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Abstract—In this paper, an overloaded downlink rate splitting
multiuser multiple input single output (MU-MISO) system is
considered. To combat interference, we propose a beamforming
method based on rate-splitting (RS), which divides a beamform-
ing vector into a common vector and a private vector. A successive
convex approximate (SCA) based optimization approach is then
proposed to achieve high max-min fairness performance. The
proposed approach is compared with the conventional weighted
minimum mean square error (WMMSE) based approach in
terms of convergence speed and max-min fairness (MMF) rate
performance. Moreover, to adapt to the stochastic nature of
wireless channel, a stochastic successive convex approximate
(SSCA) based approach is proposed. The algorithm is based
on approximating the original non-convex optimization prob-
lem with their convex surrogate function and performs convex
optimization. Compared with the conventional sample average
approximation (SAA) method, the proposed scheme does not need
to collect a large number of samples for solving the optimization
problem. Simulation results show that the proposed SCA based
RS scheme converges faster than the conventional WMMSE
based approach and outperforms the WMMSE based scheme
in terms of the MMF rate performance. The proposed SSCA
based approach can achieve a satisfactory performance with a
significantly lower complexity.

Index Terms—Max-min fairness, multiple input multiple out-
put (MIMO), rate splitting, successive convex approximation,
stochastic optimization.

I. INTRODUCTION

With the rapid development of advanced multimedia appli-
cations, such as virtual reality (VR) and 360 degree video,
the next-generation wireless networks must deliver high spec-
tral efficiency and support high connectivity requirements.
Recently, Rate-splitting multiple access (RSMA) has been
recognized as a promising non-orthogonal transmission tech-
nique for interference management in cellular networks. With
RSMA, the information intended for each receiver is split into
a common part and a private part. The common parts are
encoded into one data stream and delivered to all the UEs.
The private part, intended for the corresponding UE, can be
decoded with successive interference cancellation (SIC) after
the decoding of the common parts. The flexibility of managing
interference to be partially decoded and partially treated as
noise, makes RSMA a highly promising technique and a new
frontier for the PHY layer of 6G [1], [2].

The concept of rate splitting dates back to the 1980s [3],
when the rate region for a two-user single input single
output (SISO) interference channel was analyzed. Later on,
the benefit of RS has been demonstrated in several multiple
input single output (MISO) broadcast channel settings [4]–
[7]. Conventional multiple access interference management
techniques, such as space division multiple access (SDMA)

and non-orthogonal multiple access (NOMA), are actually
the two extreme cases of RS. SDMA treats all the signals
delivered to other UEs as interference, while NOMA requires
to completely decode the signal delivered to the weaker UEs.
Compared with SDMA and NOMA, RS offers extra degrees of
freedom by dividing each message into a common part and a
private part [1], [7]. As a result, RSMA can achieve a tradeoff
and outperform both NOMA and SDMA in terms of spectrum
efficiency in a wide range of networks [8], [9].

In [7], the performance of MMF rate for RS scheme
was analyzed using degrees of freedom (DoF) analysis. It
was shown that RS could solve the rate-saturation issue and
achieve better MMF rate performance in both underloaded
and overloaded wireless systems. In [8], the author studied
the robust beamforming design for RS in terms of the max-
min rate (MMF) performance. The concept of RS was later
investigated for robust secure beamforming [10] in a two user
system and was shown to outperforms the existing NOMA
scheme. The energy efficiency performance of RS was recently
studied in both the multicell system [11] and the intelligent
reflecting surface (IRS) assisted networks [12] with an SCA
and semidefinite programming (SDR) based approach.

In this paper, we study a downlink MU-MISO system with
RS from a fairness standpoint and investigate the precoder
design in terms of MMF rate. This is a well-known non-
convex optimization problem. So far, most of the existing
works leverage the equivalency between the weighted mean
square error (WMMSE) and the achievable rate expressions to
decompose the non-convex problem into two sub-problems: (i)
optimal precoder design for given MMSE weights, and (ii) ob-
taining the optimal MMSE weights based on a given precoder.
Alternative optimization is used to find a stationary solution
iteratively. Some prior works studied the energy efficiency
problem in RS with SCA and SDR based approaches [10]–
[13]. To the best of our knowledge, there has been no work
in the literature that studies both SDR/SCA and WMMSE in
a joint optimization framework with RS. In this work, we
compare their performance in terms of MMF. Our work shows
that the SCA based approach provides a tighter approximation
bound, converges faster, and achieves a better performance.

