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GPUs are a key enabler of the revolution in machine learning and high-performance computing, functioning

as de facto co-processors to accelerate large-scale computation. As the programming stack and tool support

have matured, GPUs have also become accessible to programmers, who may lack detailed knowledge of the

underlying architecture and fail to fully leverage the GPU’s computation power. GEVO (Gpu optimization

using EVOlutionary computation) is a tool for automatically discovering optimization opportunities and tun-

ing the performance of GPU kernels in the LLVM representation. GEVO uses population-based search to

find edits to GPU code compiled to LLVM-IR and improves performance on desired criteria while retaining

required functionality. We demonstrate that GEVO improves the execution time of general-purpose GPU

programs and machine learning (ML) models on NVIDIA Tesla P100. For the Rodinia benchmarks, GEVO

improves GPU kernel runtime performance by an average of 49.48% and by as much as 412% over the fully

compiler-optimized baseline. If kernel output accuracy is relaxed to tolerate up to 1% error, GEVO can find

kernel variants that outperform the baseline by an average of 51.08%. For the ML workloads, GEVO achieves

kernel performance improvement for SVM on the MNIST handwriting recognition (3.24×) and the a9a in-

come prediction (2.93×) datasets with no loss of model accuracy. GEVO achieves 1.79× kernel performance

improvement on image classification using ResNet18/CIFAR-10, with less than 1% model accuracy reduction.
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1 INTRODUCTION

The fields of large-scale machine learning and scientific algorithms are expanding quickly and
pushing the limits of high-performance computing. Continued advances in these fields will re-
quire orders-of-magnitude improvements in computing power [28, 42, 105]. GPUs help address
this challenge and have become de facto co-processors [2, 6, 38, 92, 113] for accelerating the per-
formance of general-purpose, large-scale parallel workloads [5, 45, 83]. At the same time, the GPU
programming interface has matured, making GPUs accessible to amateur programmers. However,
it is challenging to optimize and fine-tune the performance of general-purpose GPU (GPGPU)
programs without platform- and domain-specific knowledge. For example, programmers may be
excessively cautious in their use of synchronization, which incurs a performance penalty. It is well
known that the lack of concurrency semantics adds to the challenge of optimizing parallel pro-
grams such as GPU codes [10]. Relevant to our synchronization example, a compiler cannot elim-
inate unnecessary synchronization primitives without concurrency semantics. Figure 1 illustrates
the size of this effect for one of the Rodinia benchmarks: Eliminating unneeded synchronization
nearly doubles the performance gain over O2 optimization for nw.
Many research projects have investigated automated compilation optimization methods to re-

duce the burden on application programmers, including peephole [9], loop-unrolling using ma-
chine learning techniques [53], auto-vectorization [68], auto phase ordering [35], link-time [102],
and profile-guided optimization [75], but additional efficiencies can be found by tailoring a bi-
nary to particular classes of inputs or particular architectures. For example, STOKE is a stochastic
program synthesizer that uses random search to explore the high-dimensional space of possible
program transformations and is an example of this performance tuning approach [85]. A related
approach uses Evolutionary Computation (EC) to morph existing code from the target program
to code that improves runtime and other non-functional program properties. In this work, we use
EC, also known as Genetic Improvement, because earlier work showed that it scales well with
program size [33, 89]. Some earlier work reports optimizations of specific GPU programs using
EC [46–49], but these approaches are not easily extensible to large design spaces, in part because
the representation of each program is customized and requires manual program translation before
the search for optimizations can be performed.
We propose compiler post-pass performance tuning—GEVO (GPU code optimization using

EVOlutionary computation) [56, 57]. GEVO encodes optimization objectives, such as execution
time, energy use, or accuracy in its fitness function and implements a set of mutation and recombi-
nation operators for GPU kernel transformations in the LLVM-IR representation. We demonstrate
GEVO first on the single-objective problem of reducing GPGPU kernel execution time (GEVO-
default). Second, we show how GEVO can simultaneously tune GPGPU code to meet two inde-
pendent objectives, such as performance and accuracy (GEVO-mO), using multi-objective search.
To assess the general applicability of GEVO, we evaluate on NVIDIA Tesla P100 using the Ro-

dinia benchmark suite [75], which covers a set of important application domains such as medical
imaging and data mining. Each application provides unique characteristics in terms of parallelism,
data sharing, memory access patterns, and so forth. The results vary significantly across the Ro-
dinia benchmarks, but on average GEVO-default improves GPGPU kernel runtime performance
by 49.48% over the fully compiler-optimized baseline, and by as much as 412% in one case. If output
accuracy is relaxed to tolerate up to 1% error, GEVO-mO can find kernel variants that outperform
the baseline version by an average of 51.08%.
Although GEVO can be applied to any GPGPU program, we are particularly interested in ma-

chine learning programs, because machine learning tasks are computationally intensive and are
by nature error-tolerant. For example, deep neural networks often require hours or days to train
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Fig. 1. Performance improvements for nw with no compiler optimization (clang -O0), with full compiler

optimization (clang -O2), and when unneeded synchronization primitives are removed manually.

a single model, and training time is often traded off against model accuracy [38, 39, 80, 84, 114].
We present results for GEVO on supervised machine learning code from two production frame-
works, ThunderSVM [107] and Caffe2 [31], considering standard handwriting recognition, income
prediction, and image classification datasets.
To summarize, the key contributions of this article are:

• We present GEVO, a tool for automatically tuning the performance of GPGPU kernels rep-
resented in the LLVM intermediate representation (LLVM-IR) to meet multiple criteria. Our
infrastructure scales to arbitrarily large program sizes. We demonstrate GEVO on the sin-
gle objective of runtime optimization and on the multi-objective optimization criteria of
runtime and accuracy.

• We evaluate GEVO on the Rodinia benchmark suite, which includes 13 applications cover-
ing a wide range of application domains. On average, GEVO improves kernel runtime by
49.48% with the output fidelity enforced or by 51.08% if the output fidelity can be relaxed
by 1%.

• We evaluate GEVO on two machine learning kernels, using Thunder SVM and Caffe2, with
standard machine learning benchmark datasets. In these experiments, model accuracy is
interpreted as output fidelity. Compared to the original baseline, we find that GEVO can
improve kernel runtime performance by 1.79× to 3.24×. In most cases, these runtime im-
provements are achieved without loss of accuracy, and in some cases model accuracy actu-
ally improves.

• In-depth analysis of GEVO optimizations identified several architectural-, domain-, and
dataset-specific improvements. We provide explanations for many of the performance opti-
mizations discovered by GEVO, such as eliminating conservative synchronization prim-
itives (Section 5.2.1), removing redundant store instructions (Section 5.1.2), reducing
conditional executions (Section 5.2.1), loop perforation (Section 5.2.3), memoization (Sec-
tion 5.2.4), and algorithm improvements (Sections 6.1.2 and 6.2).

• Multi-objective optimization: We demonstrate that when output fidelity is relaxed, solu-
tions can be found that improve both optimization criteria—runtime and output fidelity—
simultaneously. These optimization points are not accessible to the search when output
fidelity is strictly enforced.

