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Abstract: Arsenite (AsIII) oxidation is a microbially-catalyzed transformation that directly impacts
arsenic toxicity, bioaccumulation, and bioavailability in environmental systems. The genes for
AsIII oxidation (aio) encode a periplasmic AsIII sensor AioX, transmembrane histidine kinase
AioS, and cognate regulatory partner AioR, which control expression of the AsIII oxidase AioBA.
The aio genes are under ultimate control of the phosphate stress response via histidine kinase
PhoR. To better understand the cell-wide impacts exerted by these key histidine kinases, we
employed 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-coupled mass
spectrometry (LC-MS) metabolomics to characterize the metabolic profiles of ∆phoR and ∆aioS
mutants of Agrobacterium tumefaciens 5A during AsIII oxidation. The data reveals a smaller group
of metabolites impacted by the ∆aioS mutation, including hypoxanthine and various maltose
derivatives, while a larger impact is observed for the ∆phoR mutation, influencing betaine,
glutamate, and different sugars. The metabolomics data were integrated with previously published
transcriptomics analyses to detail pathways perturbed during AsIII oxidation and those modulated
by PhoR and/or AioS. The results highlight considerable disruptions in central carbon metabolism in
the ∆phoR mutant. These data provide a detailed map of the metabolic impacts of AsIII, PhoR, and/or
AioS, and inform current paradigms concerning arsenic–microbe interactions and nutrient cycling in
contaminated environments.
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1. Introduction

Arsenic is the highest priority EPA contaminant due to its prevalence, toxicity, and potential for
wide-spread human exposure [1]. Contamination of water and soil systems across the world has led
to over 200 million human exposures and is associated with a variety of diseases and cancers [2,3].
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The toxicity and bioavailability of arsenic is directly related to its chemical speciation, and in virtually all
environments studied it is well established that microbes are the principal drivers of this speciation [4].
Thus, understanding bacterial arsenic speciation events, how they are regulated, and their associated
metabolic effects are essential for addressing environmental arsenic contamination.

Arsenite (AsIII) oxidation is an important chemical transformation, during which the more toxic
AsIII species is oxidized to less toxic arsenate (AsV). Agrobacterium tumefaciens 5A is a model organism
for AsIII oxidation and research on this organism during the past decade has revealed several key
features about the control of bacterial AsIII oxidation. The AsIII oxidase (AioBA) is regulated by a
three-component signal transduction system: periplasmic AsIII sensor protein (AioX), histidine kinase
(AioS), and its cognate regulatory partner (AioR) [5,6]. AsIII is sensed in the periplasm by AioX,
which then transfers this signal to AioS; AioS phosphorylates AioR, which in turn induces expression
of the AsIII oxidase. AsIII is subsequently oxidized in the periplasm and the resulting AsV (a phosphate
analog) can enter the cytoplasm via phosphate transporters. Recent studies have identified important
regulatory links between the phosphate stress response (PSR) and AsIII oxidation [7,8]. The PSR is
regulated through a two-component signal transduction system (PhoR/PhoB), where the histidine
kinase PhoR is the master regulator controlling expression of aioSRBA [8], in addition to the well-defined
PSR genes [9,10]. Cross talk between these two regulatory pairs, PhoR/PhoB and AioS/AioR, has also
been demonstrated [8]. Improved growth under low-Pi conditions following AsIII exposure and
evidence for partial incorporation of AsV into cellular lipids in A. tumefaciens 5A [8] indicate a close
relationship between these regulatory components.

Recent transcriptomics experiments on A. tumefaciens 5A wild-type, ∆phoR, and ∆aioS strains
reported that AsIII exposure induces global cell responses, many of which involve PhoR and to
a lesser extent, AioS [11]. These data have expanded the traditional view of arsenic impacts to
one that now involves multiple fundamental nutrient cycles. In addition to arsenic resistance and
oxidative stress responses, carbon metabolism, iron metabolism, and various transport systems are
affected. Additionally, initial metabolomics experiments on wild-type A. tumefaciens 5A reported
significant metabolic changes during AsIII exposure and revealed key disruptions in central carbon
metabolism [12]. Together, these studies have laid the foundation for a comprehensive understanding
of arsenic exposure in AsIII-oxidizing bacteria. While metabolomics analysis was performed on
wild-type A. tumefaciens 5A cells, the metabolic adaptations controlled by PhoR and AioS under AsIII

exposure remained poorly understood. We have employed a global metabolomics approach using
liquid chromatography-coupled mass spectrometry (LC-MS) and 1H nuclear magnetic resonance
(NMR) spectroscopy to assess the metabolic adaptations of ∆phoR and ∆aioS mutants during AsIII

exposure and oxidation. Specifically, we aimed to characterize cellular metabolome changes that
result from the disruption of PhoR and/or AioS signaling. The metabolomics data generated provide a
direct read-out of metabolic networks impacted by the regulatory activities of these histidine kinases.
In addition, we assimilated this work with our previous metabolomics and transcriptomics studies on
wild type A. tumefaciens [11,12] to put forth a current, multi-omics model of the cellular roles of PhoR
and AioS, and to provide a more comprehensive and specific description of bacterial adaptations to
AsIII exposure.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions

A. tumefaciens 5A deletion mutants used in this study were derived using previously described
cross-over PCR techniques [7] with levansucrose selection to create in-frame deletions of phoR and
aioS. Growth conditions were as documented in prior reports [7,11,12]. Briefly, WT, ∆phoR, and ∆aioS
strains were cultured in a defined minimal mannitol medium (MMNH4) overnight at 30 ◦C with
aeration [7,13], and then centrifuged for 10 min at 3500× g and washed in 20 mL of 0.85% NaCl.
Cells were resuspended in fresh MMNH4 media with 50 µM phosphate and aliquoted into ten cultures.
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Five of these cultures were supplemented with 100 µM AsIII (five replicates per treatment). All cultures
were incubated for six hours at 30 ◦C with aeration, then collected by centrifugation (10 min at 3500× g)
and rapidly rinsed twice with 20 mL of ice cold 0.85% NaCl. Cell biomass (200 ± 5 mg per sample)
was aliquoted for metabolomics and stored at −80 ◦C. A portion of each sample was also plated on
MMNH4 agar plates for normalization to colony-forming units (CFU).

