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Abstract Diffusion of information in social network has been the focus of
intense research in the recent past decades due to its significant impact in
shaping public discourse through group/individual influence. Existing research
primarily models influence as a binary property of entities: influenced or not
influenced. While this is a useful abstraction, it discards the notion of degree
of influence, i.e., certain individuals may be influenced “more” than others.
We introduce the notion of attitude, which, as described in social psychology,
is the degree by which an entity is influenced by the information. Intuitively,
attitude captures the number of distinct neighbors of an entity influencing the
latter.
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We present an information diffusion model (AIC model) that quantifies the
degree of influence, i.e., attitude of individuals, in a social network. With this
model, we formulate and study attitude maximization problem. We prove that
the function for computing attitude is monotonic and sub-modular, and the
attitude maximization problem is NP-Hard. We present a greedy algorithm
for maximization with an approximation guarantee of (1 − 1/e).

In the context of AIC model, we study two problems, with the aim to
investigate the scenarios where attaining individuals with high attitude is ob-
jectively more important than maximizing the attitude of the entire network.
In the first problem, we introduce the notion of actionable attitude; intuitively,
individuals with actionable attitude are likely to “act” on their attained at-
titude. We show that the function for computing actionable attitude, unlike
that for computing attitude, is non-submodular and however is approximately
submodular. We present approximation algorithm for maximizing actionable
attitude in a network. In the second problem, we consider identifying the
number of individuals in the network with attitude above a certain value, a
threshold. In this context, the function for computing the number of individ-
uals with attitude above a given threshold induced by a seed set is neither
submodular nor supermodular. We present heuristics for realizing the solution
to the problem.

We experimentally evaluated our algorithms and studied empirical proper-
ties of the attitude of nodes in network such as spatial and value distribution
of high attitude nodes.

1 Introduction

Conference Version of the Paper. A preliminary version of this work has
been published as a short paper in proceedings of ASONAM-2020 [16] and
has been invited to submit to the journal SNAM by Dr. Reda Alhajj. This
version extends the conference version significantly in the following aspects:

1. None of the proofs appeared in the conference version. Thus proofs of all
the theorems are fully fleshed out in this version. These are the proofs
of theorems related to properties of attitude and its computational hard-
ness, and approximation algorithms to estimate attitude (Section 4), the-
orems related to attitude maximization problem and scalable algorithms
for the attitude maximization problem (Section 5), and theorems related
to characterizing actionable attitude and its approximate submodularity
(Section 6).

2. A new problem, AFP, is considered that relates to identifying the seed set
that maximizes the number of entities with attitude above a threshold
(Section 7).

3. New set of experimental results on
(a) comparison between average attitude for attitude maximization and

actionable attitude maximization (Figure 3);
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(b) relation between the average attitude and the probability of influence
(Figure 5);

(c) attitude distribution (Figures 6 7, and 8).
(d) spatial proximity of Nodes with high attitude (Figure 9)
are reported in Section 8.

4. A new set of experimental results related to AFP are reported in Section 8
(Tables 4, 5, 6).

The proliferation of social networks and their influence in modern soci-
ety led to a large body of research in several scientific domains that focus
on utilizing and explaining the significance of the impact of social networks.
One of the key problems investigated is to understand the diffusion of in-
formation/influence propagation in social networks. Diffusion refers to the
(probabilistic) behavior of the interaction between the entities in the network
describing when/how an entity is influenced by the actions of its neighbors.

Seminal works of Domingos and Richardson, and Kempe et al. proposed
two popular models for information diffusion—Independent Cascade and Lin-
ear Threshold [12, 21]. In these models, a node of a network is said to be
influenced if it receives the information originated at the seed set. This con-
cept of influence is binary: an entity is either influenced or is not influenced.
Real-world experience shows that not all influenced individuals are the same.
I.e, some individuals are more strongly influenced by certain information com-
pared to others. Thus, the strength of influence can vary from one individual to
the other. This phenomenon has been pointed out in social sciences literature.

Within social psychology, two related concepts, attitudes and beliefs, are
frequently studied to understand human behavior. Beliefs, which represent
people’s ideas about the way the world is or should be, are commonly concep-
tualized as binary in nature, present or absent [14]. Throughout their lives,
people acquire new beliefs, and sometimes, new beliefs replace old beliefs. In
this way, people tend to acquire a very large number of beliefs over the life
course. This notion of belief in social psychology, that is binary in nature,
can be considered similar to the notion of “influence” in computational social
network analysis which is also binary in nature.

Attitudes, on the other hand, are “latent predispositions to respond or be-
have in particular ways toward attitude objects” [13]. In contrast to beliefs,
which are largely cognitive in nature, attitudes, have a cognitive, affective, and
a behavioral component [33]. Being subjective in nature, attitudes can vary in
strength such that a person can hold a very strong attitude or a weak attitude
toward an object or concept, and thus attitude quantifies the strength of be-
lief [2, 14]. Individuals acquire attitudes through experiences and exposure. A
body of research shows that repeated exposure to an object/idea increases the
likelihood that a person will adopt a more favorable attitude toward it [38].
Thus attitude being non-binary can be thought of strength of influence. Mo-
tivated by these studies, we study the problem of arriving at a mathematical
model that captures the notion of attitude resulting from information propa-
gation in social networks.
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Contributions. Our first contribution is to define a mathematical model for
measuring attitude. Within social networks, people are often subjected to re-
peated exposures to information such as an anti-vaccine message, a pro-GMO
message, or gun safety messaging. It has been observed that when an individ-
ual is exposed to a large number of, say, anti-vaccine messages, this increases
the probability that that person will adopt a similar anti-vaccine attitude.
Based on this, we postulate that the strength of influence or attitude of an in-
dividual, toward an object/concept, can be captured by the number of times
the individual receives the information from its neighbors. In other words,
if an already influenced individual is further provided with the same/similar
influencing information, then the latter reinforces the learned belief of the in-
dividual, thus shaping and increasing his/her attitude. We use the number of
reinforcements as a way to quantify the attitude.

Using this model, we define attitude of an individual and the total atti-
tude of the network as functions from 2V to reals (2V denotes the power set
of nodes V of the network). We denote the function that captures the total
attitude of the network with σAtt(.) We study the computational complexity of
the function σAtt and provide efficient algorithms to approximate it. We prove
that this function is #P-hard and it is monotone and submodular. We pro-
vide an (ε, δ)-approximation algorithm for computing attitude with provable
guarantees. We then formulate the attitude maximization problem–find a seed
set S of size k that will result in maximum total attitude of the network. We
first prove that the attitude maximization problem is NP-hard. Based on the
monotonicity and submodularity of attitude, we propose a greedy algorithm
that achieves a (1− 1/e) approximation guarantee.

We further introduce the concept of actionable attitude. The introduction
of this concept is motivated by the fact that individuals with higher attitude
(strongly influenced) are likely to act according to the attitude. This is par-
ticularly important in campaigns (such as political or gun-safety messaging),
where motivated and dedicated volunteers are necessary to carry and spread
the message (possibly beyond the social network); and such volunteers are
the ones who are strongly influenced. Our second major contribution is the
study of the underlying computational problem related to actionable attitude
maximization. We prove that though the function for computing actionable
attitude is not submodular, it is approximately submodular. Based on this we
design efficient approximation algorithms to maximize the actionable attitude
in a network.

Finally, we also consider the problem of finding a set of entities whose
influence on the network can maximize the number of individuals with attitude
above a certain threshold value, say θ; the intuition, as before, is that entities
with high enough attitude are likely to act as per their attitude induced by
the influence. We refer to these individuals as θ-actors and the corresponding
problem of maximizing θ-actors as θ-Actor-Finding-Problem or AFP in short.
We show that function for computing the number of individuals with attitude
above a threshold is neither submodular nor supermodular. As a result, typical
greedy algorithms, which rely on submodularity and monotonicity properties
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of a function for realizing an approximate optimization objective, do not ensure
approximation guarantees for AFP. Hence, we develop heuristics for effectively
and efficiently addressing AFP.

We conduct extensive experiments on a variety of publicly available net-
works with varying size and density. The experiments validates the effective-
ness of our algorithms in maximizing attitude and actionable attitude, and
reveal the properties of entities with high attitude such as spatial proximity
and distribution of attitude values.

Organization. The rest of this paper is organized as follows. Sections 2 and 3
discusses the related work, and the preliminaries. Section 4 introduces a math-
ematical model to capture attitude and discusses its properties, Section 5 de-
fines the attitude maximization problem, Section 6 introduces the notion of
actionable attitude, Section 7 defines the problem of finding maximizing enti-
ties above a given attitude threshold and Section 8 contains the experimental
results.