The remainder of the article is organized as follows: Section 2 provides relevant background
and places the article in the context of earlier work. Section 3 describes the GEVO design in de-
tail; and Section 4 describes the system environment and benchmarks we used to evaluate GEVO.
Experimental results for GEVO-default and GEVO-mO are reported in Section 5 and Section 6,
respectively. We discuss limitations and future directions in Section 7 and conclude the article in
Section 8.
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2 RELATEDWORK

This section discusses related work from program synthesis, superoptimization, and evolutionary
computation. It also reviews the few earlier works that have applied EC to GPUs and the growing
body of work using EC to improve machine learning.

2.1 Program Synthesis and Superoptimization

Program synthesis methods automatically generate computer programs based on programmer-
defined specifications. In some cases, the goal is to produce programs that run faster, which is
known as superoptimization. Early work on superoptimization dates back to Massalin’s super-
optimizer [64] in 1987, which exhaustively searched and tested a subset of the Motorola 68020
assembly instruction set against testing inputs and synthesized the shortest instruction sequence
for a target function.
Since the number of possible code sequences in most programming languages is enormous,

finding an optimal sequence is usually intractable, and all recent program synthesis techniques
use some form of search to cut down the search space. Such search algorithms can be roughly
divided into two categories: deductive synthesis and inductive synthesis. Deductive synthesis en-
codes a given program into a Boolean formula and searches for a logically equivalent formula using
a SAT/SMT solver. Developing such encodings is challenging and time-consuming, and significant
research effort has been devoted to making such processes more accessible to programmers, rang-
ing from Rosette, a symbolic framework language interpreter [100, 101], to Z3, an efficient SMT
solver with C and Python binding [72]. Synthesized programs using the deductive approach are
provably correct and do not require verification. However, as the length of the computer program
increases linearly, the size of the corresponding Boolean expressions grows exponentially. There-
fore, programs that are synthesized using the deductive approach are relatively small and often
have additional constraints. For example, the largest loop-free program synthesized by Gulwani
in 2011 [34] has only 16 lines in the pseudo assembly.
Instead of representing the program’s specification as a Boolean formula, inductive synthesis re-

lies on the original program and a set of input/output examples (test cases). In this case, the search
usually begins by sampling local deviations from the given program or by generating random code
combinations from scratch. Each variant is then checked against the test cases to verify function-
ality. Depending on the particular search method, new code recombinations may be tried based on
previous observations. These methods use stochastic search, such as Markov Chain Monte Carlo
(MCMC) sampling or Evolutionary Computation (EC). Schkufza et al. proposed STOKE [24, 85,
86, 93] using MCMC sampling for X86-64 assembly codes to improve runtime. STOKE has the
same overarching goal as GEVO, which is to search for program optimizations without guaran-
teeing exact program semantics. However, STOKE does not naturally scale up to large code sizes,
because it considers the entire X86-64 instruction set, even vector instructions, and it focuses on
synthesizing instruction sequences from scratch. GEVO differs from STOKE in two ways: It uses
EC to modify an existing program using existing instructions, and it can scale to arbitrarily large
program sizes (over 100,000 instructions [89]), whereas the test programs in STOKE are only a few
hundred instructions [24].
We chose EC primarily because of its scalability to realistic program sizes. Beyond scalability, an

inductive method was appropriate, because many applications on parallel accelerators, e.g., image
processing and machine learning, do not require an exact result. Instead, these applications often
have domain-specific metrics for assessing acceptability. This feature of many GPGPU programs
mitigates the requirement to preserve exact program semantics.
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2.2 Evolutionary Computation (EC)

Earlier work developed EC methods to improve computer programs, e.g., to automatically repair
bugs in legacy software [27, 32, 33, 52, 106], and this class of applications is sometimes referred to
as genetic improvement. Transitions to industrial practice include Facebook’s SapFix tool [30] and
the Janus Manager deployment [37]. Although most work has been conducted at the source-code
level using abstract syntax trees, similar methods have been applied to assembly programs [88]
and object code [91].
Subsequent analysis showed that the applied mutations often have no observable effect on pro-

gram behavior [11, 15, 36, 90, 103]. These neutral mutations occur frequently (20%–40% of the
time), even when the mutations are restricted to sections of code covered by the tests. Although it
is surprising that the rate of neutral mutations is so high, equivalent mutations are well-known in
mutation testing, e.g., Reference [62]. These results suggested the possibility of using EC to opti-
mize non-functional properties of software by finding modifications that are neutral with respect
to the test suite but improve the non-functional property in question.
White et al. proposed the idea of using EC to improve program performance [108], and Schulte

et al. achieved significant energy reductions for several Parsec benchmarks [89]. Bruce et al. ap-
plied a similar technique for MiniSAT to reduce energy consumption [15]. Other works [18, 63]
constrain EC’s search space for improved energy consumption of Java programs by asking users to
provide predefined locations or equivalent functions or class implementations. These, and several
subsequent works [16, 29], demonstrate the potential for stochastic search methods such as EC
to find machine- or architecture-specific optimizations that improve a program’s performance or
energy efficiency. However, these methods are not yet mature or carefully analyzed. In contrast
with our work, they focus on energy reduction rather than runtime, typically targeting the CPU;
and their general applicability is not well understood. The results reported here address these
limitations.

2.3 Evolutionary Computation for GPGPU Programs

There is some previous work applying EC to GPU kernels, including a graphics shader program
[95]. This work began with a basic lighting algorithm and used EC to gradually modify the shader
program into a form that resembles an advanced algorithm proposed by domain-specific experts.
In the GPGPU domain, Langdon et al. used EC to reduce the runtime of a CUDA program, re-
porting results for two specific programs: gzip [46] and an RNA analysis program [49]. This prior
work targets a single program operating in a specific domain, and the methodology used in Ref-
erences [46–49] represents the program object as a custom-designed, line-based Backus Normal
Form (BNF) grammar. We seek a method that is generalizable across multiple programs with min-
imal manual intervention and uses modern tooling, which is Clang/LLVM.
Clang/LLVM is a widely-used, multi-language, and highly modular compiler infrastructure.

Schulte’s thesis is the onlyworkwe are aware of that has experimentedwith evolving the LLVM in-
termediate representation (LLVM-IR) [87], but this was a preliminary proof-of-concept rather than
a robust implementation, and no significant experiments were conducted. Now that Clang/LLVM
supports CUDA compilation, it is feasible to compile GPGPU kernels into LLVM-IR, but this has
only been available since 2016 [109]. Thus, we adopt the Clang/LLVM infrastructure for GEVO
including the LLVM-IR, as shown in Figure 2. This avoids developing novel parsing and syntax
manipulating infrastructure, but it introduces new challenges for implementing the basic muta-
tion and recombination operations.
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Fig. 2. GEVO in the LLVM/Clang compilation flow.