2.2. Metabolite Extraction

To extract metabolites, cells were treated as reported in Tokmina-Lukaszewska et al. [12]. Briefly,
cells were lysed by two rounds of freeze-thaw in liquid nitrogen followed by sonication on ice for 5 min,
and then extracted with 50% MeOH at −20 ◦C for 30 min. Cell lysates were centrifuged at 20,000× g
for 15 min at −9 ◦C to pellet cell debris. Supernatants were centrifuged through pre-washed 100 kDa
molecular weight cutoff spin filters (Pall Corporation) at 13,000× g for 20 min at 4 ◦C. Spin columns
were washed twice with 100 µL 50% MeOH and centrifugation repeated. All spin column eluates
were centrifuged through a pre-washed 3 kDa spin filter following the same protocol as the 100 kDa
filters. The final eluates were dried using speed vacuum and stored at −80 ◦C until further use for
metabolomics analysis.

2.3. NMR Analysis, Data Processing, and Statistical Procedures

Dried metabolite samples were re-suspended in 600 µL of NMR buffer (0.25 mM
4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) in 90% H2O/10% D2O, 25 mM sodium phosphate,
pH 7), and transferred into 5 mm NMR tubes. All one-dimensional (1D) 1H NMR spectra were
recorded at 298 K using a Bruker AVANCE III solution NMR spectrometer operating at 600.13
MHz (1H Larmor frequency) magnetic field strength. The instrument was equipped with a 5 mm
liquid-helium-cooled TCI cryoprobe with Z-gradient and a SampleJet automatic sample loading system.
NMR data was acquired using the Bruker-supplied 1d water suppression pulse sequence ‘noesypr1d’
with 256 transients, a 1H spectral window of 9600 Hz, 32K data points, a dwell time interval of 52 µs,
and a recovery (D1) delay of 2 s between acquisitions. The NMR spectra were first processed with
the Bruker TOPSPIN 3.5 software (Bruker Inc., Billerica, MA, USA) using standard parameters for
referencing and applying an EM line broadening function of 0.3 Hz. The spectra were phased manually
and a qfil polynomial function of 0.2 ppm in width was applied to subtract the residual water 1H NMR
signal. Metabolite identification and quantification were conducted using the Chenomx v8.3 software
(Chenomx Inc., Edmonton, AB, Canada) and the associated small molecule spectral reference database
for 600 MHz (1H Larmor frequency) magnetic field strength NMR spectrometers [14]. DSS (0.25 mM)
present in each sample was used as an internal reference for metabolite quantification, while the NMR
signals corresponding to imidazole were used to correct for small chemical shift changes originating
from slight pH variations.

Resulting lists of metabolites and concentrations normalized to CFUs were uploaded to
MetaboAnalyst 4.0 [15] for univariate and multivariate statistical analysis. In MetaboAnalyst, metabolite
concentrations were log-transformed and auto-scaled (mean centered divided by the standard deviation
of each variable) prior to univariate and multivariate analysis. Student t-test, 2D principal component
analysis (2D-PCA) and 2D partial least squares discriminant analysis (2D-PLS-DA) were performed
to identify distinct metabolite patterns associated with the different bacterial strains and cell growth
conditions. In addition, variable importance in projection (VIP) scores were generated from 2D-PLS-DA
analyses to assess the significance of each variable (i.e., metabolite) in the projections of the 2D-PLS-DA
model building [15]. Changes in metabolite levels were also used to assess which metabolite profiles
contributed most to the separation of the different cellular groups in resulting 2D-PCA and 2D-PLS-DA
scores plots. Metabolomics data has been deposited in the Metabolomics Workbench repository.
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2.4. LC-MS Instrumentation, Data Acquisition, and Data Processing

LC-MS analysis was performed on an Agilent 1290 UPLC coupled to an Agilent 6538 Q-TOF mass
spectrometer (Agilent Technologies, Santa Clara, CA, USA). MS was conducted in positive ion mode
for hydrophilic interaction liquid chromatography (HILIC) and reverse-phase LC runs. A capillary
voltage of 3500 V, fragmentation voltage of 120 V, and skimmer set at 45 V. Nitrogen drying gas (350 ◦C
at a flow of 12 L/min and nebulizer pressure of 55 psi) were used to facilitate desolvation. Spectra were
collected over a 50–1700 m/z range at a rate of 1 spectrum per second. Samples were run in randomized
order with a pooled sample used for quality control (QC) which was injected at the beginning, middle,
and end of the LC-MS sample queues.

Dried metabolite pellets were resuspended in 50 µL of 50% MeOH, and then chromatographic
separation for polar and non-polar metabolites was achieved using two different LC columns. For polar
metabolites, the cellular extract was diluted 10-fold and 10 µL was injected into a Cogent Diamond
Hydride HILIC column (150 mm × 2.1 mm, 4 µm, 100 Å) (Microsolv Technology Corporation). For the
HILIC column, a 25-min 99%–30%B gradient was employed using 10 mM aqueous CH3COONH4

(solvent B) and 10 mM CH3COONH4 in 95% acetonitrile (solvent A), with a 0.6 mL/min flow rate
and temperature of 25 ◦C. As per QC runs, retention time shift was 14 s and calculated mass error
was 2 ppm, with a 17% relative standard deviation of peak areas. For non-polar metabolites, 10 µL of
undiluted metabolite extract was injected into a Zorbax RRHD Eclipse Plus reverse phase C18 column
(150 mm × 2.1 mm, 1.8 µm) (Agilent Technologies). For the reverse phase column, a 35-min 2%–98%B
gradient was employed using 0.1% formic acid in acetonitrile (solvent B) and 0.1% formic acid (solvent
A). Retention time shift for the C18 column was <2 s, calculated mass error was <11 ppm, and relative
standard deviation of peak areas was <7%.

For MS-MS data collection, the acquisition rate was set at 1 spectrum per second with a scan range
of 50–1300 m/z (auto mode) or 50–800 (targeted mode). Isolation width was 4 m/z and collision energy
set at 35 V for targeted mode or linear gradient for auto mode. Identifications of MS-MS data were
made by matching fragmentation patterns to the MetLin database [16,17] Additional IDs were made
using an in-house database of compounds by m/z match.

