
PACCP: A Price-Aware Congestion Control Protocol for Datacenters

Xiaocui Sun

Guangdong Pharmaceutical University
Guangzhou, China

Email: xiaocuisun1002@hotmail.com

Zhijun Wang

The University of Texas at Arlington
Arlington, USA

Email: zhijun.wang@uta.edu

Yunxiang Wu

Purple Mountain Laboratories
Nanjing, China

Email:wuyunxiang@pmlabs.com.cn

Hao Che

The University of Texas at Arlington
Arlington, USA

Email: hche@cse.uta.edu

Hong Jiang

The University of Texas at Arlington
Arlington, USA

Email: hong.jiang@uta.edu

Abstract—To date, customers using infrastructure-as-a ser-
vice (IaaS) cloud services are charged for the usage of
computing/storage resources, but not the network resource.
The difficulty lies in the fact that it is nontrivial to allocate
network resource to individual customers effectively, especially
for short-lived flows, in terms of both performance and cost.
To tackle this challenge, in this paper, we propose PACCP, an
end-to-end Price-Aware Congestion Control Protocol for cloud
services. PACCP is a network utility maximization (NUM)
based optimal congestion control protocol. It supports three
different classes of services (CoSes), i.e., best effort service (BE),
differentiated service (DS), and minimum rate guaranteed
(MRG) service. In PACCP, the desired CoS or rate allocation
for a given flow is enabled by properly setting a pair of control
parameters, i.e., a minimum guaranteed rate and a utility
weight, which in turn, determines the price paid by the user
of the flow. Two pricing models, i.e., a coarse-grained Virtual
machine (VM)-Based Pricing model (VBP) and a fine-grained
Flow-Based Pricing model (FBP), are proposed. PACCP is
evaluated by both large scale simulation and small testbed
implementation. The results demonstrate that PACCP provides
minimum rate guarantee, high bandwidth utilization and fair
rate allocation, commensurate with the pricing models.

Keywords-Price model, cloud computing, congestion control

I. INTRODUCTION

An infrastructure-as-a-service (IaaS) cloud, such as Ama-

zon EC2 and Alibaba cloud, provides scalable, pay-as-you-

go computing resources to its customers. However, to date,

the customers using such cloud services are charged based

on the usage of the computing related resources only, e.g.,

various instances of virtual machines (VM) with different

CPU. This, however, is inadequate, as paying for a given

VM instance provides no assurance of flow performance for

a flow emitted from that instance [1]. The root cause of

the status quo is that the network bandwidth is shared in

a highly dynamic environment by flows emitted from all

VM instances and hence, it is difficult to provide quan-

tifiable flow rate allocation in a cost-effective fashion so

that an effective pricing structure can be built around it. A

direct consequence for not being able to do so is that a

customer may experience poor performance, especially at

high network utilization, incommensurate with the price the

customer has paid for the use of the computing resources[1].

To tackle the above challenges, network pricing solutions

based on explicit bandwidth reservation have been proposed

[2], [3], [4], [5], [6], [7], [8], [9]. The price is usually

dynamically generated either through an auction process

[3], [5], [7], [8] or a time-varying price table [2], [4], [6],

[9], adjusted based on the current and/or historical statistics.

However, these pricing solutions are only effective for long-

lived flows, such as video on demand [10], not for the

popular user-facing datacenter applications [11], [12], [13],

[14] which usually have small flow sizes and short durations.

User-facing datacenter applications, such as Web search-

ing [12] and social networking [14], are usually associated

with a stringent tail-latency service level objective (SLO)

[15]. Moreover, a job for such an application generally

involves one or multiple stages of parallel task processing

by (many) instances, which generate bursts of (massive)

numbers of flows emitted from those instances. Such flows

are usually short-lived with sizes of less than 1 Mbytes [16],

[17] and with tight flow completion time budget, e.g., a few

milliseconds, to meet a prescribed tail-latency SLO.

The pricing solutions mentioned earlier are based on

centralized bandwidth reservation, which is either pre-

configured or flow-driven, none of which however, can deal

with the above workload effectively. On one hand, pre-

configured bandwidth reservation that allocates bandwidths

for the prospective flows in advance is not scalable and

cannot handle bursts of massive numbers of short-lived

flows. Moreover, without knowing the flow start time and

flow size, this approach may lead to either over or under

resource provisioning, causing violation of SLOs or low

resource utilization, respectively. On the other hand, flow-

driven bandwidth reservation that reserves bandwidth upon

a flow arrival is generally too slow due to centralized control

to meet the tight flow response time budget of such flows and

incurs excessive processing and communication overheads.
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Moreover, these solutions need significant core network

switches modification/upgrading incurring high costs. Al-

though a price-aware distributed scheduling solution, known

as SoftBW [1], is proposed to allow scalable bandwidth

reservation with flow rate guarantee, it only works at very

low network loads (less than 30%), as it reserves bandwidths

for individual VM instances at each host port only assuming

that the datacenter network is congestion free. Any retrans-

mission can result in flow rate allocation inappropriate for

the paid prices.

To overcome the above shortcomings of the existing

network pricing solutions, in this paper, we propose a Price-

Aware Congestion Control Protocol (PACCP) for IaaS cloud

services. PACCP is a network utility maximization (NUM)

based optimal congestion control protocol. It supports three

different class of of services (CoSes), i.e., best effort service

(BE), differentiated service (DS) and minimum rate guaran-

teed (MRG) service. The three types of services are enabled

by properly setting the values of a pair of parameters, i.e.,

a minimum guaranteed rate and a utility weight, which are,

in turn, determined by the flow price paid for the services.

