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Real scalar fields with attractive self-interaction may form self-bound states, called oscillons.
These dense objects are ubiquitous in leading theories of dark matter and inflation; of particular
interest are long-lived oscillons which survive past 14 Gyr, offering dramatic astrophysical signatures
into the present day. We introduce a new formalism for computing the properties of oscillons with
improved accuracy, which we apply to study the internal structure of oscillons and to identify
the physical mechanisms responsible for oscillon longevity. In particular, we show how imposing
realistic boundary conditions naturally selects a near-minimally radiating solution, and how oscillon
longevity arises from its geometry. Further, we introduce a natural vocabulary for the issue of
oscillon stability, which we use to predict new features in oscillon evolution. This framework allows
for new efficient algorithms, which we use to address questions of whether and to what extent long-
lived oscillons are fine-tuned. Finally, we construct a family of potentials supporting ultra-long-lived
oscillons, with lifetimes in excess of 1017 years.
� Public code.
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I. INTRODUCTION

Axions are real scalar fields predicted to exist in many
extensions of the Standard Model. One of the best-
motivated is the QCD axion, which emerges as the
pseudo-Nambu-Goldstone boson of a broken U(1)-axial
symmetry, known as Peccei-Quinn (PQ) symmetry [1].
The PQ breaking scale fa, known as the axion decay
constant, suppresses the axion’s self-interactions and its
coupling to the Standard Model (SM). To avoid impact-
ing stellar cooling rates, axion-SM interactions must be
highly suppressed, forcing fa to be in the deep UV,
fa & 1010 GeV [2–4]. As the universe cools below the
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FIG. 1a. A slice through the oscillon lifetime landscape of
parity symmetric periodic potentials with three free parame-
ters (1) (see text for details). The lifetime T is calculated in
units of the scalar mass m for oscillons starting with a funda-
mental frequency of ω = 0.8m. The result is a glimpse into
the structure of the oscillon lifetime landscape, revealing is-
lands of longevity, separated by valleys. These features corre-
spond to the location of exceptional ‘dip’ frequencies, where
the third harmonic experiences totally destructive interfer-
ence. We plot the families of potentials along the important
colored contours in figure 1b.

QCD scale ΛQCD ≈ 200 MeV, strong dynamics gener-
ate a periodic potential for the axion, whose VEV can-
cels the strong sector’s CP-violating phase, thus resolv-
ing the strong-CP problem. The separation between the
QCD scale and the PQ scale forces the axion’s mass
ma ∼ Λ2

QCD/fa to be smaller than 1 meV, potentially

by many orders of magnitude [5, 6].

Furthermore, axionic degrees of freedom emerge in
great numbers from realistic string compactifications,
collectively known as the Axiverse. Like the QCD ax-
ion, these axion-like particles (ALPs) are generally de-
scribed by two parameters: their mass m and the decay
constant f . Generic ALPs are also expected to have nat-
urally small masses, which are exponentially suppressed
by the string instanton action. The precise form of the
ALP potential depends on the specifics of the UV theory
it descends from, leaving its low-energy dynamics effec-
tively unconstrained [7].

Axions (both the QCD axion and ALPs) come
equipped with natural production mechanisms, such as
the vacuum misalignment mechanism, making them well-
motivated dark matter candidates [8–16]. Of particular
phenomenological interest are ultralight axions, whose

FIG. 1b. The potentials along the lines of constant lifetime in
figure 1a. To interpret this figure, we recognize that each color
corresponds to approximately a single lifetime. Therefore,
thin regions contain the most significant features, while broad
regions, such as the value of the potential near φ/f = ±π,
are the least significant for determining the lifetime. As the
central part of the potential approaches a free theory, the
oscillon must grow in spatial extent because of weak self-
interaction, leading to decoupling of the large bound oscillon
from the short wavelength radiation (see section III A). On
the other hand, some self-interaction is necessary to delay en-
ergetic death, which is why the purple potentials are much
longer-lived than the red ones (see sections III C and IV).

masses can be as low as 10−21 eV [17–24]. Such ultralight
axions lead to novel wave dark matter signatures, includ-
ing effects on the matter power spectrum and structure
formation [15, 25–28], CMB observables [29, 30], and
the formation of compact scalar structures such as ax-
ion minihalos [31–33], gravitationally bound solitons and
axion stars [34–36], and self-interaction bound oscillons
[37–63], the latter of which is the subject of this paper.

As the densest object in this family of bound axionic
structures, oscillons promise dramatic astrophysical sig-
natures, and have therefore been the subject of intense
scrutiny [64–70]. Oscillons have a finite lifespan, and
such phenomena crucially rely on oscillons that are cos-
mologically long-lived. Since dark matter axions are con-
strained by Lyman-α forest measurements to be at least
10−21 eV in mass, their oscillation period is at most 0.1
years [17–20, 22–24]. Therefore, oscillons that survive
14 Gyr until the present day must be stable for at least
1011 oscillations. Simulating an oscillon this long-lived is
at the upper limit of current computational capabilities
[57, 58], and thus indirect methods are required to study
longer-lived oscillons.

Significant progress has been made towards under-
standing the structure and evolution of oscillons in the
last two decades, building on improved computational re-
sources and theoretical understanding [44–63]. Of central
theoretical importance are artificial, exactly-periodic so-
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lutions of the equations of motion, which have been used
to approximate the oscillon’s instantaneous profile and
radiation rate. In rare instances, in which the oscillon
is known to be infinitely long-lived, this approximation
is exact, and the solution is called a breather : a finite
energy periodic solution of the equations of motion. The
most famous such example is the 1+1 dimensional sine-
Gordon breather, which is stabilized by an infinite set
of conserved quantities [71]. Breathers are not known to
exist in 3+1 dimensions. Relaxing the breather’s finite
energy constraint, we find the periodic solutions known
as quasibreathers. These constructions have an infinite
amount of energy residing in their standing-wave tails.
These radiative tails can be understood as an approxima-
tion of the oscillon’s classical radiation amplitude, which
can be used to estimate the oscillon’s lifetime.

In this paper, we further develop the quasibreather
technique into a framework for understanding the classi-
cal properties of oscillons, unifying several observations
made in the literature, and addressing key conceptual
questions about the harmonic structure and stability of
oscillons. By imposing realistic boundary conditions, we
introduce the physical quasibreather (PQB) as the mem-
ber of the quasibreather family closest to a radiating os-
cillon, and arrive at an improved method for calculating
oscillon properties, such as lifetime, radial profile, lin-
ear stability, and frequency content. In the limit of long
lifetimes, our method becomes especially efficient, since
semi-perturbative techniques may be employed to rapidly
compute oscillon radiation. We apply our new meth-
ods to systematically study oscillon lifetimes in periodic
axion potentials, allowing us to probe the genericity of
long-lived oscillons. Moreover, we apply our framework
to expand on existing studies of long-lived oscillons in
monodromy potentials.

We summarize our study of oscillon lifetimes in peri-
odic potentials with parity in the form of longevity land-
scapes, such as the one depicted in figure 1a. There, we
scan the coefficients Vn of the axion potential V (φ) de-
fined as

V (φ) = m2f2
∞∑
n=1

Vn
n2

(
1− cos

(
nφ

f

))
,

∞∑
n=1

Vn = 1 .

(1)

Here, the field φ is the axion field, m its mass, and f its
decay constant. The particular slice through the space of
coefficients in figure 1a is defined by the choice to treat
V1 and V2 as free parameters, while fixing V3 = −1, and
forcing V4 to satisfy the mass constraint, with all other
Vn set to zero. Our numerical techniques based on the
PQB formalism have allowed us to perform this param-
eter sweep in 96 CPU-hours, parallelized down to a few
hours of wall-clock time. We see that the landscape is
broken down into “islands of longevity,” where neighbor-
ing potentials sustain oscillons that are similarly long-
lived. While most of this space supports oscillons in the
range 102 − 104 oscillations, these few tunable parame-

ters in the potential are enough to allow for oscillons that
may live up to 1014 cycles.

The distinct islands in figure 1a correspond to the ac-
tion of two mechanisms that suppress oscillon radiation,
which we identify as totally destructive self-interference
and geometric decoupling. Together, these two effects
comprise the form-factor of the oscillon coupling to
radiation, but we separate them because of their distinct
imprints on the oscillon life-cycle, as depicted in figure
2. Further, the cliffs in figure 1a represent destructive
interference peaks entering unreachable frequencies
beyond the point of energetic death, where the oscillon
is forced to dissipate because of energy conservation.
Here, we briefly review these three effects.

Destructive interference: The bound bulk of the oscillon
is a nearly coherent object, oscillating at frequency ω.
Through the interaction terms of integer order φn+1,
the oscillon bulk behaves as a nearly coherent source of
radiation at multiples of the fundamental frequency nω.
Similar to a diffraction experiment, certain geometries
lead to totally destructive interference, exponentially
confining certain radiation channels at exceptional
frequencies. When the dominant radiation channel
destructively interferes, the radiated power experiences
a sudden ‘dip.’

Geometric decoupling: The size of the oscillon is
inversely proportional to the binding energy per particle√
m2 − ω2, which blows up as ω approaches the rest

mass m (see figure 3). In this limit, the oscillon grows
much larger than the wavelengths of radiation 2π/nω,
causing a separation of scales. As this separation grows,
the smooth oscillon bulk decouples from radiation, which
manifests as an exponential decrease in radiated power
towards the end of the oscillon’s lifetime.

Energetic death: As the oscillon radiates away its
energy, the binding energy per particle decreases,
reducing the oscillon’s central amplitude and increasing
its radius. In three or more spatial dimensions, weak
self-interactions result in a volume growing faster than
can be accommodated by the decreasing central ampli-
tude. Therefore, at frequencies ω approaching the mass
m, there is a point past which an external energy source
is necessary for the oscillon to remain bound. At this
point, the oscillon is forced to undergo a rapid process
of dissipation, which we call energetic death.

These mechanisms explain the structure of the
longevity landscape observed in figure 1a. An island of
longevity starts when a point of destructive interference
(a ‘dip’) emerges from low frequencies (green contour).
As the dip migrates toward higher frequencies, its effect
is enhanced by geometric decoupling, causing lifetime
to increase until the dip moves beyond the frequency
of energetic death, resulting in a longevity ’cliff’ (blue
contour).
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In order to obtain these results, we have applied our
PQB formalism to estimate the evolution of extremely
long-lived spherically symmetric oscillons in isolation. In
doing so, we have made the implicit assumption that
the physical oscillon has relaxed into a state near the
PQB. In order to check that this assumption is valid,
we have performed a detailed linear stability analysis of
the PQB to spherical and non-spherical perturbations,
and we have presented evidence that unstable modes re-
main small enough that our procedure stays predictive
(appendix C).

This paper is structured as follows. Section II in-
troduces the main object of study, the physical quasi-
breather. The oscillon is identified as living in the basin
of attraction of the PQB, which naturally captures no-
tions of oscillon stability. Section III uses the PQB for-
malism to understand the mechanisms of longevity briefly
discussed above, and derives the minimum radiation con-
dition. Section IV applies the mechanisms of oscillon
longevity and death to construct a family of potentials
supporting ultra-long-lived oscillons. Section V applies
our techniques to study the genericity of long-lived os-
cillons, and introduces local and global measures of fine-
tuning. Section VI applies our formalism to well-known
potentials in the literature, re-deriving and expanding
on previous results. Finally, the appendices provide a
detailed technical overview of our formalism, and con-
tain an exhaustive treatment of linear stability, as well
as our numerical workflow. Appendix A provides the
mathematical basis of the PQB. Appendix B details the
numerical procedure for obtaining the PQB. Appendix C
details our linear and nonlinear stability analysis of the
PQB. Appendix D provides technical formulae relevant
for computing the PQB and its linear stability. Appendix
E details our explicit numerical simulations.

II. THE PHYSICAL QUASIBREATHER

The nonlinear wave equation we study in this paper is
of the generic form

0 = φ̈−∇2φ+ V ′(φ/f) . (2)

Here, f is the scale of self-interaction, known as the axion
decay constant. The overdot represents time differentia-
tion, ∇2 is the usual flat-space Laplacian, and V ′ repre-
sents differentiation of the potential V (φ/f) with respect
to the field φ. An oscillon is a finite-energy solution of (2)
that is quasibound by self-interactions. In 3+1 dimen-
sions, which is the focus of our study, all known oscillons
have a finite lifetime because they radiate classical scalar
waves. To understand whether a potential hosts cosmo-
logically relevant oscillons, one needs a robust compu-
tational formalism for obtaining these classical radiation
rates. Here, we introduce the physical quasibreather for-
malism for computing the oscillon radiation and lifetime,
while leaving the more technical details to appendix A.

FIG. 2. This plot illustrates the mechanisms of oscillon
longevity and death described in section III. Here, we plot
the power carried out of the oscillon in the dominant radiat-
ing harmonics as a function of the oscillon frequency ω. The
fundamental frequency ω increases with time, and therefore
may be interpreted as a time coordinate (see figure 3). For
simplicity, we consider a scalar potential with parity symme-
try, leading to radiation at odd multiples of ω due to n → 1
processes. Towards higher frequencies, the size of the oscillon
2π/
√
m2 − ω2 is much larger than the radiation wavelength

2π/(nω), leading to the geometric decoupling of radiation.
As the oscillon becomes more diffuse, its volume grows faster
than its amplitude shrinks, forcing an early energetic death.
At exceptional frequencies, certain radiative harmonics vanish
as a consequence of destructive self-interference.

A physical potential V represents interactions between
an integer number of particles, and therefore possesses a
well defined Taylor series. Consequently, a field oscillat-
ing at fundamental frequency ω will only couple to integer
multiples of ω. Thus, one may look for quasibreather so-
lutions: spherically symmetric, exactly periodic solutions
of the equation of motion (2) of the form

θQB(t, r, ϑ, ϕ) ≡ φ

f
=
∑
n∈N0

Sn(r, ω) sin(nωt+ δn) , (3)

where δn are constant phases, with δ1 = 0 by the choice
of a time coordinate. The harmonic profiles Sn(r, ω) di-
vide into bound modes n < m/ω and radiative modes
n > m/ω. Solutions of this form were first introduced
in [72] and have since been used throughout the oscillon
literature to obtain approximate oscillon solutions (see
[54] for a complete review). Although (3) is a periodic
solution of the equations of motion, it is not an infinitely
long-lived oscillon; the far-field tails of the radiative har-
monics Sn>m/ω decay like r−1, and therefore contribute
infinite energy.

These unphysical, infinite energy radiative tails have
been problematic when interpreting quasibreathers as
approximate oscillons. Furthermore, finding a qua-
sibreather of a specific frequency is underdetermined:
there are as many different quasibreathers of frequency
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FIG. 3. The oscillon’s instantaneous frequency ω(t) and radi-
ated power P (t) plotted as explicit functions of time. These
curves correspond to the generic scenario in figure 2. This
plot illustrates how the oscillon spends most of its life at the
exceptional frequency where the dominant radiating harmonic
vanishes through destructive self-interference.

FIG. 4. The radial profile of the physical quasibreather (PQB)
(solid) and its orthogonal deformation (OD) (dashed) for the
sine-Gordon (SG) oscillon at ω = 0.92m, plotted against ra-
dius in units of the mass m−1. In the limit where the radi-
ation tails are small, this serves as an instantaneous approx-
imation of the internal structure of the oscillon. The first
quasibreather harmonic S1 is exponentially bound, defining
the oscillon bulk. The third harmonic S3 is the dominant ra-
diation mode, followed by the fifth, seventh, and so on. The
spatial and temporal phase of the OD are 90 degrees out of
phase with the PQB in the radiative region, representing out-
going radiation.