2 Related Work

Computational models of information diffusion in social networks is introduced
and formalized in the seminal works of Domingos and Richardson [12] and
Kempe, Kleinberg and Tardos [21]. There are two widely-studied probabilistic
diffusion models: Independent Cascade (IC) model and Linear Threshold (LT)
model. Kempe et al. [21] proved that the influence maximization problem is
NP-hard, and also proved that a greedy algorithm achieves a (1 − 1/e) ap-
proximation guarantee. The approximation guarantee of the greedy approach
stems from the non-negativity, monotonicity and submodularity of the influ-
ence function. Since then several improvements have been proposed to make
the greedy algorithm more practical and scalable [8, 11, 17, 20, 23, 31, 35, 36].
Several variants of the influence maximization problem have been studied in
the literature, since the work of Kempe et al. such as topic-aware influence
maximization and targeted influence maximization [5, 9, 18,24,25,28,32,34].

Enhancements to the basic influence propagation model have been pro-
posed that take into account the opinions of users [10,17,39]. Liu et al. [26,27]
introduced PageRank based diffusion model, as a generalization of the basic
IC model.

These models do not capture the notion of attitude/strength of influence
that we seek to formalize. Aggarwal et al. [1] introduced a flow authority model
to determine assimilation of information in a network. This model differs from
the Independent Cascade and does not capture the notion of attitude due to
repeated activations. Consider a network where node 1 has a directed edge to
node 2 and 3, and node 2 has a directed edge to node 3, and edge probabilities
are 1. Due to repeated activation, node 3 can receive information from nodes
1 and 2 and thus should have a higher attitude than nodes 1 and 2. However,
in the flow-authority model all nodes will have equal probability of receiving
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(p = 1) and does not distinguish node 3 from others whereas our proposed
model will.

In [40], the authors discussed the problem of maximizing cumulative influ-
ence in a model where the same node can repeatedly activate his/her neighbor
within a given time interval. This is realized by identifying a node to be newly
activated in multiple iterations of the diffusion process (even if the node, under
consideration may have been already activated). Such a model may lead to di-
vergence in the computation of objective function, and hence, the computation
is parameterized by a time interval. This distinguishes our model where only
the newly activated nodes can alter the attitude of his/her neighbor; which
ensures the convergence of computation of our objective function and allows
the method to be step agnostic.

A large body of work focus on analyzing and investigating data from social
network and understand the degree of diffusion and the factors that enable
diffusion in social network. For instance, Aral and Walker [3] discuss the level
of susceptibility of different types of individuals in Facebook network. The
work provides valuable insights toward how information may spread through
susceptible individuals. In the context of type of information-spread, Vosoughi
et al. [37] show the potency of fake news and its higher rate of spread than
factual information. Christakis et al. [15], on the other hand, propose the
three degrees of influence based on their analysis of dynamic social network
and human behavior; the primary finding of this work is that diffusion de-
cays significantly within three steps from the source of information. Our work
is complementary to this line of work and focuses on computational issues
related to information diffusion taking into consideration a standard mathe-
matical model of diffusion–independent cascade (IC) model. It is worth noting
that the findings from the social network data (such as level of susceptibil-
ity of entities or the degree of diffusion decay with distance from source) can
be incorporated in diffusion models by carefully selecting probabilities with
which one individual may be able to influence his/her neighbors. The prob-
lems discussed and algorithmically addressed in this paper are oblivious to the
choice of such probabilities. One can, therefore, study automated techniques
for associating probabilities from network data, and apply our algorithms to
compute the attitude of individuals in the network.

3 Preliminaries

We describe the notation and definitions used frequently in this paper.

Definition 1 (Monotonicity & Submodularity) Let V be a ground set
and f : 2V → R be a set function, where 2V denotes the power set of V .
We say that f is monotone if f(S) ≤ f(T ) when S ⊆ T . We say that f is
submodular if for every pair of sets S and T with S ⊆ T and every x /∈ T ,
f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

We use f(x|S) to denote the marginal gain of x with respect to S, defined
as f(S ∪ {x})− f(S).
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Theorem 1 (Chernoff Bound) Let X1, X2...Xn be independent identically
distributed random variables taking value in the range [0, 1]. X =

∑n
i=1Xi. If

µ = E[X], then for λ ∈ (0, 1), P [|X − µ| ≥ µλ] ≤ 2exp(− λ2

2+λ · µ)

A social network is modeled as a weighted directed graph G = (V,E) with
parameters p : e ∈ E → [0, 1], where V and E (|V | = n and |E| = m) denote
the set of nodes and edges, respectively. The function p(e = (u, v)) is the
probability of node u influencing/activating node v. This denotes probability
that the information is successfully transferred from u to v. We first recall the
standard Independent Cascade model of information diffusion.

Definition 2 [IC-Model] Information spreads via a random discrete process
that begins at a set S called seed set. Initially at step zero, all nodes in S
are activated/influenced. In each step, each newly activated node u attempts
to activate/influence its inactivated neighbor v with probability p(u, v). The
diffusion process terminates when no new nodes are influenced in a step.

Given a set of nodes S, let σ(S) be the expected number of nodes that are
influenced at the end of the diffusion process when the seed set is S.

Influence Maximization Problem. Given a social network G = (V,E),
and an integer k > 0, find a seed set S ⊆ V of size k such that σ(S) is
maximized.

Kempe et al. [21] proved that the influence maximization problem is NP-
hard and showed that the function σ(.) is monotone and submodular. Based
on this, they designed a (1 − 1/e)-approximation algorithm for the influence
maximization problem.

4 Modeling Attitude

In this section, we provide a mathematical model and definition to capture
the notion of attitude.

Definition 3 [Attitude-IC model (AIC)] The diffusion proceeds in dis-
crete rounds starting from some set of seed-nodes S. Initially, all non-seed
nodes have the attitude 0 and every seed node starts with an attitude value
of 1. At each step, each newly influenced node u tries to send information to
each of its neighbor v as per the edge probability p(u, v). If u succeeds, then
v’s attitude is incremented by 1; and its status is changed to influenced if it
is not already influenced. When u succeeds in sending information v, we say
that the edge 〈u, v〉 is activated. The process terminates when no new nodes
are influenced in a step.

Consider Figure 1 and let seed set is S = {a}. At step t = 0, the attitude
of a is 1, a tries to send information to b, c, succeeding with probability 1.
At t = 1, the attitudes of a, b, c are 1. The newly activated nodes b, c send
information to their neighbors. Node b succeeds and increments the attitude
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Fig. 1 An example showing inf-max problem 6= attitude-max problem

of nodes a, c. Simultaneously, c succeeds and increments the attitude of nodes
a, b. At t = 2, the attitudes of a, b, c are 3, 2, 2 respectively. Since no new nodes
are activated in this step, the diffusion ends.

Note that, unlike in the standard information diffusion model, where each
activated node gets one chance to influence its un-influenced neighbors, in our
model, each newly activated node tries to influence all its neighbors irrespective
of whether they are already influenced or not. Thus an activated node can
receive information from a newly activated node and this captures the notion
of repeated exposure or reinforcement, which, in turn, results in an increase of
the recipient’s attitude.

For any set S ⊆ V of nodes, we use Attv(S) to denote the final attitude
of node v when the seed set is S. Note that this is a random variable and
let E[Attv(S)], denote the expectation of Attv(S). We define AttIn(S) as∑
v∈V Attv(S). The total expected attitude of the network resulting from dif-

fusion starting at seed S is σAtt(S) = E[AttIn(S)]. Observe that by l linearity
of expectation, σAtt(S) =

∑
v∈V E[Attv(S)].

By overloading notation, we often interpret G as a distribution over un-
weighted directed graphs, each edge e = (u, v) is realized independently with
probability p(u, v). We write g ∼ G to denote that an unweighted graph g is
drawn from this graph distribution G. Given a set of nodes S ⊆ V and a graph
g, we use

1. RSg to denote the set of nodes reachable from S in g.

2. ESg = {e = (u, v)|u, v ∈ RSg and e ∈ g} is the set of activated edges in g

due to diffusion from S. Let ESg,v be the set of activated edges of the form
〈., v〉.

3. AttIng(S) to denote the attitude induced by S in graph g and is equal
to
∑
v∈V Attg,v(S), where Attg,v(S) is the attitude of v in the graph g

computed as the number of activated incoming edges to v.

We next prove a critical theorem that will be used in our subsequent proofs.
Informally, this theorem states that the σAtt(S) is the expected number of
activated edges.

Theorem 2 If g ∼ G then for any S ⊆ V , σAtt(S) = |S| +
∑
g∼G |ESg | ×

Pr(g ∼ G), and E[Attv(S)] =
∑
g∼G |ESg,v| × Pr(g ∼ G).
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Proof. Recall that, a node u contributes to the attitude of its neighbor v, if u
is influenced and it is successful in “passing” on the influence to v (irrespective
of whether v is already influenced or not) via the directed edge 〈u, v〉. We refer
to such an edge as an activated edge.

