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Abstract—Mechanical forces are essential for proper growth
and remodeling of the primitive pharyngeal arch arteries
(PAAs) into the great vessels of the heart. Despite general
acknowledgement of a hemodynamic-malformation link, the
direct correlation between hemodynamics and PAA mor-
phogenesis remains poorly understood. The elusiveness is
largely due to difficulty in performing isolated hemodynamic
perturbations and quantifying changes in-vivo. Previous in-
vivo arch artery occlusion/ablation experiments either did not
isolate the effects of hemodynamics, did not analyze the
results in a 3D context or did not consider the effects of
varying degrees of occlusion. Here, we overcome these
limitations by combining minimally invasive occlusion exper-
iments in the avian embryo with 3D anatomical models of
development and in-silico testing of experimental phe-
nomenon. We detail morphological and hemodynamic
changes 24 hours post vessel occlusion. 3D anatomical
models showed that occlusion geometries had more circular
cross-sectional areas and more elongated arches than their
control counterparts. Computational fluid dynamics revealed
a marked change in wall shear stress-morphology trends.
Instantaneous (in-silico) occlusion models provided mecha-
nistic insights into the dynamic vessel adaptation process,
predicting pressure-area trends for a number of experimental
occlusion arches. We follow the propagation of small defects
in a single embryo Hamburger Hamilton (HH) Stage 18
embryo to a more serious defect in an HH29 embryo. Results
demonstrate that hemodynamic perturbation of the pre-
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sumptive aortic arch, through varying degrees of vessel
occlusion, overrides natural growth mechanisms and pre-
vents it from becoming the dominant arch of the aorta.

Keywords—Hemodynamics, Vessel occlusion, Mechanical
forces, Chick embryo, Computational modeling, Outflow
tract, Morphogenesis.

INTRODUCTION

During cardiac morphogenesis, blood exits the
developing chick embryo’s heart through the pharyn-
geal arch artery system. These six bilateral paired
vessels exist in various combinations with the fifth arch
existing as a fleeting bypass of the sixth arch. The ar-
ches sequentially emerge, remodel and disappear be-
fore forming the mature aortic arch, pulmonary artery,
pulmonary veins and venae cavae. Hemodynamics
plays a vital role in the maturation of the pharyngeal
arch artery system.'*'"1% The role of abnormal
hemodynamics in the creation of cardiac abnormalities
has intrigued researchers for decades.*®!!14.26.28.29
Disruption of established flow patterns during critical
windows of development produces a range of defects
that drastically alter function of the mature heart.
These defects may stem from improper cardiac loop-
ing, incomplete outflow tract rotation, incomplete
outflow tract septation, abnormal maturation of the
cardiac valves or yet to be determined factors. Mal-
formations of the outflow tract account for over 50%
of clinically relevant congenital heart defects.” Deter-
mining the origin of such defects continues to pose a
major challenge to the field. Cardiac morphogenesis is
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a complex interconnected process that is difficult to
delineate. Altered hemodynamic flow patterns in the
heart following surgical manipulation of the atrium,
have been shown to affect the ventricle, as well as the
pharyngeal arch artery system. Ligation of the left
atrium redistributes flow to the right side of Ham-
burger Hamilton (HH) Stage 21 embryos, immediately
affecting flow patterns and hemodynamic forces in the
arch arteries. Within 24 hours of left atrial ligation, the
fourth aortic arch of HH24 embryos is drastically re-
duced in dimensions. By HH27 (48 hours post ligation)
arches were skewed and distorted. All embryos sur-
viving to HH34 (day 8) displayed hypoplastic ventri-
cles; 70% also possessed abnormal aortic arch
patterning.'*

While much has been gained from ligation experi-
ments such as those performed by Hu et al., a major
limitation in determining the causality of clinically
relevant cardiac abnormalities is the difficulty of
studying the effects of hemodynamics alone in the
creation of cardiac abnormalities. In an effort to sur-
gically manipulate flow patterns in experimental ani-
mal models, researchers have used a combination of
ligations, clipping, and cauterizations, all of which
disrupt flow patterns, as well as change the properties
of the surrounding tissues. Alteration of mechanical
stress and strains in the developing heart have been
shown to regulate vascular growth and remodeling as
well as trigger cell signaling and subsequent organiza-
tion patterns.™' 3! Recent advances in imaging tech-
nology have allowed for the minimally invasive
occlusion of flow in the developing vascular system.'”
Studies such as these may prove to be important in
delineating the sequence of events that leads to clini-
cally relevant cardiac abnormalities. The coupling of
computational modeling with targeted experimental
studies can provide further insight into the mechanisms
behind abnormal cardiac morphogenesis, correlating
sites of altered wall shear stress (WSS) with commonly
affected areas in the clinically associated disease
model'” or highlight driving forces in development.'?-3