MS data acquisition, spectral analysis, and conversion of raw data files to MZxml format was
performed in MassHunter (Qualitative Analysis version B.04.00, Agilent Technologies). XCMS [18]
was used for detection of mass features and alignment, ran with default parameters for UPLC-Q-TOF,
with the exception of peak width settings, which were modified to minimum 5 s and maximum
20 s (C18) and maximum 40 s (HILIC). Any zeros in the data (<0.4% overall) were imputed with
the average of treatment group. MetaboAnalyst 4.0 [15] was used for autoscaling of data, statistical
analysis, and generation of 2D-PCA plots. Metabolomics data has been deposited in the Metabolomics
Workbench repository.

2.5. Transcriptomics Data

Gene expression data incorporated into this study originated from a recently published dataset [11].
Briefly, bacterial strains and growth conditions were the same as described above, except for 10-fold
decreased iron content in the media due to iron interference with RNA extraction and purification.
Iron limitation was judged not to be an issue in the cultures because the short duration of the cell
culture (6 h) would not have resulted in an iron starvation scenario with a beginning iron content of
6 µM. Indeed, Rawle et al. [11] showed there was no evidence of iron limitation in the transcriptional
response (40 out of 41 iron-related genes were down-regulated, the opposite of what would be expected
under iron limitation).

RNA was extracted using a RNeasy® Mini Kit (Qiagen Inc., Germantown, MD, USA) with
DNase digestion on-column. RNA was prepped and sequenced at the Brigham Young University
DNA Sequencing Center (Provo, UT, USA) utilizing the Illumina Ribo-Zero rRNA Removal Kit for
ribosomal RNA depletion and the Illumina TruSeq Stranded Total RNA Sample Prep Kit for cDNA
library creation. cDNA was sequenced using an Illumina HiSeq 2500 platform and raw reads were



Microorganisms 2020, 8, 1339 5 of 18

processed, normalized, and statistically analyzed using Trimmomatic [19], Kallisto [20], and R (package
“Sleuth”) [20]. Only differentially regulated genes with transcript per million (TPM) > 1 (normalized
transcript abundance), fold change > 2, and a q-value < 0.05 were used in the current analysis,
accounting for a total of 1546 genes.

2.6. Pathway Annotation

NMR- and LC-MS-identified metabolites were assigned to different metabolic pathways using the
topology search tool of MetaboAnalyst 4.0 [15], and groups of metabolites were classified according
to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation networks [21,22].
Enzymes annotated to the same KEGG pathways were retrieved and genes from our transcriptomics
dataset were matched with pathways by name and E.C. number (if available).

3. Results

To assess the metabolic impacts of the important regulatory kinases PhoR and AioS during AsIII

oxidation, A. tumefaciens 5A cells were cultured in phosphate limiting conditions to induce aioSRBA
expression via PhoR-B regulation [7,8]. Cells were allowed to grow for six hours to ensure a full metabolic
response to AsIII, as previously documented [7]. The growth conditions mirror those employed in our
previous studies with wild-type A. tumefaciens 5A, which detailed the metabolic responses of wild-type
(WT) cells exposed to AsIII [12] and the transcriptomic responses [11]. The present study focused on
parallel analyses of metabolic changes occurring in ∆phoR and ∆aioS mutant strains, utilizing 1H NMR
and LC-MS for untargeted metabolomics analysis.

3.1. Metabolomics Profiles of ∆phoR and ∆aioS Mutants

1H NMR analysis of metabolite extracts from WT, ∆phoR, and ∆aioS A. tumefaciens cells cultured
with and without AsIII resulted in the unambiguous identification and quantification of 33 intracellular
metabolites present in each sample group. To visualize the overall metabolic differences between
WT and the ∆phoR and ∆aioS mutants, an unsupervised 2D principal component analysis (2D-PCA)
was performed (Figure 1A,B). 2D-PCA scores plots indicated that the WT and ∆aioS metabolomes
differed very little, irrespective of the presence or absence of AsIII. In contrast, the ∆phoR A. tumefaciens
mutant clearly separated from that of WT and ∆aioS strains, both in the presence and absence of
AsIII (Figure 1A,B). This observation supports previous reports about PhoR function in phosphate
limiting conditions [9,23,24], and reveals metabolic adaptations that are reflected in distinct patterns
of gene expression [11]. Specifically, PhoR has a considerably larger metabolic footprint in both the
absence and presence of AsIII compared to AioS. NMR metabolite profiles were further analyzed using
2D partial least squares discriminant analysis (2D-PLS-DA) to identify metabolites whose change in
abundance contribute most to the separation between the A. tumefaciens 5A WT, ∆aioS, and ∆phoR
groups, as determined by variable importance in projection (VIP) scores (Table S1). Only metabolites
with VIP values greater than one were considered to be significant [15], and used in subsequent
metabolic pathway impact analysis.

To extend metabolome coverage, untargeted LC-MS analysis was performed using both
reverse-phase (RP) and HILIC chromatography. In total, 3092 non-polar (RP) and 1010 polar (HILIC)
features were detected across all samples (Tables S2 and S3). The larger number of non-polar features
is consistent with trends observed in previous metabolomics analyses of WT cells [12]. Of the detected
LC-MS features, 23 metabolites were identified by accurate mass and fragmentation pattern (MS-MS).
An additional 18 were identified using an in-house standard database, with five metabolites identified
using both methods. 2D-PCA was performed on all MS features to display separation patterns between
groups (Figure 1C–F). In the presence of AsIII (Figure 1D,F), WT and ∆aioS profiles were more similar
to each other, whereas ∆phoR was more distinct; these patterns are similar to those identified by NMR
(Figure 1B). In the absence of AsIII, no separation between the three different A. tumefaciens cell types is
observed, as assessed by the non-polar metabolite profiles (Figure 1E). This finding indicates that these
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pools of non-polar metabolites are not heavily impacted by the aioS and phoR mutations. However,
a distinct separation between WT and ∆aioS was observed based on differential polar metabolite
profiles in the absence of AsIII (Figure 1C), and less so in the presence of AsIII (Figure 1D). Differences
between WT and ∆aioS cells in the presence of AsIII were most apparent in the non-polar metabolite
fraction (Figure 1F). These patterns suggest that in the absence of AsIII, polar metabolite pools are more
affected by the loss of AioS function, whereas in the presence of AsIII, non-polar metabolites are more
impacted by loss of AioS. With respect to PhoR, the non-polar metabolite pool was the least sensitive to
the ∆phoR mutation in the absence of AsIII (Figure 1E), while all other comparisons resulted in distinct
∆phoR separation from the other cell types (Figure 1A–D,F).Microorganisms 2020, 8, x FOR PEER REVIEW 6 of 18 
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Figure 1. 2D Principal Component Analysis (i.e., 2D-PCA scores plots) of metabolite profiles from
1H nuclear magnetic resonance (NMR) and untargeted liquid chromatography-mass spectrometry
(LC-MS) metabolomics data. Metabolites from cultures grown without AsIII: (A) NMR, (C) polar
LC-MS, and (E) non-polar LC-MS metabolites. Metabolites from cultures grown in the presence of
AsIII: (B) NMR, (D) polar LC-MS, and (F) non-polar LC-MS. Wild-type (WT) = purple; ∆phoR = green;
∆aioS = red. Shaded ellipses denote 95% confidence intervals.