Let g be a graph drawn as per the distribution. Note that g corresponds to
a particular diffusion process. In g, if a node v is not reachable from S, it means
v is not activated in that diffusion process, and its incoming edges, if any, are
not activated. Thus the attitude of such a node is 0. On the other hand, if
a node v is reachable from S in g, it means v is activated in the diffusion
process. If x is the number of incoming edges to v in G, this means that v
received information through its neighbors x times. Thus the attitude of v is
x in this diffusion process. Thus node v’s attitude is the number of activated
incoming edges of v. Let N(v) denote the number of activated incoming edges
of v. Then AttIng(S) is equal to∑

v∈V
Attg,v(S) =

∑
v∈RS

g

Attg,v(S) +
∑
v/∈RS

g

Attg,v(S)

= |S|+
∑
v∈RS

g

N(v) + 0 = |S|+ |ESg |

The term |S| is due to the fact that every seed node starts with an attitude
value of 1. This leads to

σAtt(S) = E[AttIn(S)]

= Eg∼G[AttIng(S)] = |S|+
∑
g∼G
|ESg | × Pr(g ∼ G)

The second equality stated in the theorem follows from similar arguments.
Let g be a graph drawn as per the distribution. Observe that Attg,v(S) =
|ESg,v|. This leads to:

E[Attv(S)] =
∑
g∼G Attg,v(S)× Pr(g ∼ G) =

∑
g∼G |ESg,v| × Pr(g ∼ G)

4.1 Properties of Attitude

In this section, we investigate several properties of the function σAtt(.). We
first show that the σAtt is monotone and submodular

Theorem 3 Under the AIC model, σAtt(.) is a monotone, non-decreasing
function function.

Proof. Let g ∼ G and S ⊆ T ⊆ V . We observe RSg ⊆ RTg since S ⊆ T . Thus,

ESg ⊆ ETg and |ESg | ≤ |ETg |. Therefore, σAtt(S) ≤ σAtt(T ).

Theorem 4 Under the AIC model, σAtt(.) is a submodular function.
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Proof. Let g ∼ G, S ⊆ T ⊆ V and u /∈ T . Our objective is to prove that

σAtt(S ∪ {u})− σAtt(S) =
∑
g∼G

(|ES∪{u}g | − |ESg |)× Pr(g ∼ G)

≥ σAtt(T ∪ {u})− σAtt(T )

=
∑
g∼G

(|ET∪{u}g | − |ETg |)× Pr(g ∼ G)

Since Pr(g ∼ G) ≥ 0, the proof obligation is

∀g ∼ G |ES∪{u}g | − |ESg | ≥ |ET∪{u}g | − |ETg |

Observe that,

|ES∪{u}g | − |ESg | = |E
S∪{u}
g \ ESg | and |ET∪{u}g | − |ETg | = |E

T∪{u}
g \ ETg |

RSg ⊆ RTg and ESg ⊆ ETg .

For any g ∼ G, if e ∈ E
T∪{u}
g \ ETg then e /∈ ETg and e ∈ E

{u}
g . Since

ESg ⊆ ETg , e /∈ ESg . We know that e ∈ E{u}g and thus e ∈ ES∪{u}g . Therefore,

e ∈ ES∪{u}g \ESg and thus E
T∪{u}
g \ETg ⊆ E

S∪{u}
g \ESg . This leads to |ES∪{u}g \

ESg | ≥ |E
T∪{u}
g \ ETg |.

The following result establishes the hardness of computing σAtt.

Theorem 5 Under the AIC model, given G = (V,E) and a seed S ⊆ V , com-
puting the values of the following is #P-Hard: 1) σAtt(S), 2) E[Attv(·)], ∀v ∈
V .

Proof. Let σ(S) be the influence of S under the IC model. Computation of
σ(S) is known to be a #P-Hard problem [11]. Assume that there exists a
function A(G,S) that computes σAtt(S). Let a1 = A(G,S). Add a new vertex
vnew to G. ∀v ∈ V , add an edge (v, vnew) and set p(v, vnew) = 1. This results
in graph G′. Let a2 = A(G′, S). a2 − a1 =

∑
v∈V P (S activates v) = σ(S).

Therefore, A can be used to compute σ(S). Similarly, let A′(G, v) be a func-
tion that computes E[Attv(S)]. A′(G′, vnew) will be able to compute σ(S) as
E[Attvnew(S)] = σ(S). Similar arguments prove that computing E[Attv(·)] is
also #P-hard.

4.2 Attitude Computation

From Theorem 5, it follows that computing σAtt(S) exactly is computation-
ally infeasible. In this section, we provide efficient approximation algorithms
to estimate σAtt(S). Borgs et. al. [8] introduced Reverse Influence Sampling
(RIS), which has been used to develop efficient Influence Maximization algo-
rithms [19,31,35,36]. Using ideas from these works, combining with Theorem 2,
we introduce a Reverse Attitude Sampling (RAS) technique.
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Recall that g denotes the un-weighted graph drawn from the random graph
distribution G. We write gT to denote the transpose of g. The following lemma
and theorem establish the relationship between an edge being activated by
some nodes in any set S ⊆ V and the reachability of some node in S from
reverse of the same edges in gT ; this relationship is key to the correctness of
RAS technique.

Lemma 1 Let e = (x, y) be an arbitrary edge in G, R
{x}
gT

be the set of nodes

reachable from x in gT , where gT is the transpose of un-weighted graph g drawn
from random distribution G. Then for any S ⊆ V , P [S activates e in g] =

P [S ∩R{x}
gT
6= ∅]

Both events, S activates e in g and S ∩ R{x}
gT
6= ∅ requires drawing g from

G such that there exists a path between some node in S and node x (from S
to x in g and x to S in gT ). The probability of occurrence of such events are
identical, as the probabilities of edges in g and their reverse in gT are equal.

The following theorem relates the σAtt(S) to reverse attitude sampling.

Theorem 6 Given a graph G = (V,E), for any S ⊆ V , and for any v ∈
V , let E(Attv(S)) denotes the expected attitude of v induced by S. Then,

E(Attv(S)) = |InDegree(v)|×Pg∼G,e=(u,v)∼E [S∩R{u}
gT
| e ∈ g] and σAtt(S) =

|S|+ |E| × Pg∼G,e=(x,y)∼E [S ∩R{x}
gT
| e ∈ g]

Proof. With respect to a set S and a node v, we will define the random variable

X(u,v)
g =

{
1 if (u, v) ∈ ESg
0 otherwise

Therefore, by Theorem 2, it follows that E(Attv(S)) =
∑

(u,v)∈E

Eg∼G[X(u,v)
g ].

Note that,

Eg∼G[X(u,v)
g ] = Pg∼G[∃w ∈ S. u ∈ R{w}g ∧ (u, v) ∈ g]

= Pg∼G[∃w ∈ S. w ∈ R{u}
gT
∧ (u, v) ∈ g]

By linearity of expectation, we have:

E(Attv(S)) =
∑

(u,v)∈E

Eg∼G[X(u,v)
g ]

=
∑

(u,v)∈E

Pg∼G[∃w ∈ S. w ∈ R{u}
gT
∧ (u, v) ∈ g]

= |InDegree(v)|×Pg∼G,e=(u,v)∼E [S ∩R{u}
gT
|e ∈ g]

We present the proof of the second equality. With respect to a set S, we will
define the random variable Xe

g = 1 if e ∈ ESg , otherwise it is zero. Therefore,
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Algorithm 1: Estimate σAtt(S)

Data: Graph G = (V,E), S ⊆ V
begin
R = Generate β RR Sets using Generate RR Set
X = |{RR ∈ R | S ∩RR 6= ∅}|

return
|E| ·X
β

by Theorem 2, we have σAtt(S) = Eg∼G[AttIng(S)] = |S| +
∑
e∈E

Eg∼G[Xe
g ].

Note that,

Eg∼G[Xe
g ] = Pg∼G[∃u ∈ S. x ∈ R{u}g ∧ e = (x, y) ∈ g]

= Pg∼G[∃u ∈ S. u ∈ R{x}
gT
∧ e = (x, y) ∈ g]

By linearity of expectation, we have:

σAtt(S) = |S|+
∑
e∈E

Eg∼G[Xe
g ]

= |S|+
∑
e∈E

Pg∼G[∃u ∈ S. u ∈ R{x}
gT
∧ e = (x, y) ∈ g]

= |S|+ |E|×Pg∼G,e∈E [∃u ∈ S. u ∈ R{x}
gT
∧ e = (x, y) ∈ g]

The above properties pave way for the RAS technique. We proceed by
introducing Random Reverse Reachable Set in the context of the AIC model.
Given a graph G = (V,E), we construct Random Reverse Reachable Set (RR)
of nodes in V as follows. Consider the transpose of G, GT = (V,ET ), where
the probability annotation for any edge in E remains unchanged in the reverse
of that edge in ET .

