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1. Introduction

Without definition, we begin with some simple examples of the diagrams considered 
in this paper. Once we arrive at a formal definition, the reader may check back to verify 

the calculations here as exercises. For example we will see how, in a precise way, M

denotes the diagonal of matrix M while M is its trace. We will see matrix N , as a 

second-order tensor, represented as N and the sum of its entries as N . The 
ordinary matrix product of M and N is effected by a series reduction on diagrams as 
evidenced by the scaffold equation M N = MN ; likewise, entrywise multiplica-

tion is effected by a parallel reduction since we have 
M

N = M◦N . If Γ is a graph 

on vertex set X with adjacency matrix A, then A A

A

A is an integer equal to the 
number of homomorphisms from the cycle of length four into graph Γ. By contrast, if we 

denote the adjacency matrix of the complement of Γ by A′ = J−I−A, then 
A

A

A A′ A′
A

is a vector of length |X| and, for each vertex v of Γ, the v entry of this vector is twice 
the number of induced cycles of length four passing through v.

Originating from unpublished notes of Neumaier (ca. 1989) and tensor calculations 
of Terwilliger [23], diagrams of this sort seem to have been shared informally in the 
community for several decades now, mostly to illustrate computations rather than as 
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algebraic objects themselves. Precise algebraic formulations of the concept appear in 
the work of Dickie [8] and Suzuki [22,21]. An important special case arises in the state 
models for link invariants as seen, for example, in Jaeger [14]. The primary goal of this 
paper is to present the diagrammatic formalism as a rigorous alternative to the more 
cumbersome algebraic expressions that these diagrams represent. In [18] and [19], Penjić 
and Neumaier recently proposed a slightly different definition. To the author’s knowledge, 
these papers are the first published record of Neumaier’s diagrammatic notation.

Fix a nonempty set X and, for x ∈ X, let x̂ ∈ CX denote the standard basis vector 
indexed by x. For a digraph G = (V (G), E(G)), an ordered multiset R = {r1, . . . , rm} of 
nodes in G, and a function w mapping the edges of G to matrices with rows and columns 
indexed by X, we study the tensor

S(G,R;w) =
∑

ϕ:V (G)→X




∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)



 ϕ̂(r1) ⊗ ϕ̂(r2) ⊗ · · ·⊗ ϕ̂(rm) (1.1)

and a slight generalization thereof. Note here that w(e) is a matrix and w(e)ϕ(a),ϕ(b) is 
simply the entry of that matrix which appears in row ϕ(a), column ϕ(b).

1.1. Basic notation

Let X be a nonempty finite set and let MatX(C) denote the vector space of matrices 
with rows and columns indexed by X and entries from the complex numbers. Take V =
CX with standard basis of column vectors {x̂ | x ∈ X}, equipped with the corresponding 
positive definite Hermitian inner product 〈v, w〉 = v†w (where ·† denotes conjugate 
transpose) satisfying 〈x̂, ŷ〉 = δx,y for x, y ∈ X; this allows us to identify V with its dual 
space V † of linear functionals. The objects of study belong to tensor products of this 
space of the form

V ⊗m = V ⊗ V ⊗ · · ·⊗ V︸ ︷︷ ︸
m

with standard basis consisting of simple tensors of the form x̂1 ⊗ x̂2 ⊗ · · · ⊗ x̂m where 
x1, x2, . . . , xm ∈ X. In the case m = 2, we identify V ⊗ V with MatX(C) via

M = [Mxy] ←→
∑

x,y∈X

Mxy x̂⊗ ŷ.

Clearly MatX(C) forms an algebra both under matrix multiplication and under en-
trywise (Hadamard, or Schur) multiplication, which we denote by ◦, and contains the 
identities, I and J respectively, for these two multiplications. A vector subspace A of 
MatX(C) is said to be a coherent algebra if A is closed under the conjugate transpose 



W.J. Martin / Linear Algebra and its Applications 619 (2021) 50–106 53

operation, closed under both ordinary and entrywise multiplication, and contains both 
I and J .

We will use the term “subring” to mean a vector subspace of MatX(C) which is closed 
under ordinary matrix multiplication and we will use the term “◦-subring” to mean a 
vector subspace of MatX(C) which is closed under entrywise multiplication. Our primary 
example for the vector space A will be the Bose-Mesner algebra A = spanC{A0, . . . , Ad}
of a commutative d-class association scheme or, relaxing the commutativity condition, a 
coherent algebra. In this case, A is both a subring and a ◦-subring of MatX(C). But some 
of the tools presented here clearly extend to other settings; for example where A = 〈A〉 is 
the adjacency algebra of a finite simple graph Γ with vertex set X and adjacency matrix 
A. (See [17].)

1.2. Scaffolds (or “star-triangle diagrams”)

Suppose we are given

• A finite (di)graph G = (V (G), E(G)) possibly with loops and/or multiple edges, the 
diagram of the scaffold1;

• An ordered multiset R = {r1, . . . , rm} ⊆ V (G) of “root” nodes (or “roots”). In the 
language of [15, p39], G, together with R, is a “k-multilabeled graph” (where k = m

here), but we will call (G, R) a rooted diagram;
• A finite set X and a map from edges of G to matrices in MatX(C): w : E(G) →

MatX(C) (edge weights);
• a subset F ⊆ V (G) of fixed nodes and a fixed function ϕ0 : F → X.

The (general) scaffold S(G, R; w; F, ϕ0) is defined as the quantity

S(G,R;w;F,ϕ 0) =
∑

ϕ:V (G)→X
(∀a∈F )(ϕ(a)=ϕ0(a))




∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)



 ϕ̂(r1)⊗ ϕ̂(r2)⊗ · · ·⊗ ϕ̂(rm).

(1.2)
Each function ϕ : V (G) → X whose restriction to F is ϕ0 is called a state of the scaffold. 
Observe that each state itself yields a scaffold with one summand by taking F = X and 
ϕ0 = ϕ, namely

w(ϕ) ϕ̂(r1) ⊗ ϕ̂(r2) ⊗ · · ·⊗ ϕ̂(rm)

where the weight of ϕ is defined as w(ϕ) :=
∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b).

1 Note that we write e = (a, b) to indicate that edge e has tail a and head b; this is a slight abuse of 
notation in the presence of parallel edges.
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Reversing an arc e = (a, b) in diagram G is equivalent to replacing w(e) by its trans-
pose. In the case where all edge weights are symmetric matrices, we may treat G as an 
undirected graph.

The scaffold S(G, R; w; F, ϕ0) is an element of V ⊗m, so we say S(G, R; w; F, ϕ0) is a 
scaffold of order m. Scaffolds with m = 0 are simply complex numbers. In our discussion, 
X will typically denote the vertex set of some association scheme. To distinguish V (G)
from X, we will refer to elements of V (G) as nodes. Viewed as elements of CXm , we may 
take linear combinations of scaffolds with a common multiset R of roots as needed and, 
in parallel to terminology used for tensors, it would be natural to refer to these linear 
combinations as “scaffolds” as well.

As the examples above and below show, a scaffold on a small number of nodes can 
often be concisely encoded pictorially as an edge-labeled diagram once a convention is 
established for the ordering r1, . . . , rm of root nodes. Let us make this precise. The data 
((G, R), w) is given as a plane drawing (possibly with crossings) of graph G with root 
nodes highlighted in color and each edge e labeled with the matrix w(e). Throughout, we 
identify this pictorial representation of the data ((G, R), w) with the tensor S(G, R; w). 
In the case of general scaffolds, each node a ∈ F is labeled with the vertex ϕ0(a) ∈ X in 
this pictorial representation of the tensor.

Example 1.1. Suppose X = {u, v, w, x} and

A =

u v w x



0 1 1 0
1 0 1 1
0 1 0 0
0 0 0 0





u

v

w

x

Then we have 
A = û + 2v̂ + 2ŵ + x̂, u

A = v̂ + ŵ, and u
A =

û⊗ v̂+ û⊗ ŵ. Here, G = ({1, 2}, {(1, 2)}), w(1, 2) = A, R = {2} in the first two examples 
and R = V (G) = {1, 2} in the third. The set F is empty in the first tensor while F = {1}
with ϕ0(1) = u in the second and third. !

Fixing the rooted diagram (G, R), we obtain (cf. [14]) a multilinear map from AE(G)

to CXm , mapping each choice w : E(G) → A of edge weights to the scaffold S(G, R; w)
and extended linearly. In Section 3, we study the images of such maps.

In this paper, with few exceptions, the set F of fixed nodes is empty. In this case, the 
expression takes the simpler form given in (1.1) which we repeat here:

S(G,R;w) =
∑

ϕ:V (G)→X




∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)



 ϕ̂(r1) ⊗ ϕ̂(r2) ⊗ · · ·⊗ ϕ̂(rm).
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Let us call tensors of this form symmetric scaffolds when the distinction is necessary.2
In the case where R = ∅, scaffolds evaluate to scalars and we recover Jaeger’s definition 

of a partition function in [14, p. 107] and the original counting diagrams of Neumaier 
(cf. [18,19]).

1.3. Rules for scaffold manipulation

Throughout Section 1.3, we assume a nonempty finite set X is given and all edge 
weights are assumed to be matrices in MatX(C). Scaffolds with a single vertex and a 
single arc give us the diagonal of a matrix and its trace:

=
∑

x∈X

Mxx = tr(M) .=
∑

x∈X

Mxx x̂ ,
MM

Note that, when edge weights are taken from a Bose-Mesner algebra, where all matrices 
have constant diagonal, loops can always be removed once this scalar is accounted for 
(see Rule SR9′ in Appendix A).

Employing the canonical isomorphism between V = CX and V †, we identify each 
matrix N ∈ MatX(C) with the corresponding second order tensor 

∑

x,y∈X

Nxyx̂⊗ ŷ:

=
∑

x,y∈X

Nxy x̂⊗ ŷ = N

=
∑

x,y∈X

Nxy x̂ = N1

=
∑

x,y∈X

Nxy = SUM(N) = 1'N1

N

N

N

where 1 denotes the vector of all ones in CX . A special case occurs when G is an edgeless 
graph; if |V (G)| = n and R is a set of m (distinct) elements, then the corresponding 

2 One might consider a more general tensor of this sort as follows. Let X̂ be some basis for CX — one 
might choose the standard basis as we have done, choose an eigenbasis, or some other basis. Rather than 
sum over all functions from V (G) to X, we may instead sum over all functions from V (G) to X̂ and define 

S(G, R; w) = ∑
ϕ:V (G)→X̂

(
∏

e∈E(G)
e=(a,b)

ϕ(a)†w(e)ϕ(b)
)
ϕ(r1) ⊗ · · · ⊗ ϕ(rm).



56 W.J. Martin / Linear Algebra and its Applications 619 (2021) 50–106

scaffold is |X|n−m
∑

x1,...,xm∈X x̂1 ⊗ x̂2 ⊗ · · · ⊗ x̂m. For example, when n = m = 2, we 
obtain the all ones matrix J .

The fundamental scaffold identities below show that matrix product and Schur/en-
trywise product correspond, respectively, to series and parallel reductions on diagrams:

=
∑

x,y,z∈X

MxyNyz x̂⊗ ẑ =
∑

x,z∈X

(MN)xz x̂⊗ ẑ =M N MN

=
∑

x,y∈X

MxyNxy x̂⊗ ŷ =
∑

x,y∈X

(M ◦N)xy x̂⊗ ŷ =
M

N
M ◦N .

Note that the first identity only makes sense when the middle (hollow) node in the top 
left digraph is incident only to the two edges shown but, as with all scaffold identities, the 
root nodes may be incident to edges of the diagram other than those shown. We present 
these identities, denoted in Appendix A as SR1 and SR1′, in the following lemma.