Pairwise comparisons of metabolite profiles were examined between WT and ∆aioS and ∆phoR
mutants using the 1H NMR and LC-MS metabolomics data. Among identified metabolites, 37 exhibited
significantly different levels between sample groups (Table 1). These metabolites included amino acids
(Ala, Pro, Val, Trp, Tyr, Arg, Leu, Ile, Lys), sugars (ribose, sucrose, maltose, maltohexose, maltotetraose,
maltopentaose), and other key metabolic indicators of cell function (betaine, choline, cytosine, adenosine,
putrescine, nicotinate). Most fold changes were in the 1.5–3 range, though some were as high as
10-fold (betaine, sorbitol). Comparing differences between the strains highlighted specific metabolic
patterns and regulatory networks involving PhoR and AioS that include: (i) metabolites variably
affected by both histidine kinases regardless of AsIII (e.g., β-alanine, betaine) or exclusively in the



Microorganisms 2020, 8, 1339 7 of 18

presence of AsIII (e.g., arginine, glutamate); (ii) metabolites affected only by PhoR, whether in the
absence of AsIII (e.g., maltose, dipeptide Ala-Gly), presence of AsIII (e.g., 5-oxoproline, isonicotinate),
or both (e.g., cytosine, glutamine) and iii) metabolites affected only by AioS, whether in the absence of
AsIII (e.g., hypoxanthine) or only the presence of AsIII (e.g., maltopentose). Similar to the information
visualized in 2D-PCA scores plots (Figure 1), changes in these metabolite abundance patterns (Table 1)
report on the distinct metabolomes of ∆phoR and ∆aioS, and detail more specifically which metabolites
are affected by either PhoR or AioS, or both.

Table 1. Metabolites identified by liquid chromatography-mass spectrometry (LC-MS) and 1H nuclear
magnetic resonance (NMR) in wild-type (WT) and mutants, with data represented as fold changes.
Only fold changes associated with a p-value ≤ 0.05 are listed, unless otherwise noted. Metabolites are
classified by regulators that appear to be involved in expression (PhoR and/or AioS). STD = LC-MS
identification by authentic standard database (MS data).

Metabolite ID Method WT(+As)/
WT(-As) 4phoR/WT 4aioS/WT Regulation

No AsIII + AsIII No AsIII + AsIII Genes
Involved

Beta-Alanine NMR 1.5 −1.2 −2.0 1.1 −1.3 PhoR, AioS
Betaine MS-MS −4.6 −6.3 −10.2 −2.0 PhoR, AioS

D-Mannosamine a STD −1.5 2.6 4.1 3.4 * PhoR, AioS
D-sorbitol MS-MS −1.5 9.8 10.6 8.5 4.7 PhoR, AioS
L-Alanine NMR, MS-MS 1.3 −1.1 1.2 −1.1 −1.2 PhoR, AioS
L-Proline MS-MS, STD −1.4 * −3.4 −2.2 −2.3 PhoR, AioS
L-Valine NMR 2.2 1.6 1.4 1.1 −1.3 PhoR, AioS
Lactate NMR 2.0 2.0 1.5 1.3 −1.2 PhoR, AioS

Maltotriose MS-MS 2.1 −4.6 −3.9 −2.0 PhoR, AioS
Mannitol NMR −1.2 * 3.7 10.8 −2.1 1.8 PhoR, AioS
Sucrose MS-MS 1 * −2.7 −3.4 −1.7 PhoR, AioS

Adenosine b STD −7.7 −6.0 −2.3 PhoR, AioS
Palatinose STD −3.1 −2.0 PhoR, AioS
L-Arginine MS-MS, STD 1.1 * −2.1 −2.3 PhoR, AioS

L-Glutamate MS-MS, NMR 1.8 2.9 −1.8 PhoR, AioS
L-Tryptophan MS-MS 1.4 * −1.9 −1.6 PhoR, AioS
D-Raffinose c STD 2.9 * −6.2 −4.9 PhoR, AioS

Cytosine MS-MS, NMR 2.4 −2.0 −1.7 PhoR
Glycerophosphocholine MS-MS −1.6 2.1 3.5 PhoR

L-Glutamine STD, NMR 3.3 −2.2 −3.1 PhoR
L-Isoleucine NMR 1.6 −1.2 −1.5 PhoR
L-Leucine NMR 1.7 −1.4 −1.3 PhoR

L-Phenylalanine NMR, MS-MS 1.5 −1.2 −2.9 PhoR
Nicotinate NMR 1.3 −1.4 −1.3 PhoR
Putrescine NMR 1.5 −1.6 −1.1 PhoR

Ribose NMR, MS-MS, STD 1.3 −1.4 −1.4 PhoR
Maltose NMR, STD 1.3 * 1.8 PhoR
Ala-Gly STD −4.8 PhoR

5-oxoproline MS-MS 1.8 −2.7 PhoR
Isonicotinate MS-MS 2.4 −1.7 PhoR

L-Lysine MS-MS, NMR, STD 1.5 −1.7 PhoR
Stachyose STD 1.8 −1.7 * PhoR

Oxypurinol NMR 3.4 6.1 1.1 AioS
Hypoxanthine MS-MS, STD 8.0 * 6.3 AioS
Maltohexaose MS-MS 1.1 * 1.7 AioS
Maltotetraose MS-MS 1.9 1.6 AioS
Maltopentaose MS-MS 1.5 * −1.7 AioS

* Fold change associated with a p-value > 0.05. a additional ID: D-Galactosamine. b additional ID: 2′-Deoxyguanosine.
c additional ID: D-Melezitose.