Another major limitation in determining causality
for cardiac malformations is an inability to create,
study or identify what likely begins as a subtle
abnormality before propagating into clinically serious
malformations. For this reason, we characterized
normal PAA development in a cohort-based study that
identified a range of normal development in Ham-
burger Hamilton (HH) staged 18, 24, and 26 embryos,
taking into account morphological and hemodynamic
parameters and determining a relationship between the
two.”® In light of this work, we can quantify the
deviation from normal exhibited in HH24 embryos
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upon HH18 vessel occlusion. Though our group has
previously studied the effects of arch artery occlusion
on HH18 and HH24 embryos,'? the experimental re-
sults were not considered in 3D, which allows for a
more thorough investigation of pathologies.” Addi-
tionally, our previous study did not consider the effect
of partial occlusions. The objective of this study is
therefore to understand the severity of varying degrees
of vessel occlusions'® and assess the structural and
functional changes taking place upon experimental
occlusion. We focus on partial occlusions which are
likely more representative of clinically serious con-
genital heart defects where the fetus is carried to term
but the heart is malformed. The word ‘occlusion’ is
used to refer to both full and partial vessel occlusions,
with the distinction being made when necessary. Using
detailed 3D reconstructions of experimental occlusion
geometries, we analyze vessel adaption to abnormal
hemodynamic loading that originates with the arch
arteries themselves. We compare experimental results
post-occlusion to that of in-silico occlusions taken at
the time of intervention (HHI18) and 24 hours post
intervention (HH24) when the embryo’s vasculature
has had time to remodel and adapt (Fig. 1). We sub-
sequently demonstrate how an embryo’s “small devi-
ation from normal” can propagate into a more serious
malformation. Ultimately, this work details structural
compensation mechanisms involved in early cardiac
outflow morphogenesis and the effects on hemody-
namic function and subsequent cardiac growth.

METHODS

Creation of In-Vivo Occlusion Models

Embryos were experimentally occluded as previ-
ously described.' Briefly, HH18 embryos were open
cultured. Embryos with smaller IVR arch arteries were
specifically chosen to facilitate faster occlusion exper-
iments. Selected embryos were injected with Texas red
dextran (70,000 MW, neutral Sigma-Aldrich D1830)
diluted in Earle’s balanced salt solution (5% w/v) so
that their vasculature could be visualized by way of
two-photon microscopy. A custom built two-photon
excited fluorescence microscope with a separate fem-
tosecond pulsed photoablation laser was used to per-
form targeted vessel disruption. The photoablation
laser consisted of 1-kHz high-pulse-energy Ti:Sapphire
amplified laser system with 50-fs pulse duration (Le-
gend-USP, Coherent, Santa Clara, CA, 800-nm central
wavelength). Photodisruption was controlled and
confined to the volume focused by two-photon mi-
croscopy optics (see supplementary methods).
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FIGURE 1. Reference guide for cardiac development and experimental pipeline. (a) Timeline of critical cardiac structural events

with arch numbers and configurations listed for stages examined in this study (white arrow). (b) Highly targeted occlusion
experiment led to changes in hemodynamics. in-silico occlusion experiments allowed for high resolution pressure and WSS maps.
Combining immediate flow changes with known adaptation phenomenon allowed for the prediction of morphological changes.
Theoretical predictions were compared with experimental geometries at later stages. HH18 pressure maps are shown for in-silico
occlusions (occlusions indicated by gray arrows) while WSS maps are shown for HH24 experimental occlusions.

Ultrasound Processing and Generation
of Computational Inlet Flow Curves

Outflow tract (OFT) velocity and that of the three
paired pharyngeal arch arteries were measured using
B-mode guided Doppler Ultrasound (Vevo770 and

Vevo 2100, Visualsonics, Inc.). A Poiseuille OFT
velocity profile was assumed to convert the OFT
Doppler data into flow rate, and apply this velocity
information as an inlet boundary condition for an
initial 3D CFD simulation. This initial CFD simula-
tion was used to obtain the velocity spatial profile in
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each of the arches and a new inlet flow (Qinlet) cal-
culated to be the sum of flow in each of the individual
arches, as previously described.*