Lemma 1.2. Let G = (V (G), E(G)) with e1, e2 ∈ E(G) where e1 = (a1, b1) and e2 =
(a2, b2). Let

E′ = (E(G) \ {e1, e2}) ∪ {e′ = (a1, b2)} .

(i) If b1 /∈ R and e1 and e2 are in series, i.e., b1 = a2 and no other edge is incident to 
b1, then

S(G,R;w) = S(G′, R;w′)

where G′ = (V (G) \ {b1}, E′), w′(e′) = w(e1)w(e2) and w′(e) = w(e) otherwise.
(ii) If e1 and e2 are in parallel, i.e., a1 = a2 and b1 = b2, then

S(G,R;w) = S(G′, R;w′)

where G′ = (V (G), E′), w′(e′) = w(e1) ◦ w(e2) and w′(e) = w(e) otherwise. !

Another basic lemma:

Lemma 1.3. Let G = (V (G), E(G)) with e′ = (a, b) ∈ E(G).

(i) Let G′ be obtained from G by deleting edge e′. If w(e′) = J , then S(G, R; w) =
S(G′, R; w′) where w′(e) = w(e) for all e ∈ E(G) \ {e′}.

(ii) Let G′ be obtained from G by contracting edge e′: for f(a) = f(b) = a′ and f(c) = c

otherwise,
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V (G′) = (V (G) \ {a, b}) ∪ {a′}, E(G′) = {(f(u), f(v)) | (u, v) ∈ E(G) \ {e′}} .

If w(e′) = I, then S(G, R; w) = S(G′, R′; w′) where w′(f(u), f(v)) = w(u, v) for all 
e = (u, v) ∈ E(G) \ {e′}, R′ = {f(r1), . . . , f(rm)}. !

This second lemma provides us with two more basic moves, SR0 and SR0′ in our 
notation, that preserve scaffolds:

• Insert an edge between two existing nodes, mapping the new edge to J

←→
J

or ←→
J

.

• Split a node in two, introducing a hollow node, mapping the new edge to I

←→ I
or ←→I

.

Note that the edges incident to the original node may be distributed among the two 
nodes on the right in any fashion. In the reverse direction, contracting an edge e
with w(e) = I may result in a multiset of root nodes as in the example on the right.

In the case where edge weights belong to a Bose-Mesner algebra, these steps are useful 
in conjunction with the linear expansions I =

∑
j Ej and J =

∑
i Ai given in Equation 

(2.2), respectively, which allow us to expand one scaffold as a linear combination of 
closely related scaffolds.

If our rooted diagram contains a hollow node of degree one and the incident edge 
weight has constant row and column sum, we may simplify the scaffold by deleting this 
node and scaling the resulting tensor by that constant (Rule SR9).

Lemma 1.4. Let G = (V (G), E(G)) be a digraph, w : E(G) → MatX(C), R an ordered 
multiset of nodes from V (G), a0 ∈ V (G) not in R and incident to just one edge in E(G)
(say e = (a0, b0) or e = (b0, a0)). Let M = w(e). Denote by G′ the graph obtained from 
G by deletion of a0 and e; denote by w′ the restriction of w to edges other than e.

(i) if e = (b0, a0) and M has constant row sum α, then S(G, R; w) = αS(G′, R; w′);
(ii) if e = (a0, b0) and M has constant column sum α, then S(G, R; w) = αS(G′, R; w′). !

General scaffolds become useful when one’s investigation differentiates individual ver-
tices of an object or when one wishes to expand an expression as a sum over vertices. 
If
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t = S(G,R;w)

is a symmetric scaffold with edge weights in MatX(C) and a ∈ V (G), define, for x ∈ X,

tx = S(G,R;w; {a},ϕx)

where ϕx(a) = x. Then we have t =
∑

x∈X

tx: for a ∈ R, this is depicted as

t
=

∑

x∈X

x

tx

Using the notion of a general scaffold, we obtain a straightforward proof that our 
manipulations of subdiagrams are valid operations on overall diagrams. Let G =
(V (G), E(G)) and H = (V (H), E(H)) be digraphs with disjoint node sets and a bi-
jection ξ pairing % distinct nodes ui of G to % nodes ri of H. Writing ξ(ui) = ri, define 
G +ξ H to be the digraph with vertex set

V (G +ξ H) = (V (G) \ {u1, . . . u#}) ∪ V (H)

and edges

E(H) ∪ {(ξ(a), ξ(b)) | (a, b) ∈ E(G)}

where we extend ξ to V (G) defining ξ(c) = c for c /∈ {u1, . . . , u#}. If (G, Q) and (H, R)
are rooted diagrams with R = {r1, . . . , rm}, the corresponding ordered multiset of roots 
for diagram G +ξH is the union of the multiset of the roots of G not among {u1, . . . , u#}
followed by {r1, . . . , rm}. Extending this notation to symmetric scaffolds, if

s = S(G,Q;w) and t = S(H,R;w1)

and ξ is given as above such that ξ(c) = c whenever c /∈ Q, define

s +ξ t = S
(
G +ξ H,ξ (Q) ∪ R̄;wξ ∪ w1

)

where R̄ = {r#+1, . . . , rm} and wξ(ξ(a), ξ(b)) = w(a, b) for (a, b) ∈ E(G). Here, as in 
the next proposition, we assume that ξ(u1), . . . , ξ(u#) are the first % elements of R for 
notational convenience only.
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Proposition 1.5. Let (H1, R) and (H2, R) be rooted diagrams with a common ordered 
multiset of roots. Let wj : E(Hj) → MatX(C) (j ∈ {1, 2}) such that the two symmetric 
scaffolds

t1 = S(H1, R;w1) and t2 = S(H2, R;w2)

are equal as tensors. If R′ = {r1, . . . , r#} ⊆ R is an ordered subset of (distinct) roots, 
then for any scaffold s = S(G, Q; w) where V (G) is disjoint from both V (H1) and V (H2), 
w : E(G) → MatX(C) and any ordered set u1, . . . , u# of % distinct roots from Q, we have 
s +ξ t1 = s +ξ t2 where ξ(ui) = ri.

Proof. Write R = {r1, . . . , rm}, m ≥ %, and order roots so that ξ(Q) ∪R̄ = {q1, . . . , qn, r1, 
. . . , rm}, n ≥ 0. Since t1 = t2, we have, for each ϕ0 : R → X and any choice of 
y1, . . . , yn ∈ X

∑

ϕ:V (H1)→X
(∀a∈R)(ϕ(a)=ϕ0(a))




∏

e∈E(H1)
e=(a,b)

w1(e)ϕ(a),ϕ(b)



ŷ1 ⊗ · · ·⊗ ŷn ⊗ ϕ̂(r1) ⊗ · · ·⊗ ϕ̂(rm)

=
∑

ϕ:V (H2)→X
(∀a∈R)(ϕ(a)=ϕ0(a))




∏

e∈E(H2)
e=(a,b)

w2(e)ϕ(a),ϕ(b)



ŷ1 ⊗ · · ·⊗ ŷn ⊗ ϕ̂(r1) ⊗ · · ·⊗ ϕ̂(rm)

Taking linear combinations over all ψ : V (G) \ {u1, . . . u#} → X, we have

∑

ϕ:V (G+ξH1)→X
(∀a∈R)(ϕ(a)=ϕ0(a))




∏

e∈E(G)
e=(a,b)

wξ(e)ϕ(ξ(a)),ϕ(ξ(b))








∏

e∈E(H1)
e=(a,b)

w1(e)ϕ(a),ϕ(b)



ϕ̂(q1) ⊗ · · ·

⊗ ϕ̂(qn) ⊗ ϕ̂(r1) ⊗ · · ·⊗ ϕ̂(rm)

=
∑

ϕ:V (G+ξH2)→X
(∀a∈R)(ϕ(a)=ϕ0(a))




∏

e∈E(G)
e=(a,b)

wξ(e)ϕ(ξ(a)),ϕ(ξ(b))








∏

e∈E(H2)
e=(a,b)

w2(e)ϕ(a),ϕ(b)



ϕ̂(q1) ⊗ · · ·

⊗ ϕ̂(qn) ⊗ ϕ̂(r1) ⊗ · · ·⊗ ϕ̂(rm).

Finally, summing over all ϕ0 : R → X, we obtain our result. !

This tool is denoted SR5 in Appendix A. Note that, while each node of attachment 
must be a root node in both s and ti, the remaining nodes of (Hi, R) and (G, Q) may 
be any combination of root and non-root nodes. This proposition, combined with the 
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following lemma, allows us to make the local moves on scaffolds that are used throughout 
this paper.

An order reduction operation hollowR′ replaces

S = S(G,R;w;F,ϕ 0) =
∑

ϕ:V (G)→X
(∀a∈F )(ϕ(a)=ϕ0(a))

∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)ϕ̂(r1) ⊗ · · ·⊗ ϕ̂(rm)

by

hollowR′ (S) = S(G,R′;w;F,ϕ 0)

=
∑

ϕ:V (G)→X
(∀a∈F )(ϕ(a)=ϕ0(a))

∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)ϕ̂(ri1) ⊗ · · ·⊗ ϕ̂(ri#)

where R′ = {ri1 , . . . , ri#} ⊆ R = {r1, . . . , rm}. This maps mth order tensors to tensors of 
order %. In terms of diagrams, the solid nodes outside R′ are converted to hollow nodes. 
The fact that this operation preserves scaffold identities is denoted in the appendix below 
as Rule SR10.

Lemma 1.6. If S(G1, R; w1; F1, ϕ1) = S(G2, R; w2; F2, ϕ2) (defined on the same ordered 
multiset R of roots), then, for any ordered submultiset R′ ⊆ R, S(G1, R′; w1; F1, ϕ1) =
S(G2, R′; w2; F2, ϕ2). In particular, if S(G, R; w; F, ϕ0) = 0 and R′ ⊆ R, then 
S(G, R′; w; F, ϕ0) = 0 also. !

1.4. Partition functions and spin models

Before we delve into the main line of investigation, namely computations in Bose-
Mesner algebras, we illustrate the broader utility of Neumaier’s diagrams by mentioning 
just one connection to spin models and link invariants. This application motivated 
Jaeger’s formulation in [14].

If X is a finite set of colors (or “spins”), we may employ a partition function to assign 
a complex number to each link diagram. The concept of a spin model plays a key role 
here in determining which partition functions are link invariants.

A spin model [14, Prop. 1] is a triple (X, W+, W−) where X is a nonempty finite set 
and matrices W+, W− ∈ MatX(C) satisfy, for D2 = |X| and some scalar α,

• (“Type I relation” for W+) W+ has constant diagonal α, constant row sum Dα−1, 
and constant column sum Dα−1;

• (“Type I relation” for W−) W− has constant diagonal α−1, constant row sum Dα, 
and constant column sum Dα;

• (“Type II relation”) W+ ◦ (W−)' = J while W−W+ = W+W− = |X|I
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• (“Type III” or “Star-Triangle Relation”) for every a, b, c ∈ X,

∑

x∈X

(W+)a,x(W+)x,b(W−)x,c = D (W+)a,b(W−)a,c(W−)b,c

In scaffold formalism, these conditions are written

=
W+

I αI
= = Dα−1W+ W+

=
W−

I α−1I
= = Dα

W− W−

=
W+

W−
= = |X|W− W+ W+ W− I

= D·
W+ W−

W+

W−

W+ W−

2. Association schemes

A (commutative) association scheme [7,1,2,12,16] consists of a finite set X together 
with a collection R = {R0, . . . , Rd} of nonempty binary relations (the basis relations) 
on X satisfying the following conditions:

(i) some relation in R is the identity relation on X; we denote this relation by R0;
(ii) Ri ∩Rj = ∅ whenever i .= j;
(iii) R0 ∪ · · · ∪Rd = X ×X;
(iv) for each i, the relation R'

i = {(b, a) : (a, b) ∈ Ri} also belongs to R;
(v) there are intersection numbers pkij (0 ≤ i, j, k ≤ d) such that, whenever (a, b) ∈ Rk, 

we have exactly pkij elements c ∈ X for which both (a, c) ∈ Ri and (c, b) ∈ Rj ;
(vi) for each i, j and k, pkij = pkji.