2.4 Genetic Improvement of Machine Learning (ML)

While EC can be applied to any computer program, machine learning is a particularly attractive
domain, because of its popularity and its high computational cost. Moreover, most ML applications
can be accelerated using GPUs. Although no prior work is known that uses EC to accelerate ML
programs on GPUs, EC has often been used to improve neural network designs and to optimize
weights. This work dates back at least to an 1989 [71] paper that used EC to train a neural network.
The most established and popular approach in this domain is NEAT [97], proposed by Stanley et al.
in 2002, which uses EC to simultaneously learn the neural network connection topology, and the
weight of each neuron. The original NEAT design performed well in a comparatively small and
homogeneous neural network, and the following works expanded its scalability to larger networks
and more complex tasks [79, 96, 104].
More recently, convolution neural networks (CNNs) have achieved extraordinary performance

in image classification tasks by adding convolution layers as filters. These layers are used to de-
termine important spatial patterns in the image so the number of features can be reduced before
being fed into a traditional neural network. Many approaches for identifying good architectures
(topologies) for CNNs have been proposed [13, 43, 58, 59, 61, 76, 111, 116], and these have outper-
formed manually designed architectures on several tasks. Similar to NEAT, Reak et al. proposed
using EC to design CNNs in a limited search space of convolution layers composed of common
arithmetic operations [78]. This work achieves state-of-the-art classification performance on the
ImageNet dataset compared to other network architecture searches, which use random search and
reinforcement learning.
In state-of-the-art machine learning programming frameworks, deep learning models are rep-

resented as computational graphs of various types of operators. This exposes opportunities for
operator-level optimization, such as operator fusion, using domain-specific compilers. For ex-
ample, XLA [1] is developed for TensorFlow [3], Glow [82] for PyTorch [74], TVM [22] for
MXnet [21], and so forth. Domain-specific compilers can perform further optimization when low-
ering high-level, neural network operators onto machine-specific implementations using opti-
mized libraries. These optimizations differ from the aforementioned neural architecture searches
in that the functional behavior of a given network is preserved. Built on top of the prior su-
peroptimization approach [64], TASO [41] was recently proposed to automatically optimize the
computational graph. Given a small computational graph, TASO enumerates all combinations of
operator implementations and selects the operator graph implementation that minimizes run-
time. The functional behavior of the original graph is preserved with satisfiability verification
using a SAT solver. TASO has the same scalability limitations discussed earlier for deductive
program synthesis (Section 2.1), and the referenced work does not scale beyond graphs of size
4 operators.
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Our approach to optimizing NNs is complementary to this earlier work. GEVO explores joint
optimization opportunities by (1) discovering better-performing operator implementations and
(2) changing neural network architectures, which extends previous work (Section 6.2.2).

3 GEVO DESIGN

We propose GEVO—a tool for automatically improving kernel implementations for GPUs. GEVO
enables GPU code optimization using EVOlutionary computation. It is a post-pass performance
tuning approach to optimizing GPGPU kernel implementations.
GEVO takes as input a GPGPU program, user-defined test cases that specify required function-

ality, and a fitness function to be optimized. GEVO attempts to maximize the fitness function by
evolving and evaluating mutated kernel variants in an iterative population-based search. Figure 2
presents GEVO in the context of the LLVM/Clang compilation flow. Kernels in a GPGPU program
that will run on GPU are first separated and compiled into the LLVM-IR using the Clang compiler.
GEVO takes these kernels in LLVM-IR format as inputs, modifies them to produce different kernel
variants, and translates the variants into PTX files. The host code running on the CPU is modified
to load the generated PTX file into the GPU. GEVO then evaluates how the kernel variant performs
as defined by the objectives encoded in the fitness function.
As shown in Algorithm 1, the search begins with an initial population of PopSize individuals

(LLVM-IR kernel variants) that is formed by taking the original program, making PopSize copies,
and applying random mutations to each (Line 3 where InitDist, the number of mutations applied
to each individual, defaults to 3), giving the initial population some diversity. GEVO then forms
the next generation of individuals by ranking individuals according to the objectives, recombin-
ing instructions between kernel variants (Crossover), and randomly adding, deleting, or moving
instructions in each variant (Mutation). Finally, GEVO compares the new variants to a set of elites
retained from the previous generation (Selection), eliminating low-fitness individuals and retaining
those with higher fitness for the next generation. The next few subsections give details of how we
implemented these operations for GPGPU optimization.

ALGORITHM 1: The main loop of GEVO.

Parameter: PopSize, CrossRate, MutateRate, InitDist

Input: GPGPU kernel Program, P

1: pop ← Initialize(PopSize, P)

2: for all individual in pop do

3: Mutate(individual)*InitDist

4: rank ← NonDominatedSort(pop)

5: while not interrupt do

6: offspring ← SelTournament(pop, rank, PopSize)

7: elites ← SelBest(pop, rank, PopSize /4)

8:

9: for every 2 individual (ind1, ind2) in offspring do

10: if random() < CrossRate then

11: Crossover(ind1, ind2)

12: for all individual in offspring do

13: if random() < MutateRate then

14: Mutate(individual)

15:

16: rank ← NonDominatedSort(elites + offspring)

17: pop ← SelBest(elites + offspring, rank, PopSize)
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Fig. 3. Non-dominated sorting. Fig. 4. Mutate-Copy: Operand dependency is re-

built to preserve LLVM-IR program validity. Since

LLVM-IR is strongly typed, the constant value 1.0

is used if no other value in the requested type is

available.

3.1 Individual Representation

GI methods typically use either a program-based (each variant consists of the entire program) or
a patch-based (each variant is a list of mutations (edits) applied to the original program) repre-
sentation. For large programs, the patch-based representation is convenient, because it is more
space-efficient. GEVO uses both representations. That is, each individual kernel variant contains
both the LLVM-IR code and the set of the mutations that produced it from the original.
This design decision relates to the many data dependencies built into the LLVM-IR. Because of

the repair process that is required after most mutations, it would be expensive to reapply all the
mutations for a variant each time it is evaluated. Similarly, crossover exchanges subsections of
the kernel code. Doing this naively can break a large number of data dependencies, so it is more
efficient to implement crossover using the patch representation. Because the number of muta-
tions applied to any kernel variant tends to be low, and because kernels are relatively small-sized
programs, the memory requirement of storing both representations is reasonable.

3.2 Fitness Evaluation

Although GEVO can optimize any desired fitness function, we first focus on the problem of reduc-
ing kernel execution time (GEVO-default). In this case, the fitness function is simply the runtime of
the kernel variant with the requirement that it produce identical output as the original program.
When we consider approximate computing, where output accuracy can be relaxed to improved
execution time, we include output accuracy in the fitness function as multi-objective (GEVO-mO),
i.e., arдmin(time, error ).
Using these fitness criteria each kernel variant is evaluated by running it against all available

test cases. To protect against overfitting, we also evaluate at the end of the search against a set of
held-out test cases, generated randomly. The fitness value is reported as a vector corresponding
to the number of objectives. Each element in the vector is a single scalar value, i.e., the mean
performance on that objective across the test cases (see Section 4.3).

3.3 Selection

GEVO uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) [26] to select individuals
according to multi-objective fitness criteria. Figure 3 illustrates a set of kernel variants, plotted
according to two dimensions of the fitness function, say, error and runtime, where the goal is to
minimize both objectives, retaining individuals that represent the best tradeoffs between the two
objectives (shown in blue in the figure). NSGA-II uses Pareto dominance, where individual i is said
to dominate individual j if i is better than j on at least one objective and no worse on the others.
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NSGA-II calculates the Pareto fronts and ranks individuals according to which front they belong.
Then a crowding factor is calculated for each individual based on the density of other individuals
along its Pareto front, and these two values are combined to produce a single fitness value for each
kernel variant (see Reference [26] for details). Finally, based on this single fitness value, NSGA-II
uses a popular EC selection method known as tournament selection [69] to choose kernel variants
for the next generation (Line 6 of Algorithm 1). GEVO retains the top quarter of the population at
time t and copies it unchanged to the population at time t + 1 (Lines 7, 16, and 17 of Algorithm 1),
a method known as elitism [8]. It then chooses the remaining 3/4 of the population using the
tournament selection.

