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1. Introduction

Without definition, we begin with some simple examples of the diagrams considered
in this paper. Once we arrive at a formal definition, the reader may check back to verify

the calculations here as exercises. For example we will see how, in a precise way, Q M
denotes the diagonal of matrix M while @ M s its trace. We will see matrix N, as a

second-order tensor, represented as g _,g and the sum of its entries as o~ ,~. The
ordinary matrix product of M and N is effected by a series reduction on diagrams as
evidenced by the scaffold equation g M, V.9 — @MV, q; likewise, entrywise multiplica-

M
tion is effected by a parallel reduction since we have @‘ — @ Mol g If I is a graph

O—0
A A

on vertex set X with adjacency matrix A, then .. is an integer equal to the

number of homomorphisms from the cycle of length four into graph I'. By contrast, if we

denote the adjacency matrix of the complement of I' by A’ = J— 1 — A, then

is a vector of length |X| and, for each vertex v of I', the v entry of this vector is twice
the number of induced cycles of length four passing through v.

Originating from unpublished notes of Neumaier (ca. 1989) and tensor calculations
of Terwilliger [23], diagrams of this sort seem to have been shared informally in the
community for several decades now, mostly to illustrate computations rather than as
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algebraic objects themselves. Precise algebraic formulations of the concept appear in
the work of Dickie [8] and Suzuki [22,21]. An important special case arises in the state
models for link invariants as seen, for example, in Jaeger [14]. The primary goal of this
paper is to present the diagrammatic formalism as a rigorous alternative to the more
cumbersome algebraic expressions that these diagrams represent. In [18] and [19], Penji¢
and Neumaier recently proposed a slightly different definition. To the author’s knowledge,
these papers are the first published record of Neumaier’s diagrammatic notation.

Fix a nonempty set X and, for x € X, let £ € C¥X denote the standard basis vector
indexed by x. For a digraph G = (V(G), E(G)), an ordered multiset R = {ry,...,ry} of
nodes in GG, and a function w mapping the edges of G to matrices with rows and columns
indexed by X, we study the tensor

S(G,Ryw) = Y _ T w@@em | o) @elr) @ @ o(rm)  (1.1)
e:V(G)—=X e€E(G)
e=(a,b)

and a slight generalization thereof. Note here that w(e) is a matrix and w(e),(a),x () 18
simply the entry of that matrix which appears in row ¢(a), column ¢(b).

1.1. Basic notation

Let X be a nonempty finite set and let Matx (C) denote the vector space of matrices
with rows and columns indexed by X and entries from the complex numbers. Take V =
CX with standard basis of column vectors {# | z € X}, equipped with the corresponding
positive definite Hermitian inner product (v,w) = viw (where T denotes conjugate
transpose) satisfying (Z,9) = d,,, for z,y € X; this allows us to identify V' with its dual
space VT of linear functionals. The objects of study belong to tensor products of this
space of the form

Ve =VeVe---@V

m

with standard basis consisting of simple tensors of the form &1 ® &3 ® - -+ ® Z,,, where
X1,Z2,..., Ty € X. In the case m = 2, we identify V ® V with Matx (C) via

M =[Myy] «— Y My 2®7.
r,yeX

Clearly Matx (C) forms an algebra both under matrix multiplication and under en-
trywise (Hadamard, or Schur) multiplication, which we denote by o, and contains the
identities, I and J respectively, for these two multiplications. A vector subspace A of
Matx (C) is said to be a coherent algebra if A is closed under the conjugate transpose
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operation, closed under both ordinary and entrywise multiplication, and contains both
I and J.

We will use the term “subring” to mean a vector subspace of Matx (C) which is closed
under ordinary matrix multiplication and we will use the term “o-subring” to mean a
vector subspace of Matx (C) which is closed under entrywise multiplication. Our primary
example for the vector space A will be the Bose-Mesner algebra A = spanc{Ao, ..., Aq}
of a commutative d-class association scheme or, relaxing the commutativity condition, a
coherent algebra. In this case, A is both a subring and a o-subring of Matx (C). But some
of the tools presented here clearly extend to other settings; for example where A = (A) is
the adjacency algebra of a finite simple graph I' with vertex set X and adjacency matrix

A. (See [17].)
1.2. Scaffolds (or “star-triangle diagrams”)
Suppose we are given

o A finite (di)graph G = (V(G), E(G)) possibly with loops and/or multiple edges, the
diagram of the scaffold';

o An ordered multiset R = {ry,...,rn} C V(G) of “root” nodes (or “roots”). In the
language of [15, p39], G, together with R, is a “k-multilabeled graph” (where k = m
here), but we will call (G, R) a rooted diagram;

o A finite set X and a map from edges of G to matrices in Matx(C): w : E(G) —
Matx (C) (edge weights);

o asubset F' C V(QG) of fized nodes and a fixed function ¢q : F' — X.

The (general) scaffold S(G, R;w; F, ¢q) is defined as the quantity

S(GaR;w;F7§OO) = Z H w(e)tp(a),go(b) ¢(T1)®QO(T2)®---®Q0(Tm).
e:V(G)—=X e€E(G)
(VaeF)(p(a)=po(a)) \e=(a;b)

(1.2)

Each function ¢ : V(G) — X whose restriction to F'is ¢ is called a state of the scaffold.
Observe that each state itself yields a scaffold with one summand by taking F' = X and

Yo = , namely

—_——

w(p) ¢(r1) ® p(ra) @+ @ P(rm)

where the weight of ¢ is defined as w(y) := H w(€)p(a),p(b)-

e€cE(G)
e=(a,b)

! Note that we write e = (a,b) to indicate that edge e has tail a and head b; this is a slight abuse of
notation in the presence of parallel edges.
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Reversing an arc e = (a,b) in diagram G is equivalent to replacing w(e) by its trans-
pose. In the case where all edge weights are symmetric matrices, we may treat G as an
undirected graph.

The scaffold S(G, R;w; F, pp) is an element of V™ so we say S(G, R;w; F, ) is a
scaffold of order m. Scaffolds with m = 0 are simply complex numbers. In our discussion,
X will typically denote the vertex set of some association scheme. To distinguish V(G)
from X, we will refer to elements of V(G) as nodes. Viewed as elements of CX" | we may
take linear combinations of scaffolds with a common multiset R of roots as needed and,
in parallel to terminology used for tensors, it would be natural to refer to these linear
combinations as “scaffolds” as well.

As the examples above and below show, a scaffold on a small number of nodes can
often be concisely encoded pictorially as an edge-labeled diagram once a convention is
established for the ordering r1,...,7,, of root nodes. Let us make this precise. The data
((G,R),w) is given as a plane drawing (possibly with crossings) of graph G with root
nodes highlighted in color and each edge e labeled with the matrix w(e). Throughout, we
identify this pictorial representation of the data ((G, R),w) with the tensor S(G, R; w).
In the case of general scaffolds, each node a € F' is labeled with the vertex ¢g(a) € X in
this pictorial representation of the tensor.

Example 1.1. Suppose X = {u,v,w,x} and

u v ow T
0O 1 1 0| u
A= 11 0 1 1| v
01 0 0] w
0 00 0| =
A . . - A - A
Then we have O——@ = 1 + 20 4+ 20 + &, O—@ = 0 + W, and @—@ =

1®@0+u®w. Here, G = ({1,2},{(1,2)}), w(1,2) = A, R = {2} in the first two examples
and R = V(G) = {1, 2} in the third. The set F'is empty in the first tensor while F' = {1}
with ¢o(1) = u in the second and third. O

Fixing the rooted diagram (G, R), we obtain (cf. [14]) a multilinear map from AF(%)
to CX", mapping each choice w : E(G) — A of edge weights to the scaffold S(G, R;w)
and extended linearly. In Section 3, we study the images of such maps.

In this paper, with few exceptions, the set F' of fixed nodes is empty. In this case, the
expression takes the simpler form given in (1.1) which we repeat here:

S(G, R; w) = E H w(e)tp(a),cp(b) So(rl) ® QO(TQ) X gO(’I“m).
p:V(G)—=X | e€eE(G)
e=(a,b)
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Let us call tensors of this form symmetric scaffolds when the distinction is necessary.”

In the case where R = (), scaffolds evaluate to scalars and we recover Jaeger’s definition
of a partition function in [14, p. 107] and the original counting diagrams of Neumaier
(cf. [18,19)).

1.3. Rules for scaffold manipulation

Throughout Section 1.3, we assume a nonempty finite set X is given and all edge
weights are assumed to be matrices in Matx (C). Scaffolds with a single vertex and a
single arc give us the diagonal of a matrix and its trace:

QM = M. &, [QM =Y My, = tr(M)

zeX zeX

Note that, when edge weights are taken from a Bose-Mesner algebra, where all matrices
have constant diagonal, loops can always be removed once this scalar is accounted for
(see Rule SRY’ in Appendix A).