We now describe a procedure to generate Random Reverse Reachable Sets
(RR Sets):
Generate RR Set. Randomly pick an edge e = (v, u) ∈ ET . Then with
probability p(e), add the node u to RR. For any u is added to RR, for each
outgoing edge from u in GT , add the destination with corresponding edge
probability. The process continues till no node is added to RR.

From Theorem 6, we obtain the following lemma.

Lemma 2 σAtt(S) = |S|+ |E| × PRR∼R[S ∩RR 6= ∅]

Lemma 2 allows us to design Algorithm 1 to estimate σAtt(S). In order to
get a good estimate, we will obtain a lower bound for β in Algorithm 1. Let
m = |E|. Let Xi be a random variable that takes value 1 if the i-th RR Set
contains an element of S. Otherwise, Xi = 0. Clearly each Xi is independent

and X =
∑β
i=1Xi. Note, E[X] =

βσAtt(S)

m
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P [|σ̂Att(S)− σAtt(S)| ≥ εσAtt(S)] = P [|mX

β
− σAtt(S)| ≥ εσAtt(S)]

= P [|X − βσAtt(S)

m
| ≥ ε · β

m
σAtt(S)]

≤ 2exp(−ε
2βσAtt(S)

(2 + ε)m
)

The last inequality follows by applying Chernoff Bounds with λ = ε. Let

δ = 2exp(−ε
2βσAtt(S)

(2 + ε)m
). When β ∈ θ( m

ε2σAtt(S)
· log( 1

δ ), Algorithm 1 estimates

σAtt(S) within a relative error of ε with probability 1− δ.

5 Attitude Maximization Problem

Having defined Attitude under the AIC-model, a natural problem arises: How
do we find a set of users, who can influence the network in a way that maximizes
the attitude of the network? We model this as the Attitude Maximization
Problem:

Problem 1 Attitude Maximization Problem: Given a graph G = (V,E),
a number k, find S ⊆ V of size at most k such that σAtt(S) is maximized.

Theorem 7 Under the AIC model, the attitude maximization problem, i.e.,
computing argmaxS⊆V,|S|≤k σAtt(S), is NP-hard.

Proof. Our proof relies on reduction of influence maximization problem (a
known NP-Hard problem) to attitude maximization problem.

We consider the influence maximization problem on directed Bi-partite
graphs (edges from left nodes to right nodes) with edge probabilities 1. That
is, G = (V,E), where V = X ∪ Y , X ∩ Y = ∅, E = {(u, v)|u ∈ X, v ∈ Y },
and ∀e ∈ E p(e) = 1. Kempe et al. [21] proved that influence maximization
problem on such restricted class of graphs is also NP-hard.

We extend the bipartite graph G to construct an instance G′ = (V ′, E′) for
the attitude maximization problem, where V ′ = V ∪Z,Z = {z1, z2, . . . , z2|E|}
and for each y ∈ Y , there exists an edge to each z ∈ Z with the edge probability
1.

Suppose that there is an algorithm for computing a set S ⊆ X of size k
that maximizes σAtt(S). If L nodes in the set Y are influenced by S, then
σAtt(S) ≤ L×2|E|+ |E|. (Each edge from an influenced node in Y contributes
to the attitude of each nodes in Z, and the overall attitude of nodes in Y can
be at most |E|, the number of edges between X and Y .)

Assume that S does not induce maximum influence in G, i.e., there exists
some S′ 6= S for which G is maximally influenced. In other words, S′ influences
at least L+ 1 nodes in Y . Therefore, if S′ is used as seed in G′, then it would
have induced the overall attitude of nodes in Z to be (L + 1) × 2|E|. This
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Algorithm 2: (1− 1/e− ε)-approximate algorithm

Data: Graph G = (V,E), k
Result: Seed Set S
begin
R = Generate β RR Sets using Generate RR Set
Mark all the sets in R as uncovered
while |S| ≤ k do

Find v that covers maximum uncovered sets in R
Mark sets covered by v as covered
Add v to S

return S

implies, S′ 6= S is a set of size |k| that maximizes σAtt(S
′) in G′, leading to a

contradiction.

Therefore, if any algorithm that computes a set S that maximizes attitude
in G′, then S must also maximize influence in G.

Before we proceed to present an approximation algorithm for the attitude
maximization problem, we first prove that influence maximization problem is
different from the attitude maximization problem. In particular, we prove that
the optimal solution for the influence maximization problem is not an optimal
solution for the attitude maximization problem. Consider the from Figure 1.
When k = 1, the best seed set for the influence maximization is {d} whereas
the best seed set for the attitude maximization is any of {a}, {b} or {c}. Thus,

Theorem 8 An optimal solution to the influence maximization problem is not
an optimal solution to the attitude maximization problem.

Nemhauser et. al. [30] proved the greedy strategy to maximize a non-
decreasing, monotone, and submodular function outputs a (1−1/e)-approximate
solution. Recall that σAtt(·) is in fact a non-decreasing, monotone and sub-
modular function. However, the challenge lies in efficiently estimating σAtt(·).
Motivated by this, we design a RAS-based approximation algorithm.

Algorithm 2 is our greedy algorithm for the attitude maximization problem.
The algorithm works by generating β random RR Sets. With the goal now to
find S that covers the maximum RR Sets, the problem is transformed to
the Maximum Coverage problem. The greedy algorithm, when applied to the
Maximum Coverage problem, provides a (1 − 1/e)-approximate solution. We
have the following result on the approximation guarantee Algorithm 2.

Theorem 9 When β ∈ θ( |E|(1+1ε)
ε2σAtt(S∗)

(log
(
n
k

)
− log(δ))), Algorithm 2 outputs a

seed set Sk such that

σAtt(Sk) ≥
(

1− 1

e
− ε
)
σAtt(S

∗)

with probability at least 1− δ.
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Proof. We will prove that the algorithm produces a (1− 1/e− ε)-approximate
solution with high probability.

First, we derive the bound for β that is sufficient for estimating σAtt(S)
within a pre-specified error margin ε, in the context of computing the maximal
overall attitude.

Consider any S ⊆ V of size k. Let X be the cardinality of {RR ∈ R|RR ∩

S 6= φ}. σ̂Att(S) = |E| × X

β
is a an estimate for σAtt(S). Let µ =

β · σAtt(S)

|E|
and σAtt(S

∗) be the maximum expected attitude induced by any set of size k.

P

[
|σ̂Att(S)− σAtt(S)| ≥ εσAtt(S

∗)

2

]
= P

[
|E| · X

β
− σAtt(S)| ≥ εσAtt(S

∗)

2

]
= P

[
|X
β
− σAtt(S)

|E|
| ≥ εσAtt(S

∗)

2|E|

]
= P

[
|X − µ| ≥ εσAtt(S

∗) · β
2|E|

]
= P

[
|X − µ| ≥ εσAtt(S

∗) · βσAtt(S)

2σAtt(S)|E|

]

We apply Chernoff Bounds with λ =
εσAtt(S

∗)

2σAtt(S)
,

P [|X − µ| ≥ λµ] < 2exp

(
− λ2

2 + λ
µ

)
= 2exp

(
− ε2(σAtt(S

∗))2

(2 + λ)× 4(σAtt(S))2
µ

)
= 2exp

(
− ε2(σAtt(S

∗))2

(2 + λ)× 4(σAtt(S))2
β · σAtt(S)

|E|

)
= 2exp

(
− ε2(σAtt(S

∗))2

(2 + λ)× 4σAtt(S)

β

|E|

)
= 2exp

(
− ε2(σAtt(S

∗))2

|E|(8σAtt(S) + 2εσAtt(S∗))
β

)
≤ 2exp

(
− ε2(σAtt(S

∗))2

|E|(8σAtt(S∗) + 2εσAtt(S∗))
β

)
= 2exp

(
− ε

2σAtt(S
∗)

|E|(8 + 2ε)
β

)

The inequality follows from σAtt(S
∗) ≥ σAtt(S). We would like the proba-

bility of this event to be at most
δ(
n
k

) .