ω as there are radiative degrees of freedom, representing
the choice of central amplitudes Sn>m/ω(r = 0, ω). One
proposal to resolve this ambiguity is to pick the quasi-
breather with the minimum radiation amplitude, in an
attempt to minimize the influence of the unphysical ra-
diation tails (see e.g. [54]). Here, we introduce a different
criterion for choosing the quasibreather closest to a physi-
cal oscillon. Instead of demanding that the radiative tails

FIG. 5. The PQB trajectory of the harmonic amplitudes S1

and S3 (red) is plotted on top of the level sets of the effec-
tive potential. The set of all initial conditions corresponding
to quasibreathers is outlined in dotted blue. The particu-
lar example plotted here is of the sine-Gordon equation for
ω = 0.5m.

are minimized, we will require that the quasibreather is
perturbatively close to a radiating solution of (2).

To this end, we introduce the orthogonal deformation
(OD)

θOD(t, r, ϑ, ϕ) ≡
∑
nω>m

cn(r, ω) cos(nωt+ δn) , (4)

whose temporal phase is 90 degrees offset from that of
the quasibreather (3). Note that the sum over n only
includes the frequencies corresponding to modes with ra-
diative tails, nω > m. When added to the standing wave
quasibreather (3), the orthogonal deformation allows for
travelling modes (see figure 4). We then define the fam-
ily of physical quasibreathers (PQB), θPQB, parametrized
by ω, as those quasibreathers which may be orthogonally
deformed θPQB → θPQB + θOD to satisfy purely out-
going boundary conditions at leading order in θOD (i.e.
θPQB + θOD must satisfy the Sommerfeld radiation con-
dition [73]). Note, we will use subscripts to refer either
to a general quasibreather θQB or to a physical quasi-
breather θPQB with an OD partner that together satisfy
the Sommerfeld radiation condition.

The radiative boundary conditions are enforced at spa-
tial infinity, where the wave equation (2) is well approxi-
mated by the Klein-Gordon equation. In this region, the
OD and the radiative tails of the PQB are of the same
amplitude because they represent purely outgoing radi-
ation. Because θPQB is a solution of the equations of
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motion, the perturbation θOD must backreact at second
order O(θ2

OD), and it must obey a homogeneous linear
equation to the same order [74]. Therefore, a PQB with
small radiative tails must have an OD that is small ev-
erywhere, compared to the PQB central amplitude. The
infinite lifetime limit is the limit of no radiation, and
in this case, the PQB approaches a finite energy oscil-
lon. Therefore, the PQB will be the central object in our
study of long-lived oscillons.

To summarize, the following three objects are point-
wise close to one another: the finite energy oscillon, the
PQB, and the orthogonally deformed PQB. This proxim-
ity forms the basis of an expansion of the oscillon, which
we fully develop in appendix A, where the oscillon is un-
derstood to be a stable perturbation of the orthogonally
deformed PQB. As such, oscillon properties (instanta-
neous frequency, stability, radiation, etc.) may be un-
derstood as originating from the nearest PQB. Further-
more, we develop the Floquet analysis of linear pertur-
bations to the deformed PQB in appendix C. Although
linear stability turns out to be a sufficient criterion for
the existence of an oscillon, it is not a necessary condi-
tion, since stable orbits can (and do) emerge at higher
orders. In other words, linear instability does not imply
the dissolution of the oscillon, since nonlinearities con-
trol the size of the linearly unstable perturbations. This
effect has important phenomenological consequences for
the nature of the oscillon evolution (for examples, see
figures 11,13,18a,18b). Specifically, slow quasiperiodic
oscillations around the PQB profile emerge in linearly
unstable regions, with amplitude that depends strongly
on initial conditions.

Below, section II A provides a minimal technical review
of our framework, which will be useful in understanding
the qualitative features of oscillon evolution in section
III. Afterwards, section II B outlines the steps in the nu-
merical workflow of computing the PQB and OD, as well
as the associated oscillon properties such as lifetime.

A. The mode equations

At each stage of its life-cycle, the oscillon may be
viewed as close to a particular physical quasibreather.
This description becomes increasingly precise in the infi-
nite lifetime limit, where radiation goes to zero and the
oscillon evolves slowly. Because the oscillon spends a
long time in the vicinity of a particular physical qua-
sibreather, the notion of the instantaneous frequency ω
becomes well defined. Physically, ω then behaves like an
adiabatic parameter, although formally it serves as an
index to label which physical quasibreather the oscillon
is closest to at a given time. The fact that the oscillon
does remain close to the physical quasibreather family is
a consequence of its attractive properties, which we make
precise in appendix C.

We are now in position to introduce the mode equa-
tions, which describe the spatial profile of the physical

quasibreather at a given frequency ω. In the interest of
a pedagogical introduction, we will consider the partic-
ularly simple case of a single bound harmonic S1 for a
potential with parity V (θ) = V (−θ), and we will keep
only the first radiative harmonic S3.

As outlined above, the potential V is Taylor expand-
able, and therefore factorizes into a sequence of integer
harmonics of the fundamental frequency ω. By restrict-
ing to V (θ) = V (−θ), only the odd harmonics are coupled
to one another, allowing for the following decomposition

V ′(θPQB) ≡ m2f
∑
n=1,3

V ′n(S1, S3) sin(nωt) + . . . , (5)

V ′′(θPQB) cos(n′ωt) (6)

≡ m2
∑
n=1,3

V ′′n,n′(S1, S3) cos(nωt) + . . . ,

where the dots refer to terms proportional to higher fre-
quencies nω, and terms that contain the small harmonics
Sn, n ≥ 5. Inserting the quasibreather and the orthogo-
nal deformation into the equations of motion, we arrive
at the orthogonally deformed mode equations

0 = S′′1 +
2

r
S′1 + ω2S1 −m2V ′1(S1, S3) ,

0 = S′′3 +
2

r
S′3 + (3ω)2S3 −m2V ′3(S1, S3) , (7)

0 = c′′3 +
2

r
c′3 +

(
(3ω)2 −m2V ′′3,3(S1, S3)

)
c3 .

To fully specify the solution to this system, we must pro-
vide 6 boundary conditions: regularity at the origin

0 = S′1(0) = S′3(0) = c′3(0) , (8)

regularity at spatial infinity

0 = S1(∞) , (9)

and radiative boundary conditions [73]

0 = lim
r→∞

∂rrS3(r)−
√

(3ω)2 − 1rc3(r) ,

0 = lim
r→∞

√
(3ω)2 − 1rS3(r) + ∂rrc3(r) .

(10)

To understand these equations, it is helpful to visualize
the evolution of S1 and S3 as the coordinates of a point
particle rolling down a hill, where r is now the time coor-
dinate, and the initial stationary particle is placed so that
it arrives at the saddle located at the origin when r →∞
(see figure 5). Out of the continuum of quasibreather ini-
tial conditions S1(0), S3(0) satisfying this constraint, the
orthogonal deformation selects only one, corresponding
to the PQB.

B. Calculation workflow

Here we review the workflow of estimating the oscillon
lifetime in the physical quasibreather framework, leaving
a more detailed presentation to the appendices.
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1. The harmonics Sn of the PQB may be thought
of as existing in two categories. The perturba-
tive harmonics are those Sn whose amplitude is ev-
erywhere small enough that self-interaction can be
safely neglected. Those Sn for which this is not true
are called non-perturbative. Typically, only a few
non-perturbative harmonics are needed to achieve
numerical convergence. The physical intuition for
whether a harmonic may be treated perturbatively
or not is whether it contributes significantly to the
binding energy compared to the flux radiated per
cycle. In other words, a good rule of thumb for
whether a harmonic is perturbative is whether its
central amplitude is significantly larger than the
leading orthogonal deformation at the origin.

2. The non-perturbative harmonics (which must in-
clude S1) are calculated using a shooting technique,
in which the Sn’s are propagated from the origin to
an outer boundary at r = rout. At this point, the
Sommerfeld radiation condition (10) is used to cal-
culate the OD, cn(rout) and c′n(rout). From these
final conditions, the cn are propagated back to the
origin in the background of the non-perturbative
Sn. One then checks whether the backwards prop-
agated cn’s satisfy regularity at the origin. We per-
form a search over initial conditions Sn(0) until reg-
ularity is satisfied for all cn’s.

3. Having computed the non-perturbative harmon-
ics, an arbitrary number of perturbative harmon-
ics may be computed to linear order by solving a
sparse matrix equation. In other words, once the
hard work of computing the non-perturbative har-
monics is done, one may compute the full spectrum
of the oscillon to arbitrary harmonic order with lit-
tle computational cost. One may then re-shoot the
non-perturbative harmonics in the background of
the perturbative harmonics to account for linear
back-reaction, repeating until converged.

4. The result of these calculations is a semi-non-
perturbative expression for the physical quasi-
breather Sn and its orthogonal deformation cn.
The radiation power in each harmonic is easily
computed as Pn = 2πr2(nω)

√
(nω)2 − 1

(
S2
n + c2n

)
evaluated at the outer boundary. The sum

∑
n Pn

is the PQB approximation to the total power P
radiated by the oscillon.

5. Having calculated the outgoing power P as a func-
tion of the PQB frequency ω, we may approxi-
mate the lifetime of the oscillon near the physical
quasibreather trajectory as T =

∫
dω(dEB/dω)/P ,

where EB is the bound energy in the oscillon, de-
fined as the difference between the PQB and OD
energy (see appendix A 4).

We provide a public implementation of this protocol for
the case of a single non-perturbative harmonic in poten-
tials with parity — a fast and easy-to-use tool to obtain

ballpark estimates of oscillon properties at larger frequen-
cies [75].

III. THE OSCILLON LIFE-CYCLE

Here we review and expand upon previous literature
results [36, 37, 45–58] in order to identify the main mech-
anisms responsible for oscillon longevity and death. We
point out two distinct effects contributing to oscillon
longevity: geometric decoupling and destructive inter-
ference, both of which may be thought of together as
the form-factor of the oscillon coupling to radiation. It
is important to separate form-factor into these two ef-
fects because they intervene at different times, and have
different consequences for oscillon evolution. Often, an
oscillon’s lifetime is dominated by one mechanism or the
other, while the longest lived oscillons take advantage of
both simultaneously. Separately, as the oscillon ages and
grows more diffuse, it will inevitably undergo an ener-
getic death, beyond which its energy would be forced to
unphysically increase. These three effects are all pointed
out in figure 2, which depicts the typical radiation his-
tory of an oscillon. Below, we provide a semi-quantitative
overview of these three effects.

A. Geometric decoupling

Recall that the oscillon is a smooth, nearly coher-
ent object, coupling to integer multiples n of its fun-
damental frequency ω through many-to-one interactions
at leading order φn+1. As the oscillon radiates bind-
ing energy throughout its life, its fundamental frequency
increases towards m (see figure 3), and its typical size

2π/
√
m2 − ω2 blows up, where

√
m2 − ω2 is the binding

energy per particle. Therefore, a natural separation of
scales occurs between the length scale of radiation 2π/nω
and the size of the oscillon, leading to an exponential
suppression of the oscillon’s coupling to radiative modes
nω, n ≥ 2. According to a standard Riemann-Lebesgue
suppression argument, the ratio of the nω harmonic am-
plitude to the fundamental harmonic central value scales
as γn, with

γ ≈ exp

[
−G ω√

m2 − ω2

]
, (11)

where G is an order 1 geometrical factor, used here as a
stand-in for the exact shape of the oscillon. The fact that
the geometrical factor G is in the exponent shows that
even modest changes in the oscillon’s shape can dramat-
ically change its lifespan, emphasizing the importance
of accurately resolving the oscillon geometry. Moreover,
because the factor ω/

√
m2 − ω2 becomes larger as ω ap-

proaches m, the differences between potentials will be
exaggerated in this limit, while low-frequency oscillons
will typically be similar to one another (see figures 11
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FIG. 6. A physical model for an oscillon radiating into the
third harmonic. The black line represents the background os-
cillon source φ3, while the red lines represent the amplitude
of the radiated field. The spherical symmetry of the oscil-
lon imposes boundary conditions at the origin which behave
like an optical mirror: an inward propagating spherical wave
is reflected at the origin, propagating back outward with the
opposite phase. The result is that the oscillon radiation may
experience two kinds of self-interference: interference from
the physical extent of the source, analogous to diffraction of a
laser beam through a finite-width slit, and interference due to
the spherical symmetry of the oscillon, represented by the mir-
ror. At certain oscillon frequencies, these two effects conspire
to destructively interfere, trapping a nominally free harmonic.

and 12 for an example). As a consequence of this grow-
ing separation of scales, oscillons whose frequency ω ap-
proaches the mass m radiate at increasingly suppressed
rates, so that the last phase of the oscillon’s life is often
the longest. We refer to this general trend as geometric
decoupling.

B. Destructive interference and the minimum
radiation condition

Throughout the oscillon lifetime, radiative harmonics
are subject to self-interference, which is totally destruc-
tive at exceptional frequencies. At these points, destruc-
tive interference completely confines specific harmonics,
and subverts the expected radiation hierarchy implied
by geometric decoupling. When the leading harmonic is
confined, the overall radiation amplitude shrinks by an-
other global factor of γ. For many especially long-lived
oscillons, a period near harmonic confinement dominates
the total lifetime. In principle, it is possible to imag-
ine engineering ultra-long-lived oscillons by aligning the
destructive interference of multiple harmonics, leading
to additional suppression by γ`, where ` is the number
of aligned exceptional points. In practice, these con-
structions are necessarily fine tuned, since each resonance
must be aligned to order γ`−1.

1. Interferometric analogue

The basic physics of oscillon radiation is captured by
the physical model in figure 6, which describes an in-
terference experiment reminiscent of the classic Lloyd’s
mirror. In this simple one-dimensional setup, a coher-
ent, finite-sized, optical source at r > 0, representing the
oscillon’s coupling to the radiative harmonic, is placed
in front of a mirror at r = 0, representing the spherical
symmetry of the oscillon. Each point in the source ex-
periences interference both from its reflection, and from
its neighbors. Let the spatial location and magnitude of
the source be described by J̃ (r). The direct radiation
reaching the observer is therefore

Adirect(t, r) =

∫ ∞
0

dx J̃ (x) ei[ωt−k(r−x)] . (12)

On the other hand, the reflected light paths sum up to
an amplitude:

Areflected(t, r) =

∫ ∞
0

dx J̃ (x) ei[ωt−k(r+x)+π] , (13)

where, crucially, a half-wavelength path difference is
picked up upon reflection at the mirror. This is equiva-
lent to enforcing the usual regularity conditions at the
origin in a spherically symmetric field solution. Fi-
nally, the observer adds up these contributions coher-
ently, which explicitly leads to an amplitude equal to the
sine-transform of the source:

Aobs(t, r) = Adirect(t, r) +Areflected(t, r) ,

= 2ei[ωt−kr+π/2]

∫ ∞
0

dx J̃ (x) sin(kx) .
(14)

In the following section, we derive a similar result from
the mode equations of the PQB, and quantify corrections
to this simplified picture.