Employing the canonical isomorphism between V = CX and VT, we identify each
matrix N € Maty (C) with the corresponding second order tensor Z NyyZ ® 4

zr,yeX
N =) Nyi®j =N
z,yeX
N = Y Nyi = Nl
zyeX
N = ) N, =SUM(N) = 1'N1
r,yeX

where 1 denotes the vector of all ones in C¥. A special case occurs when G is an edgeless
graph; if |[V(G)| = n and R is a set of m (distinct) elements, then the corresponding

2 One might consider a more general tensor of this sort as follows. Let X be some basis for CX — one
might choose the standard basis as we have done, choose an eigenbasis, or some other basis. Bather than
sum over all functions from V(G) to X, we may instead sum over all functions from V(G) to X and define

S(G, Riw) = ¥y (o (Heem) so(a)Tw(e)sO(b)> P(r) ® - ® p(rm).

e=(a,b)
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scaffold is [X[*™™ > . cx %1 ®%2® - @ &y, For example, when n = m = 2, we
obtain the all ones matrix J.
The fundamental scaffold identities below show that matrix product and Schur/en-

trywise product correspond, respectively, to series and parallel reductions on diagrams:

e M N = S M Nereis Y (MM deso o MN
z,y,z€X z,ze€X

K3 = X M b0i= 3 (e 10i= e MoN
r,yeX r,yeX

Note that the first identity only makes sense when the middle (hollow) node in the top
left digraph is incident only to the two edges shown but, as with all scaffold identities, the
root nodes may be incident to edges of the diagram other than those shown. We present
these identities, denoted in Appendix A as SR1 and SR1’, in the following lemma.

Lemma 1.2. Let G = (V(G), E(G)) with e1,ea € E(G) where e; = (a1,b1) and ez =
(ag,bg). Let

E' = (E(G)\ {e1,e2}) U{¢/ = (a1,b0)} -

(i) If by ¢ R and e; and ey are in series, i.e., by = as and no other edge is incident to
b1, then

S(G, Ryw) = S(G', R;w')

where G' = (V(G) \ {b1}, E'), w'(e') = w(er)w(ez) and w'(e) = w(e) otherwise.
(ii) If e1 and es are in parallel, i.e., ay = as and by = by, then

S(G, R;w) = S(G', R;w')
where G' = (V(G), E"), w'(e) = w(ey) o w(ez) and w'(e) = w(e) otherwise. O
Another basic lemma:
Lemma 1.3. Let G = (V(G), E(G)) with ¢ = (a,b) € E(G).
(i) Let G be obtained from G by deleting edge ¢'. If w(e') = J, then S(G, R;w) =
S(G', R;w') where w'(e) = w(e) for all e € E(G)\ {€'}.

(ii) Let G’ be obtained from G by contracting edge €': for f(a) = f(b) =a’ and f(c) =
otherwise,
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V(G) = (V(G)\{a,0}) u{d'},  E(G) ={(f(u), f(0)) | (u,v) € E(G) \{e'}}.

If w(e') = I, then S(G, R;w) = S(G', R';w’) where w'(f(u), f(v)) = w(u,v) for all
e=(u,v) € E(G)\{e'}, R ={f(r1),..., f(rm)}. O

This second lemma provides us with two more basic moves, SRO and SR0’ in our
notation, that preserve scaffolds:

e Insert an edge between two existing nodes, mapping the new edge to J

NN LN

e Split a node in two, introducing a hollow node, mapping the new edge to [

S - R S I

Note that the edges incident to the original node may be distributed among the two
nodes on the right in any fashion. In the reverse direction, contracting an edge e
with w(e) = I may result in a multiset of root nodes as in the example on the right.

In the case where edge weights belong to a Bose-Mesner algebra, these steps are useful
in conjunction with the linear expansions I = y E; and J =), A; given in Equation
(2.2), respectively, which allow us to expand one scaffold as a linear combination of
closely related scaffolds.

If our rooted diagram contains a hollow node of degree one and the incident edge
weight has constant row and column sum, we may simplify the scaffold by deleting this
node and scaling the resulting tensor by that constant (Rule SR9).

Lemma 1.4. Let G = (V(G), E(G)) be a digraph, w : E(G) — Matx(C), R an ordered
multiset of nodes from V(G), ag € V(G) not in R and incident to just one edge in E(Q)
(say e = (ap,bg) or e = (bo,ag)). Let M = w(e). Denote by G’ the graph obtained from
G by deletion of ag and e; denote by w' the restriction of w to edges other than e.

(i) if e = (bo,ap) and M has constant row sum «, then S(G, R;w) = aS(G', R;w');
(ii) ife = (ag,bo) and M has constant column sum «, then S(G, R;w) = oS(G', R;w'"). O

General scaffolds become useful when one’s investigation differentiates individual ver-
tices of an object or when one wishes to expand an expression as a sum over vertices.

If
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t=S(G, R;w)
is a symmetric scaffold with edge weights in Matx (C) and a € V(G), define, for x € X
t, = S(G, R;w;{a}, p.)

where ¢, (a) = x. Then we have t = Z t,: for a € R, this is depicted as
rxeX

rzeX

Using the notion of a general scaffold, we obtain a straightforward proof that our
manipulations of subdiagrams are valid operations on overall diagrams. Let G =
(V(G),E(G)) and H = (V(H),E(H)) be digraphs with disjoint node sets and a bi-
jection ¢ pairing ¢ distinct nodes u; of G to ¢ nodes r; of H. Writing &(u;) = r;, define
G +¢ H to be the digraph with vertex set

V(G+e¢ H) = (V(G) \ {u1,...w}) UV (H)
and edges
E(H)U{({(a),£(b)) | (a,b) € E(G)}

where we extend £ to V(G) defining &(c) = ¢ for ¢ ¢ {uy,...,us}. If (G,Q) and (H, R)

are rooted diagrams with R = {ry,..., 7.}, the corresponding ordered multiset of roots
for diagram G +¢ H is the union of the multiset of the roots of G not among {u, ..., us}
followed by {r1,...,rmn}. Extending this notation to symmetric scaffolds, if

s =S(G,Q;w) and t=S(H, R;w;)
and ¢ is given as above such that £(c) = ¢ whenever ¢ ¢ @, define
s+et=S5(G+¢ HE(Q)UR;w® Uwy)
where R = {rpy1,...,7m} and wé(&(a),£(b)) = w(a,b) for (a,b) € E(G). Here, as in

the next proposition, we assume that (uq),...,&(us) are the first £ elements of R for
notational convenience only.
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Proposition 1.5. Let (Hi, R) and (Ha, R) be rooted diagrams with a common ordered
multiset of roots. Let w; : E(H;) — Matx(C) (j € {1,2}) such that the two symmetric
scaffolds

t1 = S(Hl,R; w1> and tg9 = S(HQ,R; ’wz)

are equal as tensors. If R = {r1,...,m¢} C R is an ordered subset of (distinct) roots,
then for any scaffold s = S(G, Q; w) where V(G) is disjoint from both V(H;) and V (Hz),
w: E(G) — Matx (C) and any ordered set uy,...,uy of £ distinct roots from @Q, we have
S+¢ty =S +¢ to where {(u;) =1;.

Proof. Write R = {r1,...,7»}, m > ¢, and order roots so that £(Q)UR = {q1,. .., qn,71,
.eesTm}, n > 0. Since t; = to, we have, for each ¢y : R — X and any choice of
Y1,-.-,Yn € X

> [T wi(©w@.em |51© @i @@(r1) @ @ (rm)
¢V(H1)—}X €€E(H1)
(VaeR)(p(a)=¢o(a)) e=(a,b)
= > IT w2(€)o@.em |1@ - @in@@(r1) @ @ (rm)
@:V(Hg)—)X €€E(H2)
(VaeR)(p(a)=¢o(a)) e=(a,b)

Taking linear combinations over all ¢ : V(G) \ {u1,...ue} — X, we have

> IT @ @eewnpen I[I w@p@em |pla) @
p:V(G+eH )= X e€E(G) e€E(Hy)
(Ya€R)(¢(a)=po(a)) \e=(a,b) e=(a,b)

—

® ¢(gn) @ p(r1) @+ @ p(rm)

—

= > IT w @i pen I w(©)e@.em |ela) -
@0:V(G+¢Hz)—X e€E(G) e€E(Ho,)
(Va€R)(p(a)=po(a)) \e=(a,b) e=(a.b)

—_—

®¢(gn) @ (1) @ - © (rm).
Finally, summing over all ¢ : R — X, we obtain our result. 0O

This tool is denoted SR5 in Appendix A. Note that, while each node of attachment
must be a root node in both s and t;, the remaining nodes of (H;, R) and (G, Q) may
be any combination of root and non-root nodes. This proposition, combined with the
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following lemma, allows us to make the local moves on scaffolds that are used throughout
this paper.
An order reduction operation hollowg: replaces

S =S(G,Ryw; Fpo) = > [T (@)@ pmelr) @ @ plrm)
e:V(G)—»X e€E(G)
(Va€F)(p(a)=po(a))  e=(a,b)
by
hollowg (S) = S(G, R'; w; Fpq)
= Z H w(e)go(a),np(b)@(ril) & ‘P(Tii,)
p:V(G)—»X e€E(G)
(VaeF)(p(a)=po(a))  e=(a,b)
where R’ = {r;,,...,7:,} € R={r1,...,7m}. This maps m'® order tensors to tensors of

order ¢. In terms of diagrams, the solid nodes outside R’ are converted to hollow nodes.
The fact that this operation preserves scaffold identities is denoted in the appendix below
as Rule SR10.

Lemma 1.6. If S(G1, R;wy; F1,¢1) = S(Ga, R;wa; Fy, p2) (defined on the same ordered
multiset R of roots), then, for any ordered submultiset R' C R, S(G1, R';w1; F1,¢1) =
S(Ga, R';wa; Fa,p2). In particular, if S(G,R;w;F,p9) = 0 and R’ C R, then
S(G, R';w; F,9) =0 also. O

1.4. Partition functions and spin models

Before we delve into the main line of investigation, namely computations in Bose-
Mesner algebras, we illustrate the broader utility of Neumaier’s diagrams by mentioning
just one connection to spin models and link invariants. This application motivated
Jaeger’s formulation in [14].