3.4 Mutation Operators

Mutationmodifies the linear array of instructions stored for each variant using one of the following
operations:

• Mutate-Copy: Duplicate an instruction and insert it in another location.
• Mutate-Delete: Remove an instruction.
• Mutate-Move: Move an instruction to a different location.
• Mutate-Replace: Replace an instruction with another instruction. This can occur either at

the instruction or the operand level. In the second case, a single operand is replaced with
another operand.

• Mutate-Swap: Swap the location of two instructions.

Since the LLVM-IR is based on Static Single Assignment (SSA) where each variable (like %0,
%1 in Figure 4) can be assigned only once at creation, our mutations are likely to create invalid
programs by breaking the SSA constraint. Thus, we introduce an extra repair step. As illustrated
in Figure 4, the instruction mul is copied, and we see that the first operand relies on %3, which
is invalid in the new location. GEVO repairs it with the constant 1.0, as the two existing values
(%0, %1) are not of the proper type. To our knowledge, only one other work [87] has attempted
to design mutation operations for SSA. GEVO implements similar mutations to this earlier work,
although our mutations repair SSA dependencies more robustly.
The operators Mutate-Copy and Mutate-Move insert new instructions, which has no effect un-

less a subsequent instruction can use the result of the inserted instruction. Figure 4 illustrates
how GEVO enforces this by changing the first operand of the fifth instruction to use the value
from second instruction. This instruction was selected because its types agree with the mutated
instruction. In addition to the type checking shown in the above repair procedure, GEVO uses
dominator analysis to eliminate values if the creator and the user of a value are in separated basic
blocks that do not share the same execution path.
As depicted in Line 14 of Algorithm 1, when mutation is called, one of the aforementioned mu-

tation operations is selected randomly (with equal probability) and applied as an edit to generate
a new kernel variant. Since GEVO does not use domain-specific knowledge to select a mutation
or rely on program semantics, we immediately evaluate the individual by running the available
test cases, as Section 3.2 describes, and eliminate invalid modifications (that do not pass all tests).
Mutation is iteratively applied to the same individual until a valid kernel variant is identified.
Depending on the kernels, the acceptance rate of any single mutation is typically 5%–30%.

3.5 Crossover

GEVO uses the patch-based representation for crossover, because combining two random pro-
gram slices would require more extensive repair. GEVO implements one-point messy crossover,
which combines shuffle [17] and variable-length [54] crossover operations. Figure 5 illustrates the
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Fig. 5. One-point messy crossover.

process. Beginning with a list of mutations (edits) associated with each individual, GEVO com-
bines them into a single sequence, shuffles the sequence, and randomly separates it back into two
distinct patch sequences. Finally, GEVO reapplies each patch sequence to the original GPGPU ker-
nel and generates two new individuals. This form of crossover was selected, because it generates
a wide diversity of recombinations from a minimal number of mutations, and our mutations are
relatively expensive.
Similar to mutation, after crossover, each new individual is evaluated to test if the combinations

are valid. Otherwise, GEVO repeats the process until it finds a successful recombination. The ac-
ceptance rate of crossover is as high as 80%, because each individual mutation has already been
validated.

4 EXPERIMENTAL SETUP

This section describes our experimental setup for the empirical evaluation on real GPUs.

4.1 Infrastructure and Configurations

We developed GEVO using an existing Python framework for evolutionary algorithms, called
DEAP [25], implementing the genetic operators described in Section 3, and integrating them into
the DEAP framework.1 We instrumented the LLVM compiler (LLVM 8.0) to implement the mu-
tation operations in C++ as an LLVM pass. We evaluate GEVO using two machines of the same
configuration. Each machine has an Intel Xeon E5-2640 CPU with 40 cores, 256 GB system mem-
ory, and an NVIDIA Tesla P100 GPU with 16 GB GPU memory. The machine is installed with
Ubuntu 16.04 with NVIDIA CUDA 10.1 and NVIDIA GPU driver 418.87. For each optimization,
GEVO was given a 48-hour wall-clock budget on one machine. The Nvidia profiler (nvprof) was
used to collect kernel execution time, which became the runtime metric used by the fitness func-
tion. Although nvprof does increase overall application execution time, our optimization target is
kernel execution time, and in our experiments nvprof introduced no overhead to kernel execution
time. The collected kernel execution time consistently varied less than 1% over multiple profiling
runs on the same GPGPU kernel.
All GEVO experiments were conducted with population size of 256, crossover rate of 80% (80% of

individuals in population are selected for crossover), and a mutation rate of 30% (every individual
has 30% chance of receiving one mutation). The 48-hour budget for each GEVO run translates into
a variable number of generations (shown in the last column of Table 1), depending on the program,
the test cases, and the success rate of the mutation operation. For our experiments, the number of
generations ranged from a low of 12 to over 80. For example, for the NN benchmark, GEVO spent
the majority of its time searching for valid mutations and was able to complete only 18 generations

1The GEVO code is available at https://github.com/lioujheyu/cuda_evolve.
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Table 1. Benchmarks Used for Evaluation

GPGPU Kernel
Application Abbr. Lines of LLVM-IR Generations
Breadth first Search bfs 72 18
B+Tree b+t 168 63
CFD Euler3D cfd 1,079 53
Gaussian elimination gau 186 29
Heart Wall hw 3,806 36
Hotspot hot 189 28
LU decomposition lud 2,491 81
Nearest Neighbor nn 32 18
Needleman-Wunsch nw 715 21
Particlefilter pf 1,442 55
Pathfinder path 109 25
SRAD_v2 sv2 446 16
Stream Cluster sc 231 12
Handwriting recognition (C=5, g=0.05) mnist (c_smo_solve) 256 27
Income prediction (C=32, g=0.0078125) a9a (c_smo_solve) 256 61
Image classfication cifar-10 (momentumSGD) 39 15

within 48 hours. We speculate that in cases where GEVO was unable to find useful optimizations
it is partially because the runs did not complete enough iterations of the search, and providing a
larger search budget could improve results for these programs.

4.2 Benchmarks

Table 1 summarizes the benchmarks we used to evaluate GEVO: the Rodinia benchmark suite and
ML workloads on ThunderSVM and Caffe2.
For the first set of benchmarks, we validated optimized kernel variants using the default in-

puts provided with the Rodinia benchmarks. For each benchmark, we then generate additional
tests by randomly generating three sets of input values using the Rodinia built-in input genera-
tor. Depending on the benchmark, each input set contains from tens of thousands to millions of
input values. Each test was run with the original, unmodified kernel and its output was used as
an oracle to validate the output of the candidate kernel variants. GEVO rejects variants that fail
to produce outputs that are identical to the oracle (GEVO-default) or exceed the default 1% error
tolerance (GEVO-mO). After evolution, we validate the highest fitness kernel variant found dur-
ing the search on held-out tests. We generate the held-out tests by rerunning the test-generation
process. This step helps ensure that GEVO does not overfit the kernel to the existing test cases
during the evolution.
For the ML benchmarks, we focused on a Support Vector Machine (SVM) and Stochastic Gradi-

ent Descent. Because GEVO searches the optimization space at the granularity of instructions, it
requires full access to the intermediate representation and the corresponding optimized library im-
plementations. This consideration led us to a supervised ML framework, ThunderSVM, which is a
support vector machine library that is fully open-sourced and optimized for GPU implementation.
We evaluated GEVO on ThunderSVM (referred to as SVM) with two standard datasets: hand-