3.2. Pathway Analysis Using Transcriptomics and Metabolomics Data

To interpret the metabolomics results within a most up-to-date context, we integrated the new
findings on the ∆phoR and ∆aioS metabolomes (Table 1, Figure 1) with our recent WT A. tumefaciens
transcriptomics and metabolomics data [11,12]. To accomplish this, transcripts and metabolites
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were classified according to KEGG pathway designations to survey whether a cellular pathway was
influenced at either or both omics levels. A full detailed list of impacted metabolic pathways in the WT
and mutants is included in Table S4 and summarized in Figure 2. Important caveats to consider in
these pathway analyses are that some metabolites (e.g., glutamate) are common to numerous KEGG
pathways and thus linking them to specific genes/functions is challenging. Furthermore, it is important
to keep in mind that changes in gene expression do not always occur on the same timescale as changes
in metabolite levels; thus, at a single time point after perturbation, a one-to-one correspondence
between transcriptomics and metabolomics changes is not always expected. Below we examine these
pathways not to overstate correlations between transcriptomics and metabolomics data, but rather to
survey the evidence of potential cellular networks impacted by AsIII exposure and regulated by PhoR
and/or AioS in these strains.

At a global level of analysis in the wildtype strain, perturbations of gene transcription and
metabolite levels were apparent for a number of KEGG pathways (Figure 2, Table S4). In comparing
the ∆phoR and ∆aioS mutants to WT, seven KEGG pathways were found to be perturbed as a result
of AsIII exposure in both mutants at both transcriptional and metabolic levels (Figure 2A, Table S4).
These pathway classifications mirrored metabolite abundance trends (Figure 1, Table 1) where PhoR
consistently had a larger influence over metabolism than AioS. In some cases, PhoR influence on cellular
pathways involved metabolic networks that were not impacted by AsIII. For example, when comparing
the ∆phoR mutant to the WT with respect to arginine and proline metabolism (Table S4), down-regulation
of genes encoding homospermidine synthase (AT5A_02715), proline dipeptidase (AT5A_23006), and a
spermidine/putrescine transporter (AT5A_20446) matched the observation of reduced levels of proline
and putrescine, irrespective of AsIII exposure. Within this same pathway category however, changes in
several gene transcripts and relevant metabolites were observed in the ∆phoR mutant but only in the
presence of AsIII. Examples included genes coding for arginase, an arginine biosynthesis bifunctional
protein (argJ), and ornithine cyclodeaminase, where transcript expression patterns correlated with
observed altered levels of arginine and glutamate (Table S4). AioS seemed to play a much smaller role,
only affecting the expression of one or two genes and/or metabolite levels in each pathway during AsIII

exposure (Figure 2A, Table S4). Specifically, decreased transcript levels of ornithine cyclodeaminase
and decreased levels of arginine and glutamate were the only changes observed in the arginine and
proline metabolism cluster for the ∆aioS mutant compared to the WT in the presence of AsIII (Table S4).

Other cellular pathways impacted by AsIII in both ∆aioS and ∆phoR mutants included glutathione
metabolism, pantothenate and coenzyme A metabolism, galactose metabolism, fructose and mannose
metabolism, and valine, leucine, and isoleucine metabolism (Figure 2A). Again however, the influence
of AioS was much less extensive than PhoR. Other pathway designations impacted exclusively by
PhoR (Figure 2B) included phenylalanine and nicotinate/nicotinamide metabolism, suggesting these
responses do not directly involve AioS.

Several pathways were affected by PhoR at both transcriptomics and metabolomics levels, but only
at one or the other of the omics levels by AioS (Figure 2C,D). These included five pathways that
were influenced at the gene level in both mutants and at the metabolite level by PhoR but not
AioS (Figure 2C). These networks were associated with changes in gene transcripts/metabolites
involved in the pentose phosphate pathway, sucrose/starch metabolism, glycolysis/gluconeogenesis,
purine metabolism, and glycerophospholipid metabolism. It appears that the few AioS-regulated
genes differentially expressed in these categories did not have a direct effect on metabolite pools,
at least at the bacterial cell growth time point sampled in this study (Table S4). Pathways with
∆aioS and ∆phoR perturbation at the metabolite level, but with gene expression changes only in the
∆phoR mutant (Figure 2D), included the shikimate pathway, and metabolism of glyoxylate, pyruvate,
taurine/hypotaurine, pyrimidines, glutamate/glutamine, alanine, and aspartate. These patterns suggest
that the influence of AioS on metabolite levels may be due to AioS-based gene regulation further up or
downstream of the relevant pathways, or as a result of gene regulation that was not captured in the
transcriptomics data obtained after six hours of cell response to AsIII.



Microorganisms 2020, 8, 1339 9 of 18
Microorganisms 2020, 8, x FOR PEER REVIEW 9 of 18 

 

 

Figure 2. Cellular functions perturbed by AsIII in WT and mutants, which contribute to observed 
differences between treatments. Only genes and metabolites that were different in pairwise 
comparisons (WT +/- AsIII; mutant + AsIII vs. WT + AsIII) are shown. Data was classified by KEGG 
pathways. (A) Pathways perturbed at the transcript and metabolite levels in the WT + AsIII and in both 
mutants + AsIII. (B) Pathways altered at the transcript and metabolite levels in the WT + AsIII and in 
the ΔphoR mutant + AsIII. (C) Pathways altered at both the transcript and metabolite levels in the WT 
+ AsIII and the ΔphoR mutant + AsIII, but only at the transcript level in the ΔaioS mutant + AsIII. (D). 
Pathways regulated in the WT + AsIII, both at the transcript and metabolite levels in the ΔphoR mutant 
+ AsIII, but only at the metabolite level in the ΔaioS mutant + AsIII. 

Several pathways were affected by PhoR at both transcriptomics and metabolomics levels, but 
only at one or the other of the omics levels by AioS (Figure 2C,D). These included five pathways that 
were influenced at the gene level in both mutants and at the metabolite level by PhoR but not AioS 

Figure 2. Cellular functions perturbed by AsIII in WT and mutants, which contribute to observed
differences between treatments. Only genes and metabolites that were different in pairwise comparisons
(WT +/- AsIII; mutant + AsIII vs. WT + AsIII) are shown. Data was classified by KEGG pathways.
(A) Pathways perturbed at the transcript and metabolite levels in the WT + AsIII and in both mutants +

AsIII. (B) Pathways altered at the transcript and metabolite levels in the WT + AsIII and in the ∆phoR
mutant + AsIII. (C) Pathways altered at both the transcript and metabolite levels in the WT + AsIII and
the ∆phoR mutant + AsIII, but only at the transcript level in the ∆aioS mutant + AsIII. (D). Pathways
regulated in the WT + AsIII, both at the transcript and metabolite levels in the ∆phoR mutant + AsIII,
but only at the metabolite level in the ∆aioS mutant + AsIII.