In-Silico Geometry Preparation and 3D-0D Flow
Modeling

Embryo-specific 3D geometries of HHI18/HH24
controls and HH24 experimental occlusions were
generated by importing nano-CT images into MIMICS
(Materialise, Louvain, Belgium) and 3MATICs (Ma-
terialise, Louvain, Belgium). Geomagics Studio 10
(Geomagic Inc., Durham, NC) was also used for the
preparation of 3D geometries for CFD. All embryos
were scaled to account for the difference between
dehydrated (see supplementary methods) and native
vessel size as determined by a series of in vivo verifi-
cations that included cranial-rump and diameter
measurements. India ink and Texas Red Dextran were
used to obtain native vessel size across stages, results
compared to that of 3D reconstructions, and a scaling
factor was generated. Due to the rigid non-aggregated
nature of red blood cells at these stages of develop-
ment, blood was treated as an incompressible Newto-
nian fluid with constant hemodynamic properties®’
(p = 1060 kg/m>, u = 3.71 x 107 Pas) and rigid,
impermeable vessel walls were assumed with no slip
boundary conditions. Pulsatile flow was simulated by
solving the Navier-Stokes equations, on a high-reso-
lution unstructured grid with finite-element numerical
treatment (solved wusing the FELiSce library)
(gforge.inria.fr/projects/felisce).”*  Grid  sensitivity
analysis was conducted on a control PAA model for
each day in order to ensure consistency and reliability
of the numerical solutions for all simulations presented
in this study, beyond which resulting mass-flow redis-
tributions were insensitive to further Cartesian grid
refinements.

Boundary Conditions

A natural spatial velocity profile was imposed at the
inlet. To obtain this an auxiliary steady Stokes equa-
tion, with natural boundary conditions at the outlets,
was solved first. The resulting inlet velocity profile was
subsequently scaled at each time-point to match the
measured flow-rate Qinlet and imposed on full pul-
satile flow simulations. RCR Windkessel models were
imposed at the outlets to represent the downstream
vasculature as measured by*. Windkessel parameters
were tuned to assure the distribution of the cardiac
output to dorsal aorta (DoA) and cranial vessels
maintains a 90-10 flow split over the course of one
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cycle'® as summarized in the 0D section (see supple-
mental methods).

The differential equation representing the RCR
circuit is

dP d
P+ RsC— = (Ra+ Rs)Q + R5R4C7? (1.1)

where R, is the proximal resistance, Rs is the distal
resistance, C represents the capacitance, P is pressure
and Q is flow (SFig. 1).

Creation of In-Silico Occlusion Models

In-silico occlusion models were made from two
HH18 and two HH24 pharyngeal arch artery systems.
The two HH18 control references (HH18-1 and HH18-
5) were chosen to represent the wide range of vari-
ability seen across HH18 embryos.” HHI8-1 has a
rapidly regressing right and left lateral second arches as
well as a developing right and left lateral forth arch,
while HH18-5 has the largest right and left lateral
second arch, as well as the largest right and left lateral
fourth arch, seen in our HHI8 control subset
(SFig. 1B). Similarly for HH24, two embryos (HH24-1
and HH24-4) were chosen to represent the natural
range of pressure variation seen in controls and be-
cause HH24-1 exhibited right flow dominance, while
HH24-4 exhibited left flow dominance.® A full
occlusion and a partial occlusion were made for each
of the four reference geometries, bringing the number
of in-silico occlusion geometries to eight. Partial
occlusions were made to mimic those seen in experi-
mentally occluded embryos, either through two-pho-
ton microscopy (HH18 embryos) or their subsequent
nano-CT reconstructions from images taken 24 h post
vessel occlusion.

Statistical Analysis

Morphological and hemodynamic changes were
compared qualitatively and quantified when possible.
Results were summarized in the form of mean and
standard deviation values over the course of one car-
diac cycle. Two-tailed two-sample ¢-tests were used
when comparing between control and partial occlusion
embryos with p < 0.05 denoting significance. A one
sample ¢-test was also used when comparing a single
occlusion sample to that of controls. Linear regressions
were performed on hemodynamic versus geometrical
parameter graphs. Statistical comparisons were made
through the use of GraphPad Prism (GraphPad Soft-
ware, Inc San Diego, CA) statistical software.
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RESULTS