An association scheme is symmetric if R'
i = Ri for all Ri ∈ R.

Let (X, R) be an association scheme with basis relations R = {R0, R1, . . . , Rd} having 
adjacency matrices A0, A1, . . . , Ad respectively where (Ai)x,y = 1 if (x, y) ∈ Ri and 
(Ai)x,y = 0 otherwise. It is well known [2, Thm. 2.6.1] that the vector space A spanned by 
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these d +1 matrices is a Bose-Mesner algebra3 and that {A0, A1, . . . , Ad} forms a basis of 
pairwise orthogonal idempotents with respect to the entrywise product: Ai ◦Aj = δi,jAi. 
By convention, we have A0 = I and the unique basis of orthogonal idempotents with 
respect to ordinary matrix multiplication is denoted by {E0, E1, . . . , Ed} with E0 = 1

|X|J . 
It follows that there exist structure constants, called Krein parameters, qkij for which

Ei ◦ Ej = 1
|X|

d∑

k=0
qkijEk

for 0 ≤ i, j ≤ d. Note that, for each j ∈ {0, . . . , d}, there is some j′ ∈ {0, . . . , d} with 
Ej′ = E'

j = Ēj . The two bases {A0, . . . , Ad} and {E0, . . . , Ed} for algebra A are related 
by the first and second eigenmatrices P and Q defined by

Ai =
d∑

j=0
PjiEj , Ej = 1

|X|

d∑

i=0
QijAi . (2.1)

These satisfy the orthogonality relations [2, Sec. 2.2] PQ = |X|I and mjPji = viQ̄ij

where mj = q0
jj is the rank of Ej and vi = p0

ii is the valency of the graph (X, Ri)
corresponding to the ith basis relation. Though trivial, the specializations of (2.1) to A0
and E0 are used frequently:

d∑

j=0
Ej = I ,

d∑

i=0
Ai = J . (2.2)

Let us first consider scaffolds S(G, R; w) where w(e) ∈ {A0, . . . , Ad} for every edge e
in G. Note that we are abusing our conventions in that the set X is not specified: when 
an identity is given, we mean that it holds true (under the given hypotheses) for any 
association scheme (X, R) whose Bose-Mesner algebra A ⊆ MatX(C) contains all the 
edge weights under standard naming conventions for A0, . . . , Ad, E0, . . . , Ed.

Most basic identities for the parameters of the Bose-Mesner algebra can be stated as 
scaffold equations. For instance, one may define the intersection numbers pkij and Krein 
parameters qkij by the equations

=
d∑

k=0
pkij

∑

(a,b)∈Rk

â⊗ b̂
Ai Aj =

d∑

k=0
pkij

Ak (2.3)

and

3 I.e., the vector space is closed under transpose, closed under conjugation, closed and commutative under 
both ordinary and entrywise multiplication, and contains the identities, I and J, respectively, for these two 
operations.
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Ei

Ej

= 1
|X|

d∑

k=0
qkij

Ek (2.4)

On the other hand, the orthogonality properties of the two fundamental bases {Ai}di=0
and {Ej}dj=0 give us

= δi,j
Ei Ej Ei and

Ai

Aj = δi,j
Ai . (2.5)

The first non-trivial relations we encounter are given by the following lemma, recorded in 
our appendix as rules SR2 and SR2′, respectively. The first of these well-known statements 
is obvious and one may derive short proofs for the second [3].

Lemma 2.1. For any association scheme (X, R) with intersection numbers pkij and Krein 
parameters qkij, we have pkij = 0 if and only if

0 =
Ak

AjAi

(2.6)

and qkij = 0 if and only if

0 =
Ej

Ek

Ei

(2.7)

We also make frequent use of the following lemma.

Lemma 2.2. Let (X, R) be an association scheme with Bose-Mesner algebra having prim-
itive idempotents {E0, . . . , Ed} where, for 0 ≤ h ≤ d, h′ is the index for which Eh′ = E'

h . 
Then

Ei

Ej

Ek

=
qk

′

ij

|X|mk = qj
′

ik

|X|mj =
qi

′

jk

|X|mi

In particular, the zeroth order scaffold on the left is zero if and only if qk′

ij = 0.
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Proof. We compute, applying Lemma 1.2(ii), (2.4) and (2.5), 

Ei

Ej

Ek

=

Ei ◦ Ej

Ek
=

1
|X|

∑d
h=0 qhijEh

Ek′

= 1
|X|

d∑

h=0
qhij

Eh

Ek′

=
qk

′

ij

|X|

Ek′

and note that trEk′ = trEk = mk. By the same token,

=
qi

′

jk

|X| = qj
′

ik

|X|

Ei

Ej

Ek

Ei′ Ej′

the three possible evaluations all seen to be equal using the basic identity qk
′

ijmk =
qj

′

ikmj . !

2.1. The pinched star and the hollowed delta

Since Ei ◦ Ej = 1
|X|

∑d
h=0 q

h
ijEh we have

(Ei ◦ Ej)Ek =
qkij
|X|Ek. (2.8)

This provides us with our Rule SR3:

= =
qkij
|X| ·

Ej

Ei

Ek Ei ◦ Ej Ek Ek

and

= 0 when qkij = 0.
Ej

Ei

Ek

We refer to the diagram on the left as the pinched star. Dual to this is the following 
identity for intersection numbers: since
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(AiAj) ◦Ak =
(

d∑

h=0
phijAh

)
◦Ak = pkijAk, (2.9)

we have the following identity, denoted SR3′ in the appendix:

= pkij ·
Ak

Ai Aj

Ak

2.2. Isthmuses

The fundamental identity of Cameron, Goethals and Seidel [3] given in Equation (2.7)
extends, using Rule SR0, to give us information about scaffolds of higher order. Suzuki 
[21] proved the symmetric version of the following “Isthmus Lemma”, based on ideas of 
Dickie (Cf. [8, Lemma 4.2.2]). We extend Suzuki’s result to the case of (commutative) 
association schemes using scaffold notation and we denote this as Rule SR4.

Lemma 2.3 (Lemma 4, [21]). Let (X, R) be an association scheme.

(I) If qejk · qe#m = 0 for all e .= h, then

= qh#m
|X|

Ej

Ek E#

Em

Ej

Ek

Eh

(II) If qejk · qe#m = 0 for all e .= h, then

=

Ej

Ek E#

Em Ej

Ek

Eh

E#

Em

Proof. We provide a proof of (II) only:

= (SR0)

Ej

Ek E#

Em Ej

Ek

I

E#

Em
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=
d∑

e=0

by (2.2)

Ej

Ek

Ee

E#

Em

=

Ej

Ek

Eh

E#

Em

where the last equation follows from (2.7) and Proposition 1.5 using the hypothesis. !

For example, in any cometric association scheme (see Section 2.3) with Q-polynomial 

ordering E0, E1, E2, . . ., we have Eh

Ej Ek

Ei
= 0 whenever |k − j| > h + i and 

.... ...
.

Ej1Ej2
Ej3

Ej#

= 0 for any Q-bipartite association scheme in which j1 + · · ·+ j# is odd. 

On the other hand, it is easy to see that, with edge weights in an arbitrary Bose-Mesner 

algebra, scaffolds of the form .... ...
.

Ai1Ai2
Ai3

Ai#

...
..
..

Ej1

Ej2

Ej3

Ej#

Ej#−1

can never be 

zero.

Proposition 2.4. Let (X, R) be an association scheme having basis of primitive idem-
potents E0, E1, . . . , Ed and second eigenmatrix Q. If j1, . . . , j# ∈ {0, 1, . . . , d} satisfy 
Qij1 · · ·Qij# ≥ 0 for all 0 ≤ i ≤ d, then

.... ..
..

.= 0 .

Ej1
Ej2

Ej3
Ej#

Proof. Let y ∈ X. We simply show that the coefficient of ŷ ⊗ ŷ ⊗ · · · ⊗ ŷ is strictly 
positive. This coefficient is

∑

x∈X

(Ej1)x,y (Ej2)x,y · · · (Ej#)x,y
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= 1
|X|#

(
Q0,j1 · · ·Q0,j# +

d∑

i=1
viQij1 · · ·Qij#

)
> 0. !

The author does not know of a nonzero scaffold of this form in which the coefficients 
of ŷ ⊗ ŷ ⊗ · · ·⊗ ŷ are all zero.

The dual to Lemma 2.3, denoted SR4′, is given without proof.

Lemma 2.5. Assume (X, R) is an association scheme.

(I) If pehi · pejk = 0 for all e .= %, then

= p#jk ·

Ai

Ah

Ak

Aj

Ai

Ah

A#

(II) If pehi · pejk = 0 for all e .= %, then

=

Ai

Ah

Ak

Aj

Ai

Ah

A#

Ak

Aj !

2.3. Theorems of Dickie and Suzuki

Let (X, R) be a symmetric association scheme with Bose-Mesner algebra A. An or-
dering E0, E1, . . . , Ed of its basis of primitive idempotents is a Q-polynomial ordering if 
the following conditions are satisfied:

• qkij = 0 whenever one of the indices i, j, k exceeds the sum of the remaining two, and
• qkij > 0 when i, j, k ∈ {0, 1, . . . , d} and one of the indices equals the sum of the 

remaining two.

We say that (X, R) is a cometric (or Q-polynomial) association scheme when such 
an ordering of its primitive idempotents exists. Now suppose that E0, E1, . . . , Ed is a 
Q-polynomial ordering and recall the standard abbreviations for cometric scheme pa-
rameters

a∗j = qj1,j b∗j = qj1,j+1 c∗j = qj1,j−1 .
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Note that b∗j > 0 for 0 ≤ j < d and c∗j > 0 for 1 ≤ j ≤ d. A cometric association scheme is 
Q-bipartite, with respect to a given Q-polynomial ordering of its primitive idempotents, 
if its Krein parameters satisfy qkij = 0 whenever i + j + k is odd.

To further illustrate the algebraic manipulation of pictorial representations of scaf-
folds, we now give a proof of a theorem from the 1995 dissertation of Dickie [8].

Theorem 2.6 (Dickie, Thm. 4.1.1). Suppose (X, R) is a cometric association scheme with 
Q-polynomial ordering E0, E1, . . . , Ed. If 0 < j < d and a∗j = 0, then a∗1 = 0.

Proof. This proof consists almost entirely of a sequence of scaffolds all equal to the zero 
tensor 0 ∈ V ⊗3 or the zero scalar. We begin with our assumption that a∗j = 0:

0 = Ej E1

Ej

by (2.7)

0 = |X|
b∗j

· We may apply SR3

since (E1 ◦ Ej+1)Ej =
qj1,j+1
|X| Ej

with qj1,j+1 = b∗j > 0
Ej Ej+1

E1
E1

Ej

0 = |X|
b∗j

·

using Lemma 2.3(II)
since qej,1 · qe1,j+1 = 0

for any e .= j + 1
Ej+1

Ej+1E1

Ej E1

Ej

Now take the scalar product of this vanishing scaffold with the third-order tensor 

to obtain
E1

E1Ej−1
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0 =

E1

E1

Ej−1

Ej+1

Ej+1E1

Ej
E1

Ej

(1)

(Note that here and below we use a bold edge to indicate the location in the diagram 
where the next simplification will be applied.) Applying the Isthmus Lemma,

0 = since qe1,j−1 · qe1,j+1 = 0 for any e .= j.