3.3. Multi-Omics Mapping of Carbon Metabolism during AsIII Exposure

To focus on important controls affecting cell metabolism during AsIII exposure, the metabolomics
and transcriptomics data were integrated into a detailed model of potential carbon flow taking
into account the regulatory influences of PhoR and AioS during AsIII oxidation (Figures 3–5,
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Figures S1 and S2). Carbon flow begins with mannitol, the sole carbon source in the minimal media.
This model builds upon previous work which detailed metabolic bottlenecks in carbon metabolism as
a result of AsIII inhibition of pyruvate dehydrogenase (PDH) [25] and α-ketoglutarate dehydrogenase
(KGDH) [26].These inhibitory blocks lead to metabolic diversions stemming from pyruvate and
α-ketoglutarate [12], as well as the build-up of hypoxanthine resulting from xanthine oxidase
inactivation by AsIII. These bottlenecks presumably arose from post-translational enzyme inactivation
and thus would not necessarily be correlated with a transcriptional response.Microorganisms 2020, 8, x FOR PEER REVIEW 11 of 18 
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Figure 3. Model of carbon metabolism in the WT during AsIII exposure, with mannitol being the
initial substrate. Reaction steps were derived from KEGG pathway maps using the most parsimonious
routes of metabolite formation, noting that not all enzyme reaction steps are depicted in the model.
When multiple intermediates are involved between illustrated metabolites, the number of reactions is
shown; i.e., ×3, with the number of intermediates identified shown in parentheses. Green text denotes
metabolites increased in abundance; blue text denotes metabolites decreased in abundance. Red dashed
vector arrows indicate reactions suggested to be inhibited by AsIII; (PDH = pyruvate dehydrogenase;
KDGH = alpha-ketoglutarate dehydrogenase). Transcripts are denoted by AT5A identification number
(purple text), with a triangle indication increased expression (←) or decreased expression (↔) upon
AsIII exposure.
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Figure 4. Model of carbon metabolism in the ∆aioS mutant vs WT during AsIII exposure, with mannitol
being the initial substrate. Reaction steps were derived from KEGG pathway maps using the most
parsimonious routes of metabolite formation, noting that not all enzyme reaction steps are depicted in
the model. When multiple intermediates are involved between illustrated metabolites, the number
of reactions is shown; i.e., ×3, with the number of intermediates identified shown in parentheses.
Green text denotes metabolites increased in abundance; blue text denotes metabolites decreased in
abundance. Red dashed vector arrows indicate reactions suggested to be inhibited by AsIII. Transcripts
are denoted by AT5A identification number (purple text), with a triangle indication increased expression
(←) or decreased expression (↔). Underlined text indicates metabolites or transcripts for which the
change in abundance when compared to the WT was the same with or without AsIII.

To make comparisons with the mutants, we first examined the metabolomics and transcriptomics
model for the WT +/- AsIII (Figure 3). The data continue to support the concept of metabolic diversion
due to protein inactivation. No genes that were differentially expressed were found that directly affect
the levels of xanthine and hypoxanthine, suggesting that their change in abundance upon AsIII exposure
is due to the known AsIII inactivation of xanthine oxidase [27,28], as previously hypothesized [12].
For the metabolite diversions at the PDH and KGDH reaction steps, several relevant genes were
found to be differentially expressed, but they did not seem to exert a strong influence on overall
metabolite levels. For example, the gene encoding dihydroxy-acid dehydratase (AT5A_22266) was
decreased 2.2-fold during AsIII exposure. This enzyme is involved in valine and isoleucine production
from pyruvate; however, valine and isoleucine levels were increased following AsIII exposure in the
WT (Figure 3, Table S4). Potential reasons for apparent differences between gene expression and
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associated metabolite levels include: (i) the change in mRNA level does not significantly impact
protein level, and/or (ii) there exists a temporal shift between transcription and associated metabolic
changes that is not captured in this single sampling time point of cellular growth and response to
AsIII. By comparison, an example of metabolite change and transcript expression that were consistent
with each other, included increased levels of ornithine and putrescine, with concurrent increase in
transcript expression of ornithine decarboxylase (AT5A_00120), which may account for the observed
increased putrescine levels. Furthermore, transcription of genes coding for putrescine transporters
was decreased, which could restrict putrescine trafficking in and out of the cell. Overall however,
metabolite abundances in the WT were increased irrespective of transcript up- or down-regulation and
this pattern seems to be more strongly associated with AsIII inactivation of key enzymes rather than
transcriptional control affecting the metabolic flow through these pathways (Figure 3).Microorganisms 2020, 8, x FOR PEER REVIEW 13 of 18 
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Figure 5. Model of carbon metabolism in the ∆phoR mutant vs WT during AsIII exposure, with mannitol
being the initial substrate. Reaction steps were derived from KEGG pathway maps using the most
parsimonious routes of metabolite formation, noting that not all enzyme reaction steps are depicted in
the model. When multiple intermediates are involved between illustrated metabolites, the number of
reactions is shown; i.e., ×3, with the number of intermediates identified shown in parentheses. Green
text denotes metabolites increased in abundance; blue text denotes metabolites decreased in abundance.
Red dashed vector arrows indicate reactions suggested to be inhibited by AsIII. Transcripts are denoted
by AT5A identification number (purple text), with a triangle indication increased expression (←) or
decreased expression (↔). Underlined text indicates metabolites or transcripts for which the change in
abundance when compared to the WT was the same with or without AsIII.
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Considering the same model of carbon metabolism discussed above (Figure 3), regulatory impacts
of the ∆aioS mutation appeared very limited when compared to the WT grown in the presence of
AsIII (Figure 4), affecting only 13 metabolites and four genes (though none of the affected genes were
the same as those affected in the WT upon AsIII exposure, (Figure 3). Almost all affected metabolites
and genes in the ∆aioS mutant were decreased in abundance as compared to the WT, implying that
AioS-based signaling in the WT cells would normally have an enhancement effect. Focusing on
the enzyme blockages, no change in hypoxanthine and xanthine levels were observed in the ∆aioS
mutant grown in the presence of AsIII, nor were any associated transcript levels altered, suggesting
that the changes in the WT (Figure 3) are due to AsIII inactivation of xanthine oxidase and not ∆aioS
influence(s). Regarding the PDH and KGDH enzyme blockages, however, AioS appeared important
for production of valine and lactate, and glutamate and arginine, respectively, although transcriptional
influence was minimal. Expression of two genes, encoding enzymes involved in the breakdown
of valine (AT5A_1590, 1595), may have had influence over valine levels, which were decreased in
the ∆aioS mutant, and decreased expression of transcripts encoding an ornithine cyclodeaminase
(AT5A_17276) could have contributed to the observed decrease in arginine levels. The few other
metabolites that were decreased in abundance in the ∆aioS mutant (β-alanine, tryptophan, raffinose,
maltotriose, and maltopentose) were not associated with any direct observed transcriptional change in
obviously relevant genes, at least according to our current gene annotations.