writing recognition using MNIST [51] and income prediction using a9a [77]. We downloaded the
datasets from libsvm [20]’s data repository, which consists of 60,000 training and 10,000 testing
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data samples for MNIST, and 32,561 training and 16,281 testing samples for a9a. Additionally, we
used the MNIST large dataset, which contains 8M image samples, solely for the post-evolution
evaluation. Specifically, we asked GEVO to optimize the c_smo_solve kernel for both training time
and inference prediction accuracy of the trained model. We present the results in Section 6.2.1.
Many popular deep learning frameworks, such as TensorFlow [3], PyTorch [74], and Caffe2 [31],

rely heavily on the NVIDIA closed source cuDNN library to drive the GPU and cannot be directly
targeted by GEVO. However, a few frameworks maintain a small custom CUDA implementation
when required functionality has no directmapping from the cuDNN library. For example, in Caffe2,
stochastic gradient decent with momentum (momentumSGD) is custom implemented as a CUDA
kernel and open sourced within Caffe2 source repository. This provides an opportunity for us to
include Caffe2 in our evaluation.
We evaluated Caffe2 using an 18-layer residual neural network (referred as ResNet18) to per-

form image classification against the CIFAR-10 dataset [44] with 50,000 training and 10,000 testing
images. We used GEVO to optimize the momentumSGD kernel, because it is the only major op-
erator used in ResNet that is available to us through open source. This kernel updates the weight
of the neural network based on the loss function, evaluating the difference between the true la-
bel and predicted label. Since the search space is constrained to a single operator, we include this
application to demonstrate GEVO’s capability and do not attempt a complete solution for image
classification. The results are given in Section 6.2.2.

4.3 Error Metric

For the Rodinia benchmarks, error represents the maximum difference between the output pro-
duced by the unmodified, original kernel implementation and that of GEVO-mO, across all tested
inputs. Kernel variants are eliminated if the error rate of any test case exceeds the prespecified
threshold, i.e., 1%.
For both SVM and ResNet18, we consider the runtime to train the model and the accuracy of the

trained model’s performance. For SVM, we use two-fold cross validation on the training dataset to
report the error to GEVO during optimization. In ResNet18, we also report the training error for
GEVOwhen the model is trained for three epochs, which shortens the training time to one minute.
However, even with this simplification, GEVO required seven days to search for 20 generations,
which is a low number of generations for an evolutionary search. The testing dataset, regardless
of which framework and application, was used only for measuring the testing error and was never
presented to GEVO.
Similar to Rodinia, the ML kernel variants are rejected if the training error exceeds the er-

ror achieved from the original kernel by the 1% threshold. For example, if the unmodified kernel
achieves 3% training error, then a GEVO kernel variant with 4.1% training error will be rejected
and another one with 3.9% training error will be accepted. In ResNet18, we set the threshold to
10%, because we trained for only three epochs, which is generally not long enough for the model
to converge. Thus, the training error is noisier with this training regime, so we allowed a more
generous error tolerance.

5 EVALUATION OF GEVO-DEFAULT

We first present the results of our experimental evaluation on the Rodinia benchmark suite to
evaluate GEVO’s applicability across a variety of programs (GEVO-default). Next, we investigate
themost common architecture-specific and application-specific optimizations that GEVO discovered
(Section 5.1). In Section 6.2, we consider dataset-specific optimizations.

Figure 6 reports the overall performance improvement for GEVO-default by comparing to the
default baseline with full compilation optimization for the Rodinia benchmarks. GEVO-default
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Fig. 6. Normalized performance improvement over the default baseline with full compilation optimization

for GEVO-default in the Rodinia Benchmark. (For example, the 1.27× improvement in hot reduces runtime

from 1.07 seconds to 1.07/1.27 = 0.84 seconds.)

improves the performance of the Rodinia benchmark suite by an average of 49.48% and by as
much as 412% for b+t. As Figure 6 shows, there is significant variability in the achieved improve-
ment among programs, including three, cfd, gau, and nn, for which we found no optimizations.
There are several possible explanations for this variability. It could be a feature of the program
itself, it could be that we did not let GEVO search long enough, or perhaps the program was per-
fectly optimized by the original programmer. However, this variability is consistent with results
reported using evolutionary methods on the related problem of reducing energy use by assembly
programs [89].

5.1 Architecture-specific Optimizations

GEVO discovered several different optimizations related to GPU architecture design in the evolved
Rodinia Benchmarks, including synchronization issues and memory order issues. Some of these
optimizations arise from a combined effect of the architecture and the particular application/
algorithm.

5.1.1 Eliminating Synchronization Primitives. One of themost commonGEVO optimizations re-
moved synchronization primitives, specifically syncthread(), calls in CUDA. For example, when
a programmer wants to exchange data between threads in a thread block through the shared or
global memory, synchronization primitives are used to synchronize the progress of GPU threads.
There are multiple reasons why a syncthread() call might not be required and could be removed
without damaging the application. We give several examples, taken from GEVO runs on the Ro-
dinia benchmarks.

nw: Figure 7 shows a simplified code snippet taken from nw. The syncthread function is used
three times in this particular kernel (Lines 6, 8, and 10). The first two syncthread calls (Lines 6
and 8) can be eliminated, because neither ref nor temp are read before a new value is written
into the same memory location. It appears that the programmer was unnecessarily conservative
in this case, which increased performance cost without additional semantic value. Most of the
performance improvements discovered by GEVO for nw eliminated overly conservative uses of
syncthread. Such optimizations are, of course, somewhat risky in general. However, they illustrate
the value of tailoring a kernel for exactly the workloads it will experience. As part of a wide
deployment, additional post hoc methods, such as test-case generation or program analysis, could
be employed to double-check that specific optimizations are indeed safe under the relevant use
cases.

lud: Other synchronization-related optimizations found by GEVO are architecture-specific and
concern scope. In a GPGPU application, massive numbers of parallel threads are created to
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Fig. 7. Simplified code snippet from nw with conservative syncthread() calls.

Fig. 8. Code snippet from lud illustrates a GEVO optimization, which removed redundant store instruc-

tions. (a) is the original implementation, (b) is the LLVM/Clang compiled version, and (c) is the optimized

kernel variant with GEVO.

execute the same piece of code in a kernel. At runtime, multiple threads form a thread-block or a
cooperative thread array. A thread-block is the basic unit of execution—all threads within a thread-
block have the same life-cycle and are dispatched onto a GPU streaming multiprocessor at the
same time. Depending on the width of the vector functional units/SIMD lanes, threads within a
thread-block are grouped into small batches (typically 32 or 64 threads), called a warp or a wave-
front. At every cycle, the GPU hardware warp scheduler selects a ready warp from the warp pool
for execution (known as the SIMT execution). Warps within a thread-block and threads within a
warp are tightly coordinated, bounded by the same synchronization barrier (architecture-specific).
To explicitly synchronize threads within a thread-block, syncthread can be used. In the case of
lud, the programmer specified exactly the same number of threads in a thread-block as the warp
thread size. GEVO finds a kernel variant that leverages the implicit synchronization boundary
implemented at the warp granularity and eliminates the syncthread call.
All: Depending on the specific implementation of warp and thread-block scheduling policies,

additional syncthread calls can often be eliminated without altering the execution order between
GPU threads (hotspot, lud, nw).