Early Great Vessel Morphogenesis Depends
on Hemodynamic Flow Patterns

To explore adaptive responses of the developing
vasculature, mechanical loading was altered via in-vivo
vessel occlusion. We occluded the developing IVR
PAA in HHI18 embryos using nonlinear optical tech-
niques that allowed for changes in hemodynamics
alone (see methods). To date, this is the only experi-
mental method that locally and noninvasively alters
flow patterns. Occlusion experiments were purposely
performed on HH18 embryos and selected to have a
narrow (nascent) PAA IV vessel in order to facilitate
vessel occlusion. Although PAA IVR was small (~ 30
um in diameter) at time of occlusion (HH18), by HH24
it carries approximately 22% of flow exiting the
heart.® Following HH18 vessel occlusion, the largest
percentage of flow was re-directed to PAA IIIL in the
partial occlusion geometries and PAA VIL in the case
of full vessel occlusion, with PAA IIIL carrying 35%
of flow compared to 20% of flow in its control coun-
terpart in partial occlusion geometries and PAA VIL
carrying 31% of flow compared to 7% in its control
counterpart in full occlusion geometries (Fig. 2a,
STablel). Within 24 h post-occlusion, embryos exhib-
ited a range of structural defects (SFig. 2, 3). Observed
malformations include the merging of arch arteries
into a single vessel before separating into two distinct
vessels, abnormal arch artery spacing, skewed right
and left branches, enlarged arch arteries and outflow
inlets, abnormal rotation of the outflow tract (OFT)
junction, abnormal bulging of the aortic sac and
abnormal patterning of the cranial DoA branches.
Position and length of the initial vessel occlusion were
associated with certain types of defects. Occlusions
occurring near the DoA junction were associated with
merged vessel pathways originating from the aortic
sac, while occlusions occurring near the aortic sac
junction were associated with enlarged OFT orifices.
More elongated vessel occlusions, that spanned more
of the lateral length, were associated with abnormal
spacing and skewed left and right patterning.

Regardless of initial occlusion placement, structural
analysis of HH24 occlusion geometries revealed a
lengthening along the centerline of partial occlusion
embryos, with a significant change observed in PAA
II1, IV and VI right, when compared to those of con-
trols (Fig. 3c). Arch arteries also became more circular
in cross-section than their HH24 control counterparts,
approaching the phenotype of an early HH26 embryo
in both length and ellipticity, but maintaining a non-
septated OFT (Figs. 3a and 3b). HH24 arch artery
area largely increases in PAA IIIL in order to com-

pensate for HHI18 IVR vessel occlusion (Fig. 3d).
Branch-splitting angle decreased for HH24 PAA 1IIR
and IIIL partial occlusion geometries when compared
to that of HH24 controls (Fig. 3¢). When comparing
HH24 partial and full occlusion branch splitting an-
gles, the largest changes exist for the right DoA aorta
branch-splitting angle and PAA IIIL.

In-Silico Occlusion Models of PAA Development

To understand the observations described above, we
developed an experimental-computational pipeline
that begins by taking experimental-based computa-
tional models and re-distributing natural flow patterns
through in-silico occlusion (Fig. 1). In isolating the
immediate flow and pressure redistributions, one can
see how the embryo’s response differs from empirical
predictions and begin to dissect the compensation
mechanisms at work. Both full and partial occlusions
were performed on HH18 and HH24 control geome-
tries, which span the initial 24-h remodeling period.
Because between HH18 and HH24 one arch pair re-
gresses (PAA II) and another becomes patent (PAA
VI), the two in-silico models convey immediate changes
for their respective arch configurations (Fig. 1).
Boundary conditions were kept constant between
control and in-silico occlusions, so as to highlight
instantaneous flow redistribution when the vessel is not
given time to adapt to changing hemodynamic forces.
With only 5-7% of flow being re-distributed upon
occlusion, changes in HH18 in-silico flow distribution
were small (STable 2A, B). Upon PAA IVR vessel
occlusion, more flow is re-distributed to the left side of
the embryo than the right in the full occlusion case
(approximately 59% of flow re-direction is channeled
to the left), and is distributed equally in the case of the
partial occlusion. The corresponding changes in pres-
sure and wall shear stress (WSS) as measured by
numerical simulation are subtle (Fig. 4b, top) with a
slight increase in pressure magnitude visible at the
aortic sac. Pressure and WSS magnitude in the left IV
are slightly increased upon partial occlusion in both
HHI18 in-silico occlusion subsets. The results of both
pressure and flow changes are summarized in Fig. 4a in
the form of resistance (%, supplemental Eq 1.2).

HH18 PAA IVR resistance rapidly increases with the
decreased flow rate caused by vessel partial occlusion
and is infinite in the case of full vessel occlusion
(Q =0) when compared to that of controls, while
resistance values for the other vessels remain largely
unchanged.