In this paper, we propose two pricing models, i.e., a

coarse-grained VM-Based Pricing model (VBP) and a fine-

grained Flow-Based Pricing model (FBP). A customer pays

a price to buy a desired service, which is then mapped to

given values of the pair of parameters in PACCP. PACCP

possesses the following salient features,

• It is an optimal solution in terms of NUM; It uses the

TCP utility function and hence it is a TCP friendly

protocol.

• It meets the three widely accepted requirements for

datacenter price-based rate allocation solutions [2], i.e.,

providing minimum rate guarantee; achieving high net-

work utilization; and allocating flow rates in proportion

to the paid prices;

• To the best of our knowledge, it is the first solution

that seamlessly integrates pricing models with end-

to-end congestion control protocols. Hence, it is high

scalable and can deal with bursts of unlimited numbers

of short-lived flows. It allows flows to fully utilize all

available bandwidths and thus improving the bandwidth

utilization. Moreover, it allows adjustment of pricing at

runtime, adapting to resource demand changes and/or

network load changes;

• It only requires software upgrade in end hosts and does

not need any change in core network switches and

hence, is readily deployable in today’s datacenters.

PACCP is evaluated by large scale simulations as well as a

small testbed implementation. The results demonstrate that

PACCP can indeed provide soft minimum rate guarantee,

high network utilization and rate allocation proportional to

the prices paid, hence, meeting all three requirements for

datacenter network pricing solutions.

The remainder of the paper is organized as follows. Sec-

tion II presents the NUM-based flow rate allocation frame-

work. Section III gives the NUM-based optimal congestion

control laws. Two pricing models are given in Section IV

and evaluated in Section V. Section VI presents the related

work. Finally Section VII concludes the paper.

II. NETWORK UTILITY MAXIMIZATION BASED RATE

ALLOCATION

Assume that a network has n active flows and Ui(xi) is

the user utility function of flow rate xi for flow i (i=1,2,...,n).

Then NUM is defined as the following,

V = max{
n∑

i=1

Ui(xi)}, (1)

subject to link bandwidth and flow rate constraints. The goal

of NUM is to find distributed flow rate control laws that

lead to flow rate allocation, x = {x1,x2, ...,xn}, where

the global design objective V is attained, or collective user

satisfaction of the services is maximized, as user utilities

are meant to characterize to what degree users are satisfied

with the services they receive. The traditional NUM solution

usually can only work on a single user utility function. Our

recently developed NUM solution, called HOLENT NUM

[18], can deal with different user utility functions. Clearly,

the relative user utilities of the flows determine the rate

allocation x, provided that the flow rate constraints are

satisfied. In other words, in NUM, the fairness criterion

is uniquely determined by the relative user utilities of the

flows. While minimum flow rate requirements can be easily

enforced as flow rate constraints in NUM, it is nontrivial

to enable flexible and quantifiable fairness criteria. In what

follows, we propose a solution based on weighted user

utilities.

We consider the following weighted utility function, i.e.,

Ui(xi) = wiU0(xi), where U0 is a base utility function

shared by all the flows and wi is the weight of flow i
(i=1,2,...,n). To be backward compatible with and friendly to

TCP flows, we use the TCP utility function (UTCP ), which

is concave, as the base utility function. The utility function

for TCP Reno is derived in [19], [20] and is given as follows.

In the slow start phase (SSP),

UTCP (x) = xlog(1 +
α

β
), (2)

and, in congestion avoidance phase (CAP),

UTCP (x) = (
μ

β
+x)[log(μ+βx)−1]−x[log(βx)−1], (3)

where αx and βx are the multiplicative increase and de-

crease rates, respectively. To match with SSP in TCP Reno

where the flow rate is doubled/halved every round trip

time (RTT), we have α=2β=1/RTT , by approximating the

increase and decrease rates to be constant within a RTT

interval. μ is the additive-increase rate (i.e., the rate of one
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packet per RTT) in CAP. With this TCP utility, now NUM

can be rewritten as,

V = max{
n∑

i=1

wiUTCP (xi)}, (4)

subject to the link bandwidth and minimum flow rate con-

straints.

Now the idea is to enable flexible fair flow rate alloca-

tion through weight assignment. Specifically, consider flows

with different weights sharing a bottleneck link. With the

Lagrangian multiplier technique [21], it can be easily shown

that the rate allocation that satisfies V meets the following

condition1,

wi

wj
=

dUTCP (xj)/dxj

dUTCP (xi)/dxi
=

log(1 + μ/βxj)

log(1 + μ/βxi)
≈ xi

xj
, ∀i, j,

(5)

for any pair of flows i and j bottlenecked at this link.

Here we assume βx � μ, i.e., the multiplicative decrease

rate (i.e., half of the flow rate) is much larger than the

additive increase rate (rate of 1 packet per RTT), and hence

log(1 + μ/βx) ≈ μ/βx. Eq. (5) clearly indicates that

the allocated flow rate ratio is proportional to their utility

weight ratio for any two flows sharing a bottleneck link.

Hence, the relative flow rates allocated to different flows

can be easily adapted to the fairness criterion underlaid by

any given pricing model, through the proper setting of the

corresponding relative weights.

III. NUM BASED OPTIMAL CONGESTION CONTROL

LAWS

A family of optimal congestion control laws to NUM with

concave user utilities are derived by Su, et. al. [22], which

underpins PACCP. Now we first introduce this family of

optimal congestion control laws, which is then applied to

the NUM problem in Eq. (4) to derive PACCP.