If X is a finite set of colors (or “spins”), we may employ a partition function to assign
a complex number to each link diagram. The concept of a spin model plays a key role
here in determining which partition functions are link invariants.

A spin model [14, Prop. 1] is a triple (X, W+, W ™) where X is a nonempty finite set
and matrices WT, W~ € Matx (C) satisfy, for D? = | X| and some scalar a,

e (“Type I relation” for W+) W has constant diagonal «, constant row sum Da ™1,
and constant column sum Da~';

o (“Type I relation” for W~) W~ has constant diagonal a~!, constant row sum Da,
and constant column sum Da;

o (“Type II relation”) W+ o (VV‘)T = J while W-W+ =W*TW~ = |X|I
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o (“Type III” or “Star-Triangle Relation”) for every a,b,c € X,

Z (W+)a,x<W+>m,b(W_)m,c =D (W+>a,b(W_>a,C(W_)b,c

reX

In scaffold formalism, these conditions are written

W+ W+ W+
Ozo—jn e——0 @ = @ 0——® — Dol e e
I O[
W= W W-
= o——e e—0 @ = @ 0——® = Do © @
1
I a1
wr w- W Wt W I
o — 0 o ——0—e = e——0——e = |[X| e——e
—

2. Association schemes

A (commutative) association scheme [7,1,2,12,16] consists of a finite set X together
with a collection R = {Ry,...,Rq} of nonempty binary relations (the basis relations)
on X satisfying the following conditions:

) some relation in R is the identity relation on X; we denote this relation by Rp;

) RiN R; =0 whenever i # j;
(i) RyU---URy =X x X;

) for each i, the relation R = {(b,a) : (a,b) € R;} also belongs to R;

) there are intersection numbers pf’j (0 <i,j,k < d) such that, whenever (a,b) € Ry,
we have exactly p}; elements ¢ € X for which both (a,c) € R; and (c,b) € Ry;
(vi) for each ¢, j and k, pfj = pé“l

An association scheme is symmetric if RiT =R; forall R; € R.

Let (X, R) be an association scheme with basis relations R = { Ry, Ry, ..., Rq} having
adjacency matrices Ag, A1,..., Aq respectively where (A;),, = 1 if (z,y) € R; and
(Ai)z,y = 0 otherwise. It is well known [2, Thm. 2.6.1] that the vector space A spanned by
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these d+1 matrices is a Bose-Mesner algebra® and that {Ag, Ay, ..., Aq} forms a basis of
pairwise orthogonal idempotents with respect to the entrywise product: 4;0A4; = §; jA;.
By convention, we have Ay = I and the unique basis of orthogonal idempotents with
respect to ordinary matrix multiplication is denoted by {Fy, E1, ..., E4} with Ey = ﬁ‘] .
It follows that there exist structure constants, called Krein parameters, qu for which

d
1
k=0

for 0 < 4,5 < d. Note that, for each j € {0,...,d}, there is some j' € {0,...,d} with
Ejy =E] = E;. The two bases {Ay, ..., Aq} and {Ey,..., E4} for algebra A are related
by the first and second eigenmatrices P and () defined by

d
1
Ai =) Pk, b= X > Qi (2.1)
i=0

.
=]

These satisfy the orthogonality relations [2, Sec. 2.2] PQ = |X|I and m;Pj; = v;Qi;
where m; = q?j is the rank of E; and v; = pY; is the valency of the graph (X, R;)
corresponding to the ‘" basis relation. Though trivial, the specializations of (2.1) to Ag
and Ey are used frequently:

d
Ei=1, Y Ai=J. (2.2)
=0

d
j=0

Let us first consider scaffolds S(G, R; w) where w(e) € {Ay,...,Aq} for every edge e
in G. Note that we are abusing our conventions in that the set X is not specified: when
an identity is given, we mean that it holds true (under the given hypotheses) for any
association scheme (X, R) whose Bose-Mesner algebra A C Matx (C) contains all the
edge weights under standard naming conventions for Ay,...,Aq, Fo, ..., FEq4.

Most basic identities for the parameters of the Bose-Mesner algebra can be stated as
scaffold equations. For instance, one may define the intersection numbers pfj and Krein
parameters qu by the equations

A A d - A
Lo—Te =Yl S awbh =) pie—t e (2:3)
k=0  (a,b)ERk k=0

and

3 ILe., the vector space is closed under transpose, closed under conjugation, closed and commutative under
both ordinary and entrywise multiplication, and contains the identities, I and J, respectively, for these two
operations.
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Ei 1 d E
s o e >
o k=0

J

On the other hand, the orthogonality properties of the two fundamental bases {4;}¢_,
and {E;}7_, give us

E; Ej E; A
o——0——e = %ij e—— seand = 0;; o——e. (2.5)

The first non-trivial relations we encounter are given by the following lemma, recorded in
our appendix as rules SR2 and SR2’, respectively. The first of these well-known statements
is obvious and one may derive short proofs for the second [3].

Lemma 2.1. For any association scheme (X, R) with intersection numbers pfj and Krein
parameters qu, we have pfj =0 if and only if

(2.6)

and qf’j =0 if and only if

We also make frequent use of the following lemma.

Lemma 2.2. Let (X, R) be an association scheme with Bose-Mesner algebra having prim-
itive idempotents {Ey, ..., Eq} where, for 0 < h < d, I is the index for which E,, = E,| .
Then

E;
k/ j/ 7;/
45 Tk 9k
| X| x| x|

In particular, the zeroth order scaffold on the left is zero if and only if qz’-“j/ = 0.
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Proof. We compute, applying Lemma 1.2(7), (2.4) and (2.5), .ﬂ.

\X\ Zh ongEh B Ey
> > - o
@ Cr-
IXI ’ | X
By

and note that trE, = trE, = my. By the same token,

E;

y E; y
I O DA

| X | X
the three possible evaluations all seen to be equal using the basic identity qu/ my =
q,m;. O
2.1. The pinched star and the hollowed delta

i . 1 d h
Since E; o Ej = =T > h—o i En we have

k
(Eio Ej) By = i E}. (2.8)
| X
This provides us with our Rule SR3:
Ej
Ek Ez o Ej Ek qf Ek
B _p———e = e © = e '

and

E; 5
o : )‘p—nk =0 when quzo.

We refer to the diagram on the left as the pinched star. Dual to this is the following
identity for intersection numbers: since
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d
(Aidj) o Ay = (ZPZAh) o Ax = plj A, (2.9)
h=0

we have the following identity, denoted SR3’ in the appendix:

2.2. Isthmuses

The fundamental identity of Cameron, Goethals and Seidel [3] given in Equation (2.7)
extends, using Rule SRO0, to give us information about scaffolds of higher order. Suzuki
[21] proved the symmetric version of the following “Isthmus Lemma”, based on ideas of
Dickie (Cf. [8, Lemma 4.2.2]). We extend Suzuki’s result to the case of (commutative)
association schemes using scaffold notation and we denote this as Rule SR4.

Lemma 2.3 (Lemma 4, [21]). Let (X, R) be an association scheme.

() If 4§, - 44, = O for all e # h, then

Ey E, Ey
_d 2
| X|
E; E;

(SRO)
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by (2.2)

where the last equation follows from (2.7) and Proposition 1.5 using the hypothesis. O

For example, in any cometric association scheme (see Section 2.3) with Q-polynomial

E;
ordering Ey, F), Es, ..., we have g,

algebra, scaffolds of the form can never be

Zero.

Proposition 2.4. Let (X,R) be an association scheme having basis of primitive idem-
potents Fo, Ey,...,Eq and second eigenmatriz Q. If ji,...,50 € {0,1,...,d} satisfy
Qijy - Qij, >0 for all 0 <@ < d, then

£0

Proof. Let y € X. We simply show that the coefficient of § ® § ® --- ® g is strictly
positive. This coefficient is

> (Biyy (Bi)yy - (Bidyy

rxeX
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1 d
= X Qo+ Qoje + > 0iQijy -+ Qij, | >0. O
=1

The author does not know of a nonzero scaffold of this form in which the coefficients
of j®J®---®7y are all zero.
The dual to Lemma 2.3, denoted SR4’, is given without proof.

Lemma 2.5. Assume (X, R) is an association scheme.

() If pf,; - P = 0 for all e # £, then

2.3. Theorems of Dickie and Suzuki

Let (X,R) be a symmetric association scheme with Bose-Mesner algebra A. An or-
dering Ey, E1, ..., E4 of its basis of primitive idempotents is a Q-polynomial ordering if
the following conditions are satisfied:

. qu = 0 whenever one of the indices i, j, k exceeds the sum of the remaining two, and
. qu > 0 when i,75,k € {0,1,...,d} and one of the indices equals the sum of the
remaining two.

We say that (X,R) is a cometric (or Q-polynomial) association scheme when such
an ordering of its primitive idempotents exists. Now suppose that Ey, Fq,...,E4 is a
Q@-polynomial ordering and recall the standard abbreviations for cometric scheme pa-
rameters

g g g
a; =41 bj = a1 511 G =d5-1 -
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Note that b}‘ > (0for0 < j < dand c;-‘ > (0 for 1 < j < d. A cometric association scheme is
Q-bipartite, with respect to a given (Q-polynomial ordering of its primitive idempotents,
if its Krein parameters satisfy qu = 0 whenever ¢ + j + k is odd.