2. The physical quasibreather picture

In the previous section, we introduced a simple inter-
pretation of the oscillon radiation in terms of the inter-
ference of a coherent source with its own reflection. Here
we study the mode equations (7), in which the first ra-
diative harmonic S3 and the orthogonal deformation c3
are treated as a perturbation of the fundamental S1. Un-
der this perturbative assumption, the mode equations for
the radiative harmonic S̃3 ≡ rS3 and its orthogonal de-
formation c̃3 ≡ rc3 further simplify to the frictionless
linear system

S̃′′3 (r) + k2
S(r)S̃3(r) = rJ3(r) , (15)

c̃′′3(r) + k2
c (r)c̃3(r) = 0 . (16)

Here, kS and kc represent the r-dependent wavenumbers
of the third harmonic S3 and c3 in the background of
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the fundamental harmonic S1, and rJ3(r) corresponds
to the 3 → 1 processes generating the radiation. Note,
the wavenumber is different for the third harmonic S3

and its orthogonal deformation c3, a distinction explic-
itly derived in the appendix result (D9). There, we find
that the difference between kS and kc appears at sixth
order in a Bessel expansion of the background, and there-
fore is typically small, making the approximation kS = kc
quantitatively good in most circumstances. We can solve
the linear system analytically in terms of two linearly
independent solutions yS1,2(r) and yc1,2(r) of the homo-
geneous equations. In this case, the expression for the
Green’s function is simple and the full solution becomes
a sum of homogeneous (defined by initial conditions) and
inhomogeneous contributions, of the form:

S̃3(r) =aH
1 y

S
1 (r) + aH

2 y
S
2 (r)+

+ yS1 (r)

∫ r

0

dr′ r′ J3(r′)
yS2 (r′)

WS(r′)
(17)

− yS2 (r)

∫ r

0

dr′ r′ J3(r′)
yS1 (r′)

WS(r′)
,

c̃3(r) =bH1 y
c
1(r) + bH2 y

c
2(r) , (18)

where WS(r) ≡ yS1 (r)yS2
′
(r) − yS1

′
(r)yS2 (r) is the Wron-

skian. Let yS,c1 be the sine-like solution (nonzero deriva-

tive at r = 0) and let yS,c2 be the cosine-like solution
(zero derivative at r = 0). Regularity at the origin re-
quires that only sine-like initial conditions are allowed,
constraining the cosine-like terms to be zero bH2 = aH

2 = 0.

In the far-field region, all solutions yS,c1,2 are simple
combinations of sines and cosines of frequency k3 =√

(3ω)2 −m2. However, orthogonality between y1 and
y2 is generally not maintained into the far-field. With-
out loss of generality, we can introduce phase-shifts to
express these misalignments,

yS1 = sin(k3r) , (19)

yS2 = cos
(
k3r + ϕS2

)
, (20)

yc1 = sin(k3r + ϕc1) , (21)

with the understanding that when these phase-shifts
are zero, we regain the simple constant-wavenumber
Helmholtz solutions. These phase-shifts can in principle
be computed in the WKB approximation. Furthermore,
we define the orthogonal components ys = sin(k3r) and
yc = cos(k3r) against which we can project the shifted
solutions, leading to

yS1 = ys , (22)

yS2 = yc cosϕS2 − ys sinϕS2 , (23)

yc1 = yc sinϕc1 + ys cosϕc1 . (24)

Substituting, we collect the orthogonal contributions to
the radiative tails as

S3(r)r −−−→
r→∞

ys(a
H
1 + aI

1 + aI
2 sinϕS2 )− ycaI

2 cosϕS2 ,

c3(r)r −−−→
r→∞

ysb
H
1 cosϕc1 + ycb

H
1 sinϕc1 , (25)

where aI
1 and aI

2 are fixed, representing the total inho-
mogeneous contribution from the oscillon background

aI
1 =

∫ ∞
0

dr′ r′ J3(r′)
yS2 (r′)

WS(r′)
, (26)

aI
2 =

∫ ∞
0

dr′ r′ J3(r′)
yS1 (r′)

WS(r′)
. (27)

Radiative boundary conditions (10) match the coeffi-
cients of ys and yc between S3 and c3, which uniquely
determines the homogeneous degrees of freedom,

bH1 = aI
2 cosϕS2 secϕc1

aH
1 = −aI

1 + aI
2(− sinϕS2 + cosϕS2 tanϕc1).

(28)

Consequently, the solution simplifies to

S3(r)r = aI
2 cos

(
ϕS2
)
(ys tanϕc1 − yc) , (29)

c3(r)r = aI
2 cos

(
ϕS2
)
(ys + yc tanϕc1) . (30)

In other words, the amplitude of the radiation is always
proportional to the inhomogeneous contribution aI

2. At
exceptional frequencies, this contribution is exactly zero
and the harmonic experiences totally destructive interfer-
ence; this is visible in the power versus frequency plots
as a sudden drop (see figures 11 and 12 for example).
Therefore, in this linear model the condition for totally
destructive interference is

0 =

∫ ∞
0

dr′ r′ J3(r′)
yS1 (r′)

WS(r′)
. (31)

In the case of a flat wave-number, i.e. Helmholtz sys-
tem, this is precisely the sine-transform of the source, as
predicted by the simple interferometric model. Because
totally destructive interference is equivalent to a single
constraint on one free parameter ω, we conclude this ef-
fect is generic, and not the result of some fine tuning.

To reach this result, we have effectively solved for the
physical quasibreather, defined by the choice of aH

1 in
(28), at the level of the third harmonic and in a lin-
ear approximation. In previous literature (e.g. [54]), a
different quasibreather was highlighted as relevant in ap-
proximating the oscillon, namely the minimum-radiation
quasibreather. This corresponds to a different choice of
homogeneous parameters; in this case, the construction
of c3 is irrelevant and the value of aH

1 is chosen such that
S3 is minimized at the level of (25), specifically by pick-
ing:

aH
1 = −aI1 − aI2 sinϕS2 . (32)

We see that this differs from the physical quasibreather
answer (28) by an additional aI

2 cosϕS2 tanϕc1, which is
zero in the case when ϕc1 = 0, i.e. when the wavenumbers
kS(r) and kc(r) are identical functions of r. While typi-
cally small, differences between kS(r) and kc(r) appear at
higher-orders in the background, and are not guaranteed
to be perturbative — as derived below in appendix D 1.
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Therefore, the minimum-radiation quasibreather and the
physical quasibreather are generally close but distinct,
and are identical only at the exceptional ‘dip’ frequency
where both predict zero radiative tails.

C. Energetic death

As explained in section III A, the spatial extent of
the oscillon increases as it radiates away its binding en-
ergy. On the other hand, the balance between self- and
binding-energy demands that the oscillon’s central am-
plitude decreases. Depending on the number of spatial
dimensions, one effect or the other dominates the oscil-
lon’s total energy as ω approaches m. In particular, in
three or more spatial dimensions, the volume turns out
to grow faster than the central amplitude shrinks. The
oscillon’s parent PQB also obeys the same scaling rela-
tion, and at some point the bound energy in the PQB
will necessarily begin to increase. To keep up, the os-
cillon would need a source of energy; in its absence, the
oscillon is forced off the PQB trajectory, in a process we
call energetic death.

To make these ideas precise, we can invoke the mode
equations (7), in the limit of small central amplitude
S1(0). Note, because the oscillon’s volume is large, it is
geometrically decoupled from radiation according to the
argument in section III A, and therefore it is safe to ne-
glect backreaction from the radiative harmonics. Keep-
ing only the leading quartic nonlinearity in the potential,
S1 is described by

0 = S′′1 +
d− 1

r
S′1 − (m2 − ω2)S1 +

3

4
m2λS3

1 . (33)

Here, d is the number of spatial dimensions. To extract
the scaling of S1(0), we match the binding energy of the
oscillon to its self-energy, leading to

(m2 − ω2)S2
1 ∼ m2λS4

1 . (34)

Therefore, the scaling of the central amplitude is inde-
pendent of dimensions, namely

S1(0) ∝
√
m2 − ω2 . (35)

On the other hand, since the spatial extent of the oscillon
scales like scale 1/

√
m2 − ω2 (as seen in section III A), its

volume must increase according to

V ∼
(
m2 − ω2

)−d/2
. (36)

Combining these two scalings results in the oscillon’s to-
tal energy

E ∝ V S1(0)2 ∝
(
m2 − ω2

)1−d/2
, (37)

which grows as ω approaches m for spatial dimension
d ≥ 3. In other words, the expectation that the oscillon
energy decreases as a function of ω is only true up to a

specific frequency strictly less than m. Beyond this point,
the oscillon energy is forced to increase as a result of weak
self-interaction. Such an increase is unphysical, and the
value of ω at which the PQB’s energy is minimized sets
the moment of death. For an earlier argument along these
lines, see [47, 54].

For an explicit comparison, take the d = 1 sine-Gordon
oscillon, which has a simple analytic form

φ = 4 arctan

[ √
m2 − ω2 cosωt

ω cosh
√
m2 − ω2x

]
. (38)

In the ω → m limit, the energy of the sine-Gordon oscil-
lon is exactly 16

√
m2 − ω2, which matches our predicted

scaling.
All the examples of oscillons studied in sections IV,

V and VI live in three spatial dimensions, and there-
fore exhibit an energetic death. In other words, for each
oscillon there is a specific frequency strictly less than m
beyond which the scalar field may no longer exist close to
a PQB. After this point, our formalism no longer applies,
and the oscillon is considered “dead.” Afterwards, grav-
ity may take over leading to the formation of much more
diffuse configurations such as axion stars [35, 36]. In our
numerical simulations, this moment of death is distinctly
visible as a “loop,” representing the rapid conversion of
the oscillon into radiation through 3 → 1 processes (see
figures 11, 13, and 14).

IV. A PRESCRIPTION FOR OSCILLON
LONGEVITY

Here we provide a procedure for generating potentials
that support cosmologically long-lived oscillons. In sec-
tion III, we explained how the longest-lived oscillons ex-
hibit a combination of geometric decoupling and destruc-
tive interference. Geometric decoupling refers to the sup-
pression of radiation when the oscillon size is much larger
than the radiation wavelengths, which is especially pro-
nounced at large frequencies ω close to m. For a large
oscillon, the interferometric ‘fringe pattern’ also occurs
more rapidly, leading to more instances of destructive
interference which further suppresses radiation. Thus,
we may find long-lived oscillons by searching for poten-
tials that support large oscillons at frequencies ω close to
m. An apparent obstacle to this goal is due to energetic
death (see section III C), which limits the frequencies for
which the oscillon can have decreasing energy as a func-
tion of ω. In the following, we identify a feature in the
scalar potential that can stave off energetic death and
produce large oscillons.

In section II, we introduced the mode equations (7)
obeyed by the radial profiles of the PQB harmonics
Sn(r), and the sense in which these harmonics may be
thought of as the coordinates of a point particle, whose
initial condition is tuned so that (S1, S3, . . . ) = ~0 at
r = ∞. Here we aim to study the longest-lived oscil-
lons, whose radiation is necessarily small. Moreover, we
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will focus on large frequencies ω ≈ m, for which higher
harmonics are further suppressed by a natural separa-
tion of scales ω �

√
m2 − ω2. Therefore, we will drop

the higher harmonics n ≥ 3 in this section’s analysis, and
work with a simplified 1-dimensional point-particle pic-
ture, representing the radial profile of the fundamental
mode, S1(r).

We now introduce the equations that govern S1 from
first principles, using an effective action technique, equiv-
alent to the PQB formalism for a single bound harmonic.
The Lagrangian describing the real scalar φ is

L[φ] =

∫
d3x

[
1

2
φ̇2 − 1

2
∇2φ2 − V (φ)

]
. (39)

Because both V and φ are proportional to f2 (as in (1)),
f is an overall factor in the action, and therefore does
not contribute to the dynamics. Hence, for the rest of
this section, we will work in units of f = 1. Since we
are looking for quasiperiodic, spherically symmetric so-
lutions dominated by the fundamental mode, we substi-
tute φ = S1(r) sinωt and integrate out time, leading to
the effective action for S1:

Seff[S1] =

∫ 2π
ω

0

dtL[S1 sinωt] , (40)

= −π
ω

∫
4πr2 dr

[
1

2
S′1(r)

2 − Veff(S1)

]
. (41)

By integrating out time, we arrive at an action for a point
particle S1(r), where r acts like a time coordinate, and
the resulting effective potential is

Veff[S1] ≡ 1

2
ω2S1(r)

2 − ω

π

∫ 2π
ω

0

dt V (S1 sinωt) . (42)

Finally, the equation of motion for S1 arising from this
effective action carries a 2/r friction term from the spher-
ical Jacobian

0 = S′′1 +
2

r
S′1 + V ′eff(S1) , (43)

where V ′eff represents the derivative of Veff with respect
to S1.

A solution of these equations which describes an oscil-
lon profile needs to respect regularity conditions at r = 0
and r = ∞, corresponding to S′(0) = 0 and S(∞) = 0.
All solutions which respect regularity at r =∞ must ex-
ponentially decay, since Veff behaves like a quadratic hill-
top − 1

2 (m2 − ω2)S2
1 for small S1. From the perspective

of the point particle, this means that initial conditions
are tuned such that S1 has just enough energy to climb
up the hilltop at 0.

In order to engineer large oscillons, we need the particle
S1 to stay at small velocities so that the oscillon interior
spreads out. Initializing on a hillside of Veff is detrimental
to this goal, since the slope of Veff controls the speed of
S1, typically leading to a small oscillon core. On the

FIG. 7. Effective potential Veff(S1) for a long-lived oscillon, at
three nearby frequencies. The example is obtained using the
frustrated quadratic method defined in (44) with m2

f = 0.9m2

and b = 2, computed using three Fourier coefficients V1,2,3

with V3 forced to satisfy the mass constraint in (1). We see
that as ω passes through the frustrated mass mf , new so-
lutions to the equations of motion (43) emerge, specifically
when the local maximum of the effective potential increases
to positive values. The balls are placed at the values S1(0)
which initialize physical oscillon solutions at the respective
frequencies ω. The inset figure shows the trajectories of the
smallest-amplitude solutions of (43) for each of the three po-
tentials plotted.

FIG. 8. Lifetime versus frustration for oscillons in frustrated
quadratic potentials, computed using three and four Fourier
coefficients (see equation (44)). The lifetimes are integrated
over the interval ω ∈ [0.8, 0.999] in the one-non-perturbative
harmonic PQB formalism. We speculate that introducing
more Fourier coefficients leads to longer-lived oscillons, since
the frustration mass can be closer to m before self-interactions
become repulsive, leading to enhanced geometric decoupling.
The line of best fit for three coefficients (dashed purple) is
log10(mt) = 28(mf/m)2− 11, and the best fit with four coef-
ficients (solid blue) is log10(mT ) = 39(mf/m)2 − 21.
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other hand, releasing S1 close to a hilltop allows S1 to
remain at low velocities for a time inversely proportional
to the initial displacement of S1 from the hilltop.

Therefore, we need to connect hilltop-initialized solu-
tions (i.e. low central velocity) to physical solutions (i.e.
which arrive at S1(∞) = 0). To compensate for the en-
ergy lost by 2/r friction, a physical solution must be ini-
tialized with positive potential energy (where we’ve nor-
malized Veff(0) = 0). Effective potentials which satisfy
these two conditions will have non-trivial local maxima,
whose hilltop is higher than 0 (see figure 7).