For simplicity, the subscript i for user i is skipped

hereafter. For any flow with concave utility function U(x),
the family of optimal congestion control laws that satisfies

V are,

ẋ = z(x, t, cg)[f(x)− (1− c̄gr(x))] (6)

with

f(x) = 1− e−dU(x)/dx, (7)

where z(x, t, cg) can be any piecewise continuous positive

scaler function, resulting in an unlimited number of possible

control laws in the family; cg is the path congestion indica-

tor, taking value 1, if the path is congested, and 0, otherwise;

c̄g is the logical negation of cg; r(x) is a scalar parameter

associated with the minimum rate requirement. Assume that

1Here we apply the CAP TCP utility, not the SSP TCP utility, because
the TCP timeout is a rare event and TCP runs in the congestion avoidance
phase most of the time.

a flow has a minimum rate requirement θ, i.e., x ≥ θ. Then

r(x) is given as,

r(x) =

{
1 if x ≥ θ
rcos if x < θ,

(8)

with rcos > 1, a design parameter. We suggest to use rcos=3

according to our performance studies of this parameter (due

to the page limitation, the results are not shown here).
For example, it can be easily shown that by applying the

above family of optimal congestion control laws to the TCP

utility in Eqs. (2) and (3) and let, z(.) = zTCP (x, t, cg),
where,

zTCP (x, t, cg) =

{
(α+ β)x for SSP
μ+ βx for CAP.

(9)

we arrive at the TCP Reno congestion control law [19].
Now applying the above family of optimal congestion

control laws to the NUM problem given in Eq. (4), we arrive

at PACCP as follows. In the SSP,

ẋ =

{
(3r(x)− 31−w)αx/2 if cg = 0
−3−w+1βx if cg = 1,

(10)

and in the CAP,

ẋ =

{
[−( βx

μ+βx )
w + r(x)](μ+ βx) if cg = 0

−( βx
μ+βx )

w(μ+ βx) if cg = 1,
(11)

Clearly, flow rate allocation is determined by r(x) (or θ) and

w, a pair of parameters that uniquely determine PACCP.
To be backward compatible with TCP window-based

congestion control, we translate the fluid-flow based control

laws in Eqs. (10) and (11) into a window-based congestion

control protocol. In the window-based control, the flow rate

stays unchanged during each RTT interval. Hence, the con-

gestion window can be calculated as Wc = xRTT/MSS,

where MSS is the maximum segment size. The flow rate

change from one RTT epoch to the next RTT epoch is

Δx=ẋRTT , where ẋ is the flow rate change over an RTT

epoch, which can be estimated by the fluid-flow control law.

Hence, the window size change ΔWc at the end of every

RTT epoch is calculated as ΔWc = ΔxRTT/MSS. The

minimum congestion window size Wmin corresponding to

a minimum guaranteed rate θ is given as follows,

Wmin =
θRTT

MSS
. (12)

For a flow without minimum rate requirement, Wmin = 0
(i.e., θ=0).

Define CND1 as { cg = 0 & Wc < Wmin} and

CND2 as {cg = 0 & Wc ≥ Wmin}. Now the window-

based protocol for congestion window size (Wc) update (i.e.,

Wc = Wc + ΔWc) can be approximated (by assuming

βx� μ) as follows. In the SSP,

Wc =

⎧⎨
⎩

((3rcos − 31−w)/2 + 1)Wc if CND1
((3− 31−w)/2 + 1)Wc if CND2
(1− 31−w/2)Wc if cg = 1,

(13)
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and in the CAP,

Wc ≈
⎧⎨
⎩

1
2 (rcos + 1)Wc + (rcos − 1 + w) if CND1
Wc + w if CND2
1
2Wc + (w − 1) if cg = 1.

(14)

Note that TCP Reno is a special case of the above control

protocol with rcos=1 (i.e., θ=0) and w=1. A flow under

the control of the above PACCP receives minimum rate

guarantee and quantifiable fair sharing of the additional

bandwidth. PACCP supports three broad CoSes based on

specific settings of the pair of parameters (θ, w), i.e., the

best effort (BE) service with (0, 1) (i.e., TCP Reno); the

differentiated service (DS) with (0, w >1); and the minimum

rate guaranteed (MRG) service with (θ >0, w ≥ 1). The

three CoSes can be enabled by simply passing a pair of

control parameters, i.e., (θ, w), into PACCP. Hence, pricing

models tied to this pair of control parameters may be

developed to charge users in proportion to the (relative)

network bandwidths allocated to them. For datacenter with

both TCP and UDP traffic, the two parameters can also be

enabled to DCCP congestion control protocols [23], [24] to

provide the three different types of services for UDT traffic.

The only difference is that there is no retransmission in UDP

traffic in case of congestions.

IV. PRICING MODEL

In this section, we discuss how to set the pair of parame-

ters based on the flow prices in PACCP to support the three

CoSes. Two pricing models, a coarse-grained VM-Based

Pricing model (VBP) and a fine-grained Flow-Based Pricing

model (FBP), are proposed to suppor the three CoSes.

In VBP, a user paying for the usage of a VM instance

will also pay a network usage fee per unit time for an

aggregated bandwidth determined by a given pair, (θ, w). In

this model, in principle, each VM instance can support more

than one CoS, as long as,
∑nv

i θi ≤ θ and
∑nv

i wi ≤ w
(it can be easily shown that both parameters are additive),

where nv is the number of active flows emitted from the

instance and (θi, wi) is the pair of control parameter for

flow i, for i = 1, ..., nv . Namely, the only requirement is

that the network bandwidth taken by all the flows emitted

from this instance is upper bounded by the aggregated

bandwidth allocated to the instance. However, as VBP is

meant to be design as a coarse-grained, easily implementable

pricing model, we limit the scope of VBP to the case where

each VM instance only support a single CoS, whether it

is BE, DS, or MRG. Moreover, all the flows emitted from

the instance gain equal share of network bandwidth, i.e.,

(θi, wi) = (θ/nv, w/nv), ∀i. VBP is a static pricing model,

allowing the network bandwidth to be purchased as an

integral part of a VM instance. However, a major drawback

of VBP is that the aggregated bandwidth is statically pre-

allocated and cannot be quickly adjusted to respond to

network resource demand changes.

