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Abstract— Recently, many cooperative distributed multi-
agent reinforcement learning (MARL) algorithms have been
proposed in the literature. In this work, we study the effect
of adversarial attacks on a network that employs a consensus-
based MARL algorithm. We show that an adversarial agent
can persuade all the other agents in the network to implement
policies that optimize an objective that it desires. In this sense,
the standard consensus-based MARL algorithms are fragile to
attacks.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) is a branch

of reinforcement learning (RL) [1], where multiple decision-

makers learn a policy that is optimal in the context of

competitive, cooperative, or mixed objectives [2], [3]. A

recent success story of MARL in popular parlance include

its performance in the video game Starcraft II by training

an agent which outperforms the world’s best human players

[4]. In this paper, we focus on MARL for cooperative agents.

Potential applications in this stream have been proposed for

long for diverse fields such as sensor networks [5], robotics

[6], and traffic control [7].

Early formulations of MARL assumed that the agents

share a common reward and focused on decentralized

decision-making. The sample efficiency in the training of

a multi-agent network in this setting is significantly im-

proved by establishing communication between agents [8].

Nonetheless, the centralized reward is often infeasible due

to overwhelming communication requirements and complex

network topology, which motivated the development of co-

operative distributed MARL with decentralized knowledge

of rewards. In this setting, each agent has a local utility

function and views only its own reward. The problem is still

cooperative in the sense that the agents wish to maximize

the sum of all utility functions. In this problem, the agents

must communicate not only to improve the sample efficiency

but also to become aware of the other agents’ performance.

Only by propagating information over the entire network, the

agents can achieve a common objective, e.g., to maximize

team-average returns. The ability to learn a policy that

maximizes the common objective in a partially observable

environment can be facilitated by consensus algorithms as

presented in [9], whereby the agent’s rewards (and possibly

actions) remain unknown to the rest of the network and must

not be directly communicated between agents to ensure their

privacy.
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Consensus algorithms are generally devised for distributed

systems to find agreement on signal values over networks

[10]. These algorithms find applications in many fields in-

cluding sensor networks [11], coordination of vehicles [12],

or even blockchain [13]. In practice, consensus algorithms

must be robust to faults that arise from relatively frequent

occurrences of interrupted communication links or corrupted

signals [14]. Therefore, the convergence of resilient con-

sensus algorithms was rigorously studied under different

considerations for the nature of adversarial attacks [15],

graph topology [16], [17], or frequency of communication

[18]. These research efforts naturally complement studies of

the influence of adversarial attacks on network performance.

A simple yet powerful result from the analysis of linear

consensus [11] states that the topology of a consensus matrix

determines the limiting value for the consensus updates. In

the presence of a single malicious agent, which does not

apply consensus updates, the limiting value coincides with

the adversary’s value.

In the consensus MARL algorithm in [9, Algorithm 2],

every agent estimates the team-average reward and value

function using linear approximations and exchanges param-

eters with other agents through a consensus protocol. Inter-

estingly, this scheme guarantees the asymptotic convergence

to the team-average optimal policy even with simultaneous

actor, critic, and consensus updates over time-varying com-

munication graphs. Furthermore, the algorithm retains the

convergence property even with sparse data transmission for

strongly connected graphs [19].

In this paper, we study the effects of adversarial attacks

on the consensus MARL algorithm [9, Algorithm 2] with

discounted rewards in the objective function. The attacks

we consider are different from the commonly studied data

poisoning attacks in ML or RL, which seek to understand

if changing the data or rewards by an external agent can

degrade the performance of RL algorithms [20]. Here, we

consider a MARL setting where a participating agent itself is

malicious. Specifically, we ask whether a single adversarial

agent can either prevent convergence of the algorithm, or

even worse, lead the other agents to optimize a utility

function that it chooses. We show that the answer to this

question is in the affirmative by designing a suitable attack

and analyzing the convergence of the algorithm under it.

Specifically, we take under the scope networks with a

single malicious agent, i.e., with an adversary that can com-

promise the consensus and critic updates and transmits the

same signal values to its neighbors. We show that when the

malicious agent greedily attempts to maximize its own well-
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defined objective function, all other agents in the network end

up maximizing the adversary’s objective function as well. We

provide a proof of asymptotic convergence analogous to [9].

Our study motivates the development of resilient consensus

MARL algorithms.

