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Abstract—We formulate and study the problem of identifying
nodes whose absence can maximally disrupt network-diffusion
under the independent cascade model. We refer to such nodes as
critical nodes. We present the notion of impact and characterize
critical nodes based on this notion. Informally, impact of a set of
nodes quantifies the necessity of the nodes in the diffusion process.
We prove that the impact is monotonic. Interestingly, unlike
similar formulation of critical edges in the context of Linear
Threshold diffusion model, impact is neither submodular nor
supermodular. Furthermore, we prove that the problem of finding
a set of nodes which maximizes impact is NP-Hard. Hence, we
develop heuristics that rely on submodular approximations of
the impact function. We empirically evaluate our heuristics by
comparing the level of disruption achieved by identifying and
removing critical nodes as opposed to that achieved by removing
the most influential nodes.

Index Terms—Information Diffusion, Critical Nodes, Social
Networks, Submodularity

I. INTRODUCTION

Two of the widely studied problems in the context of
spread/diffusion (of information/opinions/disease) in complex
networks involve (a) influence maximization problem—finding
the set S of entities, called seed set, such that when the
information originates from S, its diffusion in the network
is maximal [5], [14]; (b) source identification problem—once
the diffusion has occurred, identify a set of entities that can
be classified as source/seed of the diffusion [12], [18], [26].
Addressing influence maximization problem results in finding
a seed set, called max seed, of entities that can cause maximal
information spread. Whereas source identification leads to
identifying a possible seed that caused the observed spread.
Motivating Problem. In this work, we study a problem that
is orthogonal to both of the above problems: identify a set
of size k of entities, which when removed from the network,
maximally disrupts the diffusion of influence that may have
started at any seed set. More formally, the goal is to identify a
set of nodes C such that, after removal of C from the network,
σ(S) (expected number of nodes that are influenced by seed
set S) is maximally reduced for all S. We refer such entities
C as critical nodes, and the problem of computing such nodes
in the context of probabilistic diffusion as the identifying
critical nodes (ICN) problem. The importance of addressing
this problem cannot be understated. In social networks, in-
fluence of un-founded opinions or propagation of fake news
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can be avoided by identifying and informing/isolating the
critical nodes. In computer network security, protecting critical
nodes from known worms (via patching, security updates)
can help in protecting the critical network-infrastructure from
repeated disruption due to worm-attacks. In the context of
disease propagation, helping critical communities that were
once impacted by epidemics can make a difference in overall
health of the population.

Note that, the critical nodes are not necessarily the max-
seed or the source of diffusion; rather the critical nodes
can be viewed as the ones whose presence is “critical”
for diffusion in the network. In other words, criticality of
a nodes can be described equivalently as how their pres-
ence is important for maximizing diffusion or (conversely)
how their absence is important for minimizing diffusion.
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Fig. 1. Example

To illustrate the unique nature of crit-
ical nodes, consider the example net-
work in the Figure 1. Let the objective
be to identify one critical node. Di-
rected edges in the network indicate
that the influence diffuses from the
the source to the destination, and the
edge annotations capture the proba-
bility of the diffusion. Such a diffu-
sion model is referred to as the in-
dependent cascade (IC) model, which

directly captures the notion that new information/behaviors are
contagious [14], [16]. Following the IC model, each node gets
one chance to influence its neighbors. Assume that m >> n,
edge probabilities to/from v5 are close to 0 and all other
probabilities are close to 1. Now, the most influential node
is v0 as it can influence almost the entire network (except
the ones u1 . . . um). However, removing v0 does not disrupt
the influence diffusion if some other seed is chosen. For
instance, any one of v2, v3, or v4 can still act as a source
of influence that spreads to the same extent. The critical node,
in this network, is v4; removal of v4 will maximally disrupt
information diffusion from any other node.
Our Solution. One of the primary challenges in addressing
the ICN problem is that there may not be any solution
(i.e., critical nodes), whose removal maximally reduces the
diffusion originating from all seeds. Consider the ICN problem
with k = 1: Let v1 and v2 be two different nodes such that
removing v1 maximally reduces the diffusion from a seed S1

and removing v2 maximally reduces the diffusion from another



seed S2. Then there is no single node that maximally reduces
the diffusion from S1 and S2.

We, therefore, characterize criticality by introducing the
notion of impact of a set of nodes. Intuitively, impact of a set
of nodes S quantifies the reduction in the expected diffusion
from all nodes when the set S is removed from the network.
That is, rather than reviewing the reduction in the expected
diffusion from each seed set, we consider the reduction in
the expected diffusion from all nodes. Consequently, higher
impact of set of nodes implies higher criticality of the set.
We formalize the ICN problem as finding a set of nodes with
maximal impact.