To further illustrate the algebraic manipulation of pictorial representations of scaf-
folds, we now give a proof of a theorem from the 1995 dissertation of Dickie [8].

Theorem 2.6 (Dickie, Thm. 4.1.1). Suppose (X, R) is a cometric association scheme with
Q-polynomial ordering Eo, Ex, ..., Eq. If 0 <j <d and a; =0, then aj = 0.

Proof. This proof consists almost entirely of a sequence of scaffolds all equal to the zero
tensor 0 € V3 or the zero scalar. We begin with our assumption that a; =0:

0= by (2.7)
1X]
0 e We may apply SR3
J i

since (Ey1 o Ej11)E; = q1|’)]€|rl E;
with ¢f ;. =05 >0
using Lemma 2.3(1I)

0= % . since ¢j; - g1 ;41 =0

for any e # j 4+ 1

Now take the scalar product of this vanishing scaffold with the third-order tensor

Ej1 Eq .
to obtain

E,
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(Note that here and below we use a bold edge to indicate the location in the diagram
where the next simplification will be applied.) Applying the Isthmus Lemma,

Likewise,

Eq

0= since qf ;1 q1 j+1 = 0 for any e # j.

Eq

Using the entrywise product,

E1 e} Ej—l
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Now we expand

* * *

by a’_ cs
J 2Ej,2+j—1Ej,1+—JEj

EioE,_; =212
PO T X X

and observe ¢f ;,; = 0 for e < j. Since ¢} # 0, we have

0= and so, again applying Lemma 2.3(II),
0 = since g7 ; - qf ;41 = 0 for any e # j + 1.
Ej
Now we have a pinched star Ei+1 and we know q}-y 1 # 0 by the cometric property

Q ol
since j < d. So, using SR3, we have 0 = % and Lemma 2.2 tells us that ¢i; = 0,

O
ora; =0. O

We find the same sort of proof structure in Proposition 3 of Suzuki’s paper [21], which
specializes to Dickie’s Theorem in the case h =0 and j = 1.

Theorem 2.7 (Suzuki [21]). In a cometric association scheme (X, R) with Q-polynomial
ordering Ey, ..., Eq of its primitive idempotents, if indices j <i<i+j<h+i+j<d
satisfy q;?’hﬂ- . qf_j,hﬂ =0 foralle#h+1i—7j and qZ;{ij =0, then qﬁ?{ij =0. O

In [22], Suzuki uses these and other ideas to prove that a cometric association scheme
which is not a polygon admits at most two @-polynomial orderings. In order to do
this, he narrows down the possibilities for a second Q-polynomial ordering given that
{Ey, E1,...,E4} is such an ordering. Here is a lemma from that paper.

Lemma 2.8 (Suzuki [22]). Let (X, R) be a symmetric association scheme. Let h,i,j,k, £, m
be indices satisfying qﬁj # 0 and
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e e e e
(Ve #0) (@hm a5k =0)  and  (Ve#m) (g, a5, =0).
i
Then Qo = Trom -

Proof. We manipulate, in two ways, a scaffold built on Kj: applying Lemma 2.3(II),

B . Ey,
- B J _ ql’“’e.
E, | X| .

Ly,

Since the scalars on the left of the two equations are equal, we have

1

. 1 .
J h _ i _h
|X|qk,mqi,jmh = Ty ke, -

| X
As qzh,j # 0, we obtain q,i,g = Qi,m' U

A similar proof, using Lemma 2.5(IT), gives us the dual result®: if pz’g pz.’k = 0 for all

t #m and p}  pt, =0 forall t # ¢, thenpfeé:p{;m unlesspi”. =0.
2.4. Generalized intersection numbers

Following Coolsaet and Jurisié¢ [4], we now define generalized intersection numbers for
an arbitrary association scheme. For aq,...,a; € X and iq,...,i, € {0,...,d}, define

4 This holds for any commutative association scheme in which A, = AZ.
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] e o (e m)
11 19 . e Zk‘
this is the number of vertices i;-related to a; for j = 1,..., k. Restricting to the sym-

metric case for convenience, we immediately recognize these values as the coefficients of
elementary tensors in the following star scaffold:

a1 ®a2 @+ Q@ ay

ala’Q."ak
Z i1 g e i

7
a1, an€X K

When £ is very small, this number does not depend on the choice of the vertices a; but
only on the (%) relations joining them. Here are the encoding of the most basic forms in
the language of scaffolds:

—ab
(

] :pfj for (a,b) € Ry:

Let A be the Bose-Mesner algebra of a distance-regular graph I' with P-polynomial
ordering Ag, A1, ..., Ag of its Schur idempotents. Then

abel|l .+ .
= g . aRb®c
1]k
a,b,ceX
a b c|. : . : . .
where | | I is the number of vertices at distance ¢ from a, distance 7 from b and
vt

distance k from c in T" for each a,b,c € X. While such numbers typically depend on the
choice of vertices a, b, and ¢, they must satisfy a natural system of equations entirely
determined by the parameters of the graph. Coolsaet and Jurisi¢ [4] observe, in their

Equation (5), that . Their Equation (6) can be expressed




W.J. Martin / Linear Algebra and its Applications 619 (2021) 50-106 73

Several researchers (e.g., [4,10]) have ruled out feasible parameter sets for distance-
regular graphs by analyzing linear relations that these numbers must satisfy. A key
insight in [4] is the following. If we know that a Krein parameter g} , vanishes, then we

have, by (2.7), 0= E,

and using (2.1) to expand E, = ﬁ Zg:o QirA;, as well as E; and E;, we find

d
¢, =0 = Z QirQjsQut

i,j,k=0

The same logic works on the dualized diagrams to give us the following apparently new
identity:

d
pii=0 = Y PuPyPy - Pt Es —o.
r,8,t=0

3. Vector spaces of scaffolds

Given a subspace or subalgebra A of Matyx(C), we now investigate various spaces
contained in the vector space spanned by all m* order scaffolds with edge weights in A.
We obtain interesting results when we fix the rooted diagram or simply fix the number
m of root nodes.

3.1. Inner products

The standard scalar product on tensors can be described easily as a gluing operation
on diagrams. Our most familiar inner product on tensors is the Frobenius product of two
matrices:

M= Y Mypawb N= Y Npa®b, (M,N)= > MguyNa .
a,beX a,beX a,beX
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In terms of scaffolds, this is expressed

LA

where M is the matrix obtained by conjugating each entry of M.

We extend this to scaffolds s and t of order m: we assume a consistent ordering of the
root nodes in the two diagrams, indicated by their spatial arrangement, and simply join
each pair of corresponding root nodes v, v¢ by an edge e = (v, vy) with weight w(e) = I,
conjugate the edge weights coming from the left argument and, in the new scaffold, make
all nodes hollow. This is simply the linear extension of the product defined by

Y1®y2®  QYm , 2102290 - @ Z,) = (¥1,21)(¥2,22) - (Ym» Zm) (3.1)
for y1,¥2,. -, Ym, 21,22, ..., %m c CX.

Example 3.1. Let X denote the vertex set of the Petersen graph with adjacency matrix
A; and primitive idempotents Fy, Fy, Fo satisfying A1F; = Fy and A1 FEy = —2FE;.
Although every edge weight below is positive semidefinite, straightforward computation
shows

3.2. Important subspaces

Let (X,R) be a (commutative) association scheme with standard module V = C¥
and automorphism group® Y. The group ¥ acts componentwise on elementary basis
tensors 1 ® -+ - ® &y if 0 € X sends x € X to 27, then

—
A

1R QL= @27,

Each scaffold of order m is an element of the tensor product V®™ and it is easy to see
that, in full generality, the m'" order scaffolds span this space. But the space spanned

5 The automorphism group of an association scheme (X, {Ry, ..., Ra}) is defined to be the subgroup of
Sym(X) which preserves all relations R;, 1 < ¢ < d.
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by the symmetric scaffolds is almost always much smaller. The vector space of m'* order
symmetric scaffolds contains an ascending chain of subspaces S,, C 5,41 € Siy2 C - -+
where S, is the vector space spanned by m'" order symmetric scaffolds on ¢ nodes.

Theorem 3.2. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra
A and automorphism group 3. The vector space W(m;A) of all linear combinations of
m™ order scaffolds with edge weights in A has dimension equal to the number of orbits
of ¥ on ordered m-tuples of vertices. If O1,...,On is a full list of orbits of ¥ on ordered
m-tuples of vertices, then the tensors

Z PR Q&1 <h<N
(ml,...,a:m)e(?h

form a basis for this vector space.

Proof. It is not hard to see that every element o € X preserves every symmetric scaffold:

S(G, R; U)) = Z H w(€><p(a),go(b) 90(7”1> ® QO(TZ) ®--® So(rm) =
p:V(G)—=X e€E(G)
e=(a,b)
> IT w(©p@.ow | #r)7 @ o) @ @ o(rm)7.
e:V(G)—X e€E(G)
e=(a,b)

To see that the two spaces are equal, let O be any orbit on m-tuples with orbit rep-
resentative (y1,...,Ym). Let G be the complete graph with vertex set V(G) = X, edge
weights w(e) = A; whenever e = (a,b) € R;, 0 < i < d, and root nodes R = {y1,...,Ym}-
Then, for ¢ : X — X,

1, ifpel;
[T w@ewem = .
cCE(G) 0 otherwise.
e=(a,b)
. : . oy — 2 A
So, applying the Orbit-Stabilizer Theorem, S(G, R;w) = O] Z PR ®
h

(xl,...,zm)GOh

Tm. O

For example, if (X, R) is Schurian (i.e., there is a group ¥ acting on X whose orbitals
are precisely Ry, Ry, ..., Rg), then the space of second order scaffolds is no larger than
the Bose-Mesner algebra, which is the vector space of single-edge scaffolds of order two.