Here we reverse engineer a class of scalar potentials
V (φ) which generate effective potentials Veff(S1) with
the aforementioned hilltops. This construction makes use
of the fact that the mass term in the effective potential
Veff(S1) acquires an ω2 offset compared to the mass term
in the scalar potential V (φ). Based on this observation,
we introduce the family of frustrated quadratics, whose
Fourier coefficients (in the basis expansion (1)) are cho-
sen as the solution to the following optimization problem:

minimize max
φ∈[−b,b]

∣∣∣∣V (φ)− 1

2
m2
fφ

2

∣∣∣∣ ,
subject to V ′′(φ = 0) = m2 ,

(44)

where 0 < b < π, and 0 < mf < m is the frustrated mass.
In other words, we are forcing the potential to have mass
m at small φ, and a different, smaller mass mf at larger
φ. For frequencies ω close to mf , the effective potential
Veff will consist of a series of hills and valleys inside the
interval S1 ∈ [−b, b], whose amplitude is controlled by
how tightly the objective (44) is optimized.

As local hilltops in such potentials rise above the zero-
potential line, new oscillon solutions emerge. When the
hilltop is precisely at the zero-line, this new solution is
wholly unphysical, carrying infinite energy. As ω in-
creases, this hilltop is pushed upwards, and S1(0) starts
with more potential energy that needs to be dissipated
through friction. As a consequence, S1(0) starts further
from the hilltop so that it begins rolling earlier while
the 2/r friction is still active, corresponding an oscillon
with a smaller radius and less energy (see the inset of
figure 7). Even though this branch may appear at very
large ω close to m, this effect guarantees there is some
finite range of frequencies over which the energy of these
solutions decreases, meaning a physical oscillon can be
supported.

In figure 8, we plot the lifetime of oscillons in frustrated
quadratics as a function of the frustration m2

f/m
2. The

frustration mass mf controls the frequency at which new
hilltop solutions emerge. As mf increases towards m,
the appearance of these new branches occurs at larger
frequencies, taking advantage of enhanced geometric de-
coupling and leading to longer lifetime. Increasing the
number of Fourier coefficients in the potential reduces
the height of the hilltops in the effective potential, allow-
ing them to emerge at larger frequencies. Further, higher
frequencies in the potential pushes the hilltops closer to

S1 = 0, allowing for lower-energy oscillons. We spec-
ulate that a fixed number of Fourier coefficients in the
potential implies an upper bound on oscillon lifetimes,
although we leave this question to future work.

V. IS LONGEVITY FINE-TUNED?

There are many known examples of potentials which
support very long-lived oscillons, including those iden-
tified in section IV. However, the precise form of these
potentials remains largely unconstrained by a UV theory,
and therefore it is not clear how to assess whether their
longevity is a result of fine-tuning, since the distribution
from which the potential coefficients are sampled strongly
influences the lifetime. Therefore, we introduce two no-
tions of tuning that attempt to quantify the difficulty of
constructing a theory with a long-lived oscillon:

1. Global Tuning asks what fraction of parameter
space hosts long-lived oscillons. A typical object
of study is the probability distribution of lifetimes,
sampled with minimal priors over the potential co-
efficients in some natural basis.

2. Local Tuning asks whether a given long-lived oscil-
lon is sensitive to variation in its potential param-
eters. The typical objects of study are the local
gradient and curvature of the lifetime with respect
to the parameter space at the point in question.

In sections V A and V B, we address the genericity
of long-lived oscillons in periodic potentials with par-
ity. The advantage of studying periodic potentials is that
they are naturally expanded in the Fourier basis. With-
out any theoretical priors, a natural scale for the Fourier
coefficients is m2f2, and variations will be of the same
size.

One may also be interested in studying the genericity
of long-lived oscillons in monodromy potentials [76–78].
Since an oscillon has a finite amplitude, one may restrict
the aperiodic monodromy potentials to a compact inter-
val, which is fully described by a Fourier expansion. How-
ever, any realistic model of axion monodromy is asymp-
totically a power law, meaning the high frequency modes
of the potential are perfectly correlated. To sample the
full space of monodromy potentials, one must sample
from a distribution that imposes this correlation. In the
absence of a reliable way to select coefficients from this
distribution, we leave this question to future work. In-
stead, in section VI A, we scan the one-parameter family
of monodromy potentials studied in [50, 57, 58].

A. Global tuning

In this section, we study the distribution of oscillon
lifetimes as a function of the potential coefficients in the
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FIG. 9. Accessible oscillon lifetimes in a periodic potential
with two degrees of freedom V1,V2. Here V3 is constrained
such that the mass is fixed to m, with all other Vn≥4 = 0.
The red region indicates parts of the parameter space where
φ = 0 is not a global minimum of the potential, and has sig-
nificantly shorter lifetimes. The stars indicate potentials for
which we have compared our formalism with multiple non-
perturbative harmonics to direct numerical simulation (see
Figure 11). The peninsula of longevity corresponds to the
emergence of a frequency at which the third harmonic ex-
periences totally destructive interference at ‘dips.’ The yel-
low banding corresponds to the migration of dips to higher
frequencies, where geometric decoupling suppresses the fifth
harmonic, increasing the impact of the dip. At the upper
right of these bands, the dip migrates to frequencies higher
than that of energetic death, creating a longevity cliff.

Fourier basis. In particular, we will consider periodic
potentials with parity

V (θ) = m2f2
∞∑
n=1

Vn
n2

(1− cosnθ) ,
∞∑
n=1

Vn = 1 , (45)

where the sum of the coefficients Vn constrains the mass
of φ to be m. In Figure 9, we plot the lifetime versus the
free variation of the first two coefficients n = 1, 2 with
the third constrained so that the sum in (45) is satisfied,
with all other Vn set to zero. The mass constraint in (45)
naturally sets the typical scale of Vn to 1. Therefore, we
restrict our study to Vn in the range [−1, 1], inspired in
part by the fact that the QCD axion potential has order
1 coefficients in this basis (see equation (51)).

Figures 9 and 10 provide illustrative examples of some
important qualitative features of the distribution of oscil-
lon lifetimes. First, we observe islands of longevity, seen
in figure 9 as localized regions of exceptionally long life-
times. In figure 10, this feature is manifested as plateaus

FIG. 10. The distribution of oscillon lifetimes for 1 (yel-
low), 2 (gray), and 3 (red) degrees of freedom in a peri-
odic potential. We uniformly sample the nDOF-dimensional
cube V1, . . .VnDOF ∈ [−1, 1] restricting the potential such that
φ = 0 is a global minimum, and VnDOF+1 is fixed such that
the mass is m, with the remaining Vn set to 0. Lifetimes are
computed in the interval ω/m ∈ [0.8, 0.995] in the single-non-
perturbative-harmonic approximation. The geometric sup-
pression of the radiative modes means that these frequen-
cies likely dominate the oscillon lifetime, and that the per-
turbative radiation approximation is typically good. We see
that each new degree of freedom is observed to introduce a
new island of longevity (island 1 log10 mT ∈ [0, 4], island 2
log10 mT ∈ [4, 9], island 3 log10 mT ∈ [9, 14]).

FIG. 11. The power radiated by the oscillons in the poten-
tials denoted by stars in figure 9. The dark curves are data
from explicit numerical simulations (see appendix E), while
the lighter curves are computed in the PQB formalism. The
PQB predictions become dotted in regions of linear instabil-
ity, as computed using the methods described in appendix
C. Notice that at low frequencies, the oscillon power curves
are of similar magnitude, diverging at larger frequencies due
to geometric decoupling, as explained in section III A. The
loops at the end of the simulations correspond to the oscillon
rapidly converting into 3ω modes past the point of energetic
death, causing the measured frequency at the origin to briefly
grow larger than 1.
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in the distribution of lifetimes. We observe that each suc-
cessive degree of freedom introduces a new longer-lived
island of longevity which we observe to be exponentially
more long-lived than the last. The probability of landing
on one of these islands decreases with a scaling expected
to be exponential in the number of degrees of freedom.

With these observations in mind, we introduce a no-
tion of global tuning based on the cumulative probabil-
ity of finding an oscillon at least as long-lived. Therefore,
smaller values of this probability mean more extreme out-
liers, and thus higher degrees of global tuning. For exam-
ple, according to our PQB simulations, summarized by
figure 10, an oscillon of lifetime log10mT = 3 is tuned to
one part in 2 (or 50%). Oscillons of lifetime log10mT = 7
are tuned to one part in 8 (or 10%), and oscillons of life-
time log10mT = 12 are tuned to one part in 400 (or
0.2%). Finally, the longest lived potential we observe in
our search lives roughly log10mT = 14, and its tuning is
roughly one part in 3000, or 0.03%, although longer-lived
oscillons may still reside further up the distributional tail.

B. Local tuning

As opposed to global tuning, which deals with the
statistics over large volumes of parameter space, local
tuning attempts to quantify the sensitivity of an oscil-
lon’s lifetime to variations in its potential coefficients. If
we understand the lifetime mT as a function of the poten-

tial coefficients ~V ≡ {V1, . . . }, we can naturally introduce
a local approximation of mT as a function of its gradient

and curvature, writing ~V = ~V0 +δ~V, and mT (~V0) = mT0,

Gi =
∂ log10mT

∂Vi
, Kij =

∂2 log10mT

∂Vi∂Vj
,

log10mT = log10mT0 + ~G · δ~V +
1

2
δ~V ·K · δ~V .

(46)

In terms of this local approximation, we may quantify

the sensitivity of the lifetime to local variations in ~V,
as the minimum relative displacement of the potential

coefficients ||δ~V||/||~V0|| necessary to change the lifetime
by an order of magnitude log10mT0 ± 1. In other words,
our local tuning metric is the solution to the following
constrained optimization problem,

minimize ||δ~V||/||~V0|| ,

subject to

∣∣∣∣~G · δ~V +
1

2
δ~V ·K · δ~V

∣∣∣∣ > 1 .
(47)

We denote the minimal value ν ≡ ||δ~V||/||~V0||.
Consider the potential ~V = (1, 1/2,−1), for which an

oscillon lives approximately log10mT = 14. Using the
above measure of tuning, and a grid based approxima-
tion to the gradient and Hessian, we calculate ν ≈ 0.03.
In other words, a 3% variation in the potential parame-
ters corresponds to an order of magnitude change in the
lifetime of the oscillon. This is substantially less tuned

than one would expect from our global metric, in which
this potential is 0.03% tuned. This is a reflection of the
structure of the lifetime landscape, which contains islands
of stability seen in figures 1a, 9 and 10.

VI. ILLUSTRATIVE EXAMPLES

Here we apply our framework to a series of potentials
that have been studied extensively in previous literature,
with the aim to reproduce and expand upon known re-
sults. The main goal is to show how our methods can
accommodate a wide variety of potentials: both with
or without parity, and with or without periodicity. We
compare the results of our PQB framework to explicit
numerical simulation. When simulating the equations of
motion explicitly (as in appendix E), the wall-clock time
is at least proportional to the oscillon lifetime, which be-
comes computationally prohibitive for lifetimes beyond
1010/m. Our framework can bypass this scaling since
time has been explicitly integrated out, allowing us to
predict the existence of very long-lived oscillons, well in
excess of the lifetimes we can simulate explicitly.

The results of this section are presented in the form
of “power vs frequency” curves, which represent the in-
stantaneous flux radiated by the oscillon at a particu-
lar fundamental frequency ω. The oscillon fundamental
frequency ω monotonically increases with time, and can
therefore be thought of as a time coordinate. For a de-
tailed review of how to interpret these plots and their
features, see figure 2.

A. Axion monodromy

Monodromy refers to the non-trivial winding of an ax-
ionic degree of freedom, which effectively endows the ax-
ion with an aperiodic potential at low energies [7, 76, 77].
In general, the resulting monodromy potentials share the
property that they asymptote to a power law at large
field values. A common family of potentials which inter-
polate between the asymptotic power-law and the small-
field mass m is

V (φ) =
m2f2

p

[(φ
f

)2

+ 1

]p/2
− 1

 , (48)

where p scans the asymptotic power-law. The potential
(48) has been widely studied, and has been shown to
support very long-lived oscillons, in excess of 1010 cycles
[50, 52, 57, 58].

In figure 12, we summarize our study of the oscillon
life-cycles as we scan p from −8 to −1. In general, we
find good agreement with the results of [58]: the power
versus frequency curves and lifetimes broadly match the
predictions of [58] in the cases we have mutually studied
p = −8,−5,−4,−1 although there are minor differences.
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FIG. 12. The instantaneous decay rate P/EB of the oscil-
lons in the monodromy potentials (48) for p = −1, . . . ,−8,
calculated in the PQB formalism, versus the results of Olle
et al. [58]. Here, the power P and binding energy EB are
computed as in section II. As p scans from −8 to −1, the
third harmonic dip migrates to larger frequencies where the
fifth harmonic is further suppressed by geometric decoupling,
leading to increased lifetime. To obtain the PQB results, we
start with a two-non-perturbative harmonic approximation
and used three non-perturbative harmonics to obtain better
accuracy near the dips. At frequencies below the dip fre-
quency, we see a small shift in the PQB formalism vs [58],
which may arise from the need to use more non-perturbative
harmonics at lower frequencies or because the Fourier series
representation of (48) converges slowly.

As p increases from −8 to −1, the lifetime of the cor-
responding oscillon increases dramatically, from 106 to
1010 cycles. This is due to the simultaneous action of
the two longevity mechanisms identified in section III.
Specifically, the third harmonic experiences totally de-
structive interference at an exceptional frequency that is
larger with increasing p. Therefore, as p grows, the third
harmonic dip moves deeper into the frequencies where ge-
ometric decoupling dominates, which further suppresses
the fifth harmonic.

A natural conjecture is that the oscillons of (48) are
unusually long-lived because of the asymptotic power law
in the potential. However, our results in figure 12 indicate
that longevity is dominated by large frequencies, where
field amplitudes are too small for the asymptotic behavior
to take over. In particular, for p = −1, the field ampli-
tude at the origin is roughly φ(0) ≈ 1.5f , far too small to
be sensitive to the flatness of the potential at large φ/f .
Therefore, we conjecture that it is not the asymptotic
form, but the details of the connection between 1

2m
2φ2

and φp that determine the oscillon lifetime.

In the oscillon literature, many examples of extremely
long-lived oscillons are obtained with monodromy poten-
tials. Thus, a natural question is whether all monodromy
potentials share a common feature leading to longevity,
or whether simple examples such as (48) happen to live

FIG. 13. Comparison of the explicitly simulated φ4 oscillon
(black) with the physical quasibreather trajectory (red) trun-
cated to the leading three harmonics C0, S1, C2 (in the nota-
tion of appendix A), all treated non-perturbatively. The os-
cillating behavior is a symptom of linear instability, although
crucially, it does not destroy the oscillon, since the size of the
oscillations is controlled by nonlinearity. For technical details
of the explicit simulation, see appendix E.

in a tuned island of longevity. In the language we intro-
duced in section V A, in order to quantify the link be-
tween monodromy and longevity we would need to know
the probability distribution from which monodromy po-
tentials are chosen. In the absence of this non-trivial
construction, we are left with a case-by-case analysis of
particular potentials, which, in this probabilistic view,
may suffer from sampling bias.