We prove that impact is monotonic and is neither sub-
modular nor supermodular. As a result, greedy algorithm
applied to optimization of impact does not provide usual
(1 − 1/e) approximation guarantees as it does when applied
to address different variations of influence maximization and
source detection problems. We further prove that the problem
of maximizing impact is NP-Hard. Given the hardness of the
problem, greedy algorithm is still a viable strategy, where
the impactful set is computed assuming submodularity of the
impact function. Using the notion of random reachable sets
from Borgs et al. [3], we obtain an efficient greedy algorithm,
CRIT-SET, to compute high impact nodes.

We empirically validate that high impact nodes are indeed
critical nodes as follows. First, we consider the problem of
disrupting the influence from a given seed set. In this setting,
we introduce variants of our heuristic, where criticality (or
more precisely, impact) of nodes are computed in the context
of the given seed, i.e., impact of node that disrupts diffusion
from the seed is higher than the impact of nodes that do
not disrupt diffusion from the seed. We identify the set k
of high impact nodes and evaluate whether their removal
indeed disrupts diffusion from the given seed. We compare
our strategy against the baseline strategy, TOP-INFL, where
the most influential nodes (other than the seed) are removed.
We show that removal of high impact set of size k (as per
CRIT-SET) causes more reduction in the influence than the
removal of k influential nodes (as per TOP-INFL). We consider
another variant TOP-CRIT of our heuristic, where the impact
function is assumed to be modular; computing the set of
nodes using TOP-CRIT is less expensive that computing using
CRIT-SET. We show that while the results obtained using
CRIT-SET and TOP-CRIT are both better than that obtained
using TOP-INFL in the context of a given seed, the objective
of reducing the influence from any seed is truly addressed by
the set of critical nodes as computed using CRIT-SET.

II. RELATED WORK

Kempe et al. [14] proved that the problem of influence
maximization in complex network is NP-hard and that greedy
strategy has a (1 − 1/e) approximation guarantee. The guar-
antee relies on diffusion being non-negative, monotonic and
submodular. Several subsequent work focused on efficient
implementation of the greedy strategy [4]–[10], [13], [19],
[21], some of which do not admit to the same approximation

guarantee. Recently, Borgs et al. [3] introduced an efficient
technique based on random reachable sets to realize the greedy
strategy with approximation guarantees. The technique was
further refined by Tang et al. [23]. We will also use the strat-
egy of random reachable sets to develop an efficient greedy
heuristic to identify the critical nodes (Recall that we have
already presented that influential nodes are not necessarily the
critical nodes).

Khalil et al. [15] focus on removing edges for disrupting
diffusion in linear threshold (LT) model. They prove that the
function f(E) =

∑
v∈V σG/E(v), where E is a set of edges

and G/E corresponds to the network G with edges in E
removed, is a supermodular function. This implies that, the
critical edge identification problem in LT model reduces to
maximizing a submodular function. In contrast, we will prove
that if independent cascade diffusion model is considered, the
optimization function is neither submodular nor supermodular.
Another technique proposed in the context of LT model for
disrupting diffusion involves using competitive diffusion. [11]
focuses on competitive linear threshold model for diffusion
disruption, where two types of diffusions propagate in the
network; the objective is to identify a seed set for one type
of diffusion (positive information) such that it minimizes the
affect of the other type of diffusion (negative information).

Ventresca and Aleman [24] referred to critical nodes as the
ones whose removal results in minimal pair-wise connectiv-
ity of the residual graph. They considered non-probabilistic
network. As a result, minimizing pair-wise connectivity does
not correspond to maximizing the disruption of probabilistic
diffusion. Variants of critical node removal in the context
of minimizing graph connectivity is also considered by Pul-
lan [22].

The work done by Aspnes et al. [2] focus on identifying the
nodes in the network, which when vaccinated, will contain the
diffusion. Such nodes can be viewed as critical nodes in our
setting. The authors present a game-theoretic formulation of
the problem, develop a reduction to a graph partitioning prob-
lem and provide a poly-time greedy approximation algorithm.
However, the authors assumed a simplistic diffusion model,
where each active node deterministically activates its suscep-
tible neighbors. This assumption along with the nature of the
greedy strategy for partitioning does not make the process
a feasible technique in the context of large social networks,
where diffusion is probabilistic. Similarly, Kuhlman et al. [17]
considered deterministic (non-probabilistic) diffusion model
(threshold based model) for removing critical nodes in the
context of random seed set with the objective to maximize the
number of un-influenced node.

III. FORMALIZING CRITICALITY

Background. We present some of the basic definitions in
the context of information diffusion in network. A network
G = (V,E), where V is a finite set of nodes and E :
V × V → [0, 1] is a directed edge relation between nodes
annotated with a probability measure. The direction in the
edge u

pu,v−→ v indicates the direction of diffusion from u to v



and the annotation pu,v indicates the probability (propagation
probability) of that diffusion. An undirected edge can be
viewed as bi-directional with the same propagation probability
in both directions. Each node in the network can be in two
states: inactive (idle or susceptible) and active (influenced or
infected); a node can evolve from being inactive to active and
an active node remains active. In this work, we concentrate
on Independent Cascade (IC) model, where at every (discrete)
time step i, each node u, which is newly activated at time
step i − 1, will activate each of its (inactive) neighbor v
(connected by a directed edge) with probability pu,v . This
captures diffusion at the i-th step. The diffusion process
continues till no new node is activated.