Full and partial occlusions followed the same
instantaneous flow re-distribution patterns, with PAA
ITIL receiving 29% and 27% of the flow and PAA TVL
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FIGURE 2. HH24 hemodynamic changes resulting from experimental vessel occlusion. (a) Flow distributions per arch (= s.e.)
asterisks indicate a statistically significant change for occlusions embryos when compared to controls using a two tailed student t

(poccl, in-silico occl/poccl) or one-sample t-test (occl) (b) Pressure and wall shear stress (dynes/cm

) at peak flow for a

representative HH24 control embryo (top) and each of the partial occlusion geometries in which CFD was run. Although the
geometries themselves have changed, partial occlusion pressure and WSS maps resemble that of HH24 control embryos (see 2° for
range of variability). Only the full occlusion geometry’s pressure is so high that it cannot be fully dissipated along the arches and a
high-pressure zone is carried over to the DoA. (N = 5 cntrl, N = 3 exp poccl, N =1 exp occl, N = 2 in-silico occl; in-silico poccl)

receiving 24 and 23% of flow respectively in HH24 full
and partial occlusion scenarios (Fig. 2a). Changes in
HH24 in-silico occlusion pressure and WSS maps
(Fig. 4b, bottom) are more pronounced than that of
HH18 in-silico occlusions, but follow a similar pattern.
Upon occlusion, pressure magnitude increased at the
outflow tract inlet before dissipating cranially along
the aortic sac, laterally along the IVR occluded or
partially occluded arch as well as along the caudal VI
arch arteries. Spikes in WSS increase in high pressure
areas. These changes are summarized in the form of a
dramatic increase in the resistance value of PAA IVR,
small increase in PAA III (R &L) and PAA IVL. PAA
VIR remains unchanged and PAA VIL slightly de-
creases. In both HHI18 and HH24 in-silico occlusion
scenarios, the embryo’s immediate response was to
send additional flow to PAA IVL. 3D numerical sim-
ulations of experimental occlusion embryos revealed
that in reality in-vivo flow distribution to PAA IVL
decreased in both the experimental partial occlusion
and full occlusion geometries, suggesting that other
mechanisms may also be at play.
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Overriding of PAA Natural Growth Mechanisms

CFD of HH24 experimental occlusion embryos
(24 h post occlusion) allowed us to investigate the
evolution of hemodynamic flow patterns and associ-
ated forces (STable3, experimental vs. computational
reference). Experimental partial occlusion pressure and
WSS maps resemble that of control embryos while the
full occlusion falls within the same range but has a
more elevated pressure and WSS magnitudes along the
DoA (Fig. 2b). The experimental occlusion embryo
maintains the same general pressure dissipation pat-
tern, but is unable to fully dissipate pressure before the
arches converge at the DoA. To delineate the role of
pressure and WSS as drivers of PAA remodeling, we
quantified morphological changes from CFD-aided 3D
renderings obtained from point-to point segment
makers, as outlined in.? Statistically significant chan-
ges between relative position at HH18 to HH24 were
found through linear regression of data obtained per
arch. Linear regressions were performed using HH18
control data (N = 5 embryos) or HHIS in-silico
occlusion data (N = 2 embryos) as time point 1 and
either HH24 experimental occlusions (N = 3 partial
occlusions, N = 1 full occlusion) or HH24 in-silico
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occlusions (N = 2 in-silico occlusion) as time point 2 associated with negative slopes, highlighting an over-

(Fig. 5). HHI8 to HH24 change in peak WSS magni-
tude leads to significant arch artery correlations for
each of the arch artery pairs. For control embryos, the
majority of WSS-morphology trends were associated
with positive slopes, while occlusion embryos were

riding of natural PAA growth mechanisms. Pressure
pulsatility (the difference between max and min pres-
sure over a cardiac cycle) was also monitored for
HH18 and HH24 embryos. Significant pulsatility-
morphology trends were determined for PAA IIIL and
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IVL. Pulsatility-morphology trends were associated
with negative slopes for both control and occlusion
embryos.

Local Occlusions Affect Pressure Distribution
to Subsequent Circulation

In addition to flow and pressure values within the
arches themselves, vessel occlusion also affects flow
and pressure distribution curves to subsequent circu-
lation. Upon vessel occlusion, inlet pressure is affected
(Fig. 6), despite maintaining the same imposed flow
across embryos, with the full occlusion model showing
a higher spike than partial occlusion curves for their
respective conditions (experimental, in-silico). Pressure
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curves entering the distal circulations (Windkessel
bounds) are largely the same for the left cranial
branch, but are slightly elevated for in-silico occlusion
and in-silico partial occlusion when compared to its
control phenotype (SFig. 4, 5).

90-10 cranial caudal flow distributions are largely
maintained upon full and partial in-silico vessel
occlusion of HHI18 and HH24 embryos (STable 4)
despite bounds not being tuned to maintain the flow
split. A slight deviation is seen in the HH24 IVR in-
silico occlusion, which has a 89-11 flow split. While
changes in the caudal pressure curves are slight,
changes in cranial pressures are much larger, particu-
larly for HH18-1 full occlusion (SFig. 4, magenta).
HH24 occluded and partially occluded embryos ex-
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Significant WSS-morphology trends
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FIGURE 5. Occlusion driven geometric changes. Linear regressions plotted to highlight correlations between hemodynamic
forces (peak WSS and pressure pulsatility) and area diameter changes that occur with occlusion insult. Axes show changes in x
and changes in y values. Only significant trends are shown. (circles indicate right side, squares, left side). Control curves shown in

blue, when significant. (N = 5 cntrl, N = 3 poccl, N = 1 occl).

hibit a much lower cranial pressure magnitude when
compared to that of the control (SFig. 5). Very slight
changes are seen in flow curves distributed to the rest
of the embryo upon vessel occlusion.