The ∆phoR mutation had a much larger influence on metabolism with regard to both transcription
and metabolites (Figure 5). Two genes (AT5A_16821, 09485) and the majority of metabolites that
were differentially expressed in the WT during AsIII exposure (Figure 3), were further impacted
by PhoR (Figure 5), as well as an additional 26 genes, indicating the necessity of PhoR for normal
metabolic function during AsIII exposure. One exception corresponded to hypoxanthine metabolism,
where xanthine and hypoxanthine levels appeared unaffected by the ∆phoR mutation (as well as ∆aioS,
Figure 4) as compared to WT levels. This again indicates that AsIII inactivation of xanthine oxidase is
the primary source of altered levels of these metabolites (Figure 3). Irrespective of the presence of AsIII,
metabolites altered in the ∆phoR mutant (but not ∆aioS) included isoleucine, leucine, lactate, valine,
nicotinate, ribose, and sucrose. At the transcriptional level, some gene expression patterns seemed to
be altered either in the absence (Figure S2) or presence of AsIII (Figure 5), but few genes were affected
in both conditions (Figure 5). Many perturbed genes in the ∆phoR mutant grown in the presence AsIII

encode functions centered around the PDH blockage, particularly genes encoding enzymes for the
catabolism of leucine, isoleucine, and valine to acetyl-CoA. However, the levels of the corresponding
metabolites were unaltered by AsIII exposure (rather, just the ∆phoR mutation). Thus, it appears that
the PhoR impact over transcriptional expression did not translate into a significant effect on the levels
of those metabolites when the ∆phoR mutant is grown in the presence of AsIII. In contrast, at the
KGDH blockage, most of the metabolite and transcriptional changes affected in the ∆phoR mutant were
linked to AsIII exposure. Clearly, perturbation of metabolite and transcript levels demonstrate that
PhoR influences the metabolic flow of glutamate during AsIII exposure (Figure 5). When viewed at a
broad perspective, the trends indicate that PhoR has a significant impact on carbon metabolism during
AsIII exposure.

4. Discussion

Research on AsIII-resistant organisms has characterized various functions induced by AsIII

exposure [11,29–33], ranging from direct arsenic responses like arsenic resistance (ars genes),
AsIII oxidation and oxidative stress, to general cell functions including remodeling of carbon and amino
acid metabolic pathways. There are several underlying factors that influence these metabolic changes
during AsIII exposure and, as we document for A. tumefaciens 5A, can be quite complex. These factors
include: (1) protein inactivation by AsIII; (2) PhoR- and AioS-based regulation and (3) influences of
other AsIII-responsive systems (e.g., ars genes). To clearly highlight factors driving cell metabolism
during AsIII oxidation, each will be discussed in turn with a focus on carbon metabolism.
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4.1. Protein Inactivation by AsIII

AsIII inactivation of specific enzymes is well documented [34] and is undoubtedly a major factor
impacting the metabolite patterns observed in our data. There are enzymes where inhibition by AsIII is
well characterized and as such offer an opportunity to directly assess whether there are other layers of
cell response(s) at play. Specifically, is the altered carbon flow inferred from the metabolomics studies
due solely to enzyme inhibition or is there evidence that the cell response is more direct and organized?
The advanced status of our understanding of the regulatory systems governing AsIII responses in
A. tumefaciens 5A provides a good opportunity to examine this directly, although with some caveats
(discussed below).

One example is xanthine oxidase, which is inactivated as a result of AsIII interaction with the
enzyme molybdenum cofactor [28,35]. Other similarly affected key cellular proteins include pyruvate
dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), and branched-chain alpha-ketoacid
dehydrogenase complexes, which require a dihydrolipoamide subunit that is deactivated by AsIII [36,37].
The resulting enzyme dysfunction leads to repurposing of the carbon metabolic pathways without
necessarily invoking gene transcriptional changes [12,32]. This pattern of AsIII inactivation was evident
for xanthine oxidase, where levels of xanthine and hypoxanthine were altered in the WT + AsIII

group (Figure 3, Table S4), but without any transcriptional influence in the WT (Figure 3) or in the
mutants in the presence of AsIII (Figures 4 and 5). With respect to the pathway blocks at PDH and
KGDH however, the results are more complex to interpret. Formate, malate, and fumarate were the
only metabolites whose levels were impacted in the WT without any associated WT transcriptional
changes (Figure 3) or mutant effects (Figures 4 and 5), and thus seem to be impacted mainly by
post-translational AsIII-inactivation of PDH or KGDH. Levels of other metabolites stemming from
pyruvate and α-ketoglutarate metabolism, however, appear to be additionally influenced by other
factors because transcriptional and/or metabolite alterations were observed in both mutant strains
(Figures 4 and 5, Table S4).

The WT data do not provide strong evidence for a transcriptional influence over genes that encode
metabolic enzymes which could be used to bypass the PDH or KGDH bottlenecks, as the small amount
of WT transcriptional changes did not translate into significant changes in metabolite levels (Figure 3).
However, the importance of phosphoenolpyruvate (PEP) carboxykinase (AT5A_17576) in committing
cell metabolism to gluconeogenesis could indicate an important step that directs cell metabolism
towards production of sugars (maltose, ribose, raffinose, stachyose) (Figure 3), or to support metabolic
flow into the shikimate pathway (as evidenced by the clear patterns observed in the data shown in
Figure 3). AsIII influence over levels of ornithine and putrescine, and the relevant enzymes ornithine
decarboxylase and putrescine transporters in the WT (Figure 3), could indicate a way to increase
intracellular putrescine as a mechanism of stress management. Putrescine concentrations have been
positively correlated with growth and play a role in stimulating transcriptional responses under stress,
where cells with impaired putrescine metabolism display defective stress responses [25].