For each m > 1, we have various actions of matrices on V®™ given by Jaeger [14].
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I (NODE ACTION) Here we view Matx(C) as an algebra of matrices under ordinary
matrix multiplication. For A € Matx(C), 1 < i <mand 1 ® -+ ® &, € VO™
define

A

DYy :21® Q%@ Qym = 310 QAL @+ ® Ty

Diagrammatically, this adds a node of degree one to a scaffold as follows:

X
A —

IT (EDGE ACTION) Here we view Matx (C) as a o-subring of itself: i.e., the product is
entrywise. Assume m > 2. For A € Matx(C), 1 < 4,j < m, and standard basis
element 1 ® -+ - ® &,, € VO™, define

A

EFX i1 ® @ = Ay, 210 @

or

The first investigation of these actions on tensors appears in the work of Terwilliger
[23] who considered the case m = 3. Let (X,R) be an association scheme with Bose-
Mesner algebra A acting on the standard module. The inner product space

V@3 :V®V®V:span{a®l§®é | a,b,ceX}
of all third order tensors can be viewed as an A®3-module in two important ways:
(M) ® My @ Mz)s = (Djy, ® D3y, @ Diyy,) (9), (3.2)
where o here denotes composition of functions, or
1,2 1,3 . 22,3
(M, ® My @ Ms)s = (5M3 ol e 5M1) (s), (3.3)
each extended linearly. For the moment, let us denote the action given in (3.2) by (-)

and the action given in (3.3) by {-}. The space V®3 is then a module for the algebra of
linear operators generated by (-) and {-} where

(My ® My ® M3) e (N1 @ N2 ® N3) = (M1 N1) ® (MaN2) @ (M3N3)) (3.4)
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and
{Ml ® My ® Mg} ° {Nl ® Na ® Ng} = {(Ml o Nl) X (M2 o NQ) X (Mg o Ng)} . (35)

An interesting idea of Terwilliger is to consider the smallest subspace T of V®3 containing
)

the scaffold ® @ which is both a (-)-module and a {-}-module. More generally, we are
interested in subspaces of V®3 invariant under the node action (-), the edge action {-},
or both.

Definition 3.3. Given a finite (di)graph G = (V(G), E(G)), an ordered multiset of m
root nodes R C V(G), and a vector subspace A of Matx (C), we denote by W((G, R); A)
the vector space of all m*™ order tensors spanned by scaffolds defined on rooted diagram
(G, R) having edge weights in A.

Observe that we may treat G as an undirected graph when A is closed under the
transpose map. For the remainder of this section, we assume that edge weights are
chosen from a coherent algebra.

Examples: Assume A is a coherent algebra.

o For G =K, with R=V(G), W((G,R); A) =W(@—@ ;A) = A;

e When G connected with |E(G)] < 4 and R consists of two distinct nodes,
W((G,R);A) = A. In the case where A is a Bose-Mesner algebra, this may be
verified using scaffold manipulation rules SRO, SR0’, SR1, SR1’, and SR9.

In Lemma 1.6, we saw that equality of scaffolds defined on a given diagram G is
preserved when, on both sides of such an equation, we replace the ordered multiset of
root nodes R by any ordered submultiset R’ of R. We note here that the operation

hollowg: : S(G, R;w) — S(G, R';w)

naturally extends to a linear map from W((G, R); A) to W((G, R'); A). As a consequence,
each statement of the form W((G, R); A) = W((H, R); A) for diagrams G and H with a
common (or identified) ordered multiset of root nodes R also tells us that W((G, R'); A) =
W((H, R'); A) for each R’ C R.

Problem 3.4. Given an association scheme (X,R) with Bose-Mesner algebra A and an
integer m > 2, observe that

W(m;A) = Y W((G,R);A).

(G, R)
|R|=m
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For this given (X, R) what is a smallest diagram G with root nodes R C V(G) satisfying
|R| = m such that W((G, R); A) = W(m; A)? Is there a unique minimal rooted diagram
with this property?

Definition 3.5. Let G and H be finite undirected graphs. An H-minor in G is a set
{Gy, | v € V(H)} of pairwise disjoint connected subgraphs of G indexed by the nodes
of H such that there is an injection ¢ : E(H) — E(G) that maps each edge (x,y) of
H to some edge («',y') in G with 2’ € G, and ¥y € G,. Given H with a specified
ordered multiset R = {r1,...,7} of nodes in V(H) and G with a specified ordered
multiset R’ = {r{,...,r},} of nodes in V(G), a rooted H-minor with respect to (H, R)
and (G, R') is an H-minor in G satisfying v, € V(G,,) for each 1 <1i < m.

Theorem 3.6. Assume A is a coherent algebra. If there is a rooted H-minor in G with
respect to (H, R) and (G, R’), then W((H, R); A) CW((G,R'); A).

Proof. Consider a scaffold S(H, R;w) defined on rooted diagram (H,R) and assume
{G, | v e V(H)} and ¢ : E(H) — E(G) are given as in Definition 3.5 above. Define
w' @ E(G) — A as follows. For e € E(H), set w'(t(e)) = w(e); set w’'(e) = I for
any edge e with both ends in the same subgraph G,; finally set w’(e) = J for all
remaining edges of G. Then, by Lemma 1.3, S(H, R;w) = |X|~* - S(G, R';w') where
= V(G - |Uyevin Gul- D

An immediate consequence of Theorem 3.6 is the following result.

Corollary 3.7. The vector space W (/.\. ; A) is contained in
The spaces W <A ; A) and W ( ; A) are both contained in the spaces

w A w ;A

These spaces, in turn, are both contained in W (A ;A) NW ;A) )
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If A is the Bose-Mesner algebra of an association scheme with standard bases

{Ao, ..., Aq} and {Ey, ..., E4}, intersection numbers pf’j, and Krein parameters qu, then
one may apply Lemma 2.1 to see that

W A g A = span

w A i A = span

These are, respectively, the images of Jaeger’s triangle projection [14, (40)] and star
projection [14, (39)].

and

qu>0

The space W (A ;A) is invariant under the action {-} while the space

w <‘/g\. ; A) is invariant under the action ().

Theorem 3.8 (Terwilliger [25, Lemma 87]). For any symmetric association scheme,

(i) the set

is an orthogonal basis for the subspace W (A ; A) and

(ii) the set
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is an orthogonal basis for the subspace W (,j\‘ ; A) . O

Example 3.9. Consider the association scheme of the Petersen graph, with Bose-Mesner

algebra A. Theorem 3.8 tells us that dim W (A ; A) = 14, the number of non-

zero intersection numbers, and dim W (./g\. ; A) = 15, the number of non-zero

Krein parameters. Straightforward calculation verifies that the automorphism group of

the Petersen graph has only 15 orbits on triples, so W(3;A) = W (‘/g\‘ ; A) by

Theorem 3.2.

Example 3.10. The Doob graph Doob(s,t) is the Cartesian product of s copies of Ky
and t copies of the Shrikhande graph [2, Section 9.2B]. If A is the Bose-Mesner algebra

of a Doob graph Doob(s,t), then W (<i>. ;A) = A if and only if ¢ = 0; the

Al @) A1

scaffold belongs to the Bose-Mesner algebra only in the case where the

Doob graph is a Hamming graph.

Theorem 3.11. Let A be a coherent algebra. If either W (A ; A) cC W (./;\. ; A)
or W<‘/g\. ;A> C W(A ;A) , then W<.<I>Q;A) = A.

A D D

Proof. Suppose we are given a scaffold

then

V4
= Y [(AL;) o (BM;)N; € A
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A D N,
Likewise, if C — Z then
j=1 Lj Mj
N.
A D : ,
=) @ =Y [(BoLj)(EoM;)]oN;€A. O
B o i=1 \./ E =1

Problem 3.12. Let (X,R) be a symmetric association scheme. Determine necessary

and sufficient conditions on (X, R) for W (A ; A) =W (/g\‘ ; A) to hold.

(Theorem 3.8 tells us that the number of non-vanishing intersection numbers must equal
the number of non-vanishing Krein parameters.)

3.3. Bases for spaces of third order scaffolds

The space V3, endowed with the inner product given in (3.1), admits

@
(V®3)i = span ‘i‘ a,b,ce X

a,b,ceX}

as a (+)-submodule. (These spaces were introduced in [23, Definition 2.7].) The orthogonal

as a {-}-submodule and admits

vl

projection p; : V3 — (V®3)i is given by

A a®bwe if (a,b) € Ry
é
0 otherwise.
Dually, the orthogonal projection p} : V&3 — (V®3); is given by
pilavbeé)=a0be Ejc.