Given a seed S ⊆ V , σ(S) denotes the expected number of
nodes influenced at the end of diffusion (we omit the subscript
G, when the network information is immediate in the context).
For example, σ(v0) in Figure 1 is 5 + n.

A. Critical Nodes as Impactful Nodes

We introduce the concept of impact of node(s) and claim
that impact can be used effectively to compute the criticality
of node(s). We first present the notion of strength of diffusion.

Definition 1. Given a network G = (V,E), the strength of
diffusion in G, denoted by ST(G), is

∑
v∈V

σG(v).

For example, for the graph in Figure 1, if all probabilities
except the ones to/from v5 (which are close to 0) are equal to
1, then the strength of diffusion is (5+n)+1+3× (3+n)+
n+1+m = 16+5n+m. Intuitively, the strength of diffusion
indicates sum of the expected number of nodes each node may
influence. If the strength of diffusion in a network is high,
then it indicates that the network has “many nodes” that can
influence a lot of nodes of the network. This can be interpreted
as: the network has many good seed sets that can collectively
influence a large population of the network. Conversely, if the
strength of influence is small, it is an indication that there are
no (or very few) seed sets having high influence. If removal of
a set of nodes from a network causes the strength of diffusion
to go down, then it indicates the influence of all (or many)
seed sets is also reduced. Thus a set of nodes whose removal
will cause maximal reduction in the strength of diffusion can
be considered as critical nodes. We introduce impact as the
decrease in the strength of diffusion of network.

Definition 2 (Impact of Node(s)). Given a network G =
(V,E), the impact of S ⊆ V , denoted by IMG(S), is
ST(G)− ST(G/S).

In Figure 1, the IM({v0}) is 1, while IM({v4}) = 16+5n+
m− (7+n+m) = 9+4n. Next, we formalize our objective.

Problem 1 (ICN: Critical Nodes as Impactful Nodes). Given
G = (V,E) and k, the ICN(k) problem involves identifying a
set S ⊆ V of size k such that IMG(S) is maximized.

The reformulation of the ICN stems from the following.
For any seed, its influence does not increase if some nodes

from the network is removed. Larger impact indicates that each
node can influence (and can be influenced by) lesser number
of nodes. As a result, if S1 and S2 are two different sets of
nodes such that IMG(S1) < IMG(S2), then the influence of
any seed is likely to be less (or equal) when S2 is removed
from G when compared to the case when S1 is removed.

B. Properties of Impact

From Definition 2, one can infer that the IMG(S) depends
on the expected influence of each vertex v in G, where the
diffusion from v occurs via at least one element in S. We will
prove that then IMG is monotone but is neither submodular
nor supermodular.

Theorem 1. IMG is monotonically increasing.

Proof. Let S be a set of nodes. Recall that

IMG(S) = ST(G)− ST(G/S) =
∑
v∈V

σG(v)−
∑
v∈V

σG/S(v)

When the probabilities are 1, σG(v) is precisely the number
of nodes reachable from v in G. If a node u is reachable from
v only via a node from S, then u is not reachable from v
in the graph G/S. Thus, ∀v ∈ V : σG(v) − σG/S(v) is the
number of nodes reachable from v only through some nodes
in S. Therefore, ∀S1, S2 ⊆ V : S1 ⊆ S2 ⇒

∀v ∈ V : (σG(v)− σG/S1
(v)) ≤ (σG(v)− σG/S2

(v))

⇒
∑
v∈V

(σG(v)− σG/S1
(v)) ≤

∑
v∈V

(σG(v)− σG/S2
(v))

The above proof assumed that the edge probabilities are
all 1. The general case follows the strategy presented in [14].
Consider the sample space in which each sample point is a sub
graph of G that is formed as follows: For each edge e, keep
in the graph with probability pe. Suppose that G1, G2, · · ·G`
are all the sample points in the sample space. Now σ(S)
is precisely

∑
Reach(S,Gi) × Pr[Gi], where Reach(S,Gi)

denotes the number of nodes reachable from S in the graph Gi,
and Pr[Gi] is the probability that the graph Gi is obtained by
the above probabilistic process; monotonicity of reachability
leads to the monotonicity of σ(·). This validates the above
proof in general case.

We next establish IMG is neither submodular nor super-
modular. Submodularity (supermodularity) of a function is
defined in terms of the marginal gain for the function. In our
context, let S be a set and v 6∈ S be a node, then the marginal
gain in terms of IMG is defined as follows:

imgainG(S, v) = IMG(S ∪ {v})− IMG(S)

Submodularity of IMG requires for all S1, S2 and
v 6∈ S2, S1 ⊆ S2 implies imgainG(S1, v) ≥
imgainG(S2, v). Conversely, for supermodularity, it is re-
quired to satisfy imgainG(S1, v) ≤ imgainG(S2, v).
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Theorem 2. IMG is not supermodular.