B. φ4 theory

φ4 theory is the quintessential example of sponta-
neously broken parity symmetry. It is well known to host
moderately long-lived oscillons, which have been studied
in previous work [37, 44, 51, 52, 55]. Shifting to the bro-
ken vacuum and fixing the mass of φ = θ/f to be m, we
arrive at the following parity-violating potential

V (θ) = m2f2

(
1

2
θ2 − 1

2
θ3 +

1

8
θ4

)
. (49)

In order to properly compute the physical quasibreather
in this potential, the first three harmonics C0, S1, C2

must be treated non-perturbatively. As is evident from
the numerical simulation (figure 13), the φ4 physical qua-
sibreathers are linearly unstable over the entire range of
ω for which the oscillon is long lived. The instability that
occurs at linear order in the PQB background is, how-
ever, stabilized by self-interaction, leading to quasiperi-
odic oscillations. These nonlinear oscillations are visible
as dense curly-Q’s in the Power vs Frequency plot (figure
13).
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FIG. 14. Comparison of the explicitly simulated QCD ax-
ion oscillon (black) to the PQB formalism (red) with three
non-perturbative harmonics. The radiated power is so large
that the orthogonal deformation is non-perturbative, leading
to disagreement within a factor of a few, although the shape
of the physical quasibreather curve still captures the qualita-
tive features of the simulated oscillon. Namely, it shows that
there is a dip around ω = 0.6m where the fifth harmonic is
dominant. This region, in which the third harmonic is con-
fined and non-perturbatively large, constitutes most of the
oscillon’s lifetime.

Our explicit numerical simulation yields an approxi-
mate lifetime of 6000/m, which is close to the PQB pre-
diction of 5900/m. This confirms the earlier results in
[37].

C. The QCD axion

The QCD axion is the best studied example of a scalar
field described by a periodic potential, and could allow for
oscillons with cosmological observables. At low temper-
atures, the QCD axion potential is dominated by strong
dynamics, giving rise to the potential [14, 36],

V (φ) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
φ

2f

)
. (50)

A simple Taylor expansion about θ = 0 reveals that (50)
has a smaller quartic term than the simple cosine poten-
tial, which leads us to expect the oscillons in (50) to be
shorter-lived than the sine-Gordon oscillon. Indeed, this
expectation is confirmed by the physical quasibreather
framework and explicit numerical simulation (see figure
14 and appendix E).

In order to compute the lifetime in the physical quasi-
breather formalism, we calculate the potential’s Fourier
coefficients

~V = {1.427,−0.648, 0.336, . . . } (51)

Our formalism can accommodate many non-zero Fourier
coefficients, although only the first three (and a fourth to
normalize the mass) are necessary to converge within 1%
of the true potential; adding more terms has a negligible
impact on the results of explicit simulation and on the
result of our PQB formalism.

The result of this analysis is that the QCD axion os-
cillon is relatively short-lived compared to the average
oscillon, living about 400/m. However, it is interesting
to observe that this oscillon spends most of its life with a
confined third harmonic, undergoing very large central-
amplitude oscillations of order 15f . Although the short
lifespan of the QCD axion oscillon means that it will only
leave its cosmological imprint shortly after formation, the
large amplitude and violent deaths of these oscillons may
have observational implications.

VII. CONCLUSION

Real scalar fields play a central role in many theories
of early universe cosmology and dark matter. Many of
these theories predict attractive self-interactions that al-
low the scalars to form quasistable oscillons. Understand-
ing oscillon lifetime is necessary for determining whether
oscillons only play a role in early universe cosmology, or
whether they may also survive until the present day and
lead to dramatic astrophysical signatures.

In this work, we have expanded the quasibreather ap-
proximation into a formalism for computing the prop-
erties of oscillons that naturally incorporates realistic
boundary conditions. We defined the physical quasi-
breather by finding initial conditions of the nonlinear
wave equation that simultaneously obey radiative bound-
ary conditions and specify a quasibreather solution. As
the closest quasibreather to a physical oscillon, the PQB
provides a raw approximation for the oscillon profile (see
e.g. figure 4) which is increasingly accurate in the limit
of long lifetimes. Furthermore, the PQB represents the
solutions to which the oscillon is instantaneously and
locally attracted to during its evolution. When under-
stood as a stable perturbation to a PQB, the oscillon
borrows its properties from its PQB partner, including
its radial profile and radiation rate [79]. When the PQB
becomes linearly unstable, nonlinear quasiperiodic oscil-
lations emerge, whose size is controlled by higher-order
terms, as depicted in figures 13, 18a, and 18b. In other
words, linear instability often does not result in the death
of the oscillon. Further, we have demonstrated that the
PQB and the minimum radiation quasibreather differ at
6th order in the background, explaining the success of
the ‘minimum radiation quasibreather ansatz.’

Since the PQB offers an accurate description of the
oscillon structure, we have used it to understand the os-
cillon’s form-factor and the resulting mechanisms which
control longevity. Specifically, as the oscillon radiates
its energy away, its central amplitude decreases, caus-
ing self-interactions to become weaker; as a result, the
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oscillon becomes much larger than the radiation wave-
lengths, suppressing the radiated power (see figure 2).
At these high frequencies (ω → m), the large oscillon
core naturally leads to the rapid self-interference of radi-
ation. When the self-interference is destructive, the total
radiation is suppressed by another power of the form-
factor. While both these effects, geometric decoupling
and destructive interference, are generic features of os-
cillon evolution, the longest-lived oscillons are a conse-
quence of these two effects occurring simultaneously at
large oscillon frequencies close to m (as in figure 12). Fi-
nally, we have understood the physics of oscillon death
as a further consequence of weak self-interaction: past a
certain critical frequency the energy of the PQB is forced
to increase, and the oscillon cannot sustain its proxim-
ity to its PQB partner. Using our understanding of the
mechanisms responsible for oscillon longevity and death,
we have constructed the family of frustrated quadratic
potentials which support extremely long-lived oscillons,
living more than 1018 cycles (see section IV).

There are several computational advantages provided
by our methodology. First, the oscillon evolution is com-
puted in a time-independent way, separating the physical
lifetime of the oscillon from the computational wall-clock
time it takes to evolve numerically. Second, our formal-
ism naturally incorporates non-perturbative harmonics,
and potentials without even parity. Third, all pertur-
bative harmonics may be efficiently computed by taking
advantage of sparse linear algebra. Fourth, we have intro-
duced the Fourier basis as the natural basis for expanding
potentials when studying oscillons. In this basis, the form
of the mode equations is especially simple, allowing us to
write down analytical expansions for the mode potentials
that converge everywhere. Fifth, our formalism provides
a natural language for studying the stability of oscillons.
Finally, the speed of our numerical techniques has en-
abled us to study extremely long-lived oscillons, and has
yielded the first prediction of cosmologically long lived
periodic potentials (see figure 8).

Using our efficient numerical techniques, we scan over
degrees of freedom in axionic potentials (see figures 1a
and 9), allowing us to probe the genericity of long-lived
oscillons (see figure 10). Important outcomes of this pa-
rameter scan include the identification of features in the
lifetime landscape with the mechanisms of longevity (see
section III), and the realization that extremal lifetimes
may scale at least exponentially in the number of poten-
tial degrees of freedom. At the same time, long lifetimes
are not particularly fine-tuned, since as few as three de-
grees of freedom are enough to generate oscillons that
survive until last-scattering (4 × 106 cycles) with only
15% global tuning (as defined in section V A), and oscil-
lons that live until today (1011 cycles) with 0.5% global
tuning.
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Appendix A: The physical quasibreather formalism

In this appendix, we outline the precise definition of
the physical quasibreather (PQB) and its orthogonal de-
formation (OD) introduced in section II. We will see that
the orthogonally deformed PQB is an instantaneous so-
lution of the equations of motion that satisfies outgoing
boundary conditions. We then find oscillonic solutions
of the equations of motion that are perturbations of the
orthogonally deformed PQB. By studying the evolution
and stability of these perturbations, we arrive at a sense
in which the orthogonally deformed PQB can be an at-
tractor, which we apply to study oscillon stability in ap-
pendix C.

1. Quasibreathers

Physical potentials may be interpreted in terms of n-
particle interactions, and therefore possess Taylor expan-
sions around their vacua. Consequently, a periodic field
configuration with fundamental frequency ω will only
couple to modes oscillating with integer multiples of this
fundamental frequency. In other words, physical non-
linear wave equations possess periodic orbits, which may
be interpreted as a Fourier series in time. This is in
contrast to unphysical potentials that may not be inter-
preted in terms of integer-number particle interactions,
which can at best possess quasiperiodic orbits.

For the remainder of the appendix, we move into di-
mensionless units with m = f = 1. The non-linear wave
equation for the field θ in a potential V is then

0 = θ̈ −∇2θ + V ′(θ) . (A1)

As we have argued above, V must possess a Taylor series,
and therefore θ may be expanded as a series of integer
harmonics

θ =
∑
n∈N0

Sn(r, ω) sin(nωt+ δn) , (A2)
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where δn is a phase, and we have taken spherical sym-
metry for simplicity. Without loss of generality, we may
take δ1 = 0. We say that a solution of the form (A2) is
generated by the frequency ω if S1 is non-zero, and the
only non-zero higher harmonics Sn are those that couple
to S1, consistent with closure of the equations of mo-
tion. We then define the quasibreather as the solution
generated by ω.

Using this definition, we may compute the generic form
of the quasibreather. Consider the generic potential

V (θ) =
1

2
θ2 +

1

3
λ3θ

3 +
1

4
λ4θ

4 + . . . . (A3)

From the symmetries of sine and cosine, we observe that

(sinωt)n =

{ ∑
k ak sinnkωt, nk ∈ Nodd, n is odd,∑
k bk cosmkωt, mk ∈ Neven, n is even,

(cosωt)n =

{ ∑
k ck cosnkωt, nk ∈ Nodd, n is odd,∑
k dk cosmkωt, mk ∈ Neven, n is even.

The case of parity V (θ) = V (−θ) offers a pleasant simpli-
fication, decopling the even harmonics and the odd har-
monics from one another. Thus, potentials with parity
have quasibreathers of the form

θQB =
∑

n∈Nodd

Sn(r, ω) sinnωt , (A4)

and a periodic solution of the form θ =∑
n∈Neven

Sn(r, ω) sinnωt , although it is not a qua-
sibreather because it is not generated by ω. Quasi-
breathers in potentials without parity possess expansions

θQB =
∑

n∈Nodd

Sn(r, ω) sinnωt+
∑

n∈Neven

Cn(r, ω) cosnωt ,

(A5)

where Neven contains 0. Thus, we have identified the
form of the quasibreathers of the non-linear wave equa-
tion when V represents a physical interaction.

Inserting the form (A5) into (A1), one arrives at the
set of mode equations

0 = −(nω)2Cn − C ′′n −
d− 1

r
C ′n + V ′n(C, S) , n ∈ Neven ,

0 = −(nω)2Sn − S′′n −
d− 1

r
S′n + V ′n(C, S) , n ∈ Nodd ,

(A6)

where d is number of spatial dimensions, and Vn is defined
through the equation

V ′(θQB) =
∑

n∈Nodd

Vn(C, S) sinnωt+
∑

n∈Neven

Vn(C, S) cosnωt .

(A7)

Equation (A6) is a system of second order ordinary dif-
ferential equations, and therefore each degree of freedom
Sn, Cn must be constrained by two boundary conditions.

In order to discuss boundary conditions, we define the
number n0 as the least integer such that n0ω > 1, so
that bound harmonics have n < n0 and radiative har-
monics have n ≥ n0. Regularity at the origin places a
non-trivial constraint on all harmonics, that all Sn and
Cn must have zero first derivative at the origin. How-
ever, regularity at spatial infinity is only a constraint on
the bound modes, n < n0; all radiative harmonics decay
geometrically as they propagate to spatial infinity. Thus,
for a quasibreather, the radiative harmonics are only con-
strained by regularity at the origin, and the space of pos-
sible quasibreathers has dimension equal to the number
of radiative modes. In other words, one has the free-
dom to pick the amplitude of the radiative modes at the
origin, and the result will still be a quasibreather. The
authors of [54] have alleviated this ambiguity by picking
a specific quasibreather out of this manifold: the min-
imum radiation quasibreather, whose radiative tails are
the smallest. Instead, we pick the physical quasibreather
(PQB), defined below, which is perturbatively close to a
radiating solution.

2. The deformed mode equations

A localized field configuration with a finite lifetime nec-
essarily radiates its energy to spatial infinity, and there-
fore satisfies radiative boundary conditions at spatial in-
finity. In this section, we introduce the concept of the
physical quasibreather (PQB), which is, in a precise sense,
the quasibreather closest to a physical configuration sat-
isfying radiative boundary conditions.

First, we define the orthogonal deformation (OD) of
the quasibreather (A5), which consists of adding 90◦ out-
of-phase components sn and cn to the radiative harmon-
ics in order to satisfy radiative boundary conditions

θ =
∑

n∈Nodd

Sn(t, r, ω) sinnωt+
∑

n∈Neven

Cn(t, r, ω) cosnωt

∑
n∈N≥n0

even

sn(t, r, ω) sinnωt+
∑

n∈N≥n0
odd

cn(t, r, ω) cosnωt .

(A8)
Notice that here we’ve introduced a time dependence
to the modes, which accounts for the fact that a ra-
diating solution cannot have a stationary profile. This
formulation will be useful for studying initial conditions
of interest, namely, those which specify a quasibreather
and orthogonal deformation that together satisfy outgo-
ing boundary conditions. Although (A8) is a vast over-
parametrization of a single field, we recognize that a so-
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lution of the deformed mode equations (A9)

0 = S̈n − 2nωċn − (nω)2Sn − S′′n −
d− 1

r
S′n + V ′Sn ,

0 = c̈n + 2nωṠn − (nω)2cn − c′′n −
d− 1

r
c′n + V ′cn ,

0 = C̈n + 2nωṡn − (nω)2Cn − C ′′n −
d− 1

r
C ′n + V ′Cn ,

0 = s̈n − 2nωĊn − (nω)2sn − s′′n −
d− 1

r
s′n + V ′sn ,

(A9)

is also a solution of the full equation of motion (A1).
Equation (A9) is obtained from the equations of mo-
tion (A1) by substituting (A8) and collecting the terms
proportional to sinnωt or cosnωt for a given n, set-
ting them independently to zero. Intuitively, when the
time dependence of the harmonic functions S,C, s, c is
slow, they have the usual interpretation as the profiles
of quasistationary modes. Here the functions V ′X =
V ′X(Sn, Cn, sn, cn), are the mode potentials, in which we
have suppressed functional dependence for brevity. The
mode potentials are defined by the equation

V ′(θ) =
∑

n∈Nodd

V ′Sn sinnωt+
∑

n∈Neven

V ′Cn cosnωt

∑
n∈Neven

V ′sn sinnωt+
∑

n∈Nodd

V ′cn cosnωt ,
(A10)

where θ is written in the form of equation (A8), and
V ′Sn , V

′
Cn
, V ′sn , V

′
cn are pure functions of Sn, Cn, sn, cn.

During the evolution of equation (A9), ω is treated
as a constant. This is not in contradiction to the usual
understanding that the fundamental frequency of the os-
cillon increases with time. For the purpose of the mode
equations (A9), ω is understood as a choice of a fixed pa-
rameter, independent of the time variation of the modes
S,C, s, c themselves. For certain initial conditions, and
for certain choices of ω, there will be periods of time over
which S,C, s, c vary slowly, and it is during these periods
that ω may be interpreted as the instantaneous frequency
of the oscillon.