In practice, it is difficult to obtain perfect channel state
information (CSI); only partial CSI is available. To address
the channel estimation error, in this work, we also formulate a
stochastic optimization problem and incorporate the stochastic
successive convex approximate (SSCA) framework [14] into
our solution algorithm. The stochastic non-convex constraint
is approximated by a properly designed convex surrogate
convex function and the beamforming vector is updated in
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an online fashion. Compared with the offline sample average
approximate (SAA) algorithm, SSCA does not require a sam-
ple collection phase to obtain a sufficiently large number of
channel samples. Hence, SSCA yields a faster convergence
speed with a lower complexity.

This paper is organized as follows. The system model and
problem formulation are described in Section II. The proposed
solution is presented in Section III for the perfect CSI case and
in Section IV for the imperfect CSI case. Simulation results
are analyzed in Section V and Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Rate splitting model with IRS

We consider a downlink MISO communication system,
which consists of a BS with M antennas, and K single antenna
user equipments (UEs). In rate splitting multiple access, the
message Xk intended for UE k is split into a private part Xp,k

and a common part Xc,k. The private parts, i.e., Xp,1, Xp,2, ...,
Xp,K , are encoded independently into Gaussian data symbol
streams, denoted as [s1, s2, ..., sK ]T ∈ CK×1. Meanwhile,
the common parts of all UEs, i.e., Xc,1, Xc,2, ..., Xc,K are
combined into a common message Xc, which is encoded into
a common stream sc with a public codebook known to all
the UEs. As a result, the combined symbols are grouped
in a vector s = [sc, s1, s2, ..., sK ]T ∈ C(K+1)×1. Each
signal is assumed to have zero mean and unit variance, i.e.,
E[ssH ] = IK+1.

The set of UEs is denoted as K = {1, 2, ...,K}. At the
transmitter, the precoding matrix for all UEs is denoted as
W = [wc,w1,w2, ....,wK ] ∈ CM×(K+1) where wk ∈
CM×1 is the precoding matrix for UE k ∈ K for the private
data and wc is the precoding matrix for the common message
sc. Then, the transmit signal is Ws.

We use hk ∈ CM×1 to denote the direct channel from the
BS to UE k. Since the channel between the BS and UE k might
be blocked, we assume channel hk ∈ CM×1 has Rayleigh
fading. Then for UE k ∈ K, the received signal is given by

yk = hHk Ws + nk, ∀k ∈ K. (1)

where nk ∼ CN (0, σ2
0) is the additive white Gaussian noise

(AWGN) at UE k.
At the receiver end, each UE first decodes the common

stream by treating all the private streams as noise. Then its
private message is decoded by removing the decoded common
stream with successive interference cancellation (SIC). The
decoding SINR for the common message and the private
message for UE k at the receiver is given, respectively, by

γc,k =
|hHk wc|2∑

i∈K |hHk wi|2 + σ2
0

, ∀k ∈ K (2)

γp,k =
|hHk wk|2∑

i∈K,i 6=k |hHk wi|2 + σ2
0

, ∀k ∈ K. (3)

Under Gaussian signaling, the achievable rates of UE k in
decoding the common and private messages are given by

Rc,k = log2(1 + γc,k) (4)

Rp,k = log2(1 + γp,k). (5)

In order to ensure that all UEs can decode the common
message stream, the actual rate of the common message
stream, which we denote as Rc, is constrained by each of
the Rc,k, i.e.,

Rc = min
k∈K

Rc,k. (6)

According to the RS decoding principle, the actual data stream
Rc is shared by all UEs. By denoting rc,k as the general
common rate allocated to UE k, we have∑

k∈K

rc,k ≤ Rc, rc,k ≥ 0. (7)

After removing the impact of the common data stream,
each UE decodes its own private message. Finally, the overall
achievable data rate for UE k is given by

Rk = rc,k +Rp,k, ∀k ∈ K. (8)

B. Problem formulation

We aim to maximize the minimum achievable rate of all
UEs by performing beamforming at the BS. Specifically, this
problem can be mathematically formulated as

max
{wi}i∈M,
{rc,k}k∈K

min
k∈K

Rk (9a)

s.t.
∑
k∈M

||wk||2 ≤ Pmax (9b)

∑
k∈K

rc,k ≤ Rc,k, ∀k ∈ K (9c)

rc,k ≥ 0, (9d)

where Pmax is the total transmit power at the BS and
M = K ∪ {c} denotes the combined set. In Problem (9),
constraint (9b) denotes the power constraint and constraint (9c)
can be obtained from (4) and (6).