The paper is structured as follows. We provide a back-

ground of the networked Markov decision process along with

the agents’ objectives in Section 2. In Section 3, we state

all assumptions in a compact form, present the consensus

MARL algorithm, and provide the convergence analysis.

Section 4 is dedicated to numerical simulations.

Notation: We let 1 denote the vector of ones. The

operator ⊗ represents the Kronecker product. The cardinality

of a set C is denoted by |C|.

II. BACKGROUND

A. Networked Markov decision process

We consider a networked Markov decision process (MDP)

given as a tuple (S, {Ai}i∈N ,P, {R
i}i∈N ,G), where N =

{1, . . . , N}, S is a set of states, P is a set of transitional

probabilities, γ ∈ [0, 1) is a discount factor, G represents a

graph, and Ai and Ri are a set of actions and rewards of

agent i, respectively. The graph G = (N , E) is defined by a

set of vertices N associated with the agents in the network

and a set of edges E ⊆ N ×N . The global state and action

are denoted by s and a, respectively, s′ denotes the state

at the next time step, and the superscript i denotes a signal

of agent i. We let ri(s, a, s′) : S × A × S → Ri ⊂ R

denote the individual reward of subsystem i, p(s′|s, a) :
S × S × A → P ⊂ R the joint transitional probability, and

πi(ai|s) : S × Ai → (0, 1) the policy of subsystem i. The

overall network policy can be written as a stacked vector of

individual policies, π(a|s) = [π1(a1|s)T , . . . , πN (aN |s)T ]T .

In case we need to explicitly specify a signal value at time t,
we use subscript t, i.e., rit+1(st, at, st+1). An important

consideration in this work is that agent i, i ∈ N , receives the

private reward rit+1 along with the observation of the global

state st and action at at each step in training.

We let π(a|s; θ) = [π1(a1|s; θ1)T , . . . , πN (aN |s; θN )T ]T

denote the network policy parameterized by θ, where

πi(ai|s; θi) is a parameterized policy of agent i. Further, we

distinguish between reward signals by making the following

definitions:

1) average individual reward at (s, a):

r̂i(s, a) =
∑

s′

p(s′|s, a)ri(s, a, s′)

2) average individual reward under global policy

π(a|s; θ):

r̂iθ(s) =
∑

a

π(a|s; θ)r̂i(s, a)

3) average individual reward at all state-action pairs

(s, a) ∈ S ×A:

R̂i = [r̂i(s, a), s ∈ S, a ∈ A]T ∈ R
|S|·|A|

4) average individual reward under global policy π(a|s; θ)
at all states s ∈ S:

R̂i
θ = [r̂iθ(s), s ∈ S]

T ∈ R
|S|.

We also define team-average rewards r(s, a, s′) =
1
N

∑N

i=1 r
i(s, a, s′), r̂(s, a) = 1

N

∑N

i=1 r̂
i(s, a), r̂θ(s) =

1
N

∑N

i=1 r̂
i
θ(s), R̂θ = 1

N

∑N

i=1 R̂
i
θ ∈ R

|S|, and R̂ =
1
N

∑N

i=1 R̂
i. Furthermore, we define the estimated network

reward function at (s, a) as r̄(s, a;λ), where λ are the

function parameters.

B. Objective

We let N+ and N− denote the set of cooperative agents

and adversaries, respectively, and note that N = N+ ∪N−.

The objective of agents i ∈ N+ is to maximize a team-

average objective function given as

max
θ
J+(θ) = max

θ
E
[

∞
∑

t=0

1

N

N
∑

i=1

γtrit+1|s0 = s
]

. (1)

The cooperative agents are unaware of the presence of an

adversarial agent that seeks to maximize a different objective

function. We define the objective function for i ∈ N− as

max
θ
J−(θ) = max

θ
E
[

∞
∑

t=0

γtrit+1|s0 = s
]

. (2)

It is important to note that the adversarial agent can com-

promise the rewards rit+1, i ∈ N−, to incentivize its

malicious behavior. Furthermore, once the agents establish

communication the adversary can spread false information

about the performance of the entire network embedded in

the compromised rewards rit+1. This may eventually lead

to incentivizing a bad behavior in the cooperative agents

as well, regardless of whether the maximized objective is

(1) or (2). In Section III, we show that the entire network

maximizes the adversarial agents’ objective in (2) when

the adversarial agent ignores signals transmitted by the

cooperative agents.