Proceeding further, 2exp

(
− ε

2σAtt(S
∗)

|E|(8 + 2ε)
β

)
≤ δ(

n
k

) , and

− ε
2σAtt(S

∗)

|E|(8 + 2ε)
β ≤ log

(
δ

2
(
n
k

))
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This implies that

β ≥ −|E|(8 + 2ε)

ε2σAtt(S∗)
log

(
δ

2
(
n
k

))
= −|E|(8 + 2ε)

ε2σAtt(S∗)

[
log(δ)− log(2)− log

(
n

k

)]
=
|E|(8 + 2ε)

ε2σAtt(S∗)

[
log(2) + log

(
n

k

)
− log(δ)

]
Now that we have a lower bound for β, we can use the union bound to

show that this number of RR sets is sufficient to ensure that all sets of size k
is within ε · σAtt(S∗)/2 with probability at least 1 − δ. More precisely,

P

[
∀S, |S| = k, |σ̂Att(S)− σAtt(S)| ≥ εσAtt(S

∗)

2

]
≤ δ

Finally we relate the output of 2 with the optimal solution. Let Sk be the
output of Algorithm 2 and S′ the optimal solution to the coverage problem.
Let ∆∗, ∆′, ∆k be the number of RR sets covered by the S∗, S′, Sk respectively.
With probability at least 1 − δ,

|σAtt(Sk)− σ̂Att(Sk)| ≤ εσAtt(S
∗)

2

σAtt(Sk)− σ̂Att(Sk) ≥ −εσAtt(S
∗)

2

σAtt(Sk) ≥ σ̂Att(Sk)− εσAtt(S
∗)

2

≥ |E|
β

(
1− 1

e

)
∆′ − εσAtt(S

∗)

2

≥ |E|
β

(
1− 1

e

)
∆∗ − εσAtt(S

∗)

2

≥
(

1− 1

e

)
σ̂Att(S

∗)− εσAtt(S
∗)

2

≥
(

1− 1

e

)(
1− ε

2

)
σAtt(S

∗)− εσAtt(S
∗)

2

=

(
1− ε

2
− 1

e
+

ε

2e
− ε

2

)
σAtt(S

∗)

≥
(

1− 1

e
− ε
)
σAtt(S

∗)

Thus, Algorithm 2 outputs

(
1− 1

e
− ε
)

-approximate solution with prob-

ability at least 1− δ.



Roadmap to Quantifying Attitude 17

6 Actionable Attitude: Attitude beyond Influence

As noted in the introduction, nodes with high influence are likely to act based
on their influence, and in some scenarios it is desirable to be able to spread
information that results in such highly influenced individuals. Motivated by
this, we introduce a notion called actionable attitude that attempts to increase
the total attitude of nodes with “high enough attitude”, as opposed to the
total attitude of all the nodes. For this, we need to understand and formulate
the concept of high enough attitude. Consider a network in which many nodes
have an attitude value close to 2.5 and a few nodes having an attitude more
than 5 (with respect to a certain seed set). For this network, a value of 5
can be considered high, whereas for a network with most nodes having an
attitude value of more than 7, a value of 5 is low. This suggests that the
notion of high enough attitude is relative and depends on the structure of the
network and the underlying influencing mechanisms. Thus, a way to formulate
this notion is to incorporate the influence propagation. Consider a concrete
instantiation of a diffusion process. There are certain nodes that are barely
influenced, they receive the information once and thus their attitude is 1.
However, there exist certain nodes whose opinions have been reinforced due
to multiple exposures. Comparatively these nodes can be thought of having
higher attitude than the nodes that receive information only once. We refer to
the attitude of these individuals in the network as actionable attitude. Thus
if the goal is to maximize this actionable attitude, then we should discard the
collective attitude of nodes that are barely influenced. This leads us to the
following definition.

Definition 4 [Actionable Attitude] We define Actionable Attitude induced
by a given seed set S as σAct(S) = σAtt(S)− σ(S).

Problem 2 Actionable Attitude Maximization Problem: Given a graph
G = (V,E) and k, find S ⊆ V of size at most k such that σAct(S) is maximized.

We first show that the function σAct(·) is a monotone function but not
submodular.

Theorem 10 Under the AIC model, σAct(.) is a monotone, non-decreasing
function function

Proof. Let g ∼ G and S ⊆ T ⊆ V . We observe |S| ≤ |T | and Rg(S) ⊆ Rg(T )
since S ⊆ T . Thus, ESg ⊆ ETg and |ESg | ≤ |ETg |. For the subgraph g′ = (V ′, E′)

induced by RTg \RSg , |E′| ≥ |V ′| − 1 Therefore, σAct(S) = (|S|+ |ESg | −RTg ) ≤
(|T |+ |S|+ |ESg | −RTg + |E′| − |V ′|) = σAct(T ).

Let g ∼ G and S ⊂ T ⊆ V . We observe |S| < |T | and Rg(S) ⊆ Rg(T )
since S ⊂ T . Thus, ESg ⊆ ETg and |ESg | ≤ |ETg |. For the subgraph g′ = (V ′, E′)

induced by RTg \RSg , |E′| ≥ |V ′| − 1 Therefore, σAct(S) = (|S|+ |ESg | − |RSg |) ≤
(|S|+ |ESg | − |RSg |+ |E′| − |V ′|+ 1) ≤ (|T |+ |ETg | − |RTg |) = σAct(T ).

Theorem 11 Under the AIC model, σAct(.) is not submodular.
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Proof. Consider the following graph G with each edge probability 1. Note that,
there exists exactly one g ∼ G, which is the graph itself.

s b

a

1

1
1

c

d

t v
1 1

1

Fig. 2 An example demonstrating σAct(.) is not submodular

Let S = {s}, T = {s, t}. S ⊆ T and v /∈ T . Observe that, σAct(S) =
(|{s}|+ |{(s, a), (s, b), (b, a)}|)−|{s, a, b}| = 4−3 = 1 and σAct(T ) = (|{s, t}|+
|{(s, a), (s, b), (b, a), (t, c), (c, d)}|) − |{s, a, b, t, c, d}| = 7 − 6 = 1. Similarly,
σAct(S∪{v}) = (|{s, v}|+|{(s, a), (s, b), (b, a), (v, c), (c, d)}|)−|{s, v, a, b, c, d}| =
7−6 = 1 and σAct(T∪{v}) = (|{s, t, v}|+|{(s, a), (s, b), (b, a), (t, c), (c, d), (v, c)}|)−
|{s, a, b, t, c, d, v}| = 9−7 = 2. Therefore, σAct(v|S) = σAct(S∪{v})−σAct(S) =
1 − 1 = 0 and σAct(v|T ) = σAct(T ∪ {v}) − σAct(T ) = 2 − 1 = 1. Since
σAct(v|S) < σAct(v|T ), σAct(.) is not submodular.

Note that σAtt(·) and σ(·) are very closely related as they rely on the same
diffusion process. Using this we show that the actionable attitude function
σAct(.) is approximately submodular [22].

Definition 5 A set function f is ∆-approximate submodular if for every pair
of sets S and T with S ⊆ T and every x /∈ T , f(x|S) ≥ f(x|T )−∆.

Note that for submodular functions ∆ is zero. We show that the unction
σAct(·) is ∆-approximate submodular, where ∆ is the expected maximum degree
of the graph, where each edge 〈u, v〉 is kept with probability p(u, v).

Theorem 12 Given a graph G = (V,E) let degG(v) denote the outdegree
of any v ∈ V . Then, ∀S ⊂ T ⊆ V and ∀v /∈ T , σAct(v|S) ≥ σAct(v|T ) −
Eg∼G[deg(v)].

Proof. Let f(v|S) = [(|ES∪{v}g | + |S| + 1) − |RS∪{v}g |] − [(|ESg | + |S| − |RSg |].
Our objective is to prove that σAct(v|T ) − σAct(v|S) =

∑
g∼G

f(v|T ) × Pr(g ∼

G)−
∑
g∼G

f(v|S)× Pr(g ∼ G) ≤
∑
g∼G

degg(v)× Pr(g ∼ G)

Since Pr(g ∼ G) ≥ 0, the proof obligation is

∀g ∼ G f(v|T )− f(v|S) ≤ degg(v)

We consider 3 cases.
Case 1. Rvg ∩RTg = ∅. In this case

f(v|S) = (|Evg |+ 1)− |Rvg | = f(v|T ).
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Thus, f(v|T )− f(v|S) = 0 ≤ degg(v).

Case 2. Rvg ∩RTg 6= ∅, Rvg ∩RSg = ∅. In this case

f(v|S) = (|Evg |+ 1)− |Rvg |

and

f(v|T ) = {[|ETg |+ |Evg | − |ETg ∩ Evg |
+(|T |+ 1)]− [|RTg |+ |Rvg | − |RTg ∩Rvg |]}
−[|ETg |+ |T | − |RTg |] = (|Evg |+ 1− |Rvg |)
+(|RTg ∩Rvg | − |ETg ∩ Evg |).