We recognize these as the edge action Sil’f and node action D3Ej introduced in Sec-

tion 3.2. The two linear transformations Si’f and D%j map the space W (A ; A)
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into W (A ; A) and W (./g\‘ ; A) , respectively. Terwilliger [23] introduces
scaffolds  €st = Amt and’ ef, = Ef\Et belonging to W (o/.\ ;A)

and proves that the sets {es; | 0 < s,t < d} and {e, | 0 < s, < d} form two orthogonal

bases for W (./.\. ; A) : the relevant inner products are ([23, Lemma 2.11])

As At
<e2] ) est < A A > m
= 4 OMAt = 0i50;+| X]|viv;

and

IO E,
= 5N 5Ne ) - RN

E;, E;
= EiEsCQEjEt: 8i,s05.¢| X |~ tmymy;

In [23], the subspace
span{es — e | 0 < s,t < d} = span{el, —e;, |0<s,t <d}

is then introduced in the study of the balanced set condition: for a given j, the idempotent
E; satisfies the balanced set condition if, for all 0 < r,s < d, we have

E;
E; _ E;
/K A/KL” ) Span{ % A\.
@ @

Da Zhao [27] expressed the balanced set condition more precisely in scaffold notation
and 1ntroduced a dual concept which he calls the “dual balanced condition”.
Terwilliger computes various other inner products of pairs of scaffolds in

w (A ;A) and W <‘/g\‘ ;A) . Identities (B.1)-(B.4) in Appendix B are

nggd}.

5 Our definition of e, differs from the definition in [23] by a constant factor of 1/|X].
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simply restatements of Lemmas 2.13, 2.14 and 2.16 in [23] omitting the assumption that
the scheme is symmetric.

3.4. Terwilliger algebras

Let (X,R) be a symmetric association scheme with Bose-Mesner algebra A having
bases {Ao, ..., Aq} satisfying A;0A; = 6; ;A; and {Ey, ..., Eq} satistying E,E; = 6; ; E;
as usual. Fix z € X and define E}(z) to be the diagonal matrix with (E}(x))s,. =
(Ai)z.q; i-e., the (a,b)-entry of Ef(x) is equal to one if a = b with (z,a) € R; and equal
to zero otherwise. The Terwilliger algebra of (X, R) with respect to base point x is the
matrix algebra generated by the matrices A; and the matrices E} (z):

T, = (Ao,..., A4, Ej(z),...,Ej(x)) = (Eo,...,Eaq, Aj(z),..., A (z))
where

(A (o = {|X|<Ej>x7a fa=b
0 otherwise.

Beginning with [24], an extensive theory of Terwilliger algebras, particularly for sym-
metric association schemes that are both metric and cometric, i.e., for Q-polynomial
distance-regular graphs, has developed over the past three decades. See [6] for a rela-
tively recent survey, and see [25] for a more substantive update. Our goal here is to
identify scaffolds encoding the matrices in such algebras and to explore subspaces of
W(3; A) that contain all such scaffolds under various conditions.

Fix an association scheme (X,R) and corresponding Bose-Mesner algebra A. Let T
denote the vector space of all linear combinations of scaffolds of the form

where ¢ > 1 and My,..., My, Ny, ..., Ny, € A. That is,

T=Q w( A N ;A).

The most basic third-order tensors of this form are the triangle and star
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where My, My, Ng, N1 € A and J is the all ones matrix.
We define a product on elements of 7 by gluing diagrams as follows:

Here, spacial arrangement is important and the root nodes at the top are identified
while the rightmost root node of s is identified with the leftmost root node of t and made
hollow.

Let us make this precise.

Given scaffolds

s =S(G, {bo, a,bs};w) and t = S(H, {bj,a’,b,};w")

m

where

V(G) :{a,bo,bl,...,bg}, E(G) :{(b()abl)a---,(béfl;bf); (CL,bg),...,((I,b[)}
V(H) :{a/7b6’b,17""b;n}7 E<H) :{(6671)/1)7"'7(();71717();71)7 <a/’b6)""’<a/’b;n>}
w(bh_l,bh> = Mh, w(a7 bh) = Nh7 w/( ;1—17b/h) = Ml/w w/(a/7b/h) = Nllm

we define
sxt = S(K, {bo,a, b;n}; W)
where

V(K) = {a,bo,bl,...,bg,bll,...7b;n}
E(K) = {(bo,b1), ..., (be_1,b0), (be;0}),..., (0_1,00), (a,b0),. .., (a,be),
(a,b)),...,(a, b))}
with edge weights w(a, by) = Ny o Nj) and

w(bh_l,bh) = Mh, lf)(a,bh) = Nh,
w(bfvbll) = M{? 121( h717b,h) = Mi,n UAJ(CL?b;z) = Nl/z :



W.J. Martin / Linear Algebra and its Applications 619 (2021) 50-106 85

The product is extended linearly to 7.
We state the following theorem without proof:

Theorem 3.13. The map  : T — @ T, defined by
zeX

D EL ()AL B (2) Ay, Ay B ()

reX

and extended linearly is an injective linear map satisfying

C(sxt) = ((s)¢(t)
where the product on the right is ordinary matriz product of block diagonal matrices. O

This gives a natural interpretation of certain third-order scaffolds as elements of the
direct sum of all Terwilliger algebras T, as x ranges over the elements of X . For example,
since

E7 (2) A; i (z) = > jos
y,z€X
(z,y)€R;,(y,2)ER;,(z,x)ER

we identify this matrix with (E}(z)A;E;(z)) ® & and sum over z € X to obtain

Ai/ \Ax
A . Likewise, this isomorphism associates ©, A} (z)E;Aj(z), ©. A E} (x) Ay, and
®sEi A (z) E, respectively, to the following scaffolds:

A\ SO

While 7 contains W (A ;A) and W <‘/;\‘ ;A) , it does not necessarily
contain W(/AU\ : A) or W(A ; A) )

Paul Terwilliger [private communication| conjectures the following: For a Q-polynomial
bipartite distance-regular graph, the space of third order tensors of the form depicted on
the left below is spanned by the subset of scaffolds with inner edges all having weight A;,
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outer edges having weights A;, A; and Aj. Further we obtain a basis when we include
only the scaffolds of this sort where t +i + j + k < d.

t+i+j+k<d

More importantly, Terwilliger conjectures that this space is both (-)-invariant and
{-}-invariant; i.e., each of the maps Eﬁ’f and D%j map this space into itself. Terwilliger
claims that, interpreted as in Theorem 3.13, this space is the full algebra 7 when A is
the Bose-Mesner algebra of a (Q-polynomial bipartite distance-regular graph.

Association schemes for which the Terwilliger algebra takes a simpler form are of in-
terest for two reasons: one can often prove more about the combinatorial structure of
the scheme when 7T is generated as a vector space by a relatively small set of tensors;
and some of the most important families of association schemes, such as the Hamming
schemes, enjoy this property. The following lemma follows from an easy induction argu-
ment.

Lemma 3.14. Let A be the Bose-Mesner algebra of a symmetric association scheme.

(a) The following are equivalent:

(AT (A
rw( )

(b) The following are equivalent:

(AT A
rw( ).

Theorem 3.15. Let A be the Bose-Mesner algebra of a symmetric association scheme.

(a) The following are equivalent:
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(i) W%\ ; A) - W(A ;A>
(ii) W(A ;A) = W<A ;A>
awr=w(N ).

(b) The following are equivalent:

oA ) e A
SZNDRENS
i) 7 - W(A ).

Proof. By Theorem 3.6, both W (A ; A) and W (/;\. ; A) are contained
in both W @\’ ; A) and W (A ; A) as well as in 7. Here, we prove
that WQA;A) :W(A;A) ifandonlyifW(&;A) =

w <A ; A) and apply Lemma 3.14 to obtain (a)(i) < (a)(iii). The remaining

three equivalences (a)(ii) < (a)(iii), (b)(i) < (b)(iii). (b)(ii) < (b)(iii) are proved in a

similar manner.

Assume W %\ ; A) cC W (A ; A) and consider a scaffold of the form

I
VNG / ;B ] c
O - ® O )
D E D E I

(using SRO). By our assumption, there exist matrices Ry, S1,T1,... in A satisfying
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since A is closed under the entrywise product.

In the other direction, assume now that W (A ; A) c W (A ; A)

and consider the scaffold

E J T;
There exist matrices Ry, S1,7T1,... in A satisfying = Z
F B J

Substitute this into the above to find

and one more application of our hypothesis gives s € W <A ; A) .0

Problem 3.16. Under what conditions on A does the entire space of (planar) third order

scaffolds with edge weights in A coincide with W (A ; A) or W <./;\‘ ; A) ?
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3.5. Triply regular association schemes

Following Jaeger [14, Section 5.3, we call a d-class symmetric association scheme
triply regular if, for all 0 < 4,7, k,r, s, t < d, the following identity of tensors holds for

some scalar 775!
1,5,k "

Y21 of
r s i
vertices w which are r-related to x, s-related to y and t-related to z depends only on
r,s,t and those indices i, j, k for which (z,y) € R;, (y,2) € R; and (2,z) € Ry and not
on the choice of vertices z,y, z themselves.

Dually, let’s call a symmetric association scheme dually triply reqular if, for all
i,J,k,r, s,t, there exists a scalar ar’;’lﬁ such that

i7

In other words, for all z,y,2 € X and all indices r,s,t the number

In other words, for all indices 0 < 4,7, k,r,s,t < dand all x,y,z € X

Z (Ei)x,u(Ej)y,v (Ek)z,w (Ev")v,w (Es)w,u(Et>u,v

is a scalar multiple of

independent of the choice of x,y, z.