III. MULTI-AGENT ACTOR-CRITIC ALGORITHM UNDER

ADVERSARIAL ATTACKS

In this section, we present assumptions on the network and

signals, define the consensus MARL algorithm, state main

theorems concerning the convergence of the actor and critic,

and prove that the adversarial agent persuades the remaining

agents in the network to maximize its individual objective

in (2) despite their initial agreement to maximize the team

objective in (1).

We formally define true action-value functions of the

cooperative agents and the adversary under policy π(a|s)
in the respective order as follows

Qi
π(s, a) = Eπ

[ ∞
∑

t=0

1

N
γt

∑

k∈N

rkt+1

]

, i ∈ N+

Qi
π(s, a) = Eπ

[ ∞
∑

t=0

γtrit+1

]

, i ∈ N−



where j ∈ N−. Further, we define the true state value

functions as

V i
π(s) =

∑

a

π(a|s)Qi
π(s, a), i ∈ N .

We will approximate V i
π(s) using a parameterized state-value

function V (s; vi).

Remark. It is required that all agents use the same basis

functions (or neural networks) so that their parameter values

vi can eventually converge to a consensus value. This limita-

tion can be overcome by considering gossip-based algorithms

[21]. However, the convergence analysis for gossip-based

algorithms is rather challenging.

A. Assumptions

In this subsection, we state assumptions needed for the

convergence of the consensus MARL algorithm which we

introduce later in the next section. The assumptions are

similar to [9].

Assumption 1. The policy πi(ai|s; θi) > 0 for any i ∈ N ,

θi ∈ Θi, s ∈ S , ai ∈ Ai. Also, πi(ai|s; θi) is continuously

differentiable with respect to θi. For any θ ∈ Θ, we let

Pθ(st+1|st) =
∑

at∈A P (st+1|st, at)π(a|s; θ) denote the

transition matrix of the Markov chain {st}t≥0 induced by

policy π(a|s; θ). The Markov chain {st}t≥0 is irreducible

and aperiodic under any π(a|s; θ).

Assumption 2. The update of the policy parameter θit
includes a local projection operator, Γi : R

mi → R
mi , that

projects any θit onto a compact set Θi. Also, we assume that

Θ = ΠN
i Θi is large enough to include at least one local

minimum of J(θ).

Assumption 3. The instantaneous reward rit+1(st, at, st+1)
is uniformly bounded for any i ∈ N and t ≥ 0.

Assumption 4. The sequence of random matrices

{Ct}t≥0 ⊆ R
N×N ⊆ R

N×N satisfies

1) Ct is row stochastic, i.e., Ct1 = 1, and ct(i, j) = 1
for i = j ∈ N−. There exists a constant η ∈ (0, 1)
such that, for any ct(i, j) > 0, we have ct(i, j) ≥ η.

2) Ct respects the communication graph Gt, i.e.,

ct(i, j) = 0 if (i, j) /∈ Et.
3) The spectral norm of E[CT

t (I − 11
T /N)Ct] belongs

to [0, 1).
4) Given the σ-algebra generated by the random variables

before time t, Ct is conditionally independent of rit+1

for any i ∈ N .

Assumption 5. For each agent i, the state-value function

and the team reward function are both parameterized by

linear functions, i.e., V (s; v) = vTϕ(s) and r̄(s, a;λ) =
λT f(s, a), where ϕ(s) = [ϕ1(s), . . . , ϕL(s)] ∈ R

L and

f(s, a) = [f1(s, a), . . . , fM (s, a)] ∈ R
M are the features

associated with s and (s, a), respectively. The feature vectors

ϕ(s) and f(s, a) are uniformly bounded for any s ∈ S ,

a ∈ A. Furthermore, let the feature matrix Φ ∈ R
|S|×L have

[ϕl(s), s ∈ S]
T as its l-th column for any l ∈ [L], and the

feature matrix F ∈ R
|S|·|A|×M have [fm(s, a), s ∈ S, a ∈

A]T as its m-th column for any m ∈ [M ]. Both Φ and F
have full column rank.

Assumption 6. The step sizes αv,t and αθ,t

satisfy
∑

t αv,t =∞,
∑

t αθ,t =∞,
∑

t α
2
v,t+α

2
θ,t <∞,

αθ,t = o(αv,t), and limt→∞ αv,t+1α
−1
v,t = 1.

Assumption 7. The set N− contains exactly one element,

i.e., there is one malicious agent with a well-defined objective

specified in (2).