To address the above drawback of VBP, we also propose

FBP. In this model, a customer pays an initial purchase

fee for the default BE CoS as an integral part of a VM

instance and then pays the DS and MRG CoSes on a

per-flow-basis on demand. It also allows dynamic runtime

service upgrading or downgrading by changing the pair of

parameters and the corresponding price. FBP is more flexible

than VBP, but is harder to implement and manage. In what

follows, we propose pricing structures for the two models,

separately.

A. VBP: VM-Based Pricing model

We propose to use the following pricing structure for

VBP corresponding to the three CoSes.

BE CoS: This is the default CoS with (θ, w)=(0, 1). The

price, PBE , for this CoS may be set at, PBE = P0, where

P0 is a fixed basic price per unit time.

DS CoS: For this CoS, (θ, w) = (0, w > 1). The price,

PDS , for this CoS can be modeled as PDS = P0+P1(w−1),
where P1 is a price per unit time. As we will show in the

next section, a DS flow with w > 1 usually to be consistently

smaller than the optimal one (i.e., w times of the BE flow

rate)(will be explained later). All our results suggest that

the average rate of DS flows with w=2 is about 1.6 to 1.7

times of the BE flow rate at high network load, and hence

P1 may be set at 0.6P0 to ensure that the flow rate is indeed

proportional to the price paid.

MRG CoS: The price, PMRG, for the MRG CoS may be

formulated as PMRG = P0 + P1(w − 1) + P2θ, where P2

is a price per unit data, in association with the minimum

guaranteed rate.

Clearly, with VBP, in addition to CPU speed and memory

size, a CoS with a specific (θ, w) pair can now be included

for price tagging a VM instance. For example, a user may

want to purchase VM instances with MRG CoS. Based

on the application characteristics and an expected number

of concurrently active flows, VM instances with a pair

of parameters (θ, w) that matches the demand may be

purchased, and making the performances of VM instances

proportional to their prices paid.

B. FBP: Flow-Based Pricing model

In FBP, a customer is charged upfront for the use of

the BE CoS. However, to use DS or MRG CoS, the

customer will incur an additional charge, according to the

specific values of the pair of parameters (θ, w) chosen

for the flow. The additional charge, P s, may follow a

similar pricing structure as for the MRG CoS in VBP, i.e.,

P s = P s
0 + P s

1 (w − 1) + P s
2 θ. Here P s

0 , P s
1 and P s are

the price per unit time and P s
2 are the price per unit of data

sent.

Since our focus in this paper is on the price versus

performance consistency, how to determine the parameters
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Figure 1: An example network.

in the pricing structures, i.e., P0(P
s
0 ), P1(P

s
1 ), P2(P

s
2 ), to

balance the profit and user satisfaction is subject to future

investigation.

C. Rate allocation Examples

Now we use a simple network topology presented in

Figure 12 to illustrate how PACCP allocates flow rates

under the two pricing models. Data flows are sent between

three source-destination pairs, VMi-VMi+3 (i=1, 2 and

3), through a shared bottleneck link with bandwidth B.

Assume that the propagation delays are the same for all the

flows. In the follows, we discuss how the rates are allocated

by applying VBP model and FBP model, respectively.

VBP : Assume that VMi (i=1,2 and 3) has ni flows

sending to VMi+3, respectively. We first examine the

case where all the flows are of BE CoS. In this case, the

optimal rate allocation is such that each flow emitted from

VMi receives B/3ni allocated bandwidth, respectively.

Specifically, the shared bandwidth is first equally allocated

to the three VMs with B/3 each, which is further equally

allocated to each flow in a VM. For example, let n1=1,

n2=2, and n3=3. Then a BE flow from VM1, VM2, or VM3

is allocated B/3, B/6 or B/9 bandwidth, respectively.

Now we consider the case where there are two types of

VMs running either BE or DS flows. Specifically, assume

that both VM1 and VM2 run BE flows, and VM3 has DS

flows with the pair of parameters (0, w). In this case, the

optimal rate allocation is such that each BE flow from VM1

and VM2 is allocated the bandwidth of B/((2 + w)n1)
and B/((2 + w)n2), respectively, and each DS flow gets

wB/((2+w)n3). For example, suppose that n1=1, n2=n3=2

and w=2, then each BE flow from VM1 and VM2 is

allocated B/4 and B/8, respectively, and each DS flow from

VM3 gets B/4.

Finally we exam the case with the presence of all

three CoSes. Specifically, assume that VM1, VM2,

and VM3 have BE flows, DS flows with (0, w1), and

MRG flows with (θ, w2), respectively. The optimal rate

allocation is then to first allocate θ rate to VM3, and then

proportionally allocates the remaining bandwidth to the

three VMs to maximize the total utility. If θ =0, VM3

2This topology is different from the leaf-spine datacenter topology.
However, if a datacenter has single bottleneck link at a time, the leaf-spine
topology can be modeled as this topology.

would be allocated a bandwidth of Bw2/(1 + w1 + w2).
Otherwise, it would receive at least θ. As a result, VM3 gets

B3 = max{θ,Bw2/(1+w1+w2)}. Hence each MRG flow

gets B3/n3, assuming that the minimum guaranteed rate

is evenly assigned to each MRG flow. Then the remaining

bandwidth BBD = B−B3 are allocated to VM1 and VM2,

and hence VM1 and VM2 receive, B1 = BBD/(1 + w1)
and B2 = w1BBD/(1 + w1), respectively, with each BE

flow gets bandwidth B1/n1 and each DS flow gets B2/n2.