In practice, when the perfect CSI is unknown, we model
the estimated channel as ĥk = hk + ek ∈ CM×1, with ek ∈
CM×1 being the channel estimation error. Suppose we have
N channel observations in total. Then the sampled channel
observation set can be denoted as

H = {Hn, ∀1 ≤ n ≤ N |Hn = [ĥn1 , ĥ
n
2 , ..., ĥ

n
K ]}. (10)

The BS may improve the average (or ergodic) max-min rate
for all UEs under channel estimation error. Specifically, the
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beamforming problem with imperfect CSI can be formulated
as the following stochastic optimization problem.

max
{wi}i∈M,
{rc,k}k∈K

min
k∈K

E[Rk] (11a)

s.t.
∑
k∈M

||wk||2 ≤ Pmax (11b)

∑
k∈K

rc,k ≤ E[Rc,k], ∀k ∈ K (11c)

rc,k ≥ 0, (11d)

where the expectations are taken w.r.t. all the channel realiza-
tions in H.

III. PERFECT CSI CASE

In this section, we assume that the channel state is per-
fectly known. The problem is a deterministic non-convex
optimization. The non-convexity comes from the expression
of Rp,k and Rc,k. To be specific, as can be seen from (5),
the expression of Rp,k involves the logarithmic operation of
γp,k, which is concave. The inner function γp,k, as shown
in (3) involves a quadratic-over-linear operation of wi, which
is convex. As a result, the combined expression of Rp,k is
neither concave nor convex.

So far, most of the research uses the WMMSE framework to
find a stationary solution, which utilizes the relation between
mutual information and MMSE [15], [16]. In this section, we
propose a different scheme, which is based on the successive
convex approximate (SCA) method.

A. Equivalent reformulation

Concerning the complex expression of Rp,k and Rc,k, we
introduce auxiliary variables γp,k, ∀k ∈ K and γc,k, ∀k ∈ K
and s. The equivalent problem of (9) can be obtained as

max
{wi}i∈M,s,

{γp,k,γc,k,rc,k}k∈K

s (12a)

s.t. rc,k + log2(1 + γp,k) ≥ s, ∀k ∈ K (12b)

γp,k ≤
|hHk wk|2∑

i∈K,i 6=k |hHk wi|2 + σ2
0

, ∀k ∈ K (12c)∑
k∈K

rc,k ≤ log2(1 + γc,k), ∀k ∈ K (12d)

γc,k ≤
|hHk wc|2∑

i∈K |hHk wi|2 + σ2
0

, ∀k ∈ K (12e)

(9b), (9d).

B. SCA-based reformulation

To facilitate the implementation of successive convex ap-
proximation (SCA), we propose to replace the the non-convex
part in constraints (12c) and (12e) with their corresponding

lower-bound surrogate functions. In particular, we introduce
new auxiliary variables pk, ck and denote

Ipk =
∑

i∈K,i 6=k

|hHk wi|2 + σ2
0 , ∀k ∈ K (13)

Ick =
∑
i∈K
|hHk wi|2 + σ2

0 , ∀k ∈ K. (14)

Then, we have

(12c) ⇐⇒ γp,k ≤
|hHk wk|2

Ipk
(15)

(12e) ⇐⇒ γc,k ≤
|hHk wc|2

Ick
. (16)

Now we use the following inequality to approximate the
quadratic-over-linear part of the form x2/y (y > 0) via its
first order approximations as [17]

x2

y
≥ 2xt

yt
x−

(
xt

yt

)2

y, (17)

where t is the iteration number and (xt, yt) are the values of
(x, y) in iteration t.