We note that Assumption 4.3 is satisfied when the com-

munication graph G is connected in the mean. To simplify

the convergence analysis in Section III.C, we assume that

there is only one adversary that is learning using compro-

mised rewards and does not perform consensus updates. The

latter leads to unbalanced consensus updates in the entire

network. We note that more general adversarial attacks are

possible, e.g., there may be multiple adversarial agents in

the network that may perform arbitrary parameter updates.

Nonetheless, the narrow scope of attacks presented in this

work is sufficient to demonstrate the fragility of the vanilla

consensus MARL algorithm.

B. MARL algorithm

In this subsection, we introduce the consensus MARL

algorithm. We let ∆i denote an estimated network TD error

estimated by agent i. We noted earlier in Section III that

every agent maintains parameters vi which describe the

network value function approximation V (s, vi). Further, we

recall that the rewards ri(s, a, s′) remain private but the

agents are allowed to estimate the network reward function.

Intuitively, estimating the network reward function is a nec-

essary step since the agents try to maximize the team-average

objective in (1). We let dθ(s) denote a stationary distribution

of the Markov chain {st}t≥0 under policy π(a|s; θ). If the

rewards were mutually observable among the agents, they

would minimize the weighted mean square error

argmin
λ

∑

s∈S,a∈A

dθ(s)π(a|s; θ)
[

r̄(s, a;λ)− r̂(s, a)
]2
. (3)

The optimization problem in (3) can be recast into a dis-

tributed optimization problem, which has the same stationary

points, given as follows

argmin
λ

1

N

N
∑

i=1

∑

s∈S,a∈A

dθ(s)π(a|s; θ)
[

r̄ − r̂i
]2
. (4)

since 1
N

∑

i

(

r̄(s, a;λ) − r̂i(s, a)
)

= r̄(s, a;λ) − r̂(s, a).
Hence, the agents can individually perform gradient steps

to update the parameters λi based on their true rewards

ri(s, a, s′). By communicating via a consensus protocol,

they further gain information about the encoded rewards of

the other agents. The estimation and communication of the

network reward function parameters λi and network value

function parameters vi provide the agents with the ability

to update their policy to benefit the team. The consensus

actor-critic algorithm, a version of [9, Algorithm 2] with



Algorithm 1: Consensus MARL algorithm

Initialize parameters θi0, λ
i
0, λ̃

i
0, v

i
0, ṽ

i
0, ∀i ∈ N ;

Initialize s0, {αv,t}t≥0, {αθ,t}t≥0, t← 0;

Repeat until convergence

for i ∈ N do

Observe state st+1, action at, and reward rit+1;

Update

λ̃it ← λit + αv,t

(

rit+1 − r̄t+1(λ
i
t)
)

∇λr̄t+1(λ
i
t);

δit ← rit+1 + γV (st+1; v
i
t)− V (st; v

i
t);

∆i
t ← r̄t+1(λ

i
t) + γV (st+1; v

i
t)− V (st; v

i
t);

Update critic ṽit ← vit + αv,tδ
i
t∇vV (st; v

i
t);

Update actor θit+1 ← θit + αθ,t∆
i
tψ

i
t;

Send λ̃it, ṽ
i
t to the neighbors over Gt;

Take action ait+1 ∼ π
i(ait+1|st+1; θ

i
t+1);

end

for i ∈ N do
Consensus step

λit+1 =
∑

j∈N ct(i, j)λ̃
j
t , vit+1 =

∑

j ct(i, j)ṽ
j
t ;

end

Update iteration counter t← t+ 1

discounted returns is given in Algorithm 1. We note that the

algorithm is the same for all agents but the adversary omits

the consensus step. Furthermore, the action taken by the full

network at can be assumed unobservable if the estimated

rewards are independent of the actions, i.e., r̄(s, a;λi) =
r̄(s;λi). In the following subsection, we provide the conver-

gence analysis for Algorithm 1.

Remark. The scope of this work can be easily extended

to [9, Algorithm 1], where agents approximate state-action

value function parameters. For such an algorithm, the global

action at must be observable by all agents in the network.