For the subgraph g′ = (V ′, E′) induced by RTg ∩ Rvg\(T ∪ {v}), |E′| ≥
|V ′| − 1. Thus (|RTg ∩ Rvg | − |ETg ∩ Evg |) reaches its maximum value degg(v)

when ETg ∩ Evg = ∅. Thus, f(v|T )− f(v|S) ≤ degg(v).

Case 3. Rvg ∩RSg 6= ∅. In this case,

f(v|S) = (|Evg |+ 1− |Rvg |) + (|RSg ∩Rvg | − |ESg ∩ Evg |)
f(v|T ) = (|Evg |+ 1− |Rvg |) + (|RTg ∩Rvg | − |ETg ∩ Evg |)

Therefore,

f(v|T )− f(v|S) = |(RTg \RSg ) ∩Rvg | − |(ETg \ESg ) ∩ Evg |.

For the subgraph g′ = (V ′, E′) induced by (RTg \RSg ) ∩ Rvg , |E′| ≥ |V ′| − 1.

Thus |(RTg \RSg ) ∩ Rvg | − |(ETg \ESg ) ∩ Evg | reaches its maximum value degg(v)

when (ETg \ESg ) ∩ Evg = ∅.
Thus, f(v|T )− f(v|S) ≤ degg(v).

This leads to following theorem.

Theorem 13 The function σAct(·) is ∆-approximate submodular, where ∆ is
the expected max degree of the graph.

Using this we first show that a greedy algorithm for actionable attitude
maximization problem gives a (1− 1/e) approximation algorithm with an ad-
ditive error of ∆. The greedy algorithm starts with an empty set S0. During
the iteration i, it picks an element v such that σAct(Si−1 ∪ {v}) − σAct(Si−1)
is maximized. Let S∗ is the optimal solution to the actionable attitude maxi-
mization problem and let Sk be the seed set produced by the greedy algorithm

Theorem 14 σAct(Sk) ≥ (1− 1/e)σAct(S
∗)− (k − 1)∆.
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Algorithm 3: Estimate σAct
Data: Graph G = (V,E), S ⊆ V , k
begin

foreach v ∈ V do
Rv = Generate a× Indegree(v) RR graphs from v
foreach gT ∈ Rv do

cv
gT

(S) = the number of edges from v that reaches S in gT - 1

return
∑
v∈V

∑
gT∈Rv

cv
gT

(S)

|Rv |

Proof. Let S∗ = {e1, e2.., ek} be the optimum solution.

σAct(S
∗) ≤ σAct(Si ∪ S∗) = σAct(Si) + σAct(S

∗|Si)
= σAct(Si) + σAct(e1|Si) + σAct(e2|Si ∪ {e1})+

σAct({e3, e4..ek}|Si ∪ {e1, e2})
≤ σAct(Si) + σAct(e1|Si) + σAct(e2|Si) +∆+

σAct({e3, e4..ek}|Si ∪ {e1, e2})

≤ σAct(Si) +
∑

e∈S∗\Si

σAct(e|Si) + (k − 1)∆

≤ σAct(Si) + kσAct(Si+1)− kσAct(Si) + (k − 1)∆

By subtracting σAct(S
∗) on both sides, rearranging terms, and solving the

resulting recurrence we obtain

σAct(Si+1)− σAct(S∗) ≥ (1− 1

k
)(σAct(Si)− σAct(S∗))− (1− 1

k
)∆

Solving this recurrence, we get:

σAct(Sk)− σAct(S∗) ≥ (1− 1

k
)k(−σAct(S∗))− (k − 1)∆

Therefore, σAct(Sk) ≥
(
1− 1

e

)
σAct(S

∗)− (k − 1)∆.

The greedy algorithm runs in polynomial time; however it is not scalable.
As has been done for influence maximization [8] and attitude maximization
(Section 5), we design a more efficient algorithm based on RR sets. However,
the RR set based algorithms for those maximization problems do not easily
translate to the case of actionable attitude maximization. The RR set based
algorithm for influence maximization randomly picks a vertex v and generates
a RR graph from v whereas RR set based algorithm for attitude maximization
starts with picking an edge e uniformly at random. For influence maximization
problem it is critical that each vertex is picked uniformly at random and
for attitude maximization, it is critical that each edge is picked uniformly at
random. Note that randomly picking a vertex does not imply a random choice
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of edge and vice versa. Since the function σAct(·) is the difference between
attitude and influence, neither of these RR set based methods can be translated
for actionable attitude maximization. We need a mechanism to generate RR
sets using which we can estimate both σ and σAtt. Instead of randomly picking
a vertex or edge in the network, we generate a sufficient number of RR graphs
for each vertex v.

Let FSg (v) be the number of edges from v that reaches S ∈ gT , Rv be the

set of RR graphs from v, and TSg (v) be the number of edges to v that are
reachable from S ∈ g.

Theorem 15 Given a graph G = (V,E), for any S ⊆ V , the following holds

σAct(S) =
∑
v∈V

∑
gT∈Rv

P (g)×max{FSg (v)− 1, 0}

Proof. With respect to a set S, we will define the random variable

Infv(S) =

{
1 if v ∈ RSg
0 otherwise

Then,

σAct(S) =E

[∑
v∈V

Attv(S)

]
− E

[∑
v∈V

Infv(S)

]
=
∑
v∈V

E [Attv(S)− Infv(S)]

=
∑
v∈V

∑
g∼G

P (g)× [Attv(S)− Infv(S)]

=
∑
v∈V

∑
g∼G

P (g)×max{TSg (v)− 1, 0}

=
∑
v∈V

∑
g∼G

P (g)×max{FSgT (v)− 1, 0}

=
∑
v∈V

∑
gT∈Rv

P (gT )×max{FSgT (v)− 1, 0}

Theorem 16 Given a graph G = (V,E), for any S ⊆ V, u ∈ V , the following
holds: σAct(u|S) is equal to∑

v∈V

∑
gT∈Rv

P (g) ·
[
max{FS∪{u}g (v)− 1, 0} − max{FSg (v)− 1, 0}

]



22 Fu et al.

Algorithm 4: Find Best Seed Set for σAct(·)
Data: Graph G = (V,E), k
Result: Seed Set S
begin

foreach v ∈ V do
Rv = Generate a× Indegree(v) RR graphs from v
foreach gT ∈ Rv do

foreach u ∈ gT do
cv
gT

(u) = the number of edges from v that reaches u in gT - 1

foreach u ∈ V do

c(u) =
∑
v∈V

∑
gT∈Rv

cv
gT

(u)

|Rv |

while |S| ≤ k do
v∗ = arg max

u∈V \S
c(u)

S = S ∪ {v∗}
foreach v ∈ V do

foreach gT ∈ Rv do
Remove v∗ and all associated edges from gT

foreach u ∈ gT do
compute cv

gT
(u)

return S

Proof.

σAct(u|S) = [σAtt(S ∪ {u})− σ(S ∪ {u})]− [σAtt(S)− σ(S)]

=
∑
v∈V

E [Attv(S ∪ {u})− Infv(S ∪ {u})− (Attv(S)− Infv(S))]

=
∑
v∈V

∑
g∼G

P (g) ×
[
max{TS∪{u}g (v)− 1, 0} −max{TSg (v)− 1, 0}

]
=
∑
v∈V

∑
g∼G

P (g) ×
[
max{FS∪{u}g (v)− 1, 0} −max{FSg (v)− 1, 0}

]
=
∑
v∈V

∑
gT∈Rv

P (gT ) ×
[
max{FS∪{u}g (v)− 1, 0} −max{FSg (v)− 1, 0}

]

Using the above two theorems, we can prove that Algorithm 4 is an ap-
proximation algorithm for the actionable attitude maximization problem. Let
S∗ be an optimal solution and let Sk be the set produced by Algorithm 4.

Theorem 17 In algorithm 4 if a is O(1/ε2 log n/δ), then

Pr[σAct(Sk) ≥ (1− 1/e− ε)σAct(S∗)− (k − 1)∆] ≥ δ
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s b

a

1
1

We can prove the above theorem using Theorems 15 and 16 and techniques
used to establish the guarantee on RR set based algorithm for the attitude
maximization problem. We omit the details. Note that in this algorithm, as
opposed to the attitude maximization algorithm, RR graphs need to be stored
as opposed to RR sets. This leads to high memory usage and also since pro-
cessing RR graphs is more expensive than processing RR sets, this algorithm
is not as scalable as one would like to be.

7 Identifying individuals with Attitude

Up until now, we have focused on investigating scenarios that improves the
attitude of entities in the entire network. In this section, we turn our atten-
tion to finding the entities whose attitude attains a desired value (specified by
a threshold). Our objective is to find a seed set whose influence on the net-
work maximizes the number of entities in the network with attitude above the
threshold. Recall that, we denote the attitude of a node v induced by a seed
S by Attv(S) (see Section 4). We introduce the notion of expected number of
nodes with attitude above threshold induced by some seed as follows.