E1

E1

Ej−1

Ej+1
Ej+1

E1

Ej E1

Likewise,

0 = since qe1,j−1 · qe1,j+1 = 0 for any e .= j.

E1

E1
Ej−1

Ej+1

Ej+1
E1

E1

Using the entrywise product,

0 =

E1

E1
E1 ◦ Ej−1

Ej+1

Ej+1

E1



70 W.J. Martin / Linear Algebra and its Applications 619 (2021) 50–106

Now we expand

E1 ◦ Ej−1 =
b∗j−2
|X| Ej−2 +

a∗j−1
|X| Ej−1 +

c∗j
|X|Ej

and observe qe1,j+1 = 0 for e < j. Since c∗j .= 0, we have

0 = and so, again applying Lemma 2.3(II),

E1

E1
Ej

Ej+1

Ej+1

E1

0 = since qe1,j · qe1,j+1 = 0 for any e .= j + 1.

E1

E1

Ej

Ej+1

E1

Now we have a pinched star 
E1

Ej

Ej+1 and we know q1
j,j+1 .= 0 by the cometric property 

since j < d. So, using SR3, we have 0 =
E1

E1
E1 and Lemma 2.2 tells us that q1

11 = 0, 
or a∗1 = 0. !

We find the same sort of proof structure in Proposition 3 of Suzuki’s paper [21], which 
specializes to Dickie’s Theorem in the case h = 0 and j = 1.

Theorem 2.7 (Suzuki [21]). In a cometric association scheme (X, R) with Q-polynomial 
ordering E0, . . . , Ed of its primitive idempotents, if indices j ≤ i ≤ i + j ≤ h + i + j ≤ d

satisfy qej,h+i · qei−j,h+j = 0 for all e .= h + i − j and qh+i
i,h+j = 0, then qh+j

j,h+j = 0. !

In [22], Suzuki uses these and other ideas to prove that a cometric association scheme 
which is not a polygon admits at most two Q-polynomial orderings. In order to do 
this, he narrows down the possibilities for a second Q-polynomial ordering given that 
{E0, E1, . . . , Ed} is such an ordering. Here is a lemma from that paper.

Lemma 2.8 (Suzuki [22]). Let (X, R) be a symmetric association scheme. Let h, i, j, k, %, m
be indices satisfying qhi,j .= 0 and
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(∀e .= %)
(
qeh,m · qei,k = 0

)
and (∀e .= m)

(
qeh,# · qej,k = 0

)
.

Then qik,# = qjk,m.

Proof. We manipulate, in two ways, a scaffold built on K4: applying Lemma 2.3(II),

= =
qjk,m
|X| ·

Eh

Ei

Ej E#

Em

Ek

Eh

Ei
Ej

Em

Ek

Eh

Ei

Ej

and, at the same time,

= =
qik,#
|X| ·

Eh

Ej

Ei Em

E#

Ek

Eh

Ej
Ei

E#

Ek

Eh

Ej

Ei

Since the scalars on the left of the two equations are equal, we have

1
|X|q

j
k,mqhi,jmh = 1

|X|q
i
k,#q

h
i,jmh .

As qhi,j .= 0, we obtain qik,# = qjk,m. !

A similar proof, using Lemma 2.5(II), gives us the dual result4: if pth,# ptj,k = 0 for all 
t .= m and pth,mpti,k = 0 for all t .= %, then pik,# = pjk,m unless pjh,i = 0.

2.4. Generalized intersection numbers

Following Coolsaet and Jurišić [4], we now define generalized intersection numbers for 
an arbitrary association scheme. For a1, . . . , ak ∈ X and i1, . . . , ik ∈ {0, . . . , d}, define

4 This holds for any commutative association scheme in which Ah = A%
h .
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[
a1 a2 · · · ak
i1 i2 · · · ik

]
=

∣∣{b ∈ X | (∀j)
(
(aj , b) ∈ Rij

)}∣∣ ;

this is the number of vertices ij-related to aj for j = 1, . . . , k. Restricting to the sym-
metric case for convenience, we immediately recognize these values as the coefficients of 
elementary tensors in the following star scaffold:

..... ...
.

=
∑

a1,··· ,ak∈X

[
a1 a2 · · · ak
i1 i2 · · · ik

]
â1 ⊗ â2 ⊗ · · ·⊗ âk

Ai1Ai2

Ai3
Aik

When k is very small, this number does not depend on the choice of the vertices aj but 
only on the 

(k
2
)

relations joining them. Here are the encoding of the most basic forms in 
the language of scaffolds:

[
a

i

]
= vi:

Ai = vi

[
a b

i j

]
= p#ij for (a, b) ∈ R#:

Ai

Aj

=
∑d

#=0 p#ij A#

Let A be the Bose-Mesner algebra of a distance-regular graph Γ with P -polynomial 
ordering A0, A1, . . . , Ad of its Schur idempotents. Then

=
∑

a,b,c∈X

[
a b c

i j k

]
â⊗ b̂⊗ ĉ

Ai

Aj

Ak

where 

[
a b c

i j k

]
is the number of vertices at distance i from a, distance j from b and 

distance k from c in Γ for each a, b, c ∈ X. While such numbers typically depend on the 
choice of vertices a, b, and c, they must satisfy a natural system of equations entirely 
determined by the parameters of the graph. Coolsaet and Jurišić [4] observe, in their 

Equation (5), that 

A0 Ai

Aj =
Ai

Aj . Their Equation (6) can be expressed
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d∑

h=0 Ah Ai

Aj
=

J Ai

Aj
=

Ai

Aj
=

d∑

k=0
pkij Ak

Several researchers (e.g., [4,10]) have ruled out feasible parameter sets for distance-
regular graphs by analyzing linear relations that these numbers must satisfy. A key 
insight in [4] is the following. If we know that a Krein parameter qtr,s vanishes, then we 

have, by (2.7), 0 = Et Er

Es

and using (2.1) to expand Er = 1
|X|

∑d
i=0 QirAi, as well as Es and Et, we find

qtrs = 0 ⇒
d∑

i,j,k=0
QirQjsQkt · = 0 .Ak Ai

Aj

The same logic works on the dualized diagrams to give us the following apparently new 
identity:

pkij = 0 ⇒
d∑

r,s,t=0
PriPsjPtk · = 0 .

Er

EsEt

3. Vector spaces of scaffolds

Given a subspace or subalgebra A of MatX(C), we now investigate various spaces 
contained in the vector space spanned by all mth order scaffolds with edge weights in A. 
We obtain interesting results when we fix the rooted diagram or simply fix the number 
m of root nodes.

3.1. Inner products

The standard scalar product on tensors can be described easily as a gluing operation 
on diagrams. Our most familiar inner product on tensors is the Frobenius product of two 
matrices:

M =
∑

a,b∈X

Mab â⊗ b̂, N =
∑

a,b∈X

Nab â⊗ b̂, 〈M,N〉 =
∑

a,b∈X

M̄abNab .
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In terms of scaffolds, this is expressed

〈 M

,

N 〉
= M̄ N

I

I

=
M̄

N

where M̄ is the matrix obtained by conjugating each entry of M .
We extend this to scaffolds s and t of order m: we assume a consistent ordering of the 

root nodes in the two diagrams, indicated by their spatial arrangement, and simply join 
each pair of corresponding root nodes vs, vt by an edge e = (vs, vt) with weight w(e) = I, 
conjugate the edge weights coming from the left argument and, in the new scaffold, make 
all nodes hollow. This is simply the linear extension of the product defined by

〈y1 ⊗ y2 ⊗ · · ·⊗ ym , z1 ⊗ z2 ⊗ · · ·⊗ zm〉 = 〈y1, z1〉〈y2, z2〉 · · · 〈ym, zm〉 (3.1)

for y1, y2, . . . , ym, z1, z2, . . . , zm ∈ CX .

Example 3.1. Let X denote the vertex set of the Petersen graph with adjacency matrix 
A1 and primitive idempotents E0, E1, E2 satisfying A1E1 = E1 and A1E2 = −2E2. 
Although every edge weight below is positive semidefinite, straightforward computation 
shows

E2
E2E2

,

E2E2

E1

=
E2

E2E2
E2

E2

E1
I

I

I

=

E1

E2

E2

E2

E2
E2

= −2
243 .

3.2. Important subspaces

Let (X, R) be a (commutative) association scheme with standard module V = CX

and automorphism group5 Σ. The group Σ acts componentwise on elementary basis 
tensors x̂1 ⊗ · · ·⊗ x̂m: if σ ∈ Σ sends x ∈ X to xσ, then

σ : x̂1 ⊗ · · ·⊗ x̂m 4→ x̂σ
1 ⊗ · · ·⊗ x̂σ

m.

Each scaffold of order m is an element of the tensor product V ⊗m and it is easy to see 
that, in full generality, the mth order scaffolds span this space. But the space spanned 

5 The automorphism group of an association scheme (X, {R0, . . . , Rd}) is defined to be the subgroup of 
Sym(X) which preserves all relations Ri, 1 ≤ i ≤ d.
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by the symmetric scaffolds is almost always much smaller. The vector space of mth order 
symmetric scaffolds contains an ascending chain of subspaces Sm ⊆ Sm+1 ⊆ Sm+2 ⊆ · · ·
where St is the vector space spanned by mth order symmetric scaffolds on t nodes.

Theorem 3.2. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra 
A and automorphism group Σ. The vector space WWW(m; A) of all linear combinations of 
mth order scaffolds with edge weights in A has dimension equal to the number of orbits 
of Σ on ordered m-tuples of vertices. If O1, . . . , ON is a full list of orbits of Σ on ordered 
m-tuples of vertices, then the tensors





∑

(x1,...,xm)∈Oh

x̂1 ⊗ · · ·⊗ x̂m

∣∣∣∣∣∣
1 ≤ h ≤ N






form a basis for this vector space.

Proof. It is not hard to see that every element σ ∈ Σ preserves every symmetric scaffold:

S(G,R;w) =
∑

ϕ:V (G)→X




∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)



 ϕ̂(r1) ⊗ ϕ̂(r2) ⊗ · · ·⊗ ϕ̂(rm) =

∑

ϕ:V (G)→X




∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b)



 ϕ̂(r1)σ ⊗ ϕ̂(r2)σ ⊗ · · ·⊗ ϕ̂(rm)σ.

To see that the two spaces are equal, let Oh be any orbit on m-tuples with orbit rep-
resentative (y1, . . . , ym). Let G be the complete graph with vertex set V (G) = X, edge 
weights w(e) = Ai whenever e = (a, b) ∈ Ri, 0 ≤ i ≤ d, and root nodes R = {y1, . . . , ym}. 
Then, for ϕ : X → X,

∏

e∈E(G)
e=(a,b)

w(e)ϕ(a),ϕ(b) =
{

1, if ϕ ∈ Σ;
0 otherwise.

So, applying the Orbit-Stabilizer Theorem, S(G, R; w) = |Σ|
|Oh|

∑

(x1,...,xm)∈Oh

x̂1 ⊗ · · · ⊗

x̂m. !

For example, if (X, R) is Schurian (i.e., there is a group Σ acting on X whose orbitals 
are precisely R0, R1, . . . , Rd), then the space of second order scaffolds is no larger than 
the Bose-Mesner algebra, which is the vector space of single-edge scaffolds of order two.