Proof. Consider the G (Figure 2) where
the probability associated with each
edge is 1. For proving our claim, we
need to show that there exists S1, S2

and v such that S1 ⊆ S2, v 6∈ S2 and
imgainG(S1, v) > imgainG(S2, v).

Note that ST(G) = 10. Let S1 be {y}, S2 be {x, y}.
Then, ST(G/S1) = 8, IMG(S1) = ST(G) − ST(G/S1) =
2, ST(G/S1 ∪ {v}) = 4, IMG(S1 ∪ {v}) = 6 and
imgainG(S1, v) = 6− 2 = 4.

Proceeding further, IMG(S2) = 5 and IMG(S2 ∪ {v}) = 7,
and therefore, imgainG(S2, v) = 2 < imgainG(S1, v).

Theorem 3. IMG is not submodular.

Proof. Consider the G (Figure 3) where the probability asso-
ciated with each edge 1. For proving our claim, we need to
show that there exists S1, S2 and v such that S1 ⊆ S2, v 6∈ S2

and imgainG(S1, v) < imgainG(S2, v).
Note that, ST(G) = 11. Let S1 be {y} and S2 be {y, z}.

Then, imgainG(S1, v) = IMG(S1 ∪ {v})− IMG(S1) = 3 and
imgainG(S2, v) = IMG(S2∪{v})−IMG(S2) = 4. Therefore,
imgainG(S1, v) < imgainG(S2, v).
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Fig. 3.

Interestingly, if the network G has the
property that there is at most one path
between any two nodes, then IMG is sub-
modular.

Theorem 4. IMG is submodular if there
is at most one path between, any two nodes
in G.

Proof. Again, we assume that all the edge
probabilities are 1. The general case follows

as per the arguments presented after proof of Theorem 1. We
need to prove that for any S1, S2 and v,

S1 ⊆ S2 ∧ v 6∈ S2 ⇒ imgainG(S1, v) ≥ imgainG(S2, v)

Recall imgainG(S1, v) is

IMG(S1 ∪ {v})−IMG(S1)=ST(G/S1)−ST(G/(S1 ∪ {v}))

That is, imgainG(S1, v) is the number of nodes that are
reachable from v and are not reachable from S1. If any of
the elements can reach v, then imgainG(S1, v) = 0, as there
is at most one path between any two nodes in the network.

Next, for any S2 such that S1 ⊆ S2, there are three
possibilities in which elements in S2 − S1 can be selected.
(a) there are some elements in S2 − S1, that can reach
v, in which case, imgainG(S2, v) = 0; (b) None of the
elements in S2 − S1 are reachable from v, in which case,
imgainG(S2, v) = imgainG(S1, v); (c) Some of the ele-
ments in S2 − S1 that are reachable from v, in which case
imgainG(S2, v) < imgainG(S1, v).

Theorem 5. ICN(k) problem (See Problem 1) is NP-Hard.

Proof. In [25], Yannakakis proved that the the problem of
removing an optimal number of nodes from a graph resulting
in subgraph satisfying some hereditary property is NP-Hard.
Hereditary property of a graph is one that is preserved in all
induced subgraphs.

Consider the decision version of ICN(k): does there exists
set S of k nodes, whose removal from the graph G results
in ST(G/S) ≤ T ? The strength of a graph is an hereditary
property, i.e., ST(G) ≤ A ⇒ ST(G/S′) ≤ A for all S′ ⊆ V ,
where V is the set of nodes in G. Therefore, our decision
problem is a member of the NP-Hard class of node removal
problems.

IV. ALGORITHM FOR FINDING CRITICAL NODES

Given the hardness of the ICN(k) problem, we will present
an effective and efficient greedy heuristic strategy for iden-
tifying the critical nodes, which (likely) maximizes impact.

Input: Network G = (V,E) and k
Output: S ⊆ V
S = ∅
while |S| < k do
w = argmaxv∈V imgainG(v, S)
S = S ∪ {w}

end while
return S

Fig. 4. Greedy Computation

Figure 4 presents the ba-
sic steps necessary to solve
ICN(k) based on this
strategy.

The algorithm incremen-
tally computes the set (of
size k) of nodes with max-
imal impact; at each itera-

tion, identifying the node that results in maximal marginal gain
in impact with respect to the set computed in the previous
iteration.

Note that, the maximal marginal gain computation at each
step for each node (yet to be considered in S) is an expensive
process. In [3], the authors presented random reachable set
based efficient implementation for computing marginal gains
in the context of influence maximization problem. We will
employ the same implementation strategy for impact compu-
tation. We first present a short description of the strategy as
presented by Borgs et al. [3].