Definition 6 Given a seed set S and a threshold θ, we define expected number
of nodes with attitude at least equal to θ as

σθ(S) = E[ | {v ∈ V such that E[Attv(S)] ≥ θ} | ]

In the above, E[Attv(S)] is the expected attitude of v induced by S. We
refer to the set {v ∈ V such that E[Attv(S)] ≥ θ} as the θ-actor set; the
entities that are likely to act due to their attitude being at least θ. This leads
us to the following problem.

Problem 3 (θ-Actor-Finding-Problem (AFP)) Given a social network G =
(V,E), an integer k and a threshold θ, find a seed set S ⊆ V of size k that
maximizes σθ(S), i.e., argmaxS⊆V,|S|≤kσθ(S).

The following properties of σθ(.) indicate that standard greedy strategy
for realizing the optimization objective (as per Problem 3) does not render
approximation guarantees.

Theorem 18 Under the AIC model, σθ(.) is neither submodular nor super-
modular.
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Proof. Consider the graph G in Figure 7 with each edge probability 1. Note
that, there exists exactly one g ∼ G, which is the graph itself. Let the threshold
θ be 2.

Let S = ∅ and T = {s}. S ⊆ T and b /∈ T . Observe that

σθ(S ∪ {b})− σθ(S) = |∅| − |∅| = 0

On the other hand,

σθ(T ∪ {b})− σθ(T ) = |{a}| − |∅| = 1

That is, σθ(S ∪ {b}) < σθ(T ∪ {b}). Thus, σθ(.) is not submodular.

Next consider, S′ = {s} and T ′ = {s, a}. S ⊆ T and b /∈ T . In this scenario,

σθ(S
′ ∪ {b})− σθ(S′) = |{a}| − |∅| = 1

and
σθ(T

′ ∪ {b})− σθ(T ′) = |{a}| − |{a}| = 1− 1 = 0

That is, σθ(S
′ ∪ {b}) < σθ(T

′ ∪ {b}). Thus, σθ(.) is not superbmodular.

We develop a heuristic to address the Problem 3. The central theme of our
heuristic is to apply a simple but effective greedy strategy for computing the
expected number of a specific type of nodes influenced in a new network such
that the computed value aligns with expected number of nodes (in the original
network) with attitude at least as high as θ.

As a first step, we augment the network G = (V,E) to a new network
G′ = (V ′, E′) as follows. For each edge (u, v) ∈ E, we add a new node, an
edge-node, xuv, and for each node v ∈ V , we add a new node, a super-node,
sv. Note that, while each element in V denotes an entity in the network, the
newly introduced nodes, the edge-nodes and the super-nodes, do not represent
specific entities in the network G; rather they will be used to capture the meta-
information related to attitude of each node in the network G.

In the augmented network G′, the following edges are present. For all u ∈
V , there is an edge from u to xuv and the probability of this edge is set
to p(u, v). Similarly, for all v ∈ V , there is an edge from xu,v to v and the
probability of the edge is set to 1. Note that, this setup satisfies the property:
given a set S of nodes in V , the expected attitude of v in G is same as the
expected attitude of v in G′.

The network G′ also includes edges from xuv to sv for each v. Our aim is
to set up the edges in such a way that if a super-node sv is influenced, then
that indicates the expected attitude of v is at least equal to the pre-specified
value θ. This is realized using a threshold model for influence diffusion. The
probability p(xuv, sv) of edge from xuv to sv is set to 1

Indegree(v)
, where

Indegree(v) = |(u, v) ∈ E|. An influence-threshold IT (sv) is associated with
su, which is equal to θ

Indegree(v)
. We say that the sv is influenced when∑

(xuv,sv)∈E′
p(xuv, sv) ≥ IT (sv), where xuv is influenced
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Network-name # Nodes # Edges

ego-Facebook 4039 88234
NetHept 15229 62752
Epinions 75888 508837
Amazon 334863 925872
DBLP 317080 1049866
Youtube 1134890 2987624

Table 1 Datasets

Note that, there are two modes of diffusion of influence in G′. For all nodes
other than sv, we will follow the AIC diffusion model, where a node is influ-
enced if any of its (already influenced) neighbor influences the former with the
probability of the edge connecting the neighbor to the node. For the nodes sv,
however, we will follow the threshold model for diffusion. Such hybrid diffusion
in the network G′ leads to the following property.

If θ number of xuv’s are influenced in G′, then (from the construction of
G′ from G) following AIC-model of diffusion in G, the node v in G gets the
attitude θ. Note further that, if θ number of xuv’s are influenced in G′, then
following the threshold model for influence diffusion for the node sv, the node
sv is influenced. In other words, the number of the super-nodes influenced in
the network G′ is an indicator of the number of nodes with attitude greater
than equal to θ in the original network G.

Given that σθ(.) is neither submodular nor supermodular, we developed a
heuristic to solve the Threshold Maximization problem using Reverse Sampling
technique and the greedy strategy. By previous discussion, a solution the AFP

can be obtained by finding a seed set that maximizes the influence on the
super-nodes in the network G′. We use a greedy algorithm to find such seed
set in the network G′. Based on this connection, we can design a naive greedy
heuristic that attempts to find a seed set that will maximize the number of
influenced super nodes. Here, during the each iteration of the greedy algorithm
we add a node to the seed set that will maximize the number of new super-
nodes that are influenced.

8 Experimental Evaluation

Table 1 lists the networks used in our experiments; they are available at http:
//snap.stanford.edu/data/ and https://microsoft.com/en-us/research/

people/weic/.

8.1 Experimental Settings

All the algorithms are implemented in C++ and run on Linux server with
AMD Opteron 6320 CPU (8 cores and 2.8 GHz) and 128GB main memory.
To estimate the total attitude using Algorithm 1, we set ε = 0.1, δ = 0.001.
As pointed out in [4], algorithms that use reverse sampling run into high

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
https://microsoft.com/en-us/research/people/weic/
https://microsoft.com/en-us/research/people/weic/
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Fig. 3 Attitude results and time taken to find the attitude maximizing seed set

memory usage owing to the number of samples generated. To find the Atti-
tude Maximizing seed set, we use the ideas from the Stop-and-Stare algorithm
[19, 31] that was developed for the influence maximization problem. This en-
sures that we generate (approximately) correct number of RR sets resulting
in lesser memory used. It can be proved that this implementation has the
same theoretical guarantees as Algorithm 2. The source code can be found at
https://github.com/madhavanrp/QuantifyingAttitude.

8.2 Maximizing Attitude

The results are shown in Figure 3 (x-axis represents the seed set size and the
y-axis indicates the attitude or time). The attitude results produced across
a wide range of graph sizes demonstrate the scalability of RAS-based maxi-
mization. We computed the attitude maximization seed set for budgets in the
range [1, 2000]. As expected as seed set size increases, the total attitude also
increases. Note that for small networks, the total attitude does not increase

https://github.com/madhavanrp/QuantifyingAttitude
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Fig. 4 Varying probability with k = 100

much after certain point. This is due to the submodularity of the attitude
function. After some point, the gain in attitude becomes minimal. The time
taken to compute the seed set does not increase much as the seed set size
increases. For example, on DBLP (n = 317080,m = 1049866), the time taken
is less than 20 seconds for budgets ranging from 100−2000. This is due to the
fact that as the seed set size increases, the value of σ(S∗) would increase thus
resulting in smaller RR sets (as per the stop-and-stare algorithm).

8.3 Propagation Probability and Attitude

We consider different edge probabilities such as 0.02, 0.05, 0.1 and 1/inDegree.
The overall attitude increases as the probability increases (See Figure 4). Inter-
estingly, the maximum attitude is observed when the probability is 1/inDegree.
This is explained by considering the fact that for each node, it is expected that
one of its incoming edges is activated (if its neighbors are activated). There-
fore, the overall attitude is significantly higher if 1/inDegree is greater than
0.1, on average. We also report how time varies with probability. We observe
that the time taken is least when the edge probability is 1/inDegree and is
highest when the probability is 0.02. This is again explained by observing that
σAtt(S

∗) inversely impacts the number of RR sets required for estimating at-
titude. We observe that this is consistent with the time taken to compute the
best seed with propagation probabilities that produce relatively smaller overall
attitude.

