V(N)} ({E(N),V(N)}),
as follows. Assume that each of the n; queues is modeled
as an M/M/1 queuing server® [31] with average service
time 7}, for pod of configuration Cj. It is well-known
[31] that for this queuing server, the subtask response time
distribution F; j(t) can be exactly expressed as, F; 1(t) =
1 — e (T =2t (A; = 0 for on-demand services). Then
based on the extreme value theorem [30], the task response
time distribution can be approximately (exactly) given as
F. This allows both e; ;(n;) and v; (n;), the mean and
variance of the task response time for configuration CY, for
k=1,2,..., K, to be calculated. Then, the pod configuration

C}; is considered feasible if and only if e; ;(n;) < E(N)

3Namely, the FIFO queuing server with Poisson arrival process and
exponential service time distribution. This queuing model is expected to be
reasonably accurate as long as the pod resources are carefully configured
to ensure that the service time is short-tailed and hence can be model by
exponential distribution.
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(E(N)) and v; (n;) < V(N) (V(N)). From all the feasible
configurations CY’s, the Jadelet will then select the one with
the least cost and inform the K3S master to allocate pod
resources at the edge nodes accordingly. Upon receiving
the acknowledgment from the K3S master, the Jadelet will
report back to the JADE master the completion of resource
allocation or dispatch the sensing subtasks to those edge
nodes, for long-run or on-demand services, respectively. If,
on the other hand, no feasible configuration is found or an
edge node does not accept any of the feasible configurations,
the Jadelet will report the failure of resource allocation
to the JADE master. In this case, the JADE master may
renegotiate with the tenant on possible relaxation of the SaS-
requirements in terms of job throughput, tail-latency SLO,
or sensing coverage and then repeat the resource allocation
process.

C. Job Scheduling for Long-run Services

Again, this is a two-tier scheduling process.

Cloud Tier: The job scheduling process at this tier is
the same as the one for on-demand services. Namely, the
job may come with the sensing requirements in terms of
{{p,zp}, S}, in addition to possibly other requirements,
such as sensing fidelity. With .S, the JADE master decides
the job fanout degree N and then estimates the task budget,
{E(N),V(N)}, before dispatching tasks to the selected
edge clusters.

Edge-Cluster Tier: Similar to the case of on-
demand services, upon receiving a sensing task with
{S:;,{E(N),V(N)}, the Jadelet in edge cluster ¢ first
decides n;, the task fanout degree, based on S;. Second, the
Jadelet dispatches the subtasks to the queues corresponding
to those n; edge nodes. Meanwhile, the Jadelet compares
{e(n;),v(n;)}, the most recently measured mean and
variance of the task response time for tasks with fanout
degree n;, against {FE(N),V(N)}, to predict whether
the edge cluster is likely to be under utilized (e.g.,
e(n;) + v(n;) << E(N) — V(N)) or overloaded (e.g.,
e(n;) + v(n;) > E(N) + V(N)). If it is, the Jadelet
issues a request to its counterpart, the K3S master, for pod
resource scaling (an algorithm to do so effectively is yet to
be developed). Note that in our solution, JADE does not
reject a task even if it may not meet the task budget. This is
because given the problem size that JADE has to deal with,
it must have a mechanism (to be developed) in place to deal
with the unexpected long subtask/task delays (due to, e.g.,
hardware/software failures) at the edge cluster/cloud tiers,
e.g., by setting up timeouts for subtasks/tasks. So, although
doing so may cause the violation of SLO for some jobs,
it is expected that it will not have a long lasting negative
effect on the overall job performance.

Finally, we note that the above solution requires that
the Jadelet continuously measures and updates the mean,
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Cluster 1

Figure 2: The design diagram for JADE, highlighted with
the details of one edge cluster

e(n;), and variance, v(n;), of the task response time for all
possible task fanout degrees n;’s. Since a task response time
can be easily estimated by taking the different between the
measured task completion time and the measured task fanout
time, which are available from the log files, the overhead for
doing so should be easily manageable.

IV. PROTOTYPING

In this section, we describe an initial implementation of
JADE. Fig. 2 depicts the design. We consider two types of
long-run SaS services that allow users to query temperature
and humidity of the sensed areas, respectively. One tempera-
ture sensor and one humidity sensor are physically connected
to a Raspberry Pi Model 3b+, a single board computer,
forming a pool of two IoT sensing devices connecting to
a Raspberry Pi edge node. Multiple replicas of this IoT-
edge node are created to enable an edge cluster. The edge-
cluster master, including the K3S master and Jadelet with
per-SaS-service and per-edge-node FIFO queues, runs in
Dell PowerEdge T30. Accordingly, the measurement-based
mechanism for task budget estimation proposed in Section
is implemented.