FBP : For this model, the optimal flow rate allocation

for each flow is independent of the VM instance the flow

is originated from. More specifically, assume that there are

nBE
i , nDS

i and nMRG
i BE, DS and MRG flows emitted from

VMi (i=1, 2, and 3). Also assume that the pairs of parame-

ters for all the flows belonging to the same CoS are the same.

Namely, for BE, DS and MRG flows, they are (0,1), (0,

w1) and (θ, w2), respectively. Also let, nBE =
∑3

i=1 n
BE
i ,

nDS =
∑3

i=1 n
DS
i and nMRG =

∑3
i=1 n

MRG
i . Then, the

optimal flow rate allocation for flows from different VMs is

dependent on nBE , nDS , nMRG and CoSes only, not from

which VMs they come from.

The optimal rate allocation is to first satisfy the minimum

rate, θ, for all nMRG MRG flows, and then allocates the

remaining bandwidth to BE, DS and MRG flows in pro-

portional to their weight values. Specifically, an MRG flow

gets BMRG=max(θ,Bw2/(n
BE + w1n

DS + w2n
MRG)).

Then the remaining bandwidth BBD = B − nMRGBMRG

is allocated to BE and DS flows with each BE flow

getting BBD/(nBE + w1n
DS) and each DS flow getting

w1BBD/(nBE + w1n
DS).

For example, assume that nBE
i =nDS

i =nMRG
i =1 (i=1,2

and 3) and w1=w2=2. We first assume that θ = B/6.

In this case, BMRG=max(B/6, 2B/15)=B/6, and then

BBD = B/2, so the optimal rate allocation is B/18
for a BE flow, B/9 for a DS flow and B/6 for a

MRG flow. Now assume that θ = B/20. In this case,

BMRG=max(B/20, 2B/15)=2B/15, then BBD = 3B/5.

So the optimal rate allocations are B/15 for a BE flow,

2B/15 for a DS flow and 2B/15 for a MRG flow.

The power of PACCP lies in the fact that with the right

assignment of the pair (θ, w) in PACCP for each flow, the

congestion control is automatically enabling users’ prices

into rate allocation and leads to the optimal price-aware

rate allocation for any network topology without bandwidth

reservation. Hence PACCP is readily to be implemented in

today’s datacenters for charging the network resource usage.

D. Implementation issue

PACCP is a price-aware congestion control protocol. It

can be easily implemented in Linux kernel. The pair of

parameters (θ, w) can be passed from the user space to

the Kernel space through some standard device control
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functions, e.g., ioctl(). If the operating system (OS) is

managed by the cloud service provider, the price charge

can be directly executed by setting up/monitoring the pair

of parameters passed from the user space to the Linux

kernel. If the OS is administrated by tenants, the cloud

service providers can move the congestion control from

a data path to a congestion control plane [25], [26] or a

virtual switch [27] which can be implemented in the network

interface cards, and the price is charged based on the pair

of parameters used in the congestion controllers.

V. PERFORMANCE EVALUATION

In this section, we first examine the optimality of PACCP

by simulation as well as a small testbed implementation,

and then test the price-performance consistency of PACCP

for both pricing models in a large datacenter based on real-

world workloads.

A. Optimality test by simulation

We first test PACCP in terms of the user utility maximiza-

tion and optimal rate allocation by simulation. It is based on

an event-driven simulator we developed. A 6x5 leaf-spine

network topology with each rack having 40 hosts3 is used.

The bandwidth/propagation delay is set at 10Gbps /10 μs

between a host and a leaf node and 40Gbps/20 μs between

a leaf node and a spine node. The queue sizes for the 10/40

Gbps links are set at 150/450 kbytes (i.e., 100/400 packets).

Suppose that in each rack, there are 20, 10 and 10 hosts

running BE, DS and MRG flows, respectively.

We first consider a simple case, i.e., each host has one

outgoing flow and one incoming flow. So there are a total

number of 40 outgoing flows (20 BE, 10 DS and 10 MRG

flows) in each rack, with 8 of them (i.e., 4 BE, 2 DS, and 2

MRG flows) going to exactly one of the other 5 racks. To

test the optimality of PACCP, we assume that all the flows

are extremely long-lived with unlimited amount of data to

send. With this setup, 40 flows from each rack share a total

of 200 Gbps (i.e., five 40 Gbps links) outgoing bandwidth.

We first set the pairs of parameters to be (0, 1), (0, 2) and

(2Gbps, 1) for BE, DS and MRG flows, respectively. In

this case, the optimal flow rate allocation for each 40 Gbps

leaf-spine link are 4 Gbps, 8 Gbps and 4 Gbps for each of

the 4 BE, 2 DS and 2 MRG flows, respectively. We also

consider another case where the only difference from the

previous case is that the pair of parameters for MRG flows

is changed to (7Gbps, 2). In this case, the optimal flow rates

for each of the BE, DS and MRG flows are 3.25, 6.5 and

7 Gbps, respectively. Since for both cases, each VM only

sources one flow, the flow rate allocations are the same for

both VBP and FBP.

3In datacenters, a host can host one or multiple VMs. For simplicity, we
assume that each host runs a single VM. Hence, VM and host are used
exchangeably in the rest of the paper.
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Figure 2: Normalized utility and rate allocation for each host

having one flow: (a) and (b) θ =2 Gbps; (c) and (d) θ =7

Gbps.