Given a network G, let Gr is the same network with the
edges reversed. A set RR = {Gr1, Gr2, . . . , GrN} of graphs is
constructed as follows. For each Gri , randomly pick a node
v in Gr and conduct a random walk in Gr (using the edge
probabilities) starting from v. Borgs et al. proved that if a ver-
tex v belongs to M number of elements in RR, then expected
influence of v can be estimated as σ̂(v) = (M/N) × |V |. It
follows from Chernoff bounds that σ̂ approximates σ with
relative error ε when N = O(|V |/ε2). The marginal gain
in influence due to a vertex v with respect to some set S,
therefore, can computed by considering the number of RR
elements which contains v but none of the elements of S.
Incrementally computing marginal gain can be easily realized
as follows: at each iteration identify the vertex with maximal
coverage of (existing) RR set and remove all the RR elements
that vertex covers before proceeding to the next iteration.

In the following, we will present the strategy that we use
to compute the marginal gain in impact due to a vertex with
respect to a given set using random reachable set.



A. Impact Computation using Random Reachability

In our context, we need to compute the impact of a set
S, which involves computing σG(v)− σG/S(v) for all nodes
v. Let MS indicate the number of elements in RR set that
contains v such that there is at least one path to v independent
of any node in S. Conversely, MS indicate the number of
elements in RR set that contains v such that all paths to v
involve some node in S. Therefore, σG/S(v)

=
∑
u∈V
Pr(∃u :v influences u without involving any w ∈ S)

=
∑
u∈V
Pr(∃u :u reaches v in Gr without involving any w∈S)

= |V |×
Pr(∃u : u reaches v in Gr without involving any w ∈ S)

That is, σ̂G/S(v) = |V | ×MS/N . Proceeding further,

σ̂G(v)− σ̂G/S(v) = |V |/N × (M −MS) = |V | ×MS/N

Recall that, IMG(S) =
∑
v∈V

σG(v) −
∑
v∈V

σG/S(v). There-

fore, IMG(S) can be estimated by counting the number of
times each node in G is reachable in graphs in RR set where
the reachability requires the existence of some node in S.

B. Incremental Computation of Marginal Gain in Impact

Recall that the marginal gain in impact due to a node v with
respect to S is imgainG(v, S) = IMG(S ∪ {v}) − IMG(S).
Computing IMG(S) involves computing |V | ×Mu

S/N for all
u ∈ V (let Mu

S denote the number of graphs in RR set where
reachability of u requires some element in S).

That is, imgainG(v, S) = |V |/N
∑
u∈V

[
Mu
S∪{v} −M

u
S

]
.

Proceeding further, Mu
S∪{v} − Mu

S is equal to the differ-
ence between number of graphs in RR where reachabil-
ity of u involves v or some elements in S and num-
ber of graphs in RR where reachability of u involves
some elements in S. Therefore, Mu

S∪{v} − Mu
S is the

number of graphs in RR where reachability of u in-
volves v and does not involve any element from S.

Input: RR = {Gr
1, G

r
2, . . . , G

r
N} and k

Output: S ⊆ V
S = ∅
while |S| < k do
w = argmaxv∈V

∑
u∈V Mu

v
S = S ∪ {w}
Remove w from RR graphs

end while
return S

Fig. 5. Greedy with Random Reachability

Incremental computa-
tion of imgainG(v, S)
(and avoid computing
IMG(S ∪ {v})) is real-
ized as follows. Once
IMG(S) is computed
using RR set, we re-
move all elements of S
from each Gri ∈ RR.

After removal, |V | × Mu
v /N for all u ∈ V is equal to

Mu
S∪{v} −M

u
S , which, in turn, results in incremental compu-

tation of imgainG(v, S). Figure 5 outlines the method using
reachable sets.

C. Efficient Implementation of Incremental Computation

For the incremental computation one needs to perform
reachability on each graphs in RR set in every iteration. We

develop a data structure that succinctly captures the reachabil-
ity information in each graphs of RR set and present effective
algorithms to minimize the re-computation of reachability.

For each node v ∈ V and for each graph Gri in RR set,
we maintain a set dependOn(v, i) ⊆ V . The set contains
the nodes such that their reachability requires v in Gri . If
U is the set of nodes in Gri , then dependOn(v, i) can be
computed by subtracting from U the nodes that are reachable
in Gri after removing v. The impact of v proportional to∑N
i=1 dependOn(v, i) (equal to

∑
u∈V M

u
v ).

In order to facilitate incremental computation of marginal
gain of impact, imgain, the dependOn(w, i) must be updated
for all w ∈ V and i ∈ [1, N ] once a node v 6= w with
the highest impact is selected to be part of the solution.
Incrementality requires the removal of v and recomputation
of reachability in Gri . This repeated reachability can be
avoided by the following update operation on dependOn(w, ).

u0

u1

u2

u4

u3 u5

If u ∈ dependOn(v, i) then remove
u from all dependOn(w, i) (w 6= v).
This is because v in Gri impacts u
(removing v will make u unreach-
able in Gri ); reachability of u can-
not be any more falsified (impacted)
by further considering w. This is il-
lustrated in the example figure Gri .