For each m ≥ 1, we have various actions of matrices on V ⊗m given by Jaeger [14].
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I (node action) Here we view MatX(C) as an algebra of matrices under ordinary 
matrix multiplication. For A ∈ MatX(C), 1 ≤ i ≤ m and x̂1 ⊗ · · · ⊗ x̂m ∈ V ⊗m, 
define

Di
A : x̂1 ⊗ · · ·⊗ x̂i ⊗ · · ·⊗ x̂m 4→ x̂1 ⊗ · · ·⊗Ax̂i ⊗ · · ·⊗ x̂m

Diagrammatically, this adds a node of degree one to a scaffold as follows:

Di
A−−−−−−→

A

II (edge action) Here we view MatX(C) as a ◦-subring of itself: i.e., the product is 
entrywise. Assume m ≥ 2. For A ∈ MatX(C), 1 ≤ i, j ≤ m, and standard basis 
element x̂1 ⊗ · · ·⊗ x̂m ∈ V ⊗m, define

E i,j
A : x̂1 ⊗ · · ·⊗ x̂m 4→ Axi,xj x̂1 ⊗ · · ·⊗ x̂m

Ei,j
A−−−−−−→

w(e) w(e)

A
or

Ei,j
A−−−−−−→

A

The first investigation of these actions on tensors appears in the work of Terwilliger 
[23] who considered the case m = 3. Let (X, R) be an association scheme with Bose-
Mesner algebra A acting on the standard module. The inner product space

V ⊗3 = V ⊗ V ⊗ V = span
{
â⊗ b̂⊗ ĉ | a, b, c ∈ X

}

of all third order tensors can be viewed as an A⊗3-module in two important ways:

(M1 ⊗M2 ⊗M3)s =
(
D1

M1 • D
2
M2 • D

3
M3

)
(s), (3.2)

where • here denotes composition of functions, or

{M1 ⊗M2 ⊗M3}s =
(
E1,2
M3

• E1,3
M2

• E2,3
M1

)
(s), (3.3)

each extended linearly. For the moment, let us denote the action given in (3.2) by (·)
and the action given in (3.3) by {·}. The space V ⊗3 is then a module for the algebra of 
linear operators generated by (·) and {·} where

(M1 ⊗M2 ⊗M3) • (N1 ⊗N2 ⊗N3) = ((M1N1) ⊗ (M2N2) ⊗ (M3N3)) (3.4)
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and

{M1 ⊗M2 ⊗M3} • {N1 ⊗N2 ⊗N3} = {(M1 ◦N1) ⊗ (M2 ◦N2) ⊗ (M3 ◦N3)} . (3.5)

An interesting idea of Terwilliger is to consider the smallest subspace T of V ⊗3 containing 

the scaffold which is both a (·)-module and a {·}-module. More generally, we are 
interested in subspaces of V ⊗3 invariant under the node action (·), the edge action {·}, 
or both.

Definition 3.3. Given a finite (di)graph G = (V (G), E(G)), an ordered multiset of m
root nodes R ⊆ V (G), and a vector subspace A of MatX(C), we denote by WWW((G, R); A)
the vector space of all mth order tensors spanned by scaffolds defined on rooted diagram 
(G, R) having edge weights in A.

Observe that we may treat G as an undirected graph when A is closed under the 
transpose map. For the remainder of this section, we assume that edge weights are 
chosen from a coherent algebra.

Examples: Assume A is a coherent algebra.

• For G = K2 with R = V (G), WWW((G, R); A) = WWW( ; A) = A;
• When G connected with |E(G)| ≤ 4 and R consists of two distinct nodes, 

WWW((G, R); A) = A. In the case where A is a Bose-Mesner algebra, this may be 
verified using scaffold manipulation rules SR0, SR0′, SR1, SR1′, and SR9.

In Lemma 1.6, we saw that equality of scaffolds defined on a given diagram G is 
preserved when, on both sides of such an equation, we replace the ordered multiset of 
root nodes R by any ordered submultiset R′ of R. We note here that the operation

hollowR′ : S(G,R;w) 4→ S(G,R′;w)

naturally extends to a linear map from WWW((G, R); A) to WWW((G, R′); A). As a consequence, 
each statement of the form WWW((G, R); A) = WWW((H, R); A) for diagrams G and H with a 
common (or identified) ordered multiset of root nodes R also tells us that WWW((G, R′); A) =
WWW((H, R′); A) for each R′ ⊆ R.

Problem 3.4. Given an association scheme (X, R) with Bose-Mesner algebra A and an 
integer m ≥ 2, observe that

WWW(m;A) =
∑

(G,R)
|R|=m

WWW((G,R);A).
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For this given (X, R) what is a smallest diagram G with root nodes R ⊆ V (G) satisfying 
|R| = m such that WWW((G, R); A) = WWW(m; A)? Is there a unique minimal rooted diagram 
with this property?

Definition 3.5. Let G and H be finite undirected graphs. An H-minor in G is a set 
{Gv | v ∈ V (H)} of pairwise disjoint connected subgraphs of G indexed by the nodes 
of H such that there is an injection ι : E(H) → E(G) that maps each edge (x, y) of 
H to some edge (x′, y′) in G with x′ ∈ Gx and y′ ∈ Gy. Given H with a specified 
ordered multiset R = {r1, . . . , rm} of nodes in V (H) and G with a specified ordered 
multiset R′ = {r′1, . . . , r′m} of nodes in V (G), a rooted H-minor with respect to (H, R)
and (G, R′) is an H-minor in G satisfying r′i ∈ V (Gri) for each 1 ≤ i ≤ m.

Theorem 3.6. Assume A is a coherent algebra. If there is a rooted H-minor in G with 
respect to (H, R) and (G, R′), then WWW((H, R); A) ⊆ WWW((G, R′); A).

Proof. Consider a scaffold S(H, R; w) defined on rooted diagram (H, R) and assume 
{Gv | v ∈ V (H)} and ι : E(H) → E(G) are given as in Definition 3.5 above. Define 
w′ : E(G) → A as follows. For e ∈ E(H), set w′(ι(e)) = w(e); set w′(e) = I for 
any edge e with both ends in the same subgraph Gv; finally set w′(e) = J for all 
remaining edges of G. Then, by Lemma 1.3, S(H, R; w) = |X|−# · S(G, R′; w′) where 
% = |V (G)| − | ∪v∈V (H) Gv|. !

An immediate consequence of Theorem 3.6 is the following result.

Corollary 3.7. The vector space WWW

(
; A

)

is contained in

WWW

(
; A

)
⋂

WWW

(
; A

)

.

The spaces WWW

(
; A

)

and WWW

(
; A

)

are both contained in the spaces

WWW



 ; A



 , WWW



 ; A



 .

These spaces, in turn, are both contained in WWW

(
A

)
; ⋂

WWW

(
A

)
; .



W.J. Martin / Linear Algebra and its Applications 619 (2021) 50–106 79

If A is the Bose-Mesner algebra of an association scheme with standard bases 
{A0, . . . , Ad} and {E0, . . . , Ed}, intersection numbers pkij, and Krein parameters qkij, then 
one may apply Lemma 2.1 to see that

WWW



 ; A



 = span





Ai Aj

Ak

pkij > 0






and

WWW



 ; A



 = span





Ei

Ej

Ek

qkij > 0






These are, respectively, the images of Jaeger’s triangle projection [14, (40)] and star 
projection [14, (39)].

The space WWW

(
; A

)

is invariant under the action {·} while the space 

WWW

(
; A

)

is invariant under the action (·).

Theorem 3.8 (Terwilliger [25, Lemma 87]). For any symmetric association scheme,

(i) the set





Aj Ai

Ak

pkij > 0






is an orthogonal basis for the subspace WWW

(
; A

)

and

(ii) the set




 Ek Ei

Ej

qkij > 0





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is an orthogonal basis for the subspace WWW

(
; A

)

. !

Example 3.9. Consider the association scheme of the Petersen graph, with Bose-Mesner 

algebra A. Theorem 3.8 tells us that dim WWW

(
; A

)

= 14, the number of non-

zero intersection numbers, and dim WWW

(
; A

)

= 15, the number of non-zero 

Krein parameters. Straightforward calculation verifies that the automorphism group of 

the Petersen graph has only 15 orbits on triples, so WWW(3; A) = WWW

(
; A

)

by 

Theorem 3.2.

Example 3.10. The Doob graph Doob(s, t) is the Cartesian product of s copies of K4
and t copies of the Shrikhande graph [2, Section 9.2B]. If A is the Bose-Mesner algebra 

of a Doob graph Doob(s, t), then WWW

(
; A

)

= A if and only if t = 0; the 

scaffold 

A1

A1

A1

A1

A1

belongs to the Bose-Mesner algebra only in the case where the 

Doob graph is a Hamming graph.

Theorem 3.11. Let A be a coherent algebra. If either WWW

(
; A

)

⊆ WWW

(
; A

)

or WWW

(
; A

)

⊆ WWW

(
; A

)

, then WWW

(
; A

)

= A.

Proof. Suppose we are given a scaffold 

A

B

C

D

E

. If C

D

E

=
#∑

j=1

Lj

Mj

Nj

then

A

B

C

D

E

=
#∑

j=1

A

B

Lj

Mj

Nj =
#∑

j=1
[(ALj) ◦ (BMj)]Nj ∈ A
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Likewise, if 
A

C

D

=
#∑

j=1 Lj

Nj

Mj

then

A

B

C

D

E

=
#∑

j=1 B

Lj

E

Mj

Nj

=
#∑

j=1
[(B ◦ Lj)(E ◦Mj)] ◦Nj ∈ A. !

Problem 3.12. Let (X, R) be a symmetric association scheme. Determine necessary 

and sufficient conditions on (X, R) for WWW

(
; A

)

= WWW

(
; A

)

to hold. 

(Theorem 3.8 tells us that the number of non-vanishing intersection numbers must equal 
the number of non-vanishing Krein parameters.)

3.3. Bases for spaces of third order scaffolds

The space V ⊗3, endowed with the inner product given in (3.1), admits

(
V ⊗3)

i
= span




 a b

c

Ai

∣∣∣∣∣∣
a, b, c ∈ X






as a {·}-submodule and admits

(
V ⊗3)∗

j
= span

{

a b

c

Ej

∣∣∣∣∣ a, b, c ∈ X

}

as a (·)-submodule. (These spaces were introduced in [23, Definition 2.7].) The orthogonal 
projection pi : V ⊗3 →

(
V ⊗3)

i
is given by

pi(â⊗ b̂⊗ ĉ) =
{
â⊗ b̂⊗ ĉ if (a, b) ∈ Ri;
0 otherwise.

Dually, the orthogonal projection p∗j : V ⊗3 →
(
V ⊗3)∗

j
is given by

p∗j (â⊗ b̂⊗ ĉ) = â⊗ b̂⊗Ej ĉ .

We recognize these as the edge action E1,2
Ai

and node action D3
Ej

introduced in Sec-

tion 3.2. The two linear transformations E1,2
Ai

and D3
Ej

map the space WWW

(
; A

)
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into WWW

(
; A

)

and WWW

(
; A

)

, respectively. Terwilliger [23] introduces 

scaffolds est = AtAs and6 e∗st = EtEs belonging to WWW

(
; A

)

and proves that the sets {est | 0 ≤ s, t ≤ d} and {e∗st | 0 ≤ s, t ≤ d} form two orthogonal 

bases for WWW

(
; A

)

: the relevant inner products are ([23, Lemma 2.11])

〈eij , est〉 =
〈

AjAi

,

AtAs

〉
=

At

Aj

As

Ai

= Aj ◦AtAi ◦As = δi,sδj,t|X|vivj

and

〈e∗ij , e∗st〉 =
〈

EjEi

,

EtEs

〉
Et

Ej

Es

Ei

=

= EiEs EjEt= δi,sδj,t|X|−1mimj

In [23], the subspace

span{est − ets | 0 ≤ s, t ≤ d} = span{e∗st − e∗ts | 0 ≤ s, t ≤ d}

is then introduced in the study of the balanced set condition: for a given j, the idempotent 
Ej satisfies the balanced set condition if, for all 0 ≤ r, s ≤ d, we have

Ar As

Ej

−
As Ar

Ej

∈ span
{

Ej

Ak

− Ej

Ak

∣∣∣∣∣ 0 ≤ k ≤ d

}
.