Instantaneous Flow Changes Largely Determine Vessel
Functionality

The evolution of pressure and flow values along
each arch artery determines its individual functional-
ity. Functionality changes are summarized in the form
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FIGURE 6. Pressure and functionality changes upon vessel occlusion (a) 3D-0D resulting inlet pressure curves (top) and DoA
branch (R & L) outlet curves for each of the occlusion conditions, both experimental and in-silico. Standard error bars are shown
for each curve. (b) CFD-based resistance-area graph highlights vessel functionality. R-A axes show current x values with current y
values. Standard error bars are shown in black. Note how HH24 in-silico occlusion predicted resistance values for three of the
remaining five vessels for HH24 experimental partial occlusions. HH24 IIIL of the in-vivo full occlusion took on the same resistance
and area values as HH24 IVR controls. PAA VIL of HH24 in-vivo full occlusion took on the same cross area as HH18IVL. (N = 5 cntrl,
N = 3 exp poccl, N =1 exp occl, N = 2 in-silico occl; insilico poccl).

of resistance- area plots (Fig. 6b), which are essentially
pressure-drop to flow ratio plotted by average vessel
cross-sectional area (CSA). HH24 in-silico occlusion
predicted resistance values for three of the remaining
five vessels for HH24 experimental partial occlusions
(PAAs VIL, IVL and IIR). Experimental partial
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occlusion arch arteries underwent an increase or de-
crease in area to obtain these values. Of the arches not
matched by instantaneous (in-silico) flow change pre-
dictions, PAA IIIL from the HH24 in-vivo full occlu-
sion model obtained the same area and resistance
values as PAA IVR from HH24 control embryos. PAA
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ITIL therefore assumed the profile of the normally flow
dominant arch in control embryos. PAA VIR from
HH24 in-vivo full occlusion model maintained the
same CSA as HH24 in-vivo full occlusion PAA TVL.

A number of vessels maintained the same CSA but
different resistances values as peer vessels, emphasizing
how CSA does not determine functionality. This is the
case for PAA IVR in-silico occlusion and IIIL experi-
mental occlusion. PAA VIL of HH24 in-vivo full
occlusion assumed the same cross-sectional area as
HHISIVL (control, in-silico occlusion/partial occlu-
sion), indicating that IVL did not change morphology
between HH18 and HH24. HHI18 in-silico occlu-
sion/partial occlusion PAA II (R & L) and PAA IVR
share the same CSA value, but resistance values differ
largely. These arches are regressing and growing in
respectively.

Small Initial Insult Evolves Into Larger Structural
Deformation

In order to underscore the importance of the
remodeling presented throughout this paper in em-
bryos 24-h post PAA IVR occlusion, a partial occlu-
sion embryo, Exp-poccl-10, was allowed to develop to
HH29 (day 6), when the aortic and pulmonary trunks
are clearly distinguishable, the left IV arch artery has
regressed, and the aortic trunk has begun to cross
under the pulmonary trunk. At HH24 the partial
occlusion embryo’s stroke volume, cardiac output and
ventricular ejection fraction differ slightly from that of
HH24 control embryos; only HH24 partial occlusion
OFT diameter was statistically significant (two-tailed ¢
test). By HH26 both the OFT diameter and ventricular
ejection fraction of Exp-poccl-10 were statistically
different from that of HH26 controls when using a
one-sample ¢ test. By HH29 morphological differences
are readily visible with the poccl geometry displaying
hyper-enlarged arches and abnormal rotation of the
OFT (Fig. 7, SFig. 6).

DISCUSSION

We used an experimental-computational approach
to quantify morphological and hemodynamic changes
along the PAAs following vessel occlusion. Small
changes in flow distribution led to significant length,
ellipticity, and WSS-morphology trends upon experi-
mental IVR vessel occlusion. in-silico occlusion models
captured the instantaneous effects of altered hemody-
namics loading, allowing us to propose an adaptive
model for PAA morphogenesis detailed below.