8.4 Average Attitude

Next, we focus on the average attitude of a node. There are two ways to look
at this number. The first is the ratio σAtt(S)/σ(S) which is the ratio of ex-
pected attitude and expected number of influenced nodes. Another measure
for average attitude is to take the expectation of the following ratio: Total At-
titude/Number of nodes influenced. These two quantities need not be equal,
in general, as expectation of a ratio is not the ratio of expectations. We com-
puted the former quantity by running the presented algorithms. We estimated
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graph
name

σAtt(S)
σ(S)

E[ Att
Inf

]
Average
indegree

ego-
Facebook

3.21 3.20 21.85

Epinions 3.30 3.32 6.71
NetHept 1.34 1.38 4.12
DBLP 1.23 1.23 3.31
Youtube 1.43 1.44 2.63

Table 2 Average Attitude with budget = 100 and edge probability = 0.1

the latter quantity by running simulations (20000). The results are shown in
Table 2. Interestingly both the quantities turn out be almost the same for
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Fig. 5 Average attitude trends as edge probability p increases(k = 100)

all the graphs. For all the graphs listed, the average attitudes calculated as
σAtt(S)/σ(S) are greater than 1 as expected since every influenced node has
attitude greater than or equal to 1, and they match very well with the re-
sults from the diffusion. Graphs with higher average indegrees tend to achieve
higher average attitudes. For example, Epinions achieves a higher average at-
titude than NetHept. With increasing edge probabilities, the average attitude
increases(Fig. 5) because with higher edge probabilities, nodes are more likely
to be activated; and with more activated neighbors, a node tends to be influ-
enced multiple times.

Attitude Distribution. We consider distribution of nodes with certain at-
titude values and their contribution to the total attitude. For each attitude
value a, we looked at the total contribution of all nodes with attitude a (ob-
tained by multiplying number of nodes with attitude a). The attitude values
are on x-axis and the attitude contribution on y-axis of We performed this on
three graphs Epinions (Figure 6), DBLP (Figure 7), and Facebook (Figure 8).
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Fig. 6 Attitude contributions for Epinions graph with budget = 100, p = 0.1
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Fig. 7 Attitude contributions for DBLP graph with budget = 100, p = 0.1
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Fig. 8 Attitude contributions for Facebook graph with budget = 100, p = 0.1
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Fig. 9 Clusters of High Attitude nodes

On Epinions graph (with budget 100 and edge probability 0.1) the total
expected attitude is around 34000 and the expected number of influenced
nodes is around 10, 500. However, there are 233 nodes whose attitude is more
than 20 (last bar in the figure). These nodes alone contribute 8, 000 to the
total attitude. Thus 2% of the influenced nodes contribute nearly 23% to
the total attitude. This means a relatively small fraction of nodes with high
attitude contribute significantly to total attitude and thus average attitude.
The Facebook Graph also has similar property (Figure 8) top 5% of the high
attitude nodes account for nearly 25% of the total attitude. However, for the
DBLP approximately 10% of high attitude nodes account for the nearly 25%
of the total attitude. This could in part due to the fact that the average degree
in Facebook and Epinions is higher compared to average degree in DBLP.

Spatial Proximity of Nodes with High attitude. Finally we visualized
the location of nodes with high attitude values (Figure 9). Red nodes are the
nodes with high attitude. We used the clustering algorithm mentioned in [7] to
identify communities, and visualized them using the OpenOrd algorithm [29]
from Gephi [6] which is used for visually distinguishing clusters. For graph
Epinions, a total of 708 communities were identified. We we looked at the top
100 attitude nodes, we noticed that all these nodes were limited to only 5
of those communities. Similarly, for graph CA-HepTh, 473 communities were
identified. The top 100 attitude nodes were limited to 12 of them. This behavior
was observed in other graphs as well, which showed that high attitude nodes
are generally restricted to a few communities rather than being distributed
across the network.

8.5 Maximizing Actionable Attitude

We implement Algorithm 4 to find the seed set that maximizes the Actionable
Attitude. For each v ∈ V , we generate O(Indegree(v)/ε2) RR graphs where
ε = 0.1. Figure 10 examines the Actionable Attitude while varying the bud-
get. We fix the probability to 0.05. As expected, the Actionable Attitude does
increase when the seed set size is increased. We observe that the Actionable
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Graph Alg. 2 Alg. 4

ego-Facebook 2.11 2.69
NetHept 1.24 1.34
Amazon 1.01 1.03
DBLP 1.18 2.32

Table 3 E[Att/Inf ] values for k = 100, p = 0.05

Fig. 10 Budget Vs Actionable Attitude, p = 0.05

Attitude grows in larger quantities for Facebook than for the other graphs.
This is due to the fact that Facebook is denser, leading to a higher number of
edges activated by the seed set. We also study how the Attitude Maximizing
seed compares with the Actionable Attitude Maximizing seed. Across various
graphs, we note that the Actionable Attitude Maximizing seed set activates
fewer nodes when compared to the Attitude Maximizing seed. For example,
on DBLP with k = 100, p = 0.05, Attitude maximization algorithm produces
Attitude of 2294 with influence 1930. In the same setting, the actionable at-
titude maximization algorithm produces Attitude of 870 with influence 376.
We note two points. The objective function σAct(.) is higher for the seed set
produced by the actionable attitude maximization compared to the seed set
produced by the attitude maximization problem. Very interestingly, for the at-
titude maximization seed set the average attitude is 2294/1930 which is 1.19
whereas the actionable attitude maximization seed results in an average atti-
tude of 870/376 which is 2.31. Recall that the notion of actionable attitude
attempts to maximize entities that are strongly influenced and thus should re-
sult in higher average attitude and the experiments concur with this intuition.
Table 3 compares average attitude for the seed sets produced by the attitude
maximization and actionable attitude maximization algorithms. The Average
Attitude tends to be higher when the Actionable Attitude is maximized with
Amazon being an outlier.

These observations suggest that Actionable Attitude maximization pro-
duces fewer overall nodes activated but with higher individual Attitude. As
with maximizing Attitude, we compared our implementation with the same
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p
θ

2 3 5

0.05 352(7s) 240(5s) 83(4s)
0.1 940(46s) 636(38s) 358(34s)
0.2 1808(290s) 1400(287s) 951(241s)

Table 4 σθ(S) with respect to different edge probabilities for Facebook graph

baseline heuristics observed higher Actionable Attitude. The experiments on
Y outube do not finish as the program runs out of memory. This is due to
the fact that Actionable Attitude Maximizing requires the RR Graphs to be
stored rather than just vertices.

8.6 Experimental Results for AFP

In Section 7, we discussed the greedy heuristic for computing seed set (of size
k) that is likely to maximize the number of entities in the network with attitude
at least θ. As we have in the other experiments, we consider several networks
and evaluated our effectiveness of our algorithm. We report the results (see
Table 4, 5, 6) from the experiments conducted with networks Facebook, DBLP
and Epinion networks, with input seed set size 100 and threshold θ = 2, 3 and
5. We have assumed different uniform edge probabilities. The result-tables
present the average number of activated nodes with attitude at least θ, and also
indicate the time taken for each experiment (s, m, h indicate seconds, minutes
and hours, respectively). The results indicate that the number of nodes with
desired attitude value increases as the edge probabilities are increased.

p
θ

2 3 5

0.05 137(23s) 92(20s) 8(19s)
0.1 373(50s) 244(41s) 135(33s)
0.2 2666(10m) 1268(8m) 951(5m)

Table 5 σθ(S) with respect to different edge probabilities for DBLP graph

p
θ

2 3 5

0.05 1551(1.3h) 1006(1.1h) 521(0.8h)
0.1 3421(4.7h) 2484(4h) 1525(3.7h)
0.2 5962(15h) 4583(12.7h) 3202(11.3h)

Table 6 σθ(S) with respect to different edge probabilities for Epinions graph
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9 Conclusion

In this work we have formalized the notion of strength of influence/attitude
in social networks and introduce a model for computing attitude: attitude-
IC model. We have formulated three different problems in this context: (a)
the problem for maximizing the sum of the attitude of the entire network
for a given budget (seed-set size); (b) the problem of maximizing the sum
of the actionable attitude of the entire network for a given budget; and (c)
the problem of maximizing the number of entities in the network with de-
sired attitude (above certain pre-specified value) for a given budget. For each
problem, we analyzed the theoretical properties of the function that is being
maximized and based on those theoretical properties, we have discussed the
computational hardness of the problems, and proposed algorithms (with ap-
proximation guarantees) and heuristics to address the problems. We have also
demonstrated the effectiveness of our algorithms using a variety of networks of
different sizes and density. Our experiments further reveals insightful charac-
teristics of nodes with similar/high attitude in terms of their spatial proximity
and distribution of attitude values.

As part of future work, we plan to further investigate different extensions
to attitude formulation and corresponding problems related to attitude and
its relationship with influence. We also plan to study the properties of the
network that are indicators for attaining high attitude.
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