Da Zhao [27] expressed the balanced set condition more precisely in scaffold notation 
and introduced a dual concept which he calls the “dual balanced condition”.

Terwilliger computes various other inner products of pairs of scaffolds in

WWW

(
; A

)

and WWW

(
; A

)

. Identities (B.1)–(B.4) in Appendix B are 

6 Our definition of e∗st differs from the definition in [23] by a constant factor of 1/|X|.
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simply restatements of Lemmas 2.13, 2.14 and 2.16 in [23] omitting the assumption that 
the scheme is symmetric.

3.4. Terwilliger algebras

Let (X, R) be a symmetric association scheme with Bose-Mesner algebra A having 
bases {A0, . . . , Ad} satisfying Ai ◦Aj = δi,jAi and {E0, . . . , Ed} satisfying EiEj = δi,jEi

as usual. Fix x ∈ X and define E∗
i (x) to be the diagonal matrix with (E∗

i (x))a,a =
(Ai)x,a; i.e., the (a, b)-entry of E∗

i (x) is equal to one if a = b with (x, a) ∈ Ri and equal 
to zero otherwise. The Terwilliger algebra of (X, R) with respect to base point x is the 
matrix algebra generated by the matrices Ai and the matrices E∗

i (x):

Tx = 〈A0, . . . , Ad, E∗
0 (x), . . . , E∗

d(x)〉 = 〈E0, . . . , Ed, A∗
0(x), . . . , A∗

d(x)〉

where

(A∗
j (x))a,b =

{
|X|(Ej)x,a if a = b;
0 otherwise.

Beginning with [24], an extensive theory of Terwilliger algebras, particularly for sym-
metric association schemes that are both metric and cometric, i.e., for Q-polynomial 
distance-regular graphs, has developed over the past three decades. See [6] for a rela-
tively recent survey, and see [25] for a more substantive update. Our goal here is to 
identify scaffolds encoding the matrices in such algebras and to explore subspaces of 
WWW(3; A) that contain all such scaffolds under various conditions.

Fix an association scheme (X, R) and corresponding Bose-Mesner algebra A. Let T
denote the vector space of all linear combinations of scaffolds of the form

M1 M2 M#

N0
N1

N2 N#−1

N#

· · ·

where % ≥ 1 and M1, . . . , M#, N0, . . . , N# ∈ A. That is,

T =
∞⋃

#=1
WWW

(
; A

)
.

︸ ︷︷ ︸
#+1

The most basic third-order tensors of this form are the triangle and star
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M1

N0 N1

M1 M2

J
N1

J

where M1, M2, N0, N1 ∈ A and J is the all ones matrix.
We define a product on elements of T by gluing diagrams as follows:

s
)

t
=

s t

Here, spacial arrangement is important and the root nodes at the top are identified 
while the rightmost root node of s is identified with the leftmost root node of t and made 
hollow.

Let us make this precise.
Given scaffolds

s = S(G, {b0, a, b#};w) and t = S(H, {b′0, a′, b′m};w′)

where

V (G) = {a, b0, b1, . . . , b#}, E(G) = {(b0, b1), . . . , (b#−1, b#), (a, b0), . . . , (a, b#)}
V (H) = {a′, b′0, b′1, . . . , b′m}, E(H) = {(b′0, b′1), . . . , (b′m−1, b

′
m), (a′, b′0), . . . , (a′, b′m)}

w(bh−1, bh) = Mh, w(a, bh) = Nh, w′(b′h−1, b
′
h) = M ′

h, w′(a′, b′h) = N ′
h,

we define

s ) t = S(K, {b0, a, b′m}; ŵ)

where

V (K) = {a, b0, b1, . . . , b#, b′1, . . . , b′m}
E(K) = {(b0, b1), . . . , (b#−1, b#), (b#, b′1), . . . , (b′m−1, b

′
m), (a, b0), . . . , (a, b#),

(a, b′1), . . . , (a, b′m)}

with edge weights ŵ(a, b#) = N# ◦N ′
0 and

ŵ(bh−1, bh) = Mh, ŵ(a, bh) = Nh,

ŵ(b#, b′1) = M ′
1, ŵ(b′h−1, b

′
h) = M ′

h, ŵ(a, b′h) = N ′
h .
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The product is extended linearly to T .
We state the following theorem without proof:

Theorem 3.13. The map ζ : T →
⊕

x∈X

Tx defined by

Aj1 Aj2 Aj#

Ai0
Ai1 Ai2 Ai#−1

Ai#

· · · 4→
⊕

x∈X

E∗
i0(x)Aj1E

∗
i1(x)Aj2 · · ·Aj#E

∗
i#(x)

and extended linearly is an injective linear map satisfying

ζ(s ) t) = ζ(s)ζ(t)

where the product on the right is ordinary matrix product of block diagonal matrices. !

This gives a natural interpretation of certain third-order scaffolds as elements of the 
direct sum of all Terwilliger algebras Tx as x ranges over the elements of X. For example, 
since

E∗
i (x)AjE

∗
k(x) =

∑

y,z∈X
(x,y)∈Ri,(y,z)∈Rj ,(z,x)∈Rk

ŷ ⊗ ẑ

we identify this matrix with (E∗
i (x)AjE∗

k(x)) ⊗ x̂ and sum over x ∈ X to obtain 

Ai
Aj

Ak

. Likewise, this isomorphism associates ⊕xA∗
i (x)EjA∗

k(x), ⊕xAiE∗
j (x)Ak, and 

⊕xEiA∗
j (x)Ek, respectively, to the following scaffolds:

Ei

Ej

Ek

Ai

Aj

Ak Ei

Ej

Ek

While T contains WWW

(
; A

)

and WWW

(
; A

)

, it does not necessarily 

contain WWW

(
; A

)

or WWW

(
; A

)

.

Paul Terwilliger [private communication] conjectures the following: For a Q-polynomial 
bipartite distance-regular graph, the space of third order tensors of the form depicted on 
the left below is spanned by the subset of scaffolds with inner edges all having weight At, 
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outer edges having weights Ai, Aj and Ak. Further we obtain a basis when we include 
only the scaffolds of this sort where t + i + j + k ≤ d.

WWW



 ; A



 = span






∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t + i + j + k ≤ d






At At

AtAk Ai

Aj

More importantly, Terwilliger conjectures that this space is both (·)-invariant and 
{·}-invariant; i.e., each of the maps Ek,#

Ai
and Di

Ej
map this space into itself. Terwilliger 

claims that, interpreted as in Theorem 3.13, this space is the full algebra T when A is 
the Bose-Mesner algebra of a Q-polynomial bipartite distance-regular graph.

Association schemes for which the Terwilliger algebra takes a simpler form are of in-
terest for two reasons: one can often prove more about the combinatorial structure of 
the scheme when T is generated as a vector space by a relatively small set of tensors; 
and some of the most important families of association schemes, such as the Hamming 
schemes, enjoy this property. The following lemma follows from an easy induction argu-
ment.

Lemma 3.14. Let A be the Bose-Mesner algebra of a symmetric association scheme.

(a) The following are equivalent:

• WWW

(
; A

)

= WWW

(
; A

)

• T = WWW

(
; A

)

.

(b) The following are equivalent:

• WWW

(
; A

)

= WWW

(
; A

)

• T = WWW

(
; A

)

. !

Theorem 3.15. Let A be the Bose-Mesner algebra of a symmetric association scheme.

(a) The following are equivalent:
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(i) WWW

(
; A

)

= WWW

(
; A

)

(ii) WWW

(
; A

)

= WWW

(
; A

)

(iii) T = WWW

(
; A

)

.

(b) The following are equivalent:

(i) WWW

(
; A

)

= WWW

(
; A

)

(ii) WWW

(
; A

)

= WWW

(
; A

)

(iii) T = WWW

(
; A

)

.

Proof. By Theorem 3.6, both WWW

(
; A

)

and WWW

(
; A

)

are contained 

in both WWW

(
; A

)

and WWW

(
; A

)

as well as in T . Here, we prove 

that WWW

(
; A

)

= WWW

(
; A

)

if and only if WWW

(
; A

)

=

WWW

(
; A

)

and apply Lemma 3.14 to obtain (a)(i) ⇔ (a)(iii). The remaining 

three equivalences (a)(ii) ⇔ (a)(iii), (b)(i) ⇔ (b)(iii). (b)(ii) ⇔ (b)(iii) are proved in a 
similar manner.

Assume WWW

(
; A

)

⊆ WWW

(
; A

)

and consider a scaffold of the form

A
B

C

D E

=
A

I

B C

D E I

(using SR0). By our assumption, there exist matrices R1, S1, T1, . . . in A satisfying
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D I

I

E

B C =
∑

j

Rj

SjTj

Applying Proposition 1.5, we substitute to find

A
B

C

D E

=
∑

j
Rj

Sj
Tj

A

∈ WWW

(
; A

)

since A is closed under the entrywise product.

In the other direction, assume now that WWW

(
; A

)

⊆ WWW

(
; A

)

and consider the scaffold

s = =
D F

E
C A

B

D F

E
C A

BJ

There exist matrices R1, S1, T1, . . . in A satisfying 
F B

E

D

J

=
∑

j
Rj

SjTj

.

Substitute this into the above to find

=
∑

j

D F

EC A

B Sj Rj

TjC A
∈ WWW

(
; A

)

and one more application of our hypothesis gives s ∈ WWW

(
; A

)

. !

Problem 3.16. Under what conditions on A does the entire space of (planar) third order 

scaffolds with edge weights in A coincide with WWW

(
; A

)

or WWW

(
; A

)

?
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3.5. Triply regular association schemes

Following Jaeger [14, Section 5.3], we call a d-class symmetric association scheme 
triply regular if, for all 0 ≤ i, j, k, r, s, t ≤ d, the following identity of tensors holds for 
some scalar τ r,s,ti,j,k :

= τ r,s,ti,j,k ·

Aj Ai

Ak

At Ar

As Aj Ai

Ak

In other words, for all x, y, z ∈ X and all indices r, s, t the number 

[
x y z

r s t

]
of 

vertices w which are r-related to x, s-related to y and t-related to z depends only on 
r, s, t and those indices i, j, k for which (x, y) ∈ Ri, (y, z) ∈ Rj and (z, x) ∈ Rk and not 
on the choice of vertices x, y, z themselves.

Dually, let’s call a symmetric association scheme dually triply regular if, for all 
i, j, k, r, s, t, there exists a scalar σr,s,t

i,j,k such that

= σr,s,t
i,j,k·

Er Et

EsEk Ei

Ej

EiEk

Ej

In other words, for all indices 0 ≤ i, j, k, r, s, t ≤ d and all x, y, z ∈ X

∑

u,v,w∈X

(Ei)x,u(Ej)y,v(Ek)z,w (Er)v,w(Es)w,u(Et)u,v

is a scalar multiple of
∑

w′∈X

(Ei)x,w′(Ej)y,w′(Ek)z,w′

independent of the choice of x, y, z.