5.1.2 Removing Redundant Store. Another optimized kernel variant discovered by GEVO re-
moved redundant store instructions, illustrated with a code snippet from lud in Figure 8. We
show three versions of the code snippet: (a) the original implementation, (b) the LLVM-IR af-
ter compilation with the Clang compiler, and (c) the optimized kernel variant found by GEVO.
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Variable s is stored in the GPU shared memory (Line 1, Figure 8(a)) and is initialized in Line 5.
Each parallel thread accumulates its own s and reads/writes to s in the shared memory directly
(Lines 9–10). Finally, the value of s is written back to the shared memory (Line 12). Compared
to updating values in the GPU register file, updating s in the shared memory (Line 10) can incur
significant latency and stress the memory subsystem unnecessarily.
Instead of constantly reading andwriting the value of s to the sharedmemory, the post-compiled

LLVM-IR version eliminates the variable reuse patterns for s and replaces swith a temporary vari-
able ( temp ) that is stored in the register file. To preserve semantic correctness, s in the shared
memory is updated with the new value of temp (Line 11). Interestingly, this instruction is removed
by GEVO. While in theory other threads could access s and receive a stale value, this does not
change kernel outputs. GEVO, in this case, trades off program semantics for improved kernel exe-
cution time. We conjecture that such optimization opportunities, although not completely gener-
alizable, are well-suited for GPUs. This is because GPUs implement more relaxed memory models.
General-purpose programs are inherently more sequential and might be less likely to benefit from
GPU offloading. If strict ordering between memory operations needs to be enforced, threadfence
or syncthread could be inserted.

5.2 Application-specific Optimizations

GEVO discovers optimizations related to the particular application. We highlight four such opti-
mizations next.

5.2.1 Removing Conditional Execution. GEVO removes dead code that does not affect program
output. In the case of GPUs, GEVO could eliminate code blocks in the conditional path entirely if
the input space does not touch that portion of the kernel. Such kernel variants were identified in
hot, lud, and pf.

5.2.2 Removing Redundant Load. In bfs, GEVO removed certain load instructions from a loop
that repeatedly loaded data from the same address. In this case, the compiler inserts these load in-
structions to guarantee that the latest updates to the particular memory address will be loaded cor-
rectly in different iterations of the loop. Programmers can avoid these redundant loads by declaring
the corresponding variable using a constant modifier, indicating that the variable is read-only for
the entire program execution. In this case, GEVO discovered the data characteristics and addressed
the inefficiency without the programmer’s involvement.

5.2.3 Loop Perforation. Loop perforation is an optimization technique that skips iterations of
a loop based on the skip factor and has been explored for approximate computing [94]. GEVO dis-
covers similar optimizations, for example, when loops have been unrolled post-compilation, GEVO
removes some part(s) of the unrolled loop while optimizing the fitness function. We observed this
behavior in sc, lud, and hot.

5.2.4 Memoization. Memoization is an optimization technique that stores results of expensive
function calls and returns the stored value without re-computation when the same inputs oc-
cur again. At the LLVM-IR level, GEVO sometimes identifies similar memoization opportunities
by eliminating unneeded instructions and using stored results directly. We find this optimiza-
tion in the HotSpot temperature modeling tool (hot). A kernel in the HotSpot tool performs pre-
processing based on the physical dimension of a processor chip. Since the shape of simulated chips
is the same across all loop iterations, GEVO discovers memoization opportunities to reuse the pre-
processing results of the x-dimension for the y-dimension. Another extreme case was found in
b+tree, where one of the input arguments to the program already represents the desired indices

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 33. Publication date: November 2020.



33:16 J.-Y. Liou et al.

Fig. 9. Comparison of normalized performance

improvement between GEVO-default and

GEVO-mO in the Rodinia Benchmark.

Fig. 10. Temporal evolution of a hot kernel

variant.

in the program output. In this case, GEVO omits almost the entire kernel, leading to more than 5×
performance speedup.
In summary, we have identified several categories of performance improvements found by

GEVO, but we have not studied all such optimizations, and in some cases, we require additional
domain-specific knowledge to complete a full analysis. Because GEVO is stochastic, it is not guar-
anteed to find every possible optimization on every run.

6 EVALUATION OF GEVO-MO

In this section, we evaluate GEVO (GEVO-mO) in settings where exact output fidelity is not re-
quired. First, we consider GEVO-mO running the Rodinia benchmarks and compare its perfor-
mance to GEVO-default. We then consider ML workloads and report how GEVO-mo can extract
significant performance improvement when domain-specific metrics (model prediction error) are
included and co-optimized.

6.1 Rodinia Benchmarks with Error Tolerance

Figure 9 reports overall performance improvement from GEVO-default and GEVO-mO. When ac-
cepting up to 1% kernel output difference, GEVO-mO scavenges additional improvements, reduc-
ing runtime by an average of 51.08% over the baseline. This is mainly achieved by the additional
performance improvement in hot and lud, from 27.3% to 38% and from 17% to 26.5%, respectively.

6.1.1 Temporal Analysis. To better understand how GEVO-mO co-optimizes runtime and out-
put error, we consider one run of GEVO in closer detail for the program hot, as shown in Figure 10.
On each generation, the figure plots runtime (primary y-axis) and error rate (minor y-axis) for the
most fit kernel variant in that generation. As expected, runtime decreases over the run, but the cor-
responding error rate increases at Generations 5 and 34. This illustrates the design space tradeoff
between performance and accuracy. In both cases, GEVO-mO then “repairs” the error rate by in-
troducing other mutations, a phenomenon known as compensatory evolution [98] in evolutionary
biology.
There are three key mutations in the last generation. When combined, they reduce the error

rate to less than 0.1%, whereas if individually applied, the error rate is much higher at 0.3%. This
highlights the strength of a population-based search method like GEVO—sub-optimal individuals
in one generation can be combined and/or serve as a stepping stone to the discovery of successful
combinations of mutations. Further, the best kernel variant would not be found if a tighter error
bound had been enforced from the beginning.
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6.1.2 Optimization Analysis. For hot and lud, mutation analysis reveals how additional im-
provements are achieved.

hot: Additional performance improvement is achieved by removing additional synchronization
primitives. This optimization raises the possibility of a race condition, because the outputs vary
slightly from run to run but always remain under the 1% threshold. Although race conditions are a
potential concern, earlier work proposes lock-free approaches for specific algorithms and includes
a proof that the algorithm can converge even with a race condition [80].
Our analysis of the hot optimization provided two possible explanations for how removing the

synchronizations leaves a viable program. First, in hot, each thread updates the temperature of
a spot in a two-dimension grid, based on the ambient temperature and the temperature of the
surrounding spots. Synchronization on each timestep allows every other thread to calculate and
update its temperature based on up-to-date temperature values nearby. However, there are two
levels of synchronization in hot : in-kernel synchronization using the syncthreads function and
a global synchronizationwhen the kernel is relaunched. Removing the syncthreads call inside the
kernel implies that the temperature over the grid will be synchronized only every other timestep,
which might leave the simulation within its error tolerance. The second explanation derives from
the simulation setting. In hot, the temperature difference between the ambient and initial grid tem-
perature (ambient is set to 80°K while the grid is mostly between 320°K and 345°K) is much larger
than the difference between a given spot and its neighbors (usually within 10°K). As a result, the
ambient temperature contributes more than surrounding temperature to the thermal simulation.
This effect mitigates the effect of the inaccuracy introduced by removing the synchronization.
lud: GEVO finds performance improvement by reusing the result from an earlier iteration of

a loop and avoiding computation in the latter iteration because the loop has been unrolled by
the compiler. This optimization is an example of memoization introduced in the previous section.
lud, standing for Lower-Upper decomposition, decomposes a given matrix into a product of two
triangular matrices where each one has the lower/upper part of matrix filled with zeroes. Although
it might seem unacceptable to tolerate any error in the solution of a linear system, a method
known as incomplete LU factorization [67] approximates the solution of LU decomposition for
lower computational cost. We suspect that GEVO accidentally re-discovered this technique for
improving lud ’s performance, providing a nice example of approximate computing.