Figures 2 (a) and (c) show the sum of user utility from

simulation and the optimal one, V in Eq. (4), normalized to

one. As we can see, the simulated one closely matches with,

but is slightly lower than the optimal one for both cases. The

reason why it is always lower than the optimal one is that for

any transport congestion control protocol including PACCP,

the aggregate flow rate cannot achieve 100% link utilization

all the time, due to congestion feedback delay and finite

granular control.

The rates of the three CoS flows, each averaged over all

the flows in the same CoS, are depicted in Figures 2 (b) and

(d). The average flow rates over time for BE, DS and MRG

flows are 3.72/6.21/4.09 Gbps and 2.98/5.08/7.14 Gbps for

the cases of θ =2 Gbps and 7 Gbps, respectively. The results

indicate that the rates of MRG flows are always above the

minimum guaranteed rate θ. The rate ratio between DS and

BE is about 1.67/1.71, smaller than the optimal ratio 2, for

both cases. This is because the optimal ones are obtained

based on the assumption that the PACCP controllers for both

BE and DS flows sharing the same bottleneck links will

sense the congestion simultaneously. In practice, however,

a flow of higher rate may sense more congestions than a

flow of lower rate, and hence DS flows will incur more rate

reduction. This explains why the flow rate ratio of the DS

and BE flows is less than the optimal one.

To further test VBP, we create two types of hosts by

adding one additional outgoing flow to each of the 10 BE, 5

DS and 5 MRG hosts in each rack, forming a second type of

hosts, leaving the other half of hosts in each rack unchanged.

As a result, each of this type of hosts now has 2 outgoing
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Figure 3: Normalized utility and rate allocation for half hosts having one flow and half hosts having two flows : (a)

Normalized utility; (b) Average flow rate; and (c) Total per VM rate.

flows. The flows generated from this type of hosts are called

BE-2, DS-2 and MRG-2 flows, and the flows generated from

the other hosts are denoted as BE-1, DS-1 and MRG-1 flows.

Now we consider the pairs of parameters (0, 1), (0, 2)

and (7 Gbps, 2) for BE, DS and MRG hosts, respectively.

This means that the pairs of parameters for BE-1, DS-1 and

MRG-1 flows are (0,1), (0,2) and (7Gbps, 2), respectively,

and the pairs of parameters for BE-2, DS-2 and MRG-2

flows are (0, 0.5), (0,1) and (3.5 Gbps, 1), respectively. As a

result, the optimal flow rate allocation is 3.25 Gbps, 6.5 Gbps

and 7 Gbps for BE-1, DS-1 and MRG-1 flows, respectively,

and 1.625 Gps, 3.25 Gps and 3.5 Gbps for BE-2, DS-2 and

MRG-2 flows, respectively.

Figure 3 (a) shows the results for the normalized user

utility. Again, the simulated one is very close to the optimal

one. Figure 3 (b) presents the simulated flow rates of

individual types and CoSes. The average flow rates for BE-

1/2, DS-1/2 and MRG1/2 are found to be 2.74/1.6, 4.65/2.66

and 7.16/3.85, respectively. Similar to the previous case,

the rates of MRG flows are always above their required

minimum rates and the flow rate ratios between DS-1 and

BE-1, and DS-2 and BE-2 flows are about 1.66 and 1.7,

lower than the optimal value of 2. The flow rate ratio

between BE-1 and BE-2, DS-1 and DS-2, and MRG-1 and

MRG-2 are 1.65, 1.78 and 1.86, respectively, also lower than

the optimal value of 2, for the same reason explained earlier.

For the current case and under VBP, flows of the same

CoS and from different VMs should be allocated the same

total rate. For example, a DS-1 flow originated from one

host should receive the same flow rate as the sum of two

DS-2 flows originated from another host. Figure 3 (c) shows

the testing results for the average flow rates originated from

different types of hosts. We can see that the average flow

rates from the two types of hosts of the same CoS are

reasonably close to each other, with the rates from type 2

slightly higher than that of type 1. This is caused by the fact

that each of the two flow from a type 2 host has a smaller

flow rate than that of a flow from a type 1 host, and hence

they sense less congestion signals, as explained earlier.

Figure 4: A 3x1 spine-leaf testbed.

B. Optimality test in a real testbed

We implement our PACCP in the Linux kernel. Our Linux

code is modified based on the TCP Reno. In PACCP, the

minimum guaranteed rate θ and the flow utility weight w
are passed from the user space to the Kernel space through

the standard device control function, ioctl(). A 3x1 leaf-

spine datacenter network topology as shown in Figure 4 is

set up using four Dell N4032F switches. Each link has 1

Gbps bandwidth. VMs 1, 4 and 7 are BE hosts, VMs 2, 5

and 8 are DS hosts and VMs 3, 6 and 9 are MRG hosts.

Each VM originates 1 long-lived flow. Hence the flow rate

allocation is the same, regardless whether VBP or FBP is

in use. The destinations of VM i are (i+ 3)%9 (for i=1, 2,

..., 9). The pairs of parameters are set at (0,1), (0, 2) and

(400Mbps, 2) for BE, DS and MRG flows, respectively. With

this setup, the optimal flow rates are 200 Mbps, 400 Mbps

and 400 Mbps for BE, DS and MRG flows, respectively.

Figure 5 shows the average flow rates for flows of the

three CoSes. The average rate of MRG flows is about 410

Mbps, above the minimum guaranteed rate 400 Mbps. The

average rate of DS and BE flows are about 310 Mbps and

180 Mbps, respectively, resulting in a flow ratio of about

1.7, less than the optimal ratio 2. These results agree with

the simulation results.