In other words, there is no a priori reason to choose
a particular ω for a particular field configuration, and
one may only think of ω as an instantaneous frequency
in the context of certain initial conditions. Thus, the
following paragraphs are dedicated to specifying initial
conditions which allow ω to be interpreted as the instan-
taneous frequency of an oscillon, where the oscillon is
perturbatively close to a quasibreather. The smaller the
orthogonal deformation, the better this interpretation is,
and the longer it holds. In this sense, ω may be concep-
tualized as an adiabatic parameter, although one should
not confuse it with an externally controlled parameter —
in our framework, it is a constant that parametrizes the
decomposition (A8) of solutions to (A1).

We now specify the following consistent set of ini-
tial and boundary conditions, in which we treat sn

and cn as linear perturbations. Here, we take
V ′X = V ′X(Sn(0, r), Cn(0, r), 0, 0), and we define δV ′X ≡∑
n≥n0

sn(0, r)∂snV
′
X + cn(0, r)∂cnV

′
X (note the absence

of a constant term in δV ′X is a consequence of (a), below).
A complete and consistent set of initial and boundary
conditions associated with (A9), that exactly specify a
quasibreather and orthogonal deformation at t = 0 is

(a) Initial Quasibreather:

0 = −(nω)2Sn(0, r)− S′′n(0, r)− d− 1

r
S′n(0, r) + V ′Sn ,

0 = −(nω)2Cn(0, r)− C ′′n(0, r)− d− 1

r
C ′n(0, r) + V ′Cn ,

(b) Initial Deformation:

0 = −(nω)2cn(0, r)− c′′n(0, r)− d− 1

r
c′n(0, r) + δV ′cn ,

0 = −(nω)2sn(0, r)− s′′n(0, r)− d− 1

r
s′n(0, r) + δV ′sn ,

(c) Maximally stationary:

0 = Ṡn≥n0(0, r) = +2nωṠn<n0(0, r) + δV ′cn ,

0 = Ċn≥n0
(0, r) = −2nωĊn<n0

(0, r) + δV ′sn ,

0 = ṡn(0, r) = ċn(0, r) ,

(d) Regularity:

0 = S′n(t, 0) = C ′n(t, 0) = s′n(t, 0) = c′n(t, 0) ,

0 = S′n<n0
(t,∞) = C ′n<n0

(t,∞) ,

(e) Radiative:

0 = lim
r→∞

r
1−d
2 (r

d−1
2 cn(t, r))′ +

√
(nω)2 − 1Sn(t, r) ,

0 = lim
r→∞

r
1−d
2 (r

d−1
2 Sn(t, r))′ −

√
(nω)2 − 1cn(t, r) ,

0 = lim
r→∞

r
1−d
2 (r

d−1
2 Cn(t, r))′ +

√
(nω)2 − 1sn(t, r) ,

0 = lim
r→∞

r
1−d
2 (r

d−1
2 sn(t, r))′ −

√
(nω)2 − 1Cn(t, r) .

Our initial condition (a) selects Sn and Cn which specify
a quasibreather. This quasibreather is one which may
be orthogonally deformed to satisfy radiative boundary
conditions, and it is this quasibreather which we call the
PQB.

Because we have broken the time translation symme-
try of the quasibreather by satisfying radiative boundary
conditions, the modes S,C, s, c are endowed with an ir-
reducible time dependence. The maximally stationary
condition (c) shows that this time dependence is pro-
portional to the pointwise small deformations s and c.
Since s and c obey a homogeneous system of equations
(b), their amplitude everywhere must uniformly go to
zero as their amplitude at r = ∞ goes to zero. From
(e), we see that cn ∝ Sn and sn ∝ Cn at spatial infin-
ity. Thus we conclude that if Sn and Cn possess small
radiative tails, then sn and cn become pointwise small ev-
erywhere, and the time variation of the modes uniformly
approaches zero. This is the limit in which the oscillon
is long-lived, and approaches the quasibreather; in this
same limit, the interval over which this approximation is
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FIG. 15. The asymptotic attractor (red) is approached as
the inhomogeneous solution goes to zero. The homogeneous
terms, representing the initial conditions at t = −t0 cannot
converge exactly to zero by the time the inhomogeneous solu-
tion passes through zero, and therefore the perturbation never
exactly reaches the asymptotic attractor.

valid, during which ω may be thought of as an instanta-
neous frequency, becomes longer.

3. The asymptotic attractor

The initial conditions (a-e) specify a solution to the
nonlinear wave equation that, at t = 0 is exactly an
orthogonally deformed physical quasibreather (to linear
order in the deformation). More practically, we want to
understand the evolution of the oscillon in the neighbor-
hood of this deformed physical quasibreather, before and
after this particular point. To this end, we introduce the
perturbation δθ(t, r), which simultaneously absorbs the
time dependence of the modes in (a-e), and deviations
from the orthogonally deformed physical quasibreather.
Specifically, a field configuration θ describing a physical
oscillon can be expanded as

θ = θPQB + θOD + δθ , (A11)

with

θPQB =
∑

n∈Nodd

Sn(0, r, ω) sinnωt+
∑

n∈Neven

Cn(0, r, ω) cosnωt ,

(A12)

θOD =
∑

n∈N≥n0
even

sn(0, r, ω) sinnωt+
∑

n∈N≥n0
odd

cn(0, r, ω) cosnωt .

(A13)

Crucially, θPQB is exactly a quasibreather solution, and
θOD is exactly periodic in time, as opposed to δθ, which
characterizes the secular evolution of the oscillon in the
vicinity of the physical quasibreather at ω. Inserting

FIG. 16. Here we have a schematic Power Radiated (as a
proxy for field-space) vs Oscillon Frequency plot for the fam-
ily of deformed PQB (red) and an oscillon trajectory (dashed
grey). Each ellipse centered on a deformed PQB represents
the domain of frequencies and field values over which that
specific quasibreather is an asymptotic attractor. As the os-
cillon trajectory enters an attractive region, it moves closer to
the attractive deformed PQB. Consequently, it is also drawn
into the attractive vicinity of the neighboring PQBs. There-
fore, the oscillon is forced to approach the red trajectory as
the radii of attraction get larger and larger towards the bot-
tom of the dip. After traversing the dip, the deformed PQB
radii of attraction begin to shrink, and the oscillon trajectory
begins to diverge from the deformed PQB trajectory. In this
latter half of the evolution, we see how the deformed PQB tra-
jectory does not act as a standard attractor, but can still be
described as an asymptotic attractor. To see this, notice how
the oscillon instantaneously moves closer to the quasibreather
when entering each new attractive bubble.

(A11) into (A1), we arrive at the following equation for
δθ at linear order,

0 = δθ̈ −∇2δθ + V ′′(θPQB)δθ

+
∑
n<n0

(δV ′cn cosnωt+ δV ′sn sinnωt) . (A14)

This is a sourced equation, representing the fact that the
physical quasibreather with orthogonal deformation does
not conserve energy on its own. As a linear equation, δθ
may be decomposed into a sum of homogeneous terms,
which obey the homogeneous equation

0 = δθ̈H −∇2δθH + V ′′(θPQB)δθH , (A15)

and one particular solution δθP , that obeys the sourced
equation (A14), which we take to be identically zero at
t = 0. In the absence of homogeneous terms, it is this
particular solution δθP which satisfies the initial condi-
tions (a-e). Therefore, the homogeneous terms represent
perturbations around those initial conditions. If the ho-
mogeneous solutions of (A14) are stable, then we say that
θPQB + θOD is an asymptotic attractor.

The usefulness of the construction δθ is that it contains
all information about the linear stability of the oscillon
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[80]. Just like in a standard damped oscillator, linear
stability represents an exponential approach to the inho-
mogeneous solution. In other words, it is enough to study
the stability of the homogeneous equation (A15) with the
tools of Floquet theory. The full picture of how the one-
parameter family of deformed physical quasibreathers,
parametrized by the frequency ω, acts like an attractor
may be understood in the following picture. Before t = 0,
the particular solution δθP is approaching 0 (see Figure
15). If the homogeneous terms are stable, then the field
θ is approaching the deformed physical quasibreather at
frequency ω. However, past t = 0, δθP begins to grow
again, causing the field to diverge from this temporary
quasibreather partner. This story repeats by choosing
the next physical quasibreather to expand around at a
nearby frequency ω + dω, such that the attractive re-
gion of this new quasibreather has some overlap with the
repulsive region of the previous quasibreather at ω (see
figure 16). The term “asymptotic attractor” is chosen be-
cause of its likeness to the concept of asymptotic series,
in which increasing the order of an expansion increases
its precision until, at some point, it begins to diverge.

4. Energetic instability

The physical quasibreather background around which
we expand the perturbation δθ is one among a contin-
uum of quasibreathers, parametrized by their fundamen-
tal frequency ω. Thus, when we talk about a perturba-
tion δθ, we introduce the notation δθω in order to talk
about “the perturbation relative to (the deformed phys-
ical quasibreather of frequency) ω,” where we may omit
the parenthetical when it is unambiguous to do so.

In the previous section, we introduced the concept
of asymptotic attraction, in which an oscillon may be
viewed as approaching a physical quasibreather for a fi-
nite period of time. For each quasibreather, there is an
epoch of attraction, during which the particular solution
δθP is shrinking towards zero, and an epoch of repulsion,
during which δθP is growing away from zero. Neighbor-
ing quasibreathers at ω and ω + dω have particular so-
lutions that cross zero at different absolute times t = tω
and t = tω+dω respectively; whether tω < tω+dω deter-
mines whether ω+ dω is attractive for some time after ω
becomes repulsive. Because the particular solution δθP
encodes the energy flow out of the oscillon, the relative
timing of the zero crossings of δθωP and δθω+dω

P may be
viewed as a reflection of energy conservation, defining an
arrow of time. That is, the oscillon at ω+ dω is energet-
ically accessible from ω if tω < tω+dω.

This time ordering implies the existence of a rela-
tive energy function, whose local monotonicity encodes
whether ω+ dω is accessible from ω. In other words, the
physical quasibreather at ω + dω is energetically acces-
sible from ω if there is a time when δθω is a negative
energy perturbation relative to ω and δθω+dω is a pos-
itive energy perturbation relative to ω + dω. However,

the energy of the total field configuration is ill-behaved
because of the divergent radiative tails. Strictly speak-
ing, because the quasibreather at ω has a different am-
plitude radiative tail than the quasibreather at ω + dω,
δθ cannot be a finite energy perturbation of both quasi-
breathers. However, the tails are decoupled and do not
influence the dynamics of the oscillon bulk. Therefore,
our measure of the perturbation energy must be agnostic
to the radiation tails.

One might be inclined to count only the energy inside
some finite box containing the oscillon bulk. However,
such a measure still grows polynomially with the size of
the box. One may also try to subtract the radiative tails
by removing the 1/r (in d = 3) asymptotic, although
again, this depends on an explicit cutoff between the
bulk and the tails. Our framework provides a natural
resolution to this ambiguity. Specifically, the orthogonal
deformation θOD provides a measure of the radiative tail
of θPQB valid everywhere. It is the energy associated with
this orthogonal deformation that we subtract, leading to
our definition of the bound energy in the PQB

EB ≡ lim
r→∞

[∫ r

0

dV

(
1

2
θ̇2

PQB +
1

2
(∇θPQB)2 + V (θPQB)

)
−
∫ r

0

dV

(
1

2
θ̇2

OD +
1

2
(∇θOD)2 + V (θOD)

)]
.

(A16)

Note, because θOD and θPQB are out of phase, this dif-
ference will oscillate around an average value, reflecting
the uncertainty principle. This definition has the virtue
of converging to the deformed physical quasibreather en-
ergy when the oscillon is infinitely long-lived, i.e. when
all harmonics are confined.

Having provided an unambiguous measure of the
bound energy of the physical quasibreather, we may now
address the question of when the perturbation δθ may
flow between nearby quasibreathers. Because the fre-
quency of the quasibreather, ω, is a decreasing function
of binding energy, under the assumption that binding
energy decreases as total energy decreases, a family of
physical quasibreathers is energetically stable where

dEB
dω

< 0 . (A17)

Inside a region of asymptotic attraction, the radiation
power P of the physical quasibreathers is a good approxi-
mation for the radiation power of the oscillon. This leads
to a standard approximation for the oscillon lifetime, un-
der the assumption that the perturbation δθ may com-
pletely relax (the adiabatic assumption)

T ≈
∫

dEB
P (EB)

. (A18)

As the oscillon becomes increasingly long-lived, and thus
approaches the physical quasibreather, this prediction
becomes increasingly precise.
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Appendix B: Quasibreather numerical methods

In the previous section, we arrive at the physical qua-
sibreather as the main object of study which may be
used to derive the properties of oscillons in a physical
potential. In this section, we develop the numerical tools
which enable the efficient calculations of physical quasi-
breathers and their orthogonal deformations.

1. Linear radiation

Let us begin by supposing that Sn and Cn are known
for n < npert, and that the remaining Sn and Cn are
perturbatively small everywhere, so that they obey lin-
ear equations. Define the perturbation vector and the
deformation vector respectively

~C = r(d−1)/2

 Cnpert

Snpert+1

...

 , ~s = r(d−1)/2

 snpert

cnpert+1

...

 ,

(B1)

the diagonal matrix of frequencies

Ω =

 npertω
(npert + 1)ω

. . .

 , (B2)

the source vector ~J (S1, C2, . . . ) and the mass matri-
ces V~C(S1, C2, . . . ),V~s(S1, C2, . . . ), which are functions
of the non-perturbative harmonics. Finally, we define
the Sommerfeld operator S, which together with the
Dirichlet-Neumann 1D flat Laplacian acting on each di-
agonal block ∇2 [81], contains the Sommerfeld radiation
condition (e), provided in appendix D 1. In this nota-
tion, the equations of motion for the perturbation and
the deformation can be written as a sparse linear system(

~J~C
~J~s

)
=

(
−Ω2 −∇2 + V~C S

−S −Ω2 −∇2 + V~s

)(
~C
~s

)
.

(B3)

This form, in which ~C and ~s only couple through the

boundary term S, is guaranteed because ~C on its own
solves the equations of motion, and hence any backreac-
tion from a perturbation ~s must come at second order.
The explicit forms of S, V~C , V~s and J~C , J~s are provided
for several cases of interest in the appendix D 1. Note,
J~s is proportional to the orthogonal deformation of the
non-perturbative modes, and is therefore zero when all
radiative modes are perturbative.

The fact that we may write the equations for the per-
turbative modes as a well-determined system of equa-
tions is a reflection of the fact that the radiative bound-
ary conditions and regularity conditions completely (and
uniquely, for the linear modes) specify the physical qua-
sibreather.

2. Nonlinear harmonics

The perturbative method in the previous section
amounts to solving a sparse linear system, a process that
is computationally efficient. Thus, given the knowledge
of the non-perturbative background harmonics, we can
compute the contribution of arbitrarily many additional
harmonics at almost no computational cost.

Now we must do the dirty work of computing the non-
linear harmonics. Computing npert − 1 non-perturbative
harmonics will amount to shooting a point particle in
npert − 1 dimensions, and tuning its initial condition so
that it lands on the saddle-top at the origin.