Theorem 3.17. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra 
A. Then

(a) (X, R) is triply regular if and only if WWW

(
; A

)

= WWW

(
; A

)

;



90 W.J. Martin / Linear Algebra and its Applications 619 (2021) 50–106

(b) (X, R) is dually triply regular if and only if WWW

(
; A

)

= WWW

(
; A

)

.

(c) (X, R) is both triply regular and dually triply regular if and only if WWW

(
; A

)

=

WWW

(
; A

)

.

Proof. Clearly WWW

(
; A

)

is a subspace of WWW

(
; A

)

. If the triply reg-

ular condition holds, then we obviously have containment in the other direction as well 

since the scaffolds in WWW

(
; A

)

with all edge weights in {A0, . . . , Ad} span the 

space. Conversely, observe that

As

At

Ar

AiAj

Ak

,

A#Am

An

=
AiAj

Ak

As

At

Ar

A#Am

An

= δi,#δj,mδk,n

AiAj

Ak

As

At

Ar

and that the “Delta” scaffolds with edge weights in {A0, . . . , Ad} are pairwise orthogonal 

by Theorem 3.8. So, if As

At

Ar

AiAj

Ak

belongs to WWW

(
; A

)

, then it must be a scalar 

multiple of 

AiAj

Ak

. The second claim is proved in a similar manner.

For part (c), the forward direction follows from (a) and (b) by mutual containment. 

Suppose now that WWW

(
; A

)

= WWW

(
; A

)

. Then, given any D, E, F ∈

A, there exist L1, M1, N1, . . . , Lk, Mk, Nk ∈ A for which 
D E

F =
∑

j
Nj

LjMj

. 
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Applying Proposition 1.5 and using the fact that A is closed under entrywise multipli-

cation, we see that any scaffold built on K4 lies in WWW

(
; A

)

as follows:

=
∑

j
∈ WWW

(
; A

)
.

Likewise, given D, E, F ∈ A, we may write 
DE

F

=
∑

j

Nj

Lj Mj

for some 

Lj , Mj , Nj ∈ A. Making such a substitution and using closure under matrix multiplica-
tion, we see that

WWW

(
; A

)

⊆ WWW

(
; A

)

via

=
∑

j
∈ WWW

(
; A

)
. !

We now have another way to interpret Theorem 3.15.

Theorem 3.18. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra 
A. Then

(a) (X, R) is triply regular if and only if WWW

(
; A

)

= T ;

(b) (X, R) is dually triply regular if and only if WWW

(
; A

)

= T . !

Corollary 3.19. Let (X, R) be a symmetric association scheme with Bose-Mesner algebra 
A, intersection numbers pki,j and Krein parameters qki,j (0 ≤ i, j, k ≤ d). Let

Np =
∣∣{(i, j, k) ∈ {0, . . . , d}3 | pki,j > 0

}∣∣ , Nq =
∣∣{(i, j, k) ∈ {0, . . . , d}3 | qki,j > 0

}∣∣ .

(a) If (X, R) is triply regular, then Np ≥ Nq;
(b) If (X, R) is dually triply regular, then Nq ≥ Np.
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Proof. We prove (a) and leave the proof of part (b) to the reader. By Theorem 3.8, we 

have dim WWW

(
; A

)

= Np and dim WWW

(
; A

)

= Nq. Since each of these 

spaces is contained in T , the inequalities both follow from Theorem 3.18. !

Following Hestenes and Higman [13], a strongly regular graph Γ is said to enjoy the 
t-vertex condition if, for any graph G on at most t nodes and any two distinguished 
nodes a, b ∈ V (G) the number of graph homomorphisms from G to Γ mapping a to x
and b to y depends only on whether x and y are equal, adjacent, or non-adjacent. A 
recent investigation on this topic is Reichard’s paper [20].

Inspired by this, we say an association scheme (X, R) with Bose-Mesner algebra A
enjoys the t-vertex condition if every second order scaffold S(G, R; w) with t or fewer 
nodes and edge weights in A belongs to A.

Proposition 3.20. Every triply regular symmetric association scheme satisfies the 4-vertex 
condition. Every dually triply regular symmetric association scheme satisfies the 4-vertex 
condition.

Proof. Let (X, R) be a triply regular association scheme with Bose-Mesner algebra A. 
We must prove that, for every choice of edge weights M1, . . . , M6 ∈ A, the scaffold

s =
M2 M1

M3

M4M6

M5

belongs to A. By linearity, we may assume each Mi ∈ {A0, . . . , Ad} and employ the 
triply regular property to write

= τ r,s,ti,j,k ·
Aj Ai

Ak

At Ar

As

Aj Ai

Ak

.

Now the fundamental scaffold at right is simply the sum of elementary tensors x̂⊗ ŷ⊗ ẑ

over all ordered triples (x, y, z) ∈ X3 with (x, z) ∈ Ri, (z, y) ∈ Rj , (x, y) ∈ Rk. Summing 
over z ∈ X, we find
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Aj Ai

Ak

At Ar

As
= σ

∑

x,y∈X
(x,y)∈Rk

x̂⊗ ŷ where σ = τ r,s,ti,j,k pkij

so that the tensor at left is a scalar multiple of Ak. Replacing various Mi in s by matrices 
I and J , as needed, one obtains the result for any second order scaffold on at most four 
nodes.

To prove the second statement, we first apply Lemma 1.3 to write

s =
Aj Ai

Ak

ArAt

As =
Aj Ai

Ak

ArAt

As

I I

Assuming WWW

(
; A

)

⊆ WWW

(
; A

)

, there exist Lh, Mh, Nh ∈ A such 

that

Ak

ArAt

As

I I

=
∑

h

Nh Lh

Mh

Substituting this into the above using Proposition 1.5, we find s =
∑

h

Aj Ai

Nh Lh

Mh
.

And now we may apply Theorem 3.11 to show that s ∈ A. !

3.6. The vector space of scaffolds of order two and planarity

We consider the vector space of scaffolds of order two and various subspaces of this 
space. In particular, we wish to know, in the setting where edge weights belong to a 
Bose-Mesner algebra A, when such a subspace is no larger than A itself. Assume in this 
subsection that all edge weights belong to the Bose-Mesner algebra A of some association 
scheme (X, R).
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First, since A is a nonzero subspace of MatX(C), the vector space of scaffolds of order 
zero is simply C. As we learned in Theorem 3.2, the space of first order scaffolds has 
dimension equal to the number of orbits (on vertices) of the automorphism group of the 
scheme. The author does not know of an example where the space of first order scaffolds 
defined on planar diagrams is strictly smaller than this space.

A circular planar graph [5,11] is an ordered pair (G, R) where G is a graph embedded 
in the plane (i.e., a plane graph [9, Section 4.2]) with a distinguished set R ⊆ V (G) of 
nodes all appearing on the outer face. Let us say that a scaffold S(G, R; w) is planar if 
(G, R) is a circular planar graph. For fixed m, the vector subspace P(m; A) spanned by 
all mth order planar scaffolds with edge weights in A is worthy of study. An m-terminal 
series-parallel graph is a graph with a distinguished set of m nodes which can be reduced 
via some sequence of series and parallel edge reductions to a graph on those m nodes 
only.

Example 3.21. A circular planar graph and its circular planar dual contain equally many 
terminal nodes. The following pair of examples illustrates the relationship between planar 
duality and duality in association schemes:

D

B

A
C

E

= [(A ◦B)C] ◦ (DE),

A

B

C

D
E

= [(AB) ◦ C] (D ◦ E).

Theorem 3.22. Let G denote the set of all ordered pairs (G, R) of two-terminal series 
parallel graphs with root nodes R = {r1, r2}. For any coherent algebra A, we have

A =
∑

(G,R)∈G

WWW((G,R);A).

Proof. To prove forward containment is trivial: each M ∈ A is expressible as a scaffold 
whose underlying diagram G is the complete graph on two nodes. If matrices M, N ∈
MatX(C) correspond to second order planar scaffolds s and t, respectively, then both 
their matrix product and their entrywise product are expressible as second order planar 
scaffolds as well.

M =
s

N = t

M ◦N =
s
t MN =

s
t
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Applying these operations repeatedly, we see that any second order scaffold s having all 
edge weights in A whose underlying diagram can be constructed from K2 by successive 
subdivision and doubling of edges belongs to A. !

It is well known (cf. [9, Exer. 32,p191]) that a multigraph is series-parallel if and only 
if it contains no K4 minor. It is easy to check that K3,3 contains a K4 minor. So it 
follows by Kuratowski’s Theorem that every series-parallel graph is planar. In general, 
the space of second order planar scaffolds with edge weights in A can properly contain 
A. The Doob graphs are convenient examples.

4. Duality of planar scaffolds

The obvious duality between the following two conditions on scaffold identities

pkij = 0 ⇔ 0 =
Ai

AjAk

and qkij = 0 ⇔ 0 =
Ek

Ei

Ej

extends to dual pairs of theorems in some cases, as we’ve seen. We claim that these are 
instances of a much more general phenomenon.

A scaffold equation of order m is an equation of the form

n∑

k=1
αkSk = 0

where each αk is a scalar, each Sk is a scaffold of order m, 0 is the zero tensor of order 
m, and a bijection ζj,k is specified (or understood) between the root nodes of Sk and Sj

for each j and k in a consistent manner; i.e., we assume ζi,j ◦ ζj,k = ζi,k for each i, j, k
and ζk,k is the identity map. We note that, throughout this paper, this correspondence 
of tensor components has been conveniently indicated pictorially by consistent spatial 
placement of the root nodes. Note that, for fixed d, the P -polynomial condition and the 
Q-polynomial condition can both be encoded as finite systems of scaffold equations and 
inequalities.

Some circular planar graphs admit multiple, inequivalent, embeddings in a disk. We 
may define an augmented graph G+ by adding an additional node ∞ whose neighbors are 
exactly those nodes v ∈ R; it is immediate that (G, R) is a circular planar graph if and 
only if G+ is a planar graph. Moreover, by a theorem of Whitney, if G+ is 3-connected, 
then this planar embedding is essentially unique [9, Theorem 4.3.2].

Let s = S(G, R; w) be a planar symmetric scaffold with m = |R| distinct root nodes. 
Assume the underlying rooted diagram (G, R) is given with a fixed embedding in a 
closed disk where all root nodes appear on the boundary. Assume, for simplicity, that 
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w(e) ∈ {A0, . . . , Ad} for each edge e. In order to define the dual scaffold s†, we first 
construct a dual graph G† which has one node for each face of this embedding. (This 
circular planar dual can be obtained from the planar dual of graph G+ by deleting the 
edges dual to those edges of G+ incident to the node ∞. So, in contrast to the planar 
dual of G, this graph has m = |R| nodes on the infinite face, which has been subdivided 
by the m segments of the boundary of the disk between consecutive root nodes of G.) 
Each directed edge e of G is rotated 90◦ counterclockwise to give a directed edge e† of 
G† joining the two faces having e on their boundary (where e† is a loop if only one face 
of the original embedding is incident to e). The distinguished (“root”) nodes of the dual 
scaffold are those m faces incident to the bounding disk. The edge weights are then given 
by w(e†) = Ej where w(e) = Aj . This map from P(m; A) to V ⊗m is extended linearly 
as in the notion of a duality map.

Conjecture 4.1. Suppose we have a collection {Sk}nk=1 of mth order planar scaffolds where 
all edge weights belong to the set of symbols A0, A1, . . . , Aδ. Assume that roots are paired 
up via a set of maps {ζj,k | 1 ≤ j, k ≤ n} where ζj,k maps the root nodes of Sk bijectively 
to the roots Sj according to the consistency rules ζi,j ◦ ζj,k = ζi,k for all i, j, k where 
ζk,k is the identity map for each k. Assume that, for all association schemes with d ≥ δ

classes, the scaffold equations 
∑n

k=1 αjkSk = 0 (1 ≤ j ≤ N) together imply the scaffold 
equation 

∑n
k=1 βkSk = 0. Then, for any association scheme with d ≥ δ classes, the dual 

scaffold equations

n∑

k=1
αjkS†

k = 0 (1 ≤ j ≤ N)

together imply the dual scaffold equation

n∑

k=1
βkS†

k = 0. !