In summary, both simulation and testbed testing results

indicate that with PACCP, MRG flows have high chance

to meet their minimum guaranteed rates. Moreover, the DS

flows can indeed gain more bandwidths when they compete

with BE flows, which however, are consistently lower than
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the optimal ones. This implies that the pricing parameters

for DS flows in both VBP and FBP need to be adjusted

to reflect the biased relative flow rate. We found that a DS

flow with w=2 achieves about 1.6 times the flow rate as a BE

flow at high load. Although more detailed study at higher

weight values are warranted, this observation does suggest

that one may set P1 (P s
1 ) at some smaller value than P0(P s

0 ),

e.g., 0.6 P0 (P s
0 ) for VBP (FBP). Note that DS is meant to

outperform BE at high load. At low load, they offer similar

performance. Hence, DS related pricing must be determined

at the high load.

C. Performance evaluation with real datacenter workloads

In datacenters, the flow size varies significantly [17],

[11], [28]. While most of the flows are short-lived, having

flow size less than 100K, a small percentage of long-lived,

big flows consume most of the network bandwidth. In

the following, the flow allocations using PACCP with the

two pricing models are tested using real datacenter traffic

workloads, i.e., Websearch [11] and Data-mining [28], as

input. The focus is placed on the testing of the price-

performance consistency, i.e., whether the flow rate allocated

by PACCP matches the expected rate allocation based on the

two pricing models.

We use the same network setup as the previous one,

i.e., a 6x5 leaf-spine network topology with the same link

bandwidths and with each rack having 40 hosts. The flows

are dynamically generated, following a Poisson process. The

average flow arrival interval is used as a tunning knob to set

the network load at desired levels. When a flow arrives, a

source host is randomly selected and then a destination host

is randomly selected from a different rack.

The average flow completion time (FCT) is used as a

performance metric, which is equivalent to the average flow

rate, as the flow sizes for all flows are given. The overall

FCT and FCTs for small flows ( with size less than 100K

bytes), medium flows (with size between 100 Kbytes and 1

Mbytes) and big flows (with size larger than 1 Mbytes) are

measured. For MRG flows, a minimum guaranteed rate and

hence, a flow deadline is set. Another performance metric

used is the flow deadline meet ratio (DMR), which is applied

to the overall flows, as well as the small flows, medium

flows, and big flows, separately. Although BE and DS flows

are deadline unaware, we compare the DMRs for flows with

deadline using the BE and DS services against that using the

MRG service to reveal how much MRG can help improve

DMR over the other two.

1) VBP: We first examine the performance of PACCP

with VBP. Consider the case where there are 20, 10 and

10 hosts in each rack running BE, DS and MRG flows,

respectively. The pairs of parameters are set at (0, 1), (0,2 )

and (5 Gbps, 2) for BE, DS and MRG flows, respectively.

The flow deadline for each of na active outgoing MRG flows

at a host is set at the flow size divided by 5/na Gbps. We

assume that the flow deadline is lower bounded at 1 ms, as

the PACCP connection setup time is taken into account.

We run PACCP using the Websearch workload [11]. Fig-

ures 6 (a) and (b) present the average FCTs for the overall,

small, medium and big flows (normalized to the FCT for

the BE flows). We see that both DS and MRG flows indeed

perform better than BE flows for all load cases. For small

and medium DS/MRG flows, their FCTs are less than 0.8

times (i.e., the flow rates are 1.25 times higher) of BE flows

at all load cases. As these flows are short-lived flows and

may be completed before they reach their optimal allocated

flow rate, the performance gains for these flows come from

the faster rate increase with the help of w and rcos (i.e.,

θ). The results indicate that PACCP is really effective for

short-lived flows to enabling price based rate allocation.

At light loads, the difference for big flows is small, about

0.9 times of that for the BE flows. This is because at

light loads, there is enough bandwidth to accommodate the

desired user utilities for all the individual flows of different

CoSes, which hardly need to compete against one another

for the network resource. Hence long flows have enough

time to fully explore the available bandwidth, making the

small performance gains.

The performance gains increase quickly as the network

load increases. In the high load region (e.g., at 80%), the

FCTs for the overall/small/medium/big DS and MRG flows

are about 0.62/0.62/0.6/0.63 and 0.61/0.62/0.58/0.62 times

of BE flows, respectively. In other words, the average flow

rate allocated to DS flows versus BE flows is about 1.6 and

1.7 times, lower than the optimal ratio of 2, which agrees

with the findings for the previous long-lived flow cases.

MRG flows perform slightly better than DS flows for all

cases. The performance gains are about 5% for small and

medium flows, but very little for the overall and big flows.

The close performance between the DS and MRG flows

arises because both DS and MRG have the same weight

value of 2. Hence, they are expected to receive equal flow

rate allocation, provided that the minimum guaranteed rates

for MRG flows are satisfied, which is indeed the case. The

fact that MRG flows perform slightly better is because MRG

flows open up their send windows faster than DS flows until

the flow rates reach their minimum guaranteed rates.

Figures 6 (c) and (d) show the DMRs for the overall,
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Figure 6: VBP with Websearch workload: (a) overall and

small flow FCT; (b) Medium and big flow FCT; (c) Overall

and small flow DMR; and (d) Medium and big flow DMR.

small, medium and big flows. The DMRs for MRG flows

are always higher than BE and DS flows. The overall

DMR for MRG flows is above 90% even at high load,

whereas the DMR for BE flows is below 50%. While the

DMRs for medium and big MRG flows are above 90%,

the corresponding DMRs for DS and BE flows drop below

80% and 50%, respectively. This clearly demonstrates the

importance of MRG in providing high probability of meeting

flow deadlines.