In other Rodinia benchmarks, GEVO failed to find significant improvements when output fi-
delity was relaxed. Although we do not know why these applications were more challenging,
there are several possibilities, including the most obvious one that the 1% error tolerance based
only on the raw kernel output from the GPU is too constrained to allow appreciable expansion of
the optimization search space. Therefore, in the next section, we change the error definition from
GPGPU kernel output difference to application-defined error. For ML, the natural application error
is model prediction error. This change allows GEVO to find application-specific optimizations that
produce significantly different kernel output while maintaining model accuracy.

6.2 Evaluation of Machine Learning Applications (Dataset-specific Optimizations)

Machine learning (ML) is a popular class of intrinsically error-tolerant applications, which con-
sume large computational resources, and is particularly suitable for the GEVO approach. We con-
sider twoMLmodels, SVMand ResNet18, and use them to illustrate howperformance and accuracy
can be co-optimized. Although earlier work examined accuracy/runtime tradeoffs of implementa-
tions [39], we are unaware of earlier work targeting genetic improvement of ML LLVM-IR kernels.

6.2.1 SVM. Figure 11 shows the Pareto frontiers found by GEVO for handwriting recognition
(SVM with MNIST ) and income prediction (SVM with a9a ). The x-axis represents the measured
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Fig. 11. Pareto-frontiers and other kernel variant measurements for (a) the handwriting recognition (SVM

with MNIST) and (b) the income prediction (SVM with a9a).

kernel runtime and the y-axis represents the training inference prediction error in %. We report
results for each kernel variant in GEVO’s final generation, relative to the original unmodified
kernel. Figure 11 also shows how GEVO-mO navigates away from the original, sub-optimal kernel
implementation and explores the better-performing part of the search space.
Considering the kernel variant in the Pareto frontier that represents the best combined improve-

ment, we find that GEVO-mO achieves 3.24× improvement for handwriting recognition (MNIST)
and 2.93× performance improvement for income prediction (a9a)’s kernel performance, which in-
creases overall model training speed by 50% and 24.8%, respectively. At the same time, accuracy on
the training set improved from 97.86% to 98.03% (MNIST) and from 84.61% to 84.65% (a9a), which
was unexpected, as we imagined the optimization would trade off accuracy against training time.
Next, we tested the trained GEVO-optimized models on their official testing datasets, where we
find accuracy is improved slightly, from 98.37% to 98.5% (MNIST) and from 84.59% to 84.64% (a9a).
We also consider whether the SVM evolved for training a specific dataset can achieve similar

improvements on a different dataset in the same class (after all, that would be the main advan-
tage of optimizing the training procedure for a particular type of application). We tested SVM
optimized for the MNIST common dataset (60,000 samples) by using it to train the large MNIST
dataset (8M handwriting samples). Since the large MNIST dataset does not have a separate testing
dataset, we report the 10-fold cross validation accuracy for the model from unmodified and opti-
mized ThunderSVM, which are 100% and 99.997% with the respective training time in 1,182 and
121 minutes.
Our optimization analysis, shown in Figure 12, shows how GEVO changes the termination con-

dition of a while loop by increasing the lower bound by 1 in line 11. As a result, there is a chance
of producing a smaller value in the if statement in line 14, causing the execution to exit the while
loop sooner. This loop implements an SVM solver using sequential minimal optimization, which
iteratively approaches the optimal solution, terminating when progress has slowed. Thus, GEVO
relaxes the convergence condition, which would normally be expected to reduce solution correct-
ness. However, for MINST, this change actually improves model accuracy, perhaps by avoiding
overfitting. We leave further analysis of this surprising result for future work.

6.2.2 ResNet18. Similar to SVM, Figure 13(a) presents the Pareto-frontier for image classifi-
cation (ResNet18 with CIFAR-10). Here, we select the kernel variant that gives the best training
accuracy on the third epoch (56% compared to 47% in the Baseline). This variant is also 1.79× faster
than original kernel. However, the kernel contributes less than 1% of the entire training time. Recall
that we do not have access to the other kernels for ResNet18 operators (Section 4.2).
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Fig. 12. Code snippet from ThunderSVM illustrates an optimization discovered by GEVO. The comment at

line 10 is the original code and line 11 indicates the GEVO modification.

Fig. 13. (a) Pareto-frontiers for the image classification (ResNet18 with CIFAR-10). The kernel in the circle

is manually selected to retrain the model until model converges with its (b) training accuracy and (c) testing

accuracy across epochs.

Recalling that we train ResNet18 for only three epochs during GEVO’s optimization searches
and only on the momentumSGD kernel, we first examine the kernel performance throughout the
training process until the pointwheremodel accuracy has converged. Figures 13(b) and 13(c) report
training and testing accuracy across epochs for the original baseline kernel and a GEVO-optimized
variant. Considering training accuracy, the GEVO-optimized kernel consistently beats the baseline
across epochs by up to 7% until epoch 30, when both kernels achieve 100% training accuracy. The
sudden jump in training accuracy around epoch 30 is caused by a learning rate change in epoch 29,
which occurs in code that is not available to GEVO. If we ignore that external learning rate change,
the GEVO-optimized kernel would converge at epoch 25, and the baseline would converge at epoch
28, with 2% lower training accuracy. Turning to testing accuracy, both kernels have comparable
accuracy through epoch 30 when the learning rate is changed. After epoch 30, the baseline is 1%
more accurate than the variant (73.24% to 72.31%).
Figure 14 shows an important code optimization found by GEVO in the Caffe2 momentumSGD

operator. There are two modifications leading to the accuracy and performance improvements.
First, GEVO changes the loop boundary so the loop is executed only once (line 7 in Figure 14).
The momentumSGD kernel updates the parameters (weight and bias) of the neural network and
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Fig. 14. Code snippet from Caffe2 momentumSGD operator illustrates two optimizations discovered by

GEVO.

the loop here represents how many parameters need to be updated. Thus, GEVO’s success when
reducing the number of loop iterations suggests that the ResNet18 model is overly complicated for
the CIFAR-10 dataset. This is similar to weight pruning [70] or hyperparameter search [14] for a
particular dataset. GEVO also changes how the momentum is calculated by using only the current
gradient and not considering the prior gradient. This optimization illustrates how GEVO can tailor
an algorithm to a particular dataset.