4.2. PhoR- and AioS-Based Regulation

In addition to AsIII-inactivation of key enzymes, PhoR and AioS regulatory controls impact
cellular metabolism in A. tumefaciens 5A during AsIII exposure [7,8,11]. PhoR impacts on metabolic
profiles were evident across the board, while AioS’s influence was considerably smaller, consistent with
published transcriptomics data [11] (Figures 2, 4 and 5, Table S4). By mapping identified metabolites
in the context of our data on the regulation during AsIII exposure in A. tumefaciens 5A, we were
able to incorporate the data within the most current framework of impacted networks (Figures 2–5).
Considering carbon metabolism as an example, PhoR and AioS both influence metabolic flow. At the
PDH block, for example, expression patterns for genes encoding functions that facilitate the conversion
of pyruvate to various amino acids indicated that PhoR has a greater impact on cellular functions in the
presence of AsIII (Figure 5), although the changes in associated metabolite levels were not AsIII-specific
(Figure 5) and the transcriptional changes, by themselves, would indicate that carbon flow through
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these metabolites would be reduced. On the other hand, AioS affected several metabolites in the
presence of AsIII, but not in conjunction with transcriptional changes. There were however, tighter
correlations of relevant mRNA and metabolite levels at the KGDH-catalyzed reaction step where
both metabolite and transcriptional changes in the ∆phoR mutant were observed in the presence of
AsIII. It is evident that AioS and PhoR impact carbon metabolism because of altered metabolite and/or
gene transcription levels in the mutants, although correlation between the two omics levels does not
always offer clear insights into the mechanism. Furthermore, this suggests that there may be other
uncharacterized factors at play (discussed further below).

As seen in other multi-omics datasets, increases or decreases in the abundance of transcripts and
metabolites is not always correlated [38–40]. Moreover, gene transcription changes do not account
for post-translational modifications nor is metabolite flow necessarily directly correlated with steady
state metabolite levels [40]. Therefore, viewing network connectivity and perturbation as a whole is
important for understanding the biological significance of metabolite level changes identified from
omics data [41,42], as only studies detailing temporal changes in mRNA and metabolite fluxomics
would be able to directly make these types of correlations. As such, the consistency of pathway-level
perturbations inferred from mRNA and metabolite levels in the ∆phoR and ∆aioS mutants (Figure 2,
Table S4) demonstrates that AsIII, PhoR, and AioS (to a lesser extent) are important regulators of global
metabolism during a transition phase where cells prepare themselves to cope with the toxic effects of
AsIII, in addition to inducing AsIII oxidation.

4.3. Influences of Other AsIII-responsive Systems

A third level of metabolic regulation likely occurs through other transcriptional regulators. PhoR
is known to regulate a considerable number of transcriptional regulators (~50 in A. tumefaciens 5A) [11],
and some of the metabolic perturbations in our study are undoubtedly the result of downstream
signaling mediated by these proteins. Other regulatory impacts observed in the strains could be due to
the ArsR proteins, which are AsIII-sensitive transcriptional regulators that control arsenic-microbial
interactions. Traditionally these proteins have been characterized as classic repressors; however, recent
studies indicate that ArsR proteins in A. tumefaciens 5A have both repressor and activator activity [43]
over a variety of cell functions in addition to arsenic resistance. We have documented that AioS impacts
transcriptional expression of two of these proteins, ArsR2 and ArsR4 in the presence of AsIII, and there
are also two uncharacterized ArsR family regulators impacted in the mutants (one by AioS, one by
PhoR) [11]. The metabolic footprint of these regulators is likely another important factor contributing
to the global cell regulation during AsIII exposure in A. tumefaciens 5A. Additionally, in both the
∆phoR and ∆aioS mutants under AsIII exposure, transcriptional responses for a considerable number
of uncharacterized proteins (almost 100 in ∆phoR vs. WT, 21 in ∆aioS vs. WT) was documented [11],
and it would not be unreasonable to suggest that one or more of these proteins impact the metabolic
responses documented in this study.

As a final consideration, even though prior work showed full induction of AsIII oxidation at
six hours under phosphate limiting conditions [7], it is at least possible that a full transition to an
environment with AsIII may take longer, and that the cells harvested at six hours were still in the midst
of adjusting their overall metabolic response. Assessing later time points would provide evidence as
to whether the apparent uncoupling of gene and metabolite expression is a result of cells being in a
transitional metabolic state, and/or simply a confounding factor of sampling metabolism at a single
time point of cellular growth and AsIII exposure.

In summary, PhoR and AioS are important regulators that govern metabolic responses in
A. tumefaciens 5A during AsIII exposure. Transcriptional and metabolic profiles of the ∆phoR and
∆aioS mutants demonstrated a large contingent of cell functions affected by PhoR, but a considerably
smaller number affected by AioS. In addition to documented arsenic-specific responses like AsIII

oxidation and arsenic resistance, PhoR and AioS were shown to influence fundamental cell functions
under AsIII-PSR conditions, including carbon, amino acid, and sugar metabolism. This study has
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provided metabolic profiles detailing PhoR and AioS influence, linked these data to generate the most
up-to-date framework for understanding the role of these key regulators, and provided a starting point
for investigating key metabolic changes unexplained by current protein annotations in A. tumefaciens
5A. These insights indicated metabolic networks that respond to AsIII exposure and highlight the
impact that AsIII-oxidizing microbes likely have on key biogeochemical cycles in ecological systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/9/1339/s1,
Figure S1: Model of carbon metabolism in the ∆aioS mutant vs. WT without AsIII, with mannitol being the initial
substrate; Figure S2: Model of carbon metabolism in the ∆phoR mutant vs. WT without AsIII, with mannitol
being the initial substrate title; Table S1: Metabolite concentrations quantified by 1H NMR spectra of control and
arsenic stressed samples. Concentration data are presented as mean (µM) and standard deviation (SD); Table S2:
XCMS output containing normalized abundances, m/zs, and retention times for HILIC LC-MS data; Table S3:
XCMS output containing normalized abundances, m/zs, and retention times for C18 LC-MS data; Table S4: Fold
changes for genes and metabolites differentially regulated in WT and mutants, categorized according to KEGG
pathway annotation.
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