The corresponding dependOn is represented using as matrix,
where the first column represent the input and each cell (r, c)
is set to 1, if the c-th element is present in the dependOn of
r-th element.

u0 u1 u2 u3 u4 u5

u0 1 1 1 1 1 1
u1 1
u2 1 1 1
u3 1
u4 1 1
u5 1

If u2 is selected as the one
with the highest impact1, then row
corresponding to u2, representing
the set dependOn(u2, i), will be
rendered unreachable in Gri by
the removal of u2.

Secondly, subsequent computa-
tion of impact of nodes u0, u1 and u3 should not consider the
unreachable nodes (u2, u4 and u5), and hence, their entries (if
present) are removed from the dependsOn of u0, u1 and u3.

Finally, after removal of u2, the impact of some nodes may
improve as well. Such nodes are the ones whose reachability
does not depend on u2 and which, if removed in the absence of
u2, may render some other nodes un-reachable. For instance,
in the absence of u2, removal of u1 will render u3 unreachable.

u0 u1 u3

u0 1 1 1
u1 1 1
u3 1

Therefore, dependOn of u1 includes u3
after removal of u2. Such update is real-
ized by only re-computing the dependOn
relationship of all nodes that do not belong

to the dependOn relation of the node being removed (u2 in
our example).

V. EXPERIMENTAL EVALUATION

1Note that the above simply illustrates one of the N random graphs in RR.
Impact of a node based on the sum of its impact in all the N elements.



Network-name #
Nodes

# Edges

condensed-Matter-
Collab

23,133 93,497

soc-sign-Epinion 131,828 841,372
com-DBLP 317,080 1,049,866
DBLP-Tang 613,586 1,990,159
Web-Google 875,713 4,332,051

TABLE I
DATASET

The primary ob-
jective of our exper-
iments is to eval-
uate the quality of
the results obtained
by removing certain
number (referred to
as budget) of critical
nodes. We refer to our proposed method as CRIT-SET. To
measure advantages of using our method, we developed two
other methods, which are obvious and immediate choices for
disrupting diffusion: (a) one based on removing the top k most
influential nodes (TOP-INFL) and (b) one based on removing
the top k most critical nodes (TOP-CRIT). We will use TOP-INFL

as the baseline method.
We use several networks from http://snap.stanford.edu/data/.

In all the experiments, following the prior works2, we chose
puv = 1/din(v), where din(v) is the indegree of v. The size
of RR is computed based on the chosen ε = 0.5.

We observe that the quality of the results does not improve
much for smaller values of ε. Table I presents the basic
information about the networks used in the experiments3.

A. Criticality-indicator & Importance of Critical Nodes

This set of experiments is directed to validate the claim
that that removing critical nodes indeed reduces the possible
diffusion from a seed. The experiments are set up in two
different ways: one focuses on removing nodes in a given
influence graph induced by a seed; and the other focuses on
removing nodes that reduces the influence of a given seed.

Setup I: Influence-Graph Context. For each network, we
identified (using [3]) the best influential seed set of different
sizes. We then use a random diffusion from that seed set to
generate the influence graph–the graph where all nodes are
influenced. Assuming this influence graph to be the input
(that is, the objective is to maximally disrupt diffusion in this
influence graph), we conduct experiments to find the impact
of removing k nodes in the influence graph.

Table II presents a subset of results obtained in this ex-
periment. The first column is the size of the influence graph
generated by seed of size k (second column). The budget
indicates the number of nodes to be removed. The New-infl
columns indicate the influence in the input graph (after nodes
are removed). We use the same size for seed set and construct
them by considering the objective of maximizing its influence

2Probability of diffusion based on indegree is a one of the many ways to
quantify the strength of nodes in spreading information—typically, referred
to as the weighted independent cascade Our objective is not focused on the
debate [1], [20] of how probability of diffusion is measured or quantified and
how the efficiency of influence maximization depends on the quantification;
rather our focus is to validate our characterization of criticality in terms of
impact and not the efficiency of general diffusion problem. In fact, any of the
efficient and effective diffusion algorithms can be used in our implementation
framework. We chose the basic random reachable set based method, which is
at the core of notable efficient algorithms (e.g., [23]).

3For lack of space, in the following sections, we present results on specific
networks; however, similar results are obtained for the networks not illustrated
in tables and figures.