This conjecture allows us to map identities to identities. As an example, we now give 
three obviously equal scaffolds for P -polynomial schemes and the dual scaffolds which 
are equal for all Q-polynomial schemes. (Equality is easily shown using the Isthmus 
Lemma.)

A4

A1

A1 A1

A1

A4

A1

A1 A1

A1A3

A2

A4

A1

A1 A1

A1A2A2
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E1

E4

E1

E1 E1

E1

E4

E1

E1 E1

E3

E2

E1

E4

E1

E1 E1

E2 E2

As Jaeger [14, Prop. 5] points out, Epifanov’s Theorem establishes that every con-
nected undirected plane graph can be reduced to the trivial graph with one node and no 
edge via some finite sequence of ∆–Y and Y–∆transformations,  together with extended 
series-parallel reductions. In the proof of the following theorem, we use a variant of this 
result which applies to two-terminal planar graphs (see [26]).

In conjunction with Theorem 3.17, our next theorem shows that, for association 
schemes that are both triply regular and dually triply regular, every second order planar 
scaffold lies within the Bose-Mesner algebra.

Theorem 4.2. Let (X, R) be an association scheme with Bose-Mesner algebra A.

If WWW

(
; A

)

= WWW

(
; A

)

, then the vector space spanned by all sec-

ond order planar scaffolds with edge weights in A is equal to A.

Proof. We deal only with the case where G is 2-connected, leaving the degenerate cases 
to the reader. Epifanov’s Theorem tells us that any 2-connected two-terminal planar 
graph is reducible to a single edge joining those two terminals via a finite sequence of 
operations, each being of one of the following types:

• deletion of a loop
• deletion of a non-terminal node of degree one
• series reduction
• parallel reduction
• ∆–Y transformation
• Y–∆ transformation

We will show that given a second order planar scaffold s with underlying rooted diagram 
(G, R) and a rooted diagram (H, R) obtained from (G, R) by any one of the above 
operations, we may express s as a linear combination of scaffolds each of which has 
(H, R) as its rooted diagram. First consider the case where (H, R) differs from (G, R) by 
deletion of a loop e′. Since w(e′) belongs to Bose-Mesner algebra, it has constant diagonal, 
σ say, so S(G, R; w) = σS(H, R; w′) where w′(e) = w(e) for e .= e′. The case where H
is obtained from G by deletion of a non-root vertex of degree one is handled similarly 
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via Lemma 1.4. If H is obtained from G via a series reduction or a parallel reduction, 
we may apply Lemma 1.2. Finally, our hypothesis, combined with Proposition 1.5, gives 
the desired result in the case where H differs from G by either a ∆–Y transformation or 
a Y–∆ transformation. !

Note: Note that this does not imply that all triply regular association schemes are 
Schurian. Theorem 3.2 requires the entire space of second order scaffolds to have di-
mension d + 1 and this theorem only considers the space spanned by planar scaffolds.
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Appendix A. Rules for scaffold manipulation

In this appendix, we summarize the rules for the manipulation of scaffolds and give 
each a label for future reference. In the case of symmetric association schemes, all refer-
ences to directed edges may be replaced by equivalent language referring to edges. The 
rules here are given informally with reference to their precise statement in the body of 
the paper.

SR0 (split node rule) Lemma 1.3(ii): We may split a node, solid or hollow, introducing 
a new hollow vertex and choosing I as the new edge weight. (Alternatively, we may 
contract an edge e with w(e) = I.)

←→ I
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SR0′ (superfluous edge rule) Lemma 1.3(i): Between any two nodes of our diagram, we 
may insert a new edge e with w(e) = J , the all ones matrix. Conversely, edges with 
weight J may be deleted.

←→
J

or ←→
J

.

SR1 (series reduction) Lemma 1.2(i): We may suppress a hollow node of degree two by 
taking the matrix product of the two edge weights.

=M N MN

SR1′ (parallel reduction) Lemma 1.2(ii): We may replace two parallel edges by a single 
edge by taking the entrywise product of the two edge weights.

=
M

N
M ◦N

Note: Scaffold manipulation rules SR2 through SR4′ apply within the scope of Bose-
Mesner algebras; edge weights follow standard notational conventions for association 
schemes.

SR2 (vanishing intersection number) Lemma 2.1: Any scaffold containing a directed 
triangle a, b, c with w(a, b) = Ai, w(b, c) = Aj , w(a, c) = Ak where pkij = 0 is the 
zero tensor.

Ai

Aj

Ak

s

= 0 if pkij = 0

SR2′ (vanishing Krein parameter) Lemma 2.1: Any scaffold containing a hollow node x of 
degree three with neighbors a, b, c such that w(a, x) = Ei, w(b, x) = Ej , w(x, c) = Ek

where qkij = 0 is the zero tensor.
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Ei

Ej

Ek

s

= 0 if qkij = 0

SR3 (pinched star) Equation (2.8):

=
qkij
|X| ·

Ei

Ej
Ek Ek

and this is the zero tensor if qkij = 0.
SR3′ (hollow triangle) Equation (2.9):

= pkij ·
Ak

Ai Aj

Ak

and this is the zero tensor if pkij = 0.
SR4 (Isthmus) Lemma 2.3: If qejk · qe#m = 0 for all e .= h, then

= qh#m
|X|

Ej

Ek E#

Em

Ej

Ek

Eh

and

=

Ej

Ek E#

Em Ej

Ek

Eh

E#

Em
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SR4′ (Dual isthmus) Lemma 2.5: If pehi · pejk = 0 for all e .= %, then

= p#jk ·

Ai

Ah

Ak

Aj

Ai

Ah

A#

and

=

Ai

Ah

Ak

Aj

Ai

Ah

A#

Ak

Aj

SR5 (substitution) Proposition 1.5: If t1 and t2 are scaffolds on the same ordered multiset 
R of roots such that t1 = t2 and R′ = {r1, . . . , r#} ⊆ R, then for any scaffold s and 
any root nodes u1, . . . , u# in the rooted diagram of s, we have s+ξ t1 = s +ξ t2 where 
ξ(ui) = ri.

t1
=

t2
−→

s t1
=

s t2

SR6 (multilinearity): If scaffolds s and s1, . . . , sn are identical except in their weight 
on one edge e where w(e) = M in s and w(e) = N# in s# (1 ≤ % ≤ n) where 
M =

∑n
#=1 α#N#, then s =

∑n
#=1 α#s#.

M
=

n∑

#=1
α# ·

N#
if M =

∑n
#=1 α#N#

SR7 (Transpose property): Reversing the direction of an edge in diagram G is equivalent 
to replacing the weight of that edge by its transpose.
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=M M'

SR8 (Commutative property): If a ∈ V (G) is a hollow node incident to just two edges 
e and e′ where w(e)w(e′) = w(e′)w(e), then swapping the weights on these edges 
leaves the scaffold unchanged.

=M N N M if MN = NM .

SR9 (Degree one vertices): Lemma 1.4: Assuming constant row sum or column sum (as 
appropriate) on the edge weight, a hollow node of degree one may be deleted.

Ms
a

= α
s′

if M1 = α1

SR9′ (Loops): If e′ is a loop in G and w(e′) ◦ I = αI, then s = αs′ where s′ is obtained 
from s by deletion of edge e′:

M

s
= α

s′
if M ◦ I = αI

SR10 (Order Reduction) Lemma 1.6: Equality is preserved in passing from root nodes 
R to a proper submultiset R′.

s t s′ t′

= =−→
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Appendix B. Inner products of common third order scaffolds

Here we use (3.1) to compute some inner products of third order scaffolds attached to 
(commutative) association schemes without proof. Note that Ēj = E'

j = Ej′ and that, 
in the symmetric case, edge orientations may be ignored. By an abuse of notation, we 
write A'

i = Ai′ with this definition of i′ operative only in equations not involving any 
element from {E0, . . . , Ed}. Only in special cases is an inner product of two scaffolds 
expressible in terms of association scheme parameters.

(B.1)
〈

AiAj

Ak
,

ArAs

At

〉

= |X| δi,r δj,s δk,t vk pkij

(B.2) Ek

EjEi
,

Et

EsEr
= 1

|X|δi,r δj,s δk,t mk qkij

(B.3)
Ej

AiAh
,

Ek

AsAr
= δj,k mj

d∑

#=0
Pj# p#h′r p#i′s

(B.4)
〈
Ei Eh

Aj
,

Es Er

Ak

〉

= δj,k vj

d∑

#=0
Qj# q#h′r q#i′s

(B.5)
〈

EiEj

Ek
,

ArAs

At

〉

= |X|−2 Qri′ Qsj′ Qtk′ vt p
t
rs

(B.6)
〈

EiEj

Ek
,

ErEs

Et

〉

= |X|−3
d∑

#=0
m# q#i′,r q#j′,s q#

′

k′,t

(B.7) Ak

AjAi
,

Et

EsEr
= |X|−1 Pri′ Psj′ Ptk′ mt q

t
rs

(B.8) Ak

AjAi
,

At

AsAr
= |X|

d∑

#=0
v# p#i′,r p#j′,s p#

′

k′,t
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(B.9) Ak

AjAi
,

ArAs

At

=

At

Ai

As

Aj

Ar

Ak

(
= 0 if prjkp

s
k′i′p

t
ji′ = 0

)

(B.10) Ek

EjEi
,

ArAs

At

=

At

Ei

As

Ej

Ar

Ej

(B.11) Ek

EjEi
,

ErEs

Et

=

Et

Ei

Es

Ej

Er

Ek (
= 0 if qi

′

stq
j′

t′r′q
k
rs′ = 0

)

(B.12)
Ej

EiEh

E#

Em

Ek

,
Er Es

Et
= δh,r δi,s δj,t

Em

E# Ek

Er Es

Et

(B.13)
Ej

EiEh

E#

Em

Ek

,
Ar As

At
= Ph,r Pi,s Pj,t

Em

E# Ek

Eh Ei

Ej

(B.14)
Ai3

Ai2Ai1

Aj2

Aj3

Aj1

,

Ar3

Ar2Ar1

As2

As3

As1 =
d∑

k1,k2,k3=0
pk1
i′1,r1

pk2
i′2,r2

pk3
i′3,r3

Aj3

Aj2 Aj1

As3

As2 As1

Ak1 Ak2

Ak3

(B.15)
Ei3

Ei2Ei1

Ej2

Ej3

Ej1

,

Ar3

Ar2Ar1

As2

As3

As1 = Pi1,r1 Pi2,r2 Pi3,r3

Ej3

Ej2 Ej1

As3

As2 As1

Ei1 Ei2

Ei3
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(B.16)
Ei3

Ei2Ei1

Ej2

Ej3

Ej1

,

Er3

Er2Er1

Es2

Es3

Es1 = δi1,r1 δi2,r2 δi3,r3

Ej3

Ej2 Ej1

Es3

Es2 Es1

Ei1 Ei2

Ei3

Note: Many of these identities are not new. For example, (B.1) can be found in [14, 
Equation (43)] and follows from [1, Theorem II.3.6(ii)], [24, Lemma 3.2], while (B.2) 
stems from [3, Proposition 5.1], can be found in [14, Equation (42)], [1, Theorem II.3.6(i)], 
[24, Lemma 3.2], and [24, Lemma 3.2] as well.
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