2) FBP: Finally, we evaluate the performance of PACCP

with FBP. For FBP, a customer can run flows of different

CoSes in a VM. In our simulation, an outgoing flow from a

host has 60% chance to be a BE flow, 20% chance to be a

DS flow, and 20% chance to be an MRG flow. The pair of

parameters for BE, DS, and MRG flows are set at (0,1), (0,

2) and (2.5 Gbps, 2), respectively. In FBP, a VM may have

all the three types of flows at the same time.

Figure 7 gives the results using the Data-mining workload

as input. Overall, the results are similar to those for VBP

with Websearch workload. But the performance gains, in

terms of both FCTs and DMRs for DS and MRG flows

at high loads, are less than those for VBP. The FCT gain

for small flow is almost a constant for all load cases for

the following reason. Most of the small flows in the Data-

ming workload are composed of only a few packets ( about

40% flows have a single packet and about 80% flows have

no more than 6 packets), which finish in just one or two

RTTs, and hence the fast rate increase has limited effect

on these flows. For VBP, the utility weight w for a host is
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Figure 7: FBP with Data-ming workload (a) overall and

small flow FCT; (b) Medium and big flow FCT; (c) Overall

and small flow DMR; and (d) Medium and big flow DMR.

the sum of the weights for all the outgoing flows from that

host, meaning that smaller weights are assigned to individual

flows for the VBP case than those for the FBP case. It means

that the flow increase rate in VBP is slower than that in

FBP, and hence the total number of congestions in VBP is

less than that in FBP. Hence the different congestions sensed

between two flows with different rates are reduced and hence

the performance gains in VBP are greater than that in FBP.

The above results demonstrate that the proposed PACCP

can indeed enable price-aware flow rate allocation in cloud,

particularly for short-lived flows, including soft minimum

rate guarantee and relative additional rate allocation, com-

mensurate with two pricing models. PACCP is a fully dis-

tributed control protocol and only needs software upgrading

in the end hosts and does not involve any core switches, and

hence it is readily to be implemented in current datacenters.

VI. RELATED WORK

Network price modeling for datacenters is a heavily

studied subject [1], [2], [3], [4], [5], [7], [8], [29], [30],

[31]. Some of them [3], [29], [31] focus on the study

of the economical impact of cloud resource pricing on

maximizing the revenue. The other schemes [4], [30] focus

on how to enable flow pricing in proportional to flow

rate allocation through bandwidth reservation. The price is

usually dynamically generated either through an auction pro-

cess or a time-varying price table. However, the bandwidth

reservation generally incurs significant overheads and hence

are not suitable for today’s datacenter applications involving
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bursts of short-lived flows. As a distributed network pricing

solution, Softbw [1] can schedule flows at the source hosts

and hence can deal with short-lived flows. However, it only

works for congestion free datacenter networks.

Although price-agnostic, many solutions have been pro-

posed to improve datacenter flow rate allocation and provide

fair bandwidth sharing and/or minimum rate guarantee.

Since such solutions may lead to effective pricing models,

in what follows, we briefly review some of such solutions.

First, some congestion control protocols with minimum

assistance from in-network nodes [11], [13], [32], [33] are

proposed to improve the performance of datacenter applica-

tions. Some of them [11], [32], [33] are focused on improv-

ing average throughput, their congestion controls are based

on explicit congestion notification (ECN) or queuing delay,

or on the flowlet granularity. D2TCP provides deadline-

aware [13] flow rate allocation through ECN. However they

cannot provide provable fairness and minimum flow rate or

flow-deadline guarantee and multiple CoSes, as is the case

for PACCP. Second, the Hose and Pipe models are widely

used for the design of bandwidth allocation schemes [2],

[34], [35], [36], [37], [38], [39] for datacenter applications.

In these schemes, all the VMs are connected to a central

(virtual) switch by a dedicated link (hose) for traffic con-

trol and minimum bandwidth guarantee. Oktopus [34] and

SecondNet [35] support bandwidth guarantee through static

reservation. Seawall [37] and NetShare[38] uses flow weight

or per-tenant weight for TCP-like flows to achieve max-

min fairness. Gatekeeper [40] uses a hypervisor-based mech-

anism for bandwidth reservation for bisection-bandwidth

networks. Tag [39] uses a tenant application graph to more

accurately predict the bandwidth demand and hence more

effective allocate bandwidth for applications with heteroge-

neous bandwidth demands. As the bandwidth reservation is

not integrated with the congestion control protocols, these

schemes cannot allocate flow rates in a work-conserving

manner, hence wasting network resources.

The ability to support multiple CoSes and directly enforce

flow rate allocation in congestion control makes PACCP a

highly resource-effective, work-conserving solution. More-

over, to the best of our knowledge, it is the first price-aware

transport congestion control protocol purposely design for

cloud applications, and can be readily deployed to current

datacenters.

VII. CONCLUSIONS

In this paper, we propose PACCP, a price-aware con-

gestion control protocol for cloud applications. PACCP is

a NUM based optimal congestion control protocol and

supports multiple CoSes, including best-effort service (BE),

differentiated service (DS) and minimum rate guaranteed

(MRG) service. PACCP seamlessly integrates congestion

control with two pricing models, a coarse-grained VM-

Based Pricing model (VPB) and a fine-grained Flow-Based

Pricing model (FBP). The flow rate allocated by PACCP

is determined by a pair of parameters, i.e., a minimum

guaranteed rate and a utility weight, which are, in turn,

determined by the paid price. PACCP is evaluated by both

large scale simulation and small testbed implementation. The

experimental results demonstrate that PACCP can indeed

achieve high probability of providing minimum rate guar-

antee, high bandwidth utilization and proportional flow rate

allocation, commensurate with the two pricing models.
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