I-Graph Seed Budget TOP-INFL TOP-CRIT CRIT-SET
New
Infl

Time
(sec)

New
Infl

Time
(sec)

New
Infl

Time
(sec)

soc-sign-Epinion

9315 10

5 3134 0.01 3015
(4%)

0.24 2857
(9%)

0.98

10 1209 0.01 1033
(11%)

0.24 871
(25%)

1.03

15 1121 0.01 925
(15%)

0.24 710
(35%)

1.06

20 987 0.01 811
(17%)

0.24 629
(34%)

1.09

Network com-DBLP

18298 10

5 4669 0.03 4587
(1%)

0.70 4017
(12%)

3.18

10 3209 0.03 2608
(17%)

0.73 2807
(12%)

3.32

15 2349 0.04 2128
(9%)

0.69 1898
(19%)

3.34

20 2221 0.03 2066
(7%)

0.70 1898
(14%)

3.33

TABLE II
CRITICALITY-INDICATOR & IMPORTANCE WITH SETUP I

Infl Size Seed Budget TOP-INFL TOP-CRIT CRIT-SET
New
Infl

Time
(sec)

New
Infl

Time
(sec)

New
Infl

Time
(sec)

Network DBLP-Tang

23702 10

5 18201 186 17560
(4%)

968 16906
(7%)

1000

10 17893 175 16755
(6%)

919 15009
(16%)

972

15 17889 186 15313
(14%)

988 13920
(22%)

1059

20 17264 185 14529
(16%)

961 12958
(24%)

1060

Network Web-Google

4750 10

5 4016 421 3791
(6%)

1347 3794
(6%)

1357

10 3840 466 3536
(8%)

1416 3524
(8%)

1441

15 3671 455 3278
(11%)

1428 3213
(12%)

1475

20 3494 450 2982
(15%)

1415 2919
(16%)

1466

TABLE III
CRITICALITY-INDICATOR & IMPORTANCE WITH SETUP II

on x%(x ∈ [20, 90]) of the network. We report (New-
Infl) the average influence size in the network using these
different seeds after the nodes are removed. It also includes the
(average) percentage improvement over the baseline TOP-INFL

method. The timing results are given in seconds.
Observe that, if there is a budget constraint on number of

nodes that can be removed, then identifying the critical nodes
can indeed save majority of the network from un-wanted diffu-
sion. For instance, for com-DBLP network a 10-node seed can
influence 18K nodes; however, removing 20 critical nodes help
to reduce the result of diffusion (by virtually any 20 nodes)
to around 1.9K nodes. Next observe that, in all experiments
TOP-CRIT and CRIT-SET have reduced the level of diffusion
more than TOP-INFL. This shows that influential nodes are not
necessarily the ones that can maximize disruption in diffusion.
Furthermore, reduction achieved by CRIT-SET is considerable
(compared to TOP-INFL, in some case as high as 30%).
Setup II: Seed Set Context. In this setting, we considered
the best seed of size k (inducing maximal influence on the
given network) and focus on identifying the nodes to remove
in the context of the given seed.

Recall that, we have used RR set based method. The most



influential nodes are the ones that has the maximal coverage
of RR set ( [3]). For incorporating context information, in
TOP-INFL, we identify the elements (set E ⊆ RR) of RR set
covered by the given seed, and then identify the nodes (other
than those in the seed) that maximally covers E . Similarly, for
TOP-CRIT and CRIT-SET, we only consider the set E to compute
the impact/criticality of the nodes. A node in a particular Gi ∈
E (recall, there are N number of Gi’s generated by reverse
random reachability) is critical only when the removal of the
node disrupts the reachability to all elements of the seed in Gi.
The criticality of a node is equal to the number of elements
in E , where the node is deemed critical. In other words, in
all three methods, the seed nodes drive the selection of nodes
to be removed. After removal of nodes, we re-compute the
expected influence of the original seed set.

In Table III, we report results of experiments using setup
II on some additional networks. It is important to note that in
setup I, the input network is the influence graph generated by
one simulation of the given network from the max seed, and
all results (i.e., New Infl for each method) are with respect to
the influence graph; on the other hand, in setup II, the input
network is the given network, and all results (New infl for each
method) are with respect to the given network. The results
obtained from setup I and setup II are not comparable. How-
ever, the application of criticality in both setups presents one
important commonality. The methods TOP-CRIT and CRIT-SET

render better results when compared to TOP-INFL; CRIT-SET

is considerably more expensive due to submodularity, which
requires some re-computation of criticality of nodes.

B. Role of Budget on Node Removal

Our next set of experiments analyze the relationship be-
tween budget (number of nodes to remove) and the node-
removal strategy. In particular, we are interested in understand-
ing the difference in quality of results obtained by CRIT-SET

and TOP-INFL as the budget increases.
We consider the condensed-matter-collab network (see Ta-

ble I). We find k nodes to remove using CRIT-SET and
TOP-INFL. We record the number of common nodes being
removed (intersection size).
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Fig. 6. (a) Influence size difference for seeds of size 300, (b) Intersection
size of nodes being removed by CRIT-SET and TOP-INFL for budget range
[100− 8, 000].