Theorem 3.17. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra
A. Then

(a) (X, R) is triply reqular if and only if W (A ; A) =W (A ; A) ;
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(b) (X, R) is dually triply reqular if and only if W (./g\‘ ; A) =W @N ; A) }
(c) (X, R) is both triply reqular and dually triply reqular if and only if W (A ; A) =

w <./g\. : A) )
Proof. Clearly W (A ; A) is a subspace of W <A ; A) . If the triply reg-

ular condition holds, then we obviously have containment in the other direction as well
since the scaffolds in W (A ; A) with all edge weights in {Ayg, ..., Agq} span the

space. Conversely, observe that

A; A
@
A, Ag
Ay

and that the “Delta” scaffolds with edge weights in { Ay, ..., A4} are pairwise orthogonal

belongs to W (A ; A) , then it must be a scalar

A

Am R
Am AZ
Q
= = 5i,€5j,m5k,n
) A,

An

multiple of . The second claim is proved in a similar manner.

Ag
For part (c), the forward direction follows from (a) and (b) by mutual containment.

Suppose now that W (A ; A) =W (./g\. ; A) . Then, given any D, E, F €

F J
A, there exist Ly, My, N1,...,Lx, M}, Ny € A for which - - Z
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Applying Proposition 1.5 and using the fact that A is closed under entrywise multipli-

cation, we see that any scaffold built on Ky lies in W (A ; A) as follows:

ANE ;/_\ < w(A\ )

a °®
N

E D
. . . . pr— O
Likewise, given D, E, F € A, we may write Z for some
L S— j &L Mj'e

L;,M;,N; € A. Making such a substitution and using closure under matrix multiplica-

tion, we see that
W@\; A) C W(./g\. ;A)

$
./}0»2 2, € W(o/&uf*)- c

We now have another way to interpret Theorem 3.15.

Theorem 3.18. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra
A. Then

(a) (X, R) is triply reqular if and only if W (A : A) =T;
(b) (X, R) is dually triply reqular if and only if W (./5\‘ : A) =7. O

Corollary 3.19. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra
A, intersection numbers pﬁj and Krein parameters qf,j (0<i,j,k<d). Let

N, = |{(i,j,k) € {0,....d}* | p}; > 0}

, Ny =1{G.4.k) €{0,....d}* | ¢f; > 0}].

(a) If (X, R) is triply regular, then N, > Ng;
(b) If (X, R) is dually triply regular, then Ng > Np.
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Proof. We prove (a) and leave the proof of part (b) to the reader. By Theorem 3.8, we

have dim W (A ; A) = N, and dim W ((g\‘ ; A) = N,. Since each of these

spaces is contained in 7, the inequalities both follow from Theorem 3.18. O

Following Hestenes and Higman [13], a strongly regular graph I" is said to enjoy the
t-vertex condition if, for any graph G on at most ¢ nodes and any two distinguished
nodes a,b € V(G) the number of graph homomorphisms from G to I' mapping a to x
and b to y depends only on whether z and y are equal, adjacent, or non-adjacent. A
recent investigation on this topic is Reichard’s paper [20].

Inspired by this, we say an association scheme (X, R) with Bose-Mesner algebra A
enjoys the t-vertex condition if every second order scaffold S(G, R;w) with ¢ or fewer
nodes and edge weights in A belongs to A.

Proposition 3.20. Every triply reqular symmetric association scheme satisfies the 4-vertex
condition. Every dually triply reqular symmetric association scheme satisfies the 4-vertex
condition.

Proof. Let (X,R) be a triply regular association scheme with Bose-Mesner algebra A.
We must prove that, for every choice of edge weights M, ..., Mg € A, the scaffold

(9

Mo M,
S = QO
M3

belongs to A. By linearity, we may assume each M; € {Ap,..., Ay} and employ the
triply regular property to write

Now the fundamental scaffold at right is simply the sum of elementary tensors T ® gy ® 2
over all ordered triples (z,y, z) € X3 with (z,2) € Ry, (2,y) € Rj, (z,y) € Rj. Summing
over z € X, we find
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A A t
=0 Z TRy where o = 7,7} o
z,yeX

so that the tensor at left is a scalar multiple of Ax. Replacing various M; in s by matrices
I and J, as needed, one obtains the result for any second order scaffold on at most four
nodes.

To prove the second statement, we first apply Lemma 1.3 to write

Assuming W %\ ; A) cC W (./g\. ; A) , there exist Lj,, M}y, N, € A such

that
As
Ay A, =D Mn
h
@ G O @ @ O @
I Ak I Nh Lh
A.’i Aj
Substituting this into the above using Proposition 1.5, we find s = Z .
4 Nn Ly

And now we may apply Theorem 3.11 to show that s€ A. O
3.6. The vector space of scaffolds of order two and planarity

We consider the vector space of scaffolds of order two and various subspaces of this
space. In particular, we wish to know, in the setting where edge weights belong to a
Bose-Mesner algebra A, when such a subspace is no larger than A itself. Assume in this

subsection that all edge weights belong to the Bose-Mesner algebra A of some association
scheme (X, R).
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First, since A is a nonzero subspace of Matx (C), the vector space of scaffolds of order
zero is simply C. As we learned in Theorem 3.2, the space of first order scaffolds has
dimension equal to the number of orbits (on vertices) of the automorphism group of the
scheme. The author does not know of an example where the space of first order scaffolds
defined on planar diagrams is strictly smaller than this space.

A circular planar graph [5,11] is an ordered pair (G, R) where G is a graph embedded
in the plane (i.e., a plane graph [9, Section 4.2]) with a distinguished set R C V(G) of
nodes all appearing on the outer face. Let us say that a scaffold S(G, R;w) is planar if
(G, R) is a circular planar graph. For fixed m, the vector subspace P(m;A) spanned by
all m*" order planar scaffolds with edge weights in A is worthy of study. An m-terminal
series-parallel graph is a graph with a distinguished set of m nodes which can be reduced
via some sequence of series and parallel edge reductions to a graph on those m nodes
only.

Example 3.21. A circular planar graph and its circular planar dual contain equally many
terminal nodes. The following pair of examples illustrates the relationship between planar
duality and duality in association schemes:

=[(AB)oC] (Do E).

Theorem 3.22. Let G denote the set of all ordered pairs (G, R) of two-terminal series
parallel graphs with root nodes R = {ry,ra}. For any coherent algebra A, we have

A= > W((G, R);A).
(G,R)eg

Proof. To prove forward containment is trivial: each M € A is expressible as a scaffold
whose underlying diagram G is the complete graph on two nodes. If matrices M, N €
Matx (C) correspond to second order planar scaffolds s and t, respectively, then both
their matrix product and their entrywise product are expressible as second order planar
scaffolds as well.
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Applying these operations repeatedly, we see that any second order scaffold s having all
edge weights in A whose underlying diagram can be constructed from K5 by successive
subdivision and doubling of edges belongs to A. O

It is well known (cf. [9, Exer. 32,p191]) that a multigraph is series-parallel if and only
if it contains no K4 minor. It is easy to check that K33 contains a K4 minor. So it
follows by Kuratowski’s Theorem that every series-parallel graph is planar. In general,
the space of second order planar scaffolds with edge weights in A can properly contain
A. The Doob graphs are convenient examples.

4. Duality of planar scaffolds

The obvious duality between the following two conditions on scaffold identities

pszo A 0= and qu:O & 0=

extends to dual pairs of theorems in some cases, as we’'ve seen. We claim that these are
instances of a much more general phenomenon.
A scaffold equation of order m is an equation of the form

i OékSk =0
k=1

where each «ay is a scalar, each Sy is a scaffold of order m, 0 is the zero tensor of order
m, and a bijection (j j is specified (or understood) between the root nodes of S, and S;
for each j and k in a consistent manner; i.e., we assume (; ; o ¢, = (; x for each 4,7, k
and (j; is the identity map. We note that, throughout this paper, this correspondence
of tensor components has been conveniently indicated pictorially by consistent spatial
placement of the root nodes. Note that, for fixed d, the P-polynomial condition and the
Q-polynomial condition can both be encoded as finite systems of scaffold equations and
inequalities.

Some circular planar graphs admit multiple, inequivalent, embeddings in a disk. We
may define an augmented graph G by adding an additional node oo whose neighbors are
exactly those nodes v € R; it is immediate that (G, R) is a circular planar graph if and
only if G is a planar graph. Moreover, by a theorem of Whitney, if GT is 3-connected,
then this planar embedding is essentially unique [9, Theorem 4.3.2].

Let s = S(G, R; w) be a planar symmetric scaffold with m = |R| distinct root nodes.
Assume the underlying rooted diagram (G, R) is given with a fixed embedding in a
closed disk where all root nodes appear on the boundary. Assume, for simplicity, that
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w(e) € {Ag,...,Aq} for each edge e. In order to define the dual scaffold s, we first
construct a dual graph GT which has one node for each face of this embedding. (This
circular planar dual can be obtained from the planar dual of graph G* by deleting the
edges dual to those edges of G incident to the node co. So, in contrast to the planar
dual of G, this graph has m = |R| nodes on the infinite face, which has been subdivided
by the m segments of the boundary of the disk between consecutive root nodes of G.)
Each directed edge e of G is rotated 90° counterclockwise to give a directed edge ef of
G joining the two faces having e on their boundary (where e is a loop if only one face
of the original embedding is incident to e). The distinguished (“root”) nodes of the dual
scaffold are those m faces incident to the bounding disk. The edge weights are then given
by w(e') = E; where w(e) = A;. This map from P(m;A) to V®™ is extended linearly
as in the notion of a duality map.