7 DISCUSSION

This article presents GEVO, a newmethod that uses stochastic population-based search to discover
optimizations of GPGPU kernels. GEVO trades off absolute program semantics for other important
non-functional design aspects. The experimental results demonstrate that by relaxing program se-
mantics, GEVO can find novel and substantial improvements, both for runtime alone and for the
case of multiple optimization objectives, e.g., accuracy and runtime. The proposed approach, while
not intended for applications with critical correctness requirements (e.g., inner loops of avionics
software or some systems programs), is suitable for many other applications, including the impor-
tant class of ML codes. When we consider handwriting recognition, income prediction, and image
recognition ML workloads, our results show that GEVO explores the optimization search space
and finds multiple points along the Pareto frontier that maximize tradeoffs between performance
and accuracy. In some cases, however, GEVO can “have the best of both worlds” by finding a signif-
icant 3.24× speedup of the handwriting recognition kernel (SVM with MNIST ) and achieve modest
improvements of prediction accuracy. This translates to 50% training time reduction with 0.17%
improvement on the prediction accuracy, reflecting absolute improvements in both dimensions.
By design, GEVO does not aspire to preserve exact program semantics, and in many cases, it

can identify algorithmic improvements that are inaccessible to methods that require complete
semantic consistency with the original program. In other circumstances, however, GEVO could
potentially find optimizations that break required semantic properties not enforced by the test
suite. Optimizations that relax memory synchronization requirements provide a good example. In
the cases we examined, eliminating redundant synchronizations did not affect program behavior.
However, this strategy is risky in general, because it depends on specific memory access patterns,
which in turn rely on the combined effect of the target application and its execution environment
(hardware architecture and system software). There is currently a great deal of research interest
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in studying how memory accessing order can be relaxed for better performance. This includes
application-specific approaches, e.g., to schedule and prioritize memory access for specific tasks [4,
73], and system-level approaches, such as non-blocking or wait-free synchronization with system
or architecture support [23, 110]. GEVO could potentially be applied to identify these optimization
spots for researchers to further analyze when necessary.
More generally, as we learn more about when and how GEVO succeeds and fails, we foresee

new methods for post hoc validation of evolved codes, e.g., by synthesizing new test cases on the
fly to test synchronization or ultimately, using program analysis methods to highlight semantic
differences between original and evolved kernels [19].
We have also explored the idea of enhancing the proposed design by considering system-specific

architecture features. Cache efficiencies can affect the performance of GPUs. We extended the
scope of GEVO to explore the performance optimization space of the GPU cache configuration. In
this case, we enabled GEVO to control cache bypassing by introducing ld.cg (for caching at the L2
cache but bypassing the L1 cache) and ld.ca (for caching at both the L1 and L2 caches) to the ge-
netic operations. By doing so, the mutation operation can specify whether data are bypassed from
the GPU L1 cache at the granularity of instructions in the NVIDIA PTX ISA (by injecting inline-
assembly in LLVM-IR) and discover performance speedup opportunities, similar to on-demand
cache fetching [40] or cache bypassing optimization [7, 55]. Overall, this mutation operator did
not produce frequent enough performance improvements to justify adding it to GEVO’s muta-
tion suite. It seems that GEVO often finds equivalent optimizations without explicitly using the
cache-specific mutation, simply by moving load instructions.
The results reported here are specific to the programs, inputs, and the particular GEVO runs

we studied. There were some programs for which GEVO was unable to find improvement. Thus,
further experimentation is required to understand the generality of our results. GEVO found
application-specific, architecture-specific, and dataset-specific optimizations. In future work, we
plan to test GEVO on other applications and analyze more carefully why some programs admit sig-
nificant improvements and others do not. Since GEVO’s approach is agnostic about optimization
criteria, it is easy to imagine other compelling optimizations. For example, GEVO could customize
the LLVM-IR for particular classes of inputs or even generate diverse versions of the kernel, each
of which uses a different power budget, to defeat some power side channel attacks.
GEVO itself has many possible parameter settings, including population size, mutation and

crossover rates, and there are many existing evolutionary algorithms with different strategies
for selection and multi-objective function optimization. We began with the most popular multi-
objective framework (DEAP), modified it for our application, and conducted several initial exper-
iments to find a configuration that works well for GPGPU optimization. However, it is certainly
possible that other evolutionary algorithms or other parameter settings for GEVO would produce
better results. Similarly, we chose a 1% error tolerance arbitrarily for the GEVO-mO experiments.
Acceptable errors may vary across programs, and in some cases, could translate into improved op-
timizations. An example can be found in Yazdanbakhsh’s work [112] where srad from the Rodinia
benchmark could accept up to 10% error, with additional optimizations being revealed. Increasing
GEVO’s error tolerance to 10% for applications such as this could lead to additional optimizations.
Our mutation operators are more expensive than those used in earlier work on genetic im-

provement of software. The additional cost arises from the nature of the single static assignment
discipline in the LLVM-IR. As a result, as Table 1 shows, GEVO searches for a very low number of
generations on many of the benchmarks. A general rule-of-thumb would suggest running the EC
search for at least as many generations as there are individuals in the population (250 in our exper-
imental setup). With additional computational resources, we could expect additional performance
improvements, especially on the benchmarks that ran for fewer than 30 generations.
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It is well-known that significant human expertise is required to tune an ML model to extract the
best performance on a particular task. For instance, in SVM, the regularization parameter known
asC is manually determined to balance the generalization and the training error (underfitting ver-
sus overfitting). Similarly, in neural networks human expertise and experimentation are used to
find an appropriate network architecture, which determines how many neurons are used and how
they are connected. Currently, these design decisions are determined empirically for each dataset
and often tested repeatedly. Automating these design decisions, commonly referred to as hyperpa-
rameter search [14] or AutoML [99], to reduce human effort is an active area of current research,
and many algorithms have been proposed, including simple grid search [49], random search [14],
reinforcement learning [12, 115], evolutionary computation [97], and gradient decent [60]. These
hyperparameter search algorithms differ fromGEVO in that they do not touch the underlying code
implementation. The results presented here show that GEVO can discover effects that are similar
to those found with hyperparameter search at the same time that it improves the implementation
itself. This suggests that GEVO may be capable of performing hyperparameter search along with
network optimizations. We plan to conduct additional experiments expanding the work described
here, with the MLPerf Training and Inference Benchmark Suites [65, 66, 81].

8 CONCLUSION

Programmers today develop software that is expected to meet functional correctness, to avoid
opening up new security vulnerabilities, and to execute efficiently. The software is often devel-
oped on complex programming stacks, is compiled to run on complex proprietary architectures
that lack transparency, and it often has unanticipated interactions with runtime environments and
workloads. This article presents one approach to managing this complexity, focusing on code op-
timization for GPUs. GPUs are an appealing target, because they are widely used to accelerate
compute-intensive applications and because GPGPU codes are often error-tolerant and amenable
to approximate optimization methods that do not guarantee exact semantic equivalence to the
original program.
Our approach, implemented as GEVO, uses population-based stochastic search on LLVM-IR

GPGPU programs. GEVO finds versions of programs that retain required functionality, as assessed
by test cases, and optimize one or more fitness criteria. We focus on the dual objectives of mini-
mizing runtime and application error, finding significant reductions in runtime for most programs
with little or no penalty in output error. GEVO finds optimizations that leverage details about the
architecture, the application design, and even particular workloads. For large-scale computation-
intensive applications such as ML, we hope that the methods presented here can contribute to
improved software deployments. We also hope that some of the unusual optimization opportuni-
ties identified by GEVO will lead to improved software development practices, whether through
improved tools or through improved awareness on the part of application developers.
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