K3S successfully allocates the pods for the two SaS
services in the edge nodes through the control path given
in Fig. 2. Note that while the control path is for resource
allocation, the data path is for job scheduling.

Multiple replicas of the above edge cluster with pre-
loaded pods are then generated to form a multi-edge-cluster-
based JADE platform, shown in Fig. 3. The current prototype
only allows the JADE master to perform job scheduling

through the data path without run-time resource scaling.

Since the sensors have no native computing, storage, or
power, we configure the host (Physical Side in Fig. 2) system
in Raspberry Pi to poll the sensors every 5 minutes and
store the data in its local storage. The following are some
examples of the stored raw temperature data:

[{"TIME":"2020-02-19 00:00:39", "Temperature":21.7},

{"TIME":"2020-02-19 00:01:06", "Temperature":21.6},
{"TIME":"2020-02-19 00:05:39", "Temperature":21.6},
{"TIME":"2020-02-19 15:13:19", "Temperature":21.6}]
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Figure 3: JADE Prototype

In turn, the sensing task from the pod in the edge node
fetches the raw data from the storage, which are then

grocessed in the pod. Below is an example of the processed
ata,

{"data":{"Temperature":{"Max":21.7,"Min":20,
"Avg":20.85300751879699},"Size":266}}

Note that the data may not contain entire records but only
fields needed to satisfy the subtask. The request itself may
also be designed to select a specific window or range of
data.

Finally, the processed data is sent back to the corre-
sponding pod in the edge-cluster master. Upon receiving the
processed data from both edge nodes, the pod forwards the
data up to the cloud without further processing.

V. TESTING

In this section, we test by simulation whether JADE can
indeed provide job tail-latency SLO guarantee or not.

Consider JADE with 100 edge clusters and 1000 edge
nodes per edge cluster and jobs for a given long-run SaS
service with fixed fanout degrees of N=100 and n;=1000
for jobs and tasks, respectively. Further assume that the
subtask service time that includes the sensing data retrieval
and processing times in an edge node follows an exponential
distribution with mean service time of 1 time unit (the unit
can be millisecond, second, and so on). Also assume that the
job flow follows a Poisson arrival process, which implies that
all the subtask queues are M/M/1 queuing servers.

We consider two different tail-latency SLOs, i.e., the 99th-
percentile job response times of 30 and 100 time units
for cases I and II, respectively. It can be shown that with
the M/M/1 queuing for subtasks in an edge cluster, the
ratio of the mean and variance of task response time is
approximately a constant, independent of the load, or the job
arrival rate, \. In this case, according to [23], whether a tail-
latency SLO can be met is uniquely determined by F(N),
i.e., the budget for the mean task response time, which takes
values of 10.86 (Budget I) and 28.95 (Budget II) time units
for cases I and II, respectively. It means that if the mean task
response time for case I (II) is no more than 10.86 (28.95)
time units, the 99th percentile tail latency should be no more
than 30 (100) time units.
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Figure 4: (a) Simulated tail latency and the tail latency
SLOs of 30 and 100 time units; and (b) Simulated mean
job response time and mean job response time budgets of
10.86 and 28.95 time units

Figure 4 gives the simulation results. For case I, one can
see from Figure 4 (b) that the simulated mean task response
time is within budget I when the load is smaller than or equal
to 45%. The corresponding results in Figure 4 (a) shows that
the simulated tail latency meets the tail latency SLO at the
load of 47% or lower. Similarly, in case II, the simulated
mean job response time is within budget II at the load of
82% or lower and the corresponding tail latency meets the
tail latency SLO of 100 time units at the load of 84% or
lower. Although a comprehensive evaluation is needed, these
results do suggest that the decomposition technique can
indeed provide the tail-latency SLO guarantee with possibly
a small percentage of resource overprovisioning, e.g., only
2% for both cases studied.

VI. CONCLUSIONS

This paper proposes JADE, a job resource allocation
and scheduling platform that supports job-SLO-guaranteed
Sensing-as-a-Service (SaS) over IoT-Edge-Cloud hierarchy.
It is a highly scalable, four-tier distributed solution. At
the core of JADE is the development of a decomposition
technique to allow SaS requirements including job SLO to be
translated into task/subtask performance budgets at the edge-
cluster/edge tiers. This makes it possible to allow each lower
tier to manage its own resources autonomously to meet the
sensing task budgets and hence the SaS requirements, while
preserving its privacy and autonomy of control. Finally,
preliminary testing results based on both simulation and an
initial prototype of JADE are presented to demonstrate the
promising prospects of the solution.
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