According to (17), the right-hand-sides of (12c) and (12e)
can be approximated via a lower bound linear function in each
iteration, i.e.,

γp,k ≤
2Re(ptkpk)

Ip,tk
−

(
ptk
Ip,tk

)2

Ipk , ∀k ∈ K (18a)

γc,k ≤
2Re(ctkck)

Ic,tk
−

(
ctk
Ic,tk

)2

Ick, ∀k ∈ K, (18b)

where ptk = hHk wt
k, pk = hHk wk, ctk = hHk wt

c and ck =

hHk wc. Here wt
k and wt

c are the obtained solution in the last
iteration. The optimization problem can then be reformulated
as the following convex optimization problem.

max
{wi}i∈M,s,
{γp,k,γc,k}k∈K

s (19a)

s.t. (12b), (12d), (18a), (18b), (9b), (9d).

This way, Problem (19) becomes a convex optimization
problem. In each iteration of the SCA algorithm, we solve
Problem (19) with convex optimization tools such as CVX,
and iteratively update the parameters until convergence is
reached. This algorithm is guaranteed to converge, since in
each iteration, the bounds on the right-hand-sides of (12c)
and (12e) become tighter and the objective function value
keeps increasing. Due to the power constraint, the objective
function value will converge to a stationary point of prob-
lem (9). The SCA-based algorithm is stated in Algorithm 1.

C. Complexity analysis
The complexity of the proposed algorithm comes from solv-

ing Problem (19) since all the other steps are just parameter
updating operations. Note that Problem (19) belongs to second
order cone programming (SOCP) problems. According to [11],
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Algorithm 1 SCA-based Beamfoming

Input: hk, Pmax

Output: w∗i , ∀i ∈M and rc,k.
1: Initialize iteration index t = 0, generate the initial beam-

forming vector w0
i , ∀i ∈ M, ptk , ctk, and obtain Itp and

Itc . Set the convergence tolerance ε;

2: while |s
t−st−1|
|st−1| ≤ ε do

3: Obtain the solution rc,k and {wt
i} by solving Prob-

lem (19) under given {pt−1k , ct−1k , Ip,t−1k , Ic,t−1k };
4: Update parameters {ptk, ctk, I

p,t
k , Ic,tk } from {wt

i} and
compute the objective value st;

5: t = t+ 1;
6: end while

[18], the complexity will be O([KM ]3.5) using general CVX
solvers, such as MOSEK. Suppose the number of iterations
needed for Algorithm 1 to converge is I . Then the overall
complexity of Algorithm 1 will be O(I[KM ]3.5)).

IV. IMPERFECT CSI CASE

In this section, we aim to solve Problem (11) under im-
perfect CSI. The challenge comes not only from the non-
convexity nature of the constraints, but also from the stochastic
nature of the constraints (i.e., the expectation operation in the
constraints). Unlike the perfect CSI case where the problem is
deterministic, with imperfect CSI, it is much more challenging
to find an stationary point due to the randomness of channel
realizations. In this section, we proposed a stochastic succes-
sive convex approximation (SSCA) method to find a feasible
solution to Problem (11).

First of all, we reformulate the stochastic version of our
problem in a similar manner as we did in Section III.

max
{wi}i∈M,s,

{γp,k,γc,k,rc,k}k∈K

s (20a)

s.t. s− rc,k − log2(1 + γp,k) ≤ 0, ∀k ∈ K (20b)

γp,k − E

[
|hHk wk|2∑

i∈K,i 6=k |hHk wi|2 + σ2
0

]
≤ 0, ∀k ∈ K

(20c)∑
k∈K

rc,k − log2(1 + γc,k) ≤ 0, ∀k ∈ K (20d)

γc,k − E
[

|hHk wc|2∑
i∈K |hHk wi|2 + σ2

0

]
≤ 0, ∀k ∈ K (20e)

(9b), (9d).

where the expectation is taken with respect to all the channel
samples.