C. Convergence analysis

In this subsection, we proceed with the convergence anal-

ysis. First, we show that the critic V (s; vi) and network

reward function r̄(s, a;λi) converge to a fixed point for all

i ∈ N while the policy π(a|s; θ) remains fixed. Then, we

prove the full convergence of the actor updates that occur

on a slower timescale. We write the stationary distribution

of Markov chain dθ(s) for all states s ∈ S as a matrix

Ds
θ = diag[dθ(s), s ∈ S]. Similarly, we write the distribution

of all state-action pairs (s, a) as a matrix Ds,a
θ = diag[dθ(s)·

π(a|s; θ), s ∈ S, a ∈ A]. For brevity, we use shorthands

ϕt = ϕ(st) and ft = f(st, at). Finally, we define the

consensus value 〈zt〉 =
1
N

∑

i z
i
t and the disagreement vector

z⊥,t = zt − 1⊗ 〈zt〉.

Theorem 1. Under assumptions 1 and 3-7, for any policy

π(a|s; θ), with the updates of {vit} in Algorithm 1, we have

limt v
i
t = vθ and limt λ

i
t = λθ for i ∈ N almost surely.

Furthermore, vθ and λθ are the unique solutions to

FTDs,a
θ (R̂j − Fλθ) = 0 (5)

ΦTDs
θ

(

R̂j
θ + γPθΦvθ − Φvθ

)

= 0, (6)

where j ∈ N−.

Proof. We let zt = [(z1t )
T , . . . , (zNt )T ]T ∈ R

(M+L)N ,

where zit = [(λit)
T , (vit)

T ]T . Furthermore, we define

bt = rt+1 ⊗
[

fTt φTt
]T

and At = I ⊗ A′
t, where

A′
t

[

−ftf
T
t 0

0 φt(γφt+1 − φt)
T

]

. We let Fz
t = {z0, Yτ , τ ≤

t} denote a filtration where Yτ = {sτ , aτ , rτ , Cτ−1} is a

collection of random variables. The iterations of Algorithm 1

can be written in a compact form as follows

zt+1 = (Ct ⊗ I)
(

zt + αv,t(Atzt + bt)
)

= (Ct ⊗ I)
[

zt + αv,t

(

h(zt, Yt) +Mt+1

)]

where h(zt, Yt) = E(Atzt + bt|F
z
t ) and Mt = Atzt + bt −

E(Atzt+bt|F
z
t ). To prove Theorem 1, we need to show that

1) Lemma 1: the parameters λt and vt remain bounded

for all t ≥ 0,

2) Lemma 2: the adversary’s parameters asymptotically

converge, i.e., λjt → λθ and vjt → vθ, j ∈ N−,

3) Lemma 3: the agents’ parameters asymptotically con-

verge to the consensus value 〈λt〉 and 〈vt〉.

We take advantage of the rich convergence analysis in [9] to

prove the lemmas.

Lemma 1. Under assumptions 1 and 3-6, the sequence {zt}
satisfies supt ||zt|| <∞ almost surely.

Proof. The proof is given in [9, Appendix C]. The only

difference in our work is that in the absence of the consensus

step the updates of zit , i ∈ N , asymptotically follow the ODE

żit = Ā′
tz

i
t + b̄it where

Ā′
t =

[

−FTDs,a
θ F 0

0 ΦTDs
θ(γPθ − I)Φ

]

(7)

b̄it =
[

(FTDs,a
θ R̂i)T (ΦTDs

θR̂
i
θ)

T
]T
. (8)

The discount factor satisfies γ ∈ [0, 1) and the stochastic

matrix Pθ has positive eigenvalues that are less than or

equal to 1. Therefore, the matrix ΦTDs,a
θ (γPθ − I)Φ has

eigenvalues with strictly negative real parts, which implies

that the ODE żit = Ā′
tz

i
t + b̄it has an asymptotically stable

equilibrium. Hence, supt ||zt|| <∞ almost surely.

Lemma 2. Under assumptions 1, 3, and 5-7, limt→∞ zjt =
zθ, j ∈ N−, almost surely. Furthermore, zθ = [λTθ , v

T
θ ]

T is

a unique solution to (5) and (6).

Proof. We recall that the adversarial agent does not per-

form the consensus step. Using the findings in Lemma

1, we can immediately conclude that żjt = Ā′
tz

j
t + b̄jt

is the limiting ODE, with A′
t given in (7) and b̄jt =

[

(FTDs,a
θ R̂j)T (ΦTDs

θR̂
j
θ)

T
]T

. The ODE has a unique

asymptotically stable equilibrium zθ = [λTθ , v
T
θ ]

T that sat-

isfies (5) and (6).

Lemma 3 (Appendix B.4, Step 1 in [9]). Under assump-

tions 1 and 3-7, the disagreement vector z⊥,t satisfies

limt→∞ z⊥,t = 0 almost surely.
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