After removal of k nodes, we consider M size seed set
to start and compute the level of diffusion. Different types
of seeds are computed by considering it maximal influence
on x% of the network (x ∈ [20%, 90%]). For each seed, the
influence size is computed. The average difference between

the influence sizes (after removal of nodes using CRIT-SET

and TOP-INFL) is recorded.
Experiment is conducted by varying k starting from 100 for

two different values of M equals to 300 and 1500. Figure 6(a,
b) presents the difference and intersection size against the
budget values for M = 300. Note that as the budget increases,
the difference in the influence size increases rapidly and then
plateaus, and finally decreases. On the other hand, as the
budget increases, the intersection size of the nodes to be
removed by two methods decreases and then flattens. The
observations can be explained as follows. For smaller budget
k, in this case study, the intersection is high because highly
critical nodes are also highly influential nodes. As a result,
the difference in the influence size after removal of nodes
using the two methods is not large. However, with the increase
in the budget k, the methods proceed to identify moderately
critical nodes (CRIT-SET) and moderately influential nodes
(TOP-INFL)–these sets are not likely to be same/similar. In
other words, CRIT-SET decides to remove nodes (critical nodes)
that are markedly different from the nodes (influential nodes)
being removed by TOP-INFL. This, coupled with the fact that
removal of critical nodes disrupts the diffusion more than the
removal of influential ones (as observed in the last subsection),
the difference between the influence sizes after removal of
influential nodes and after removal of critical nodes increases
as the budget increases. The pattern continues up to certain
budget after which the nodes to be removed again exhibit
the same level of criticality and influence, at which point, the
difference between influence size flattens and starts decreasing.
This is because all the critical and influential nodes, which
have some significant effect on diffusion, have been already
considered for removal.

C. Critical Nodes Removal and Maximal Influence

Our next experiment focuses on validating that max-
imum influence achievable is significantly reduced after
removal of nodes following CRIT-SET. We consider seed
set of size 300 in the condensed-Matter-Collab-Network.
We identify the seeds that can induce the maximal dif-
fusion after removal of nodes, and report the number by
which diffusion after the critical node removal is less
than that after the influential node removal (Figure 7).
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Fig. 7. Disruption of Diffusion
from the Best Seed

CRIT-SET always outperforms
TOP-INFL as the budget in-
creases; the difference increases
till the budget for removal is
2, 000. This is exactly the same
pattern we observed in the
last experimental setup; how-
ever, there is an important dis-
tinction between the two exper-
iments. In the last experiment,

the same seed set is used after the node-removal using
CRIT-SET and TOP-INFL; in the current experiment, the best
seeds (inducing maximal diffusion) is considered after removal
of nodes. As a result, the seeds being considered after removal



of nodes using CRIT-SET is different from the one being con-
sidered after removal of nodes using TOP-INFL. The observa-
tion validates the claim that the maximal diffusion achievable
after critical node removal is less than that achievable after
influential node removal; in other words, removing critical
nodes disrupts the diffusion possible from the best seeds.

D. Importance of Submodularity: TOP-CRIT vs. CRIT-SET

Recall that in our method, CRIT-SET, as we add a node
to the solution set, we re-compute criticality of the rest
of the nodes (hence, the submodularity). The TOP-CRIT, on
the other hand, does not perform such re-computation and
assumes that criticality of a node is a modular property.

Budget σ(RA−B) σ(RB−A)
Network DBLP-Tang

5 74191 3974
10 33453 1635
15 32668 10245
20 91020 15430

TABLE IV
IMPORTANCE OF SUBMODULARITY

Our final set of experiments
focus on the importance of
submodularity in the com-
putation of critical set of
nodes (in particular, when
the source of influence may
not be known a priori). We
compute the solution (say,

A) using CRIT-SET and the solution (say, B) using TOP-CRIT.
Then we compute the set of nodes RA−B that are likely
(probabilistic reachability) to reach the set of nodes A − B
(nodes that are present in A and absent in B). Similarly,
we compute the set RB−A. Intuitively, RA−B (resp. RB−A)
indicates the set of nodes whose influence in the network is
likely to be disrupted due to the removal of nodes in A − B
(resp. B−A). Proceeding further, if the expected influence of
RA−B is larger compared to that of RB−A, then we claim that
removing nodes in A (CRIT-SET) is likely to be more disruptive
than removing nodes in B (TOP-CRIT). Table IV presents
the results of our experiments and affirms the importance of
submodularity in CRIT-SET method.

VI. CONCLUSION

We study the problem of identifying critical nodes for
disrupting influence in complex network under IC diffusion
model. We introduce the characterization of criticality in
terms of impact, which, in turn, describes the reduction in
the diffusion strength of the network. We present a greedy
heuristics for impact computation and design experiments to
validate the effectiveness of our characterization in addressing
the problem.

We plan to consider different heuristics and implementation
strategies to realize the computation of impact; the goal being
application to very large networks efficiently without compro-
mising the quality. Another avenue of research along this line
of work, includes associating costs and hard constraints on the
nodes (e.g., some nodes may not be removed, some nodes may
incur prohibitive cost to remove) and addressing the problem
of constrained cost-effective disruption.
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