Suppose the constraints of our problem (20b)–(20e)
and (9b), (9d) are denoted as fi(w) ≤ 0, i = 1, 2, ..., 6, where
w = {wi}i∈M. The idea is to replace the constraint functions
fi(w) of Problem (11) with their convex surrogate functions
f̄i(w), i = 1, 2, ..., 6. If the constraint is already convex, we
do not need change it further. Specifically, at time slot n, we

obtain a new channel realization Hn. The surrogate function
f̄i(w) is updated based on wn−1 and Hn. To guarantee the
convergence of the algorithm, the surrogate function has to be
properly designed. Based on the surrogate function, an optimal
solution wn is obtained by solving the relaxed problem with
the surrogate constraint. Then w is updated according to

wn+1 = (1− γn)wn + γnwn, (21)

where γn is a decreasing sequence satisfying γn → 0,∑
n γ

n =∞, and
∑
n(γn)2 ≤ ∞.

When a new channel estimate Hn is obtained, a surrogate
function approximating constraint fi(w) is constructed as

f̄ni (w) = (1− γn)f̄n−1i (w) + γnf̂ni (w;Hn), (22)

where f̄0i = 0 and the function f̂i(w;Hn) is given by

f̂i(w;Hn) = fi(w;Hn) + Re

(
∂fi
∂w

T

(w −wn−1)

)
+
τi
2
||w −wn−1||22, (23)

where τi, ∀i is any positive constant to ensure convergence.
In Problem (20), constraints (20b), (12d), (9b), and (9d)

are all convex. We only need to deal with the non-convex
constraints (12c) and (12e) by finding their convex surrogate
function. Fortunately, we have already construct a surrogate
function in (18).

The optimal beamforming vector is obtained by solving the
following problem.

wn = arg max
w

s

s.t. f̄i(w;Hn) ≤ 0, ∀i. (24)

This stochastic problem is solved in an online fashion by
repeatedly solving the constructed surrogate problem. The sur-
rogate constraint function is constantly rectified by real-time
samples and hence will approximate the original expectations
in the stochastic problem. We leave the convergence proof in
our future work. The SSCA-based online algorithm is given
in Algorithm 2.

Algorithm 2 SSCA-based Online Beamfoming

Input: {H1,H2, ...,HN}, Pmax

Output: w∗i , ∀i ∈M and rc,k.
1: Initialize time index n = 1 and generate the initial beam-

forming vector w0
i , ∀i ∈M and {γn};

2: while n ≤ N do
3: A channel observation Hn is obtained;
4: Solve (24) and obtain solution wn;
5: Obtain the common rate allocation {rc,k} based on wn

and Hn, and compute the MMF rate sn;
6: Update the beamforming vector wn according to (21);
7: n = n+ 1;
8: end while
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V. SIMULATION RESULTS

In this section, we present our extensive simulation results to
evaluate the effectiveness of the proposed method. We assume
that the channel follows a Rayleigh fading with zero mean
and unit variance. The channel estimation error also follows
a Rayleigh distribution with zero mean and variance σ2

e =
0.02 mW. The noise power is set to σ2 = 0.01mW. For the
implementation of the proposed SSCA in the imperfect CSI
case, the parameters are chose as γn = 1

(1+n)0.9 .
We compare the performance of the proposed method with

the WMMSE method used in [8], [19] in terms of the max-min
fairness performance. Note that the sum rate performance can
be easily obtained by slightly modifying the constraints and
objective function of the proposed framework. The results are
averaged over 100 channel realizations. The threshold value ε
for both the (S)SCA and WMMSE algorithms is set to 10−3.
For the imperfect CSI case, we compare the proposed SSCA
algorithm with the sample average approximation (SAA) based
WMMSE algorithm proposed in [6].

A. Perfect CSI case
First of all, we investigate the MMF performance in the

perfect CSI case. We compare our rate splitting scheme with
the spectrum division multiple access (SDMA) scheme where
all the signals from other UEs are treated as interference.
Note that SDMA is a special case of our rate splitting
scheme by allocating zero power to the common beamforming
vector. Hence the proposed SCA-based algorithm can be easily
adapted to deal with the SDMA case. Meanwhile, the problem
can also be solved via the WMMSE approach proposed in [8].
Note that the WMMSE algorithm leverages the relationship
between rate and MMSE to find a suboptimal beamforming
vector in an iterative way. We compare the performance of
the proposed SCA algorithm with the conventional WMMSE
algorithm in terms of two schemes, RS and SDMA.