Significance

From HHI8 — HH24, the arch arteries undergo
many changes. These changes are the result of inlet
flow stream distributions, 3D aortic sac and aortic arch
geometries, and local vascular biologic responses to
spatial variations in WSS.** The early embryo adapted
its vasculature using known vascular adaptation
mechanisms normally associated with the mature ves-
sel. In the mature vascular system, the vascular net-
work works to maintain constant homeostatic stress
which consists of shear, axial and circumferential stress
along the vessels.'®* The WSS stimulus leads to
diameter changes in response to flow rate.”> In a 1980
canine carotid artery study, vessel diameter was shown
to increase with increased flow load and vice-versa
(Kamiya and Togawa)'® as a way of bringing shear
stress down to control levels. Similarly, a 1987 study
observed vessel dilation and no hypertrophy in
response to increased flow in the iliac artery of mon-
keys.* HH18 experimental occlusion embryos were
also able to adapt their diameters, over the span of
24 hours, to maintain a desired stress state.

Our major findings concern how mechanical inter-
action between fluid flow in the arches and structural
configuration of the vessels influence cardiac outflow
morphogenesis. The change in slope of WSS-mor-
phology trends (Fig. 5) underscores a change in
growth dynamics upon vessel occlusion. Because flow
through these arches are essentially parabolic (Poi-
seuille flow) and Poiseuille WSS magnitude is propor-
tional to flow over radius cubed (Q/r’) or mean
velocity over radius (viean/r), @ positive slope suggests
a change in flow/velocity is locally driving WSS
change, while a negative slope implies the geometric
feature is dominating local WSS change between
stages. This indicates that following vessel occlusion,
local changes in WSS were associated with remodeling
along the arches, contrary to controls where decrease
of WSS was rather related to flow. The in-silico
occlusion geometries were unsurprisingly dominated
by local geometric changes rather than hemodynamics
(SFig. 3), as the vessels were constrained to their
original configuration.

Proposed Adaptive Model

We propose a two-phase adaptation process (Fig. 8)
where local increase in pressure accompanied by a
decrease in WSS along the occluded vessel ultimately
result in observed vessel elongation and CSA changes.
Morphological changes identified in Fig. 3, indicate
that the partial occlusion is causing embryos to
resemble that of a more mature phenotype, elongating
in size and displaying more rounded cross-sectional
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FIGURE 7. Later stage partial occlusion phenotype (a) Top down view of PAA manifold of HH26 -HH31 embryos with controls in
grey and partial occlusion in peach. Asterisks indicate that the embryo is left-sided. Geometries are not shown to scale. Of note is
the presence of six arch arteries in the HH29 partial occlusion manifold, when five are present in control counterparts. The enlarged
arch arteries of the aortic and pulmonary trunks run parallel to each other along the dorsal-ventral axis in contrast to their control
counterparts whose aorta and pulmonary trunks are offset allowing for the aortic trunk to pass under the pulmonary trunk. (b)
HH24 diameter cardiac output, stroke volume, ventricular ejection fraction (n = 5 control, n = 3 poccl, n = 1 occlusion). Statistically
significant differences were found for OFT diameter changes and when comparing the occlusion phenotype to controls using a
one sample t-test. The highlighted poocl from (a) is among poocl values. (c) HH26 diameter and ejection fraction for HH26 embryos
(n =5 control, n=1 poccl). Statistically significant differences were only found when comparing the occlusion phenotype to
controls using a one sample ttest. The highlighted poocl from (a) is among poocl values.

areas. In the initial phase, immediately following vessel
occlusion, a local increase in pressure propagates up-
stream to the aortic sac accompanied by an increase in
WSS. The aortic sac in turn increases in diameter,
which causes a decrease in length of the PAAs which
are pulled from their aortic sac inlets. The second
phase, brought on by the stretching of the arches by
the aortic sac, leads to an increase in axial stress, which
is compounded by the flow induced asymmetry, cul-
minating in the overall increase in longitudinal length
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experienced by the arches. Concurrent with the phase
I’s local increase in pressure, is a decrease in WSS
experienced by the occlusion branch which leads to a
shrinking or altogether elimination of the arch and
adds to the flow induced asymmetry. In this way,
natural growth mechanisms are overridden and the
would be presumptive aortic arch is prevented from
becoming the dominant arch of the aorta.
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FIGURE 8. Two-phase vessel adaptation mechanism following vessel occlusion. Local and upstream pressure changes lead to
WSS changes that ultimately shape the structural changes seen in experimental occlusion embryos. Changes in aortic sac
diameter lead to increased axial stress and accounts for the longitudinal lengthening of the arch arteries.