The physical quasibreather only feels the orthogonal
deformation at second order, and therefore we may use
the following procedure to compute the deformed PQB
to leading order:

1. Choose Sn(0) and Cn(0) from the npert − 1 dimen-
sional space of initial conditions.

2. Shoot the harmonics Sn, Cn from r = 0 to some
large finite radius rout by evolving the mode equa-
tions (a).

3. Use the radiative boundary conditions (e) to con-
vert the Sn to cn and Cn to sn at r = rout.

4. Shoot the cn, sn back to the origin in the back-
ground resulting from step 2.

5. Check for regularity at the origin for the cn and
sn, and regularity at rout for the bound harmon-
ics. If not regular, adjust Sn(0) and Cn(0) and re-
peat from step 2. Since regularity is equivalent to
minimizing the first derivative, this can be imple-
mented by a variant of a binary search procedure,
e.g. golden section search.

6. Compute any number of perturbative harmonics
using the procedure from the previous section in
the background of the non-perturbative harmonics.

7. To account for linear backreaction of the perturba-
tive harmonics, re-shoot the non-perturbative har-
monics in the background of the perturbative har-
monics. This last step is repeated until conver-
gence.

In practice, it is helpful to break down the npert − 1 di-
mensional search into npert − 1 linear searches that are
performed hierarchically. The process of nonlinear shoot-
ing is sped up by precomputing the potential functions
and using table-lookup. This kind of optimization is es-
pecially important when dealing with periodic potentials
where repeatedly computing Bessel functions is costly.

3. Branching of the fundamental mode

In section II, we reduce the problem of finding the ra-
dial profile of the oscillon to a classical-mechanical ‘shoot-
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FIG. 17. The emergence of two new zero-node solutions in the
potential defined by Fourier coefficients ~V = {1, 0.5,−1, 0.5}
at large oscillon frequencies. The plot shows the effective po-
tential VS1(S1) as a function of S1 for positive values of S1;
since the potential is parity-symmetric, the S1 < 0 region is
the mirror opposite with respect to the S1 = 0 axis. We have
adjusted the vertical axis to better illustrate the qualitative
features of the potential. Different regions are colored accord-
ing to the sign of S1(∞) when launched from that location.
A shooting solution is represented by a point on the bound-
ary between a black and magenta region. Whereas initially
there was only one zero-node shooting solution (marked by
the circle), the new potential adds two more zero-node solu-
tions, marked by the stars. Intuitively, the higher the starting
point, the further the particle will travel, causing successive
solutions to have an increasing number of nodes. However, the
combination of 2/r friction and nonlinearities in the potential
breaks this intuition. Depending on the potential’s convexity
at the initial point, the oscillon may lose a widely variable
amount of energy to friction. Therefore, it is at these regions
of varying curvature that we expect these new solutions to
emerge.

ing’ problem. In its simplest case of one non-perturbative
harmonic S1, the problem further simplifies to the rolling
of a massive ball in a double-welled potential VS1

(S1) in
the presence of 2/r friction. A shooting solution is one
which starts at rest at an initial displacement S1(0) and
ends at S1 = 0 at r =∞.

In linear equations, such as the radial hydrogen atom
problem, there is exactly one solution for each integer
number of nodes (i.e. zero-crossings) of the radial profile
S1. In our PQB mode equations, strong nonlinearities
break this intuition, as depicted in figure 17. Specif-
ically, a small change in the oscillon frequency ω can
change the number of solutions with zero nodes by an
increment of two, introducing new branches of oscillon
solutions (or eliminating them) when the potential pos-
sesses non-trivial convexity. If this new branch consists of
quasibreathers with lower binding energy, then the orig-
inal branch may jump to the low-energy branch after
the original branch experiences energetic death. In the
reverse scenario, oscillons may form on the high-energy

branch but the low-energy branch is energetically forbid-
den from reaching the high-energy branch.

In the oscillons that we study in e.g. figure 1a, many of
the longer-lived potentials contain a high-energy branch
of very large, low-amplitude oscillons which only exists
in a small range of frequencies close to m. One such
example is shown in figure 17. All the examples studied
in section IV are the result of purposefully introducing
these branches at a specific frequency ω ≈ mf .

Appendix C: Floquet analysis

In appendix A we introduced the notion of asymptotic
attraction to describe physical oscillons as perturbations
of PQBs. From this expansion, we have reduced the prob-
lem of oscillon stability to the study of the linear stabil-
ity of equation (A15). Standard Floquet theory tells us
that the result of this analysis can have two outcomes:
the equation is linearly unstable, or it possesses oscil-
latory states exclusively (modulo boundary effects). In
other words, the existence of a stable decaying mode im-
plies the existence of a growing mode, and stability must
emerge at higher order in perturbation theory, if at all.
Here, we address the linear stability of perturbations δθ,
and later argue that nonlinear terms stabilize linearly os-
cillatory modes.

1. Linear stability analysis

Let us begin by reproducing equation (A15) for ease of
reference: the linearized homogeneous equation for the
perturbation δθ in the background of θPQB is,

0 = δθ̈ −∇2δθ + V ′′(θPQB)δθ . (C1)

Recall that θPQB is a periodic solution of the equations of
motion, and therefore can induce parametric resonances.
Substituting in the form of the quasibreather (A5), we
find

V ′′(θPQB) = (C2)∑
m∈Neven

V ′′m(S,C) cosmωt+
∑

m∈Nodd

V ′′m(S,C) sinmωt ,

which, under parity symmetry of V , further simplifies to

V ′′(θPQB) =
∑

m∈Neven

V ′′m(S) cosnωt , (C3)

where V ′′m is defined by (C2). We will leave specific for-
mulae for V ′′m to appendix D 3.

Since (A15) is linear, we may Fourier transform t→ Ω,
and decompose δθ in spherical harmonics. Because the
quasibreather background is periodic, it induces cou-
plings between frequencies separated by integer multi-
ples of the fundamental frequency ω. Therefore, let us
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restrict our analysis to the values of the Fourier trans-
form δθ(Ω, r) at the discrete tower of harmonics de-
fined as Ωn ≡ Ω0 + nω, n ∈ Z, where the base fre-
quency Ω0 can be assumed to lie in the interval (0, ω).

Therefore, the Fourier components on this tower, denoted
δθn(Ω0, r) ≡ δθ(Ωn, r), will respect a matrix-differential
equation:

0 = −(Ω0 + nω)2δθn − δθ′′n −
d− 1

2
δθ′n +

`(`+ d− 2)

r2
δθn + V ′′0 (S,C)δθn+

+
1

2

∑
m∈N>0

even

V ′′m(S,C)(δθn+m + δθn−m) +
1

2i

∑
m∈Nodd

V ′′m(S,C)(δθn+m − δθn−m) , (C4)

where ` is the angular momentum number. This is appar-
ently a quadratic eigenvalue problem in the fundamental
frequency Ω0 [82], although as we will see, it becomes an
irrational eigenvalue problem upon imposing transparent
boundary conditions [83, 84]. The eigenvalue solutions
Ω0 characterize the stability or instability of the system:
real eigenvalues corresponding to oscillatory motion; if
solutions pick up an imaginary part, the mode will be
exponentially growing (if Im(Ω0) < 0) or exponentially
decaying (if Im(Ω0) > 0). In the absence of transparent
boundary conditions, the solutions come in pairs of com-
plex conjugates; in this closed-box scenario, the existence
of a stable (i.e. decaying) mode implies the existence of
an unstable mode.

An instructive example We may gain some insight
into the eigenvalues Ω0 by studying the simpler case of
perturbations inside a box for a potential with parity.
The matrix differential equation simplifies such that only
the sum over even terms in (C4) survives. At leading or-
der we only include the first harmonic’s n = ±1 terms;
the reason is that large-n harmonics both decouple from
the fundamental and become unbound. This allows us to
keep only the V ′′0 and V ′′2 terms in the equation. More-
over, we make the assumption that Ω0 is small compared
to ω, representing solutions to the perturbation equations
with a separation between the fast and slow timescales;
this is relevant when we focus on the boundary between
periodicity and instability, where Ω0 will be small in mag-
nitude. This assumption will be supported by the result
of the analysis.

The result is the following 2 × 2 matrix-differential
equation

0 =
[
2ωΩ0σz + σxV

′′
2 + I(ω2 −∇2 + V ′′0 )

]
δ~θ , (C5)

where we have suppressed the argument of V ′′0 , V
′′
2 for

brevity and σi are the Pauli matrices with entries of
magnitude 1. We may phrase this as a typical eigen-
value problem in Ω0 by multiplying through with σz/2ω,
leading to

0 = det (H + A− Ω0I) , (C6)

where H and A are Hermitian and anti-Hermitian ma-

FIG. 18a. The Lyapunov characteristic exponent (the eigen-
value Ω0 of (C4) with maximum imaginary part) for the
sine-Gordon deformed physical quasibreather (with an error
of ±0.005). The perturbation δθ becomes linearly unstable
at ω ≈ 0.88. The nearest asymptotically attractive quasi-
breather is always finitely far away from the oscillon. When
ω > 0.88, the linearly unstable mode is therefore always ex-
cited, leading to growing quasiperiodic oscillations on top
of the deformed quasibreather background (see figure 18b).
Note, throughout this band of linear instability, the mass en-
ergy

∫
dV 1

4
m2S2

1 is monotonically decreasing, in contradic-
tion with [49]. On the plot, we denote the energetic death at
ω ≈ 0.94, where the oscillon is forced off the quasibreather
trajectory by energy conservation.

trices defined by

H =
1

2ω
σz(ω

2 −∇2 + V ′′0 ) , A =
i

2ω
σyV

′′
2 . (C7)

In other words, the Ω0 eigenvalues are the roots of
the characteristic polynomial with all-real coefficients
defined by the matrix with all-real entries H + A.
Consider the case A = 0; the eigenvalues Ω0 are the
eigenvalues of H, which is composed of two mirrored
copies of the real spectrum of the single-block operator
1

2ω (ω2 − ∇2 + V ′′0 ). The addition of A only introduces
couplings between these two sectors; since it is also
antisymmetric, these couplings are equal and opposite
in sign. If we start from a spectrum of H with no
overlap between its two sectors, the addition of A
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FIG. 18b. The power radiated by a simulated sine-Gordon
oscillon versus the central fundamental frequency. On this
plot, we’ve indicated the onset of linear instability ω ≈ 0.88
calculated using our eigenvalue code described in appendix
C, and the instance of energetic death ω ≈ 0.94 described
in appendix A 4. This figure represents the a consequence
of linear instability: growing quasiperiodic oscillations. The
specific magnitude of this effect depends on initial conditions
and environmental perturbations (see figure 11 for an example
where oscillations are suppressed). Whether or not the un-
stable mode can become large enough to destroy the oscillon,
the perturbation itself has a radiation component, which may
significantly modify the lifetime. In this particular case, the
unstable mode’s frequency ω ± ReΩ0 approaches the oscillon
frequency ω towards the end of life, leading to growing beats
(see figure 18a). The loop of death at the end of the evolution
occurs because the central oscillon rapidly becomes a mix of
first and third harmonic, causing the central frequency to be
larger than 1.

will bring the two mirrored ‘ground states’ together
from Ω0 = ±Eground to the value of Ω0 = 0. From
the perspective of the characteristic polynomial, this
corresponds to the two roots becoming degenerate before
turning imaginary. In other words, complex eigenvalues
must appear by first passing through an inter-block
degeneracy. Therefore, the meeting of the two ground
states defines the boundary between periodicity (i.e.
an all-real spectrum) and instability (i.e. complex
spectrum). If the spectrum of H is bounded below by 0,
then the meeting of the two states will produce purely
imaginary eigenvalues. This result should be compared
to [49]. In general, the symmetries of (C6) that led
to this result are only approximate, and therefore we
should expect the first nearly-stable eigenvalue to be
close to zero in general.

However, because the oscillon lives in an open
box, we must ensure that (C4) is endowed with trans-
parent boundary conditions. Such radiative boundary
conditions depend on the momentum of the outgoing
mode

√
(Ω0 + nω)2 − 1. Eigenvalue problems with

radiative boundary conditions have been studied in the
non-relativistic limit in [83]. Crucially, the calculations

FIG. 19. A visualization of how linear instability emerges
in the simplified model of appendix C. The boundary of sta-
bility is described by eigenvalues meeting at zero. The plot
describes the solutions to the eigenvalue equation (C6) in the
case of a simple Gaussian background, in which the funda-
mental oscillon mode is taken to be S1(r) = A exp

{
−r2/2σ2

}
.

The plot background describes stability as a function of the
two Gaussian parameters, the oscillon amplitude A and width
σ; for oscillons of sufficient width and amplitude, there are
eigenvalues Ω0 with negative imaginary part, and thus the
oscillon is unstable. We show the eigenvalues nearest to zero
for three points in this parameter space: stable (green), bor-
derline unstable (yellow), and unstable (red). The real eigen-
values closest to the origin become degenerate at zero on the
boundary of stability; they further split into purely imaginary
conjugates in the instability region.

of [83] depend on the existence of a uniformizing variable
u(Ω0) in which the outgoing momentum becomes a
rational function of u. As far as we are aware, no such
uniformization procedure is known for the relativistic
case with two channels, or more generally for any case
with more than two channels.

Using series approximations and a uniformizing vari-
able u(Ω0), we show in appendix D 3 that it is possible
to express the boundary condition as a polynomial for
|Ω0| < 1/2 for ω > 1/2 in the case of parity or ω > 3/4
without parity. Using standard linearization techniques,
we may reduce this polynomial eigenvalue problem to
a generalized eigenvalue problem, for which numerical
software is plentiful. This is the method applied to the
stability analysis in Figure 18a.
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FIG. 20. Here we plot the maximum stable amplitude of y in
the nonlinear Mathieu equation (C8) for small ε, and we’ve
indicated the instability band of the linear Mathieu equation
in red. Outside the red region, the nonlinear oscillations are
centered on y = 0, representing that the oscillations stay
bounded independent of phase. However, for |α| < 0.5, only
oscillations of a particular phase remain bounded, indicating
that y = 0 has become hyperbolic (see left inset). Inset in the
plot are two examples of the slow oscillation trajectories. For
|α| < 0.5, the red stable trajectories have amplitude larger
than 0 and are restricted to a finite interval of phase. This
generally nonlinear phenomenon represents a special region of
stability within the otherwise unstable phase of the Mathieu
parameter space. For |α| > 0.5, the red stable oscillations are
restricted to a finite amplitude, but are allowed to have any
phase. In both cases, large enough amplitude perturbations
grow without bound, represented by the black trajectories.

2. Nonlinear stabilization

In the previous section, we laid out our numerical
method for computing the linear stability of the homo-
geneous perturbation δθ in the background of the de-
formed physical quasibreather. Modulo technicalities at
the boundary, we found that all linear perturbations ei-
ther are oscillatory, or come in pairs of exponentially
growing and decaying modes. The result is that stability,
understood to mean that all homogeneous perturbations
shrink, cannot be fully explained at the level of linear
Floquet analysis.

Thus, stability must originate at higher order in per-
turbation theory, if it exists at all. In this section, we
identify radiation as the mechanism of stabilization ac-
cessible to small oscillatory perturbations; specifically,
modes which are periodic in the linear stability analysis
will couple to radiative modes at higher orders, providing
a channel for dissipation. Therefore, we conclude that a
sufficient condition for full nonlinear stability is that all
modes are oscillatory at the level of linear perturbation
theory. Furthermore, we will see that linear instability
does not imply nonlinear instability.