1) Convergence performance: The convergence perfor-
mance comparison is shown in Fig. 1. It can be seen that
the proposed SCA based algorithm converges in about 10
iterations while the WMMSE based algorithm converges in
about 15-20 iterations for rate splitting (RS) access. Moreover,
the SCA-based scheme achieves a slightly higher MMF rate
than the MMSE-based scheme for RS access. The SDMA
scheme also converges quickly, however, the achieved MMF
rate is less than half of that of the RS scheme. It can be
seen that the RS scheme generally achieves a better MMF
performance especially when the number of UEs is larger than
the number of transmit antennas. This confirms the degree
analysis in [19]. It is shown that the RS approach achieves a
multiplexing gain of 1

1+K−M when K ≤M in terms of max-
min fairness while SDMA achieves zero gain in this case.

2) MMF performance: We then compare the rate-splitting
scheme with the benchmark scheme SDMA by varying the
total transmit power budget. As shown in Fig. 2, the MMF rate
of the RS scheme increases with the power budget smoothly
while the MMF rate performance of the SDMA scheme almost
stays in a horizontal line. Meanwhile, the proposed SCA-
based algorithm outperforms the WMMSE based approach,
especially when the power budget becomes larger.
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Fig. 1: A rate splitting MISO system with RS (M = 3,K =
4): convergence performance.
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Fig. 2: A rate splitting MISO system with RS (M = 3,K =
4): MMF performance.

B. Imperfect CSI case

For the imperfect CSI case, we compare the performance
of the proposed SSCA algorithm with the sample average
approximate (SAA) based WMMSE algorithm for the RS
scheme. We perform 50 channel estimations and the channel
estimation error follows an i.i.d. Rayleigh distribution. The er-
godic MMF rate of the proposed SSCA algorithm is compared
with that of the SAA based algorithm in Table I. It can be
seen that the SAA based algorithm can achieve an average of
4.4418 bits/s/Hz in terms of the MMF rate performance, which
is slightly better than the proposed SSCA based approach.
However, the proposed SSCA algorithm runs much faster than
the SAA based algorithm. As shown in Fig. 3. The SAA-
based algorithm requires on average 15-20 CPU time while
the SSCA algorithm only requires 0-5 CPU time.

This is because the proposed SSCA algorithm is an online
algorithm. It only requires the currently estimated channel state
and the beamforming vector is updated in an online fashion.
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TABLE I: Average MMF Performance Comparison

Method Average MMF rate (bits/s/Hz)

WMMSE (SAA) 4.4418
SSCA 4.2725
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channel sample
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30

35

40

C
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U
 ti

m
e

WMMSE (SAA)
SSCA

Fig. 3: A rate splitting MISO system with RS (M = 3,K = 4
and P = 10dBm): CPU time.

In contrast, the SAA algorithm is an offline method, which
requires a channel sample collection phase to obtain a suf-
ficiently large number of channel samples before calculating
the optimal beamforming vector. Although for each sample
channel collection, the SAA algorithm only needs to run once
to find the beamforming vector, it is not adaptive when new
channel samples are observed. The proposed SSCA algorithm
does not need to collect a large number of samples for the
random state before the stochastic optimization, hence it is
much more flexible and faster. When the dimension of the
channel or the size of collected channel samples becomes
large, the proposed online algorithm can save more time and
greatly reduces the complexity.

VI. CONCLUSIONS

In this paper, we studied the MMF oriented beamforming
design in a downlink MIMO system with rate splitting multiple
access. The formulated problem was non-convex and an SCA
based algorithm was developed to find a KKT point of the
considered problem. Simulation results showed that the pro-
posed algorithm converged faster and achieved a better MMF
rate performance than the conventional WMMSE approach.
Compared with the SDMA scheme, the RS scheme could
provide better MMF rates, which demonstrated that RS was
a promising access technology for next-generation wireless
networks. Moreover, to tackle the channel estimation error, we
also formulated a stochastic beamforming design problem. An
SSCA algorithm was proposed to obtain an effective solution
in an online fashion. Compared with conventional algorithms,
it does not require channel sample collection phase and can
achieve a satisfactory performance with a lower complexity.
We leave the extension to large-scale networks and the relevant
convergence analysis to our future work.
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