Critical Window of Development

The HH18 time point is a particularly critical stage
of cardiovascular development as it precedes migration
of neural crest cells down the pharyngeal arches. Fol-
lowing formation of arch arteries III, IV, VI, neural
crest cells seed the arch arteries, covering their
endothelial sheath and making up their ectomes-
enchyme.'® A subset of these cells reach the outflow
tract cushions by HH23. Cardiac neural crest cells
(CNCCs), along with a shelf of tissue from the aortic
sac, form the aortopulmonary septation complex and
initiate septation.** Disruption of this process due to
altered mechanical loads within the vessels would lead
to a variety of cardiac abnormalities. CNCC ablations
are associated with failure of arch arteries three, four
(right), and six to develop to the proper size.” There is

a loss of bilateral symmetry, with uncommonly small
or collapsed arch arteries on one side and unusually
large arteries on the opposite side.® Many of these
phenotypes can be seen in the experimental occlusion
geometries found in Supplemental Figure 7.
Typically, asymmetrical remodeling begins at
HH28/E12.5,”'° with the left fourth arch artery
regressing in the chick embryo and the right fourth
forming the proximal part of the subclavian artery in
the mouse embryo. The experimental late stage
(HH29) partial occlusion embryo, Exp-poccl-10, did
not undergo this asymmetric remodeling. Its pheno-
type approaches that of the Pizx2dc mutant hearts with
transposition of the great arteries, where the aortic and
pulmonary trunk remain parallel. Pitx2 regulates left-
right asymmetry to asymmetrically developing organs
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and is associated with patterning of the OFT
myocardium.?"?>** This myocardium is derived from
the pharyngeal mesoderm. Between Stages HH21 and
HH30, Carnegic stages 15 and 19, the OFT-PAA
junction undergoes rotation in the counterclockwise
direction.'** Observed rotation may be the result of
asymmetrical lengthening of the right ventricular OFT,
which causes the pulmonary trunk to be “pushed”
towards its definitive position.”” Here we show that
this defect may be the result of abnormal flow pat-
terning originating from the PAAs themselves.

Limitations

A small subset of embryos underwent computa-
tional modeling. While this is typical in computational
studies, biological studies generally have larger sample
sizes. We believe the study’s purpose of characterizing
the natural variation in altered mechanical loading still
holds and the necessary representations have been
presented. Detailed 3D reconstructions of the experi-
mental occlusions allowed for a more thorough probe
into the embryos’ adaptive response than that of our
previous study.'® Results led us to propose a two-phase
adaptation response. This two-phase adaptation
hypothesis needs to be confirmed by further experi-
ments that could include continuous imaging of the
PAA manifold or labeling of different arch sections so
as to track respective lengthening. Outlet boundary
conditions and flow input curves were taken to be the
same for both control and occlusion models. Compu-
tational simulations were validated for control
embryos,'® and assumed to remain valid for occlusion
embryos. It is possible the occluded embryos may be
physiologically disturbed such that their input flow
profiles are altered from that of controls.

Conclusions

This study demonstrates that abnormal PAA
hemodynamics can precipitate abnormal cardiac
function given the correct timing and location of in-
jury. In their 2007 study, Yashiro et al. showed that
differential flow patterns and abnormal PAA remod-
eling can result from abnormal spiraling of the OFT.
Following Pitx2 induction of abnormal OFT mor-
phology, differential flow patterns led to abnormal
molecular expression patterns and abnormal PAA VI
patterning in E11-11.5 mice (HH18-HH24 equiva-
lent).*® Here, we show the connection between abnor-
mal PAA IV patterning and OFT morphology, with
the defect originating from within the PAAs them-
selves. Following arch artery occlusion, local changes
in WSS are associated with geometric remodeling
along the entire PAA manifold, while pressure changes
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are largely confined to the aortic sac. Wall shear stress
drives defect propagation which can result in enlarged
OFT diameters, irregular regression patterns and
abnormal rotation of the OFT. Position and length of
the initial occlusion insult impact subsequent remod-
eling defects. While both full and partial occlusions led
to an overriding of natural growth mechanisms, partial
occlusions were able to maintain a lower per arch
average pressure and WSS distribution than that of its
full occlusion counterpart. Importantly, partial occlu-
sion embryos were able to fully dissipate WSS and
pressure fluctuations laterally along the length of the
arches before the dorsal aorta in contrast to the full
vessel occlusion embryo. This work is the first step in
understanding the effect of varying degrees of PAA
occlusion in what is programmed to be the dominant
arch of the aorta. By examining embryo-specific
occlusion geometries in 3D and comparing them to
that of in-silico occlusion embryos, we distinguish
immediate changes from that of longer-term adapta-
tion to changing hemodynamic conditions and show
how the former influences the later. In identifying
spatial-temporal markers of abnormal development,
this work can be used to identify new genes and bio-
chemical compounds that affect cardiac outflow mor-
phogenesis.
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