Conjecture 4.1. Suppose we have a collection {Sy},_, of m*™ order planar scaffolds where
all edge weights belong to the set of symbols Ag, A1, ..., As. Assume that roots are paired
up via a set of maps {¢; 1 | 1 < j,k < n} where (;, maps the root nodes of Sy, bijectively
to the roots S; according to the consistency rules (; ;j o (jx = (i for all 4,7,k where
Ck,k is the identity map for each k. Assume that, for all association schemes with d > §
classes, the scaffold equations y ;_; @;xSk = 0 (1 < j < N) together imply the scaffold
equation >, BxSi = 0. Then, for any association scheme with d > § classes, the dual
scaffold equations

Y auSi=0 (1<j<N)
k=1
together imply the dual scaffold equation

iﬁksg =0. O

k=1

This conjecture allows us to map identities to identities. As an example, we now give
three obviously equal scaffolds for P-polynomial schemes and the dual scaffolds which
are equal for all @-polynomial schemes. (Equality is easily shown using the Isthmus
Lemma.)

Az Ay
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As Jaeger [14, Prop. 5] points out, Epifanov’s Theorem establishes that every con-
nected undirected plane graph can be reduced to the trivial graph with one node and no
edge via some finite sequence of A—Y and Y—-Atransformations, together with extended
series-parallel reductions. In the proof of the following theorem, we use a variant of this
result which applies to two-terminal planar graphs (see [26]).

In conjunction with Theorem 3.17, our next theorem shows that, for association
schemes that are both triply regular and dually triply regular, every second order planar
scaffold lies within the Bose-Mesner algebra.

Theorem 4.2. Let (X, R) be an association scheme with Bose-Mesner algebra A.

If W (A ; A) =W <./;\. ; A) , then the vector space spanned by all sec-

ond order planar scaffolds with edge weights in A is equal to A.

Proof. We deal only with the case where G is 2-connected, leaving the degenerate cases
to the reader. Epifanov’s Theorem tells us that any 2-connected two-terminal planar
graph is reducible to a single edge joining those two terminals via a finite sequence of
operations, each being of one of the following types:

¢ deletion of a loop

e deletion of a non-terminal node of degree one
e series reduction

e parallel reduction

e A-Y transformation

e Y-A transformation

We will show that given a second order planar scaffold s with underlying rooted diagram
(G,R) and a rooted diagram (H, R) obtained from (G, R) by any one of the above
operations, we may express s as a linear combination of scaffolds each of which has
(H, R) as its rooted diagram. First consider the case where (H, R) differs from (G, R) by
deletion of a loop €’. Since w(e’) belongs to Bose-Mesner algebra, it has constant diagonal,
o say, so S(G, R;w) = oS(H, R;w") where w'(e) = w(e) for e # €’. The case where H
is obtained from G by deletion of a non-root vertex of degree one is handled similarly
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via Lemma 1.4. If H is obtained from G via a series reduction or a parallel reduction,
we may apply Lemma 1.2. Finally, our hypothesis, combined with Proposition 1.5, gives
the desired result in the case where H differs from G by either a A-Y transformation or
a Y-A transformation. O

Note: Note that this does not imply that all triply regular association schemes are
Schurian. Theorem 3.2 requires the entire space of second order scaffolds to have di-
mension d + 1 and this theorem only considers the space spanned by planar scaffolds.
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Appendix A. Rules for scaffold manipulation

In this appendix, we summarize the rules for the manipulation of scaffolds and give
each a label for future reference. In the case of symmetric association schemes, all refer-
ences to directed edges may be replaced by equivalent language referring to edges. The
rules here are given informally with reference to their precise statement in the body of
the paper.

SRO (split node rule) Lemma 1.3(ii): We may split a node, solid or hollow, introducing
a new hollow vertex and choosing I as the new edge weight. (Alternatively, we may
contract an edge e with w(e) = I.)

S S S
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SRO" (superfluous edge rule) Lemma 1.3(i): Between any two nodes of our diagram, we
may insert a new edge e with w(e) = J, the all ones matrix. Conversely, edges with
weight J may be deleted.

\ \ s& ;
— or —
oS

SR1 (series reduction) Lemma 1.2(i): We may suppress a hollow node of degree two by
taking the matrix product of the two edge weights.

M N MN
> 50 SOE = o———— €

SR1’" (parallel reduction) Lemma 1.2(ii): We may replace two parallel edges by a single
edge by taking the entrywise product of the two edge weights.

e - et

Note: Scaffold manipulation rules SR2 through SR4’ apply within the scope of Bose-
Mesner algebras; edge weights follow standard notational conventions for association
schemes.

SR2 (vanishing intersection number) Lemma 2.1: Any scaffold containing a directed

triangle a, b, c with w(a,b) = A;, w(b,c) = A;, w(a,c) = Ay where pfj = 0 is the
zero tensor.

=0 if pf; =0

SR2’ (vanishing Krein parameter) Lemma 2.1: Any scaffold containing a hollow node x of
degree three with neighbors a, b, ¢ such that w(a, z) = E;, w(b,x) = Ej, w(z,c) = Ej,
where qu = 0 is the zero tensor.
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=0 if ¢ =0

SR3 (pinched star) Equation (2.8):
E;

: Ey g Ey
| X

and this is the zero tensor if ¢; = 0.
SR3" (hollow triangle) Equation (2.9):

and this is the zero tensor if pf; = 0.
SR4 (Isthmus) Lemma 2.3: If ¢ - ¢7,,, = 0 for all e # h, then

E
_ m En
| X|

and




W.J. Martin / Linear Algebra and its Applications 619 (2021) 50-106 101

SR4" (Dual isthmus) Lemma 2.5: If pf . P = 0 for all e # £, then

and

SR5 (substitution) Proposition 1.5: If t; and ty are scaffolds on the same ordered multiset
R of roots such that t; =ty and R’ = {ry,...,rs} C R, then for any scaffold s and

any root nodes u1,...,uy in the rooted diagram of s, we have s +¢t; = s +¢ to where
E(uy) = ry.
= — =
SR6 (multilinearity): If scaffolds s and si,...,s, are identical except in their weight

on one edge e where w(e) = M in s and w(e) = Ny in sy (1 < ¢ < n) where
M =3",_, agNg, then s = >, | aysq.

n
= Z ay - if M = z;zl apNy
/=1

SR7 (Transpose property): Reversing the direction of an edge in diagram G is equivalent
to replacing the weight of that edge by its transpose.



102 W.J. Martin / Linear Algebra and its Applications 619 (2021) 50-106

M MT

P————& = P—«

SR8 (Commutative property): If a € V(G) is a hollow node incident to just two edges
e and € where w(e)w(e’) = w(e')w(e), then swapping the weights on these edges
leaves the scaffold unchanged.

M N N M
>» 5O 1S = >» >0 LS if MN = NM.

SR9 (Degree one vertices): Lemma 1.4: Assuming constant row sum or column sum (as
appropriate) on the edge weight, a hollow node of degree one may be deleted.

M
u = lfM]_:Oé]_

SR9" (Loops): If ¢’ is a loop in G and w(e’) o I = al, then s = as’ where s’ is obtained
from s by deletion of edge ¢’:

= « Mol =uof
M

SR10 (Order Reduction) Lemma 1.6: Equality is preserved in passing from root nodes
R to a proper submultiset R’.
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Appendix B. Inner products of common third order scaffolds

Here we use (3.1) to compute some inner products of third order scaffolds attached to
(commutative) association schemes without proof. Note that E; = E]T = Ej and that,
in the symmetric case, edge orientations may be ignored. By an abuse of notation, we
write A] = A; with this definition of i’ operative only in equations not involving any
element from {Ey,...,F4}. Only in special cases is an inner product of two scaffolds

expressible in terms of association scheme parameters.

(B.1) <AJ&41 Aﬂr> = ‘X’ dir (5j,s Okt Vk p?j
A Ay

9

E, 1 k
(B.2) E, E, = m&‘,r 53’,5 5k,t Mg 4q;;
Ej Ek d V4 4
B3) (4, ARA, A ARA, ) = Gk my D Pie D Pl
£=0
d
0 (BN BN = o 3
Aj ’ Ag =0
(B.5) <E;&E 4s Ar> = |XI7* Qi Qujr Qur v g
Ek ’ At
d
B6) <E& E, E> XY medh s dl
Ek ) Et =0
E
(B7) FE, : FE, = |)(|_1 Pri’ st/ Ptk’ mye Qf"s
A d
t /
(B.8) A Ak, ) = IXIDD veph, P i

£=0
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(B.10)
(B.11) 0 if qi/tqf,/r,qfs/ = O>
Ey E
(B.12) = Op,r Ois Ojt
E, Eg
Em
E, Ep
(B].g) - Ph,r Pi,s Pj,t
E, FE;
Enm
d
k k k
(B.14) = Z pi’ll,rlpi;f?pi;ﬂ?

k1,k2,k3=0

(B.15) = Pi1,7”1 Pin“Q Pisﬂ’a
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6i1ﬂ"1 5i2,7“2 51'3,7“3

NOTE: Many of these identities are not new. For example, (B.1) can be found in [14,
Equation (43)] and follows from [1, Theorem II1.3.6(ii)], [24, Lemma 3.2], while (B.2)
stems from [3, Proposition 5.1], can be found in [14, Equation (42)], [1, Theorem II1.3.6(i)],
[24, Lemma 3.2], and [24, Lemma 3.2] as well.
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