We will explore the effect of adding a nonlinear term

to a Floquet-type problem by studying the toy example
of the Mathieu equation with a quadratic nonlinear term.
To simplify our analysis, we begin by studying potentials
with parity, so that the leading order oscillating contribu-
tion to V ′′(θPQB) is proportional to cos 2ωt. The leading
nonlinear term is then proportional to sinωt. Thus, we
will study the nonlinear generalizations of the Mathieu
equation of the form

0 = ÿ + (1 + ε(α+ cos 2t+ y sin t))y . (C8)

In this toy problem, y represents the perturbation δθ to
a physical quasibreather whose potential conserves par-
ity. The fact that the linear term is proportional to cos 2t
and the quadratic term y2 is proportional to sin t is a con-
sequence of the symmetry of the potential, which guar-
antees that polynomials in y of certain parity have the
corresponding oscillatory terms.

A standard two-timing analysis, along the lines of [85],
with ε � 1 demonstrates that the Mathieu instability
bifurcation at |α| = 1/2 is unchanged by the nonlinearity
around y = 0. However, one difference is the appearance
of regions of stability inside the linearly unstable region
|α| < 1/2, although large enough y always implies insta-
bility, regardless of α [86]. When y is the smallest scale
in the problem, we recover the usual Mathieu equation
behavior (see figure 20). In summary, linear periodicity is
unchanged for small enough y, although linearly unstable
modes may become periodic.

Thus, we should expect that the oscillatory modes of
the linear equation (C4) remain oscillatory upon intro-
duction of a nonlinear term as long as they are of small
enough amplitude. Moreover, the nonlinear terms may
convert an otherwise linearly unstable mode into an os-
cillatory one. Further, the nonlinear interactions of lin-
early oscillatory modes will necessarily produce radia-
tion, carrying away energy, causing their amplitude to
shrink. Thus, sufficiently small linearly oscillatory modes
are stabilized by radiation.

3. Angular perturbations

In appendix D 3, we develop a calculation scheme to
solve for the perturbation δθ as a function of t and r.
In order to obtain the perturbation equations for δθ, we
performed a spherical harmonic decomposition, resulting
in a set of decoupled equations for each mode of angu-
lar momentum number `. These equations differ by the
coefficient of the angular momentum effective potential

Vangular =
`(`+ d− 2)

r2
. (C9)

Because this potential is positive, it acts as a repulsive
centrifugal term, reducing the perturbation density at
the origin. Hence, we expect that perturbations with
more angular momentum are typically more linearly sta-
ble, since less of the perturbation lies inside the oscillon
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FIG. 21. Effective Mathieu equation parameters 0 = ÿ+ (a−
2q cos 2kωt)y for integer k, where we associate a pair (ar, qr)
to each radius r of the sine-Gordon quasibreather background
(C4) for ω = 0.95, ignoring the gradient term. This picture
is meant to guide our intuition of the Mathieu equation into
the less-familar Floquet problem (C4). Intuitively, a mode
can be understood as more unstable if more of its volume
lies in the Mathieu instability bands. This plot, although not
quantitatively precise, provides intuition for why the lowest
angular momentum states are more susceptible to instabil-
ities, since they have the most overlap with the dominant
instability bands.

bulk, although for low angular momentum, the conclu-
sion is case-dependent. An intuition for this comes from
applying the stability phases of the standard Mathieu
equation (see figure 21).

A similar 1/r2 term appears in the effective potential
for the perturbation upon removing the (d−1)/r friction
term through a change of variables δθ → r(d−1)/2δθ. This
introduces the effective potential

Vgeometric = − (d− 1)(d− 3)

4r2
. (C10)

This term differs from the angular momentum term in
two important ways. First, it can be of either sign: for
d = 1, 3 it vanishes, for d = 2, it is repulsive, and for
d ≥ 4 it is attractive. Second, it also influences the qua-
sibreather background itself, whereas the angular mo-
mentum terms only influence the non-spherical pertur-
bations. Because this potential influences both the back-
ground and the perturbation, its effect on stability de-
pends on the specifics of the nonlinear potential.

Appendix D: Technical formulae

In this section, we provide a detailed description of
the formulae and numerical techniques used to compute
physical quasibreather properties.

1. Perturbative harmonic formulae

Once we have computed the oscillon’s non-
perturbative modes Sn<npert , Cn<npert and their
orthogonal deformations cn<npert , sn<npert , we may
compute the perturbative modes Sn≥npert , Cn≥npert and
their orthogonal deformations cn≥npert

, sn≥npert
using

the procedure outlined in section B 1. Here, we provide
explicit formulae for the Sommerfeld matrix S and the
block Laplacian operator ∇2. Upon discretizing space
such that r = [0, dr, . . . , (N − 1) dr], the matrix S is
comprised of all zeros, except for the lower right entry
in each diagonal block. To describe this object, we
introduce the following notation. The matrix S has four
indices: two upper indices labelling the block, and two
lower indices labeling the location within that block. In
this notation, the entries in the matrix S in (B3) may
be written

Snmab = (−1)n
√

(nω)2 − 1δnmδaNδbN . (D1)

In the same notation, we may describe the Dirichlet-
Neumann block Laplacian operator

[∇2]nm =
1

dr2


−2 1
1

. . . 1
1 −2 dr

1 − dr

 δnm . (D2)

2. Potentials with parity

As described in section V, the Fourier basis is a natu-
ral basis to describe any scalar potential, since it is not
plagued by the same radius-of-convergence issues of, say,
the Taylor basis. Here we provide the harmonic factoriza-
tion of a general scalar potential with parity (45). Taking
the first derivative of (45) with respect to θ, we arrive at
the following expression for the self-interaction terms in
the non-linear wave equation

V ′(θ) =
∞∑
m=1

Vm
m

sinmθ . (D3)

This expression is specific to the case of a potential
with 2π periodicity. To accommodate potentials with-
out periodicity, simply replace θ → θ/θmax where θ ∈
[−πθmax, πθmax] and

∑
Vm = θ2

max. In order to keep the
following expressions from getting any more unruly, we
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will present the explicit formulae for 2π-periodic poten-
tials, since the reader may easily convert these expres-
sions to accommodate general periodicity.

By virtue of the Jacobi-Anger expansion [87]

eia sin b =
∞∑

k=−∞

Jk(a)eikb , (D4)

we may compute the harmonic expansion of the potential,
evaluated as a function of the PQB harmonics

V ′

( ∞∑
n=1

Sn sin(nωt)

)
(D5)

=
∞∑
m=1

Vm
m

∑
~k∈~Z

[( ∞∏
n=1

Jkn(mSn)

)
sin

( ∞∑
n=1

nknωt

)]
,

where ~k = (k1, k2, . . . ). One may write this more com-
pactly in terms of generalized Bessel functions [87]. From
this formula, we obtain the expressions for VSn in (A9)

V ′(θ) ≡
∞∑
n=1

V ′Sn(S1, . . . , ) sin(nωt) . (D6)

In general, we may evaluate the full non-perturbative for-
mulae for the mode-potential derivatives V ′SN and V ′cN ,

V ′SN =
∞∑
m=1

Vm
m

∑
ks1,...,k

c
1,...

( ∞∏
n=1

Jksn(mSn)Jkcn(mcn)

)
cos

( ∞∑
n=1

kcnπ/2

)[
δ

(
N −

∞∑
n=1

n(ksn + kcn)

)
− δ

(
−N −

∞∑
n=1

n(ksn + kcn)

)]
,

V ′cN =
∞∑
m=1

Vm
m

∑
ks1,...,k

c
1,...

( ∞∏
n=1

Jksn(mSn)Jkcn(mcn)

)
sin

( ∞∑
n=1

kcnπ/2

)[
δ

(
N −

∞∑
n=1

n(ksn + kcn)

)
+ δ

(
−N −

∞∑
n=1

n(ksn + kcn)

)]
.

(D7)

Note, the δs in this equation are Kronecker δs, but we use
a parenthetical argument to keep the expression readable.
From these expressions, we may derive useful formulae
for important cases of interest. Here, we present two ex-
amples for illustration, and because the reader may find
them particularly useful in generating oscillon profiles of
their own. First, in the case that the fundamental mode
S1 dominates and all other modes are perturbative, we

have the following source term

~J~C = r(d−1)/2
∞∑
m=1

2
Vm
m

 J3(mS1)
J5(mS1)

...

 , (D8)

with ~J~s = 0 and the following mass matrices

V~C =
∞∑
m=1

Vm

 (J3−3(mS1)− J3+3(mS1)) (J3−5(mS1)− J3+5(mS1)) · · ·
(J5−3(mS1)− J5+3(mS1)) (J5−5(mS1)− J5+3(mS1))

...
. . .

 ,

V~s =
∞∑
m=1

Vm

 (J3−3(mS1) + J3+3(mS1)) (J3−5(mS1) + J3+5(mS1)) · · ·
(J5−3(mS1) + J5+3(mS1)) (J5−5(mS1) + J5+3(mS1))

...
. . .

 ,

(D9)

to be inserted into equation (B3). The case where S1 and S3 are non-perturbative and all other harmonics are
perturbative everywhere has a similarly clean form
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V =
∞∑
m=1

Vm

∞∑
k=−∞

Jk(mS3)

 (J5−5−3k(mS1)∓ J5+5−3k(mS1)) (J5−7−3k(mS1)∓ J5+7−3k(mS1)) · · ·
(J7−5−3k(mS1)∓ J7+5−3k(mS1)) (J7−7−3k(mS1)∓ J7+7−3k(mS1))

...
. . .

 ,

~J~C = r(d−1)/2
∞∑
m=1

Vm
m

∞∑
k=−∞

Jk(mS3)

 J5−3k(mS1)− J−5−3k(mS1)
J7−3k(mS1)− J−7−3k(mS1)

...

 ,

~J~s = r(d−1)/2c3

∞∑
m=1

Vm

∞∑
k=−∞

Jk−1(mS3)

 J5−3k(mS1) + J−5−3k(mS1)
J7−3k(mS1) + J−7−3k(mS1)

...

 ,

(D10)

with − corresponding to V~C and + corresponding to
V~s. The formulae when there are more non-perturbative
harmonics follow the same pattern.

3. Formulae for linear stability analysis

Here we provide the mathematical details to accom-
pany appendix C. We restrict ourselves to ω > 1/2 in
the case of parity and ω > 3/4 otherwise. This restric-
tion is to ensure that the following series approximation
converges on the disc |Ω0| < 1/2. If one is certain that the
unstable eigenvalues occur in a smaller disc, the restric-
tions on ω may be weakened significantly, and indeed,
this is often the case.

The outgoing boundary conditions depend on the mo-
mentum of the outgoing mode, which is an irrational
function of Ω0. In order to convert the irrational eigen-
value problem (C4) into a polynomial eigenvalue problem
that may be solved with standard techniques, we need to
approximate the momentum

√
(Ω0 ± nω)2 − 1 by a poly-

nomial. One’s first intuition might be that the Taylor
series of the momentum expanded about Ω0 = 0 would
be a good approximation. This intuition is good for the
higher harmonics, since Ω0 is often much smaller than
nω. However, this series only converges inside the disc
|Ω0| < 1−ω for n = 1, which is not sufficient to compute
the Lyapunov exponent of the linear perturbation δθ. A
more sophisticated approximation is necessary in order
to capture the behavior of the momentum as a function
of Ω0 on a disc that remains finite size as ω → 1.

To this end, we define

x = Ω2
0 − (1− ω)2 , (D11)

so that√
(Ω0 ± ω)2 − 1 =

√
x+ 2ω(ω − 1± Ω0) . (D12)

We then Taylor expand around x = 0, yielding the fol-
lowing series that converges on the disc of radius 1/2
centered on Ω0 = 0 for ω > 1/2

√
(Ω0 ± ω)2 − 1 =

√
2ω(ω − 1± Ω0)

1−
∞∑
j=0

(
2j
j

)
1

(j + 1)22j+1

(
(1− ω)2 − Ω2

0

2ω(ω − 1± Ω0)

)j+1
 ,

√
(Ω0 ± nω)2 − 1 =

√
(nω)2 − 1

1−
∞∑
j=0

(
2j
j

)
1

(j + 1)22j+1

(
− (Ω0 ± nω)2 − (nω)2

(nω)2 − 1

)j+1
 ,

(D13)

where the second equation is just the ordinary Taylor
expansion centered on Ω0 = 0 for n ≥ 2. The factor√

2ω(ω − 1± Ω0) is not yet a polynomial. We utilize
the technique of uniformization [83], where we define the

complex variable u such that
√

2ω(ω − 1± Ω0) becomes
a polynomial in u,

Ω0 =
1− ω

2

(
u2 + u−2

)
. (D14)

This definition turns (D13) into rational functions of u,
allowing us to rephrase (C4) as a polynomial eigenvalue

problem. The zero eigenvalues now live at the four roots
of the equation u4 = −1, around which we perform a
small eigenvalue search using the Krylov subspace meth-
ods implemented in Matlab. Once the u eigenvalues and
eigenvectors have been computed, we must convert back
to check that they correspond to eigenvalues of the orig-
inal irrational eigenvalue problem. In short, we have re-
duced the original irrational eigenvalue to a polynomial
eigenvalue problem of degree at-least 4, depending on the
degree of accuracy one wants to achieve.
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Finally, we define the matrix S which encodes the non-
derivative term in the Sommerfeld radiation condition,
which can be written as a sum of the matrices Ŝλ, which
are matrices of all zeros except for the lower right entry
of the λth diagonal block, which is 1. This entry corre-
sponds to the outer boundary of the grid, with λ ranging
from −L to L, and the upper left block corresponding
to λ = −L, where L is the chosen order of the Floquet
expansion. In this notation, the non-derivative part of

the Sommerfeld boundary conditions may be written

S =
∞∑

λ=−∞

√
(Ω0 + λω)2 − 1Ŝλ ≈

L∑
λ=−L

2M+1∑
i=0

cλ,iu
iŜλ ,

(D15)

where M = min(2jmax,1 + 3, 4jmax,n+ 4), where jmax,n is
the order of the Taylor expansion of the nth momentum
eigenvalue.

Collecting terms in (D13), we have the following ex-

pressions for the coefficients of the Ŝλ matrices, for λ = 1
and λ = n > 1 respectively

c±1,i =
√
±ω(1− ω) [(δ1+M−i ∓ δ−1+M−i)−

−
jmax,1∑
j=0

(
2j
j

)
1

(j + 1)22j+1

(
±ω − 1

4ω

)j+1 2(j+1)∑
k=0

(
2j + 2
k

)
(±1)k

(
δ2(j−k)+3+M−i ∓ δ2(j−k)+1+M−i

) ,
cn,i =

√
(nω)2 − 1

δi−M − jmax,n∑
j=0

(2j)!

(j!)2

2−3j−2

(j + 1)

(
(1− ω)2

1− (nω)2

)j+1

×

∑
k−4+k−2+k0+k2+k4=j+1

(j + 1)!

k−4!k−2!k0!k2!k4!

(
1

2

)k4+k−4
(

2nω

ω − 1

)k2+k−2

δ4k4−4k−4+2k2−2k−2+M−i

 .

(D16)

Finally, we define the matrix of frequencies

Ω =


. . .

ω
0
−ω

. . .

 , (D17)

where the even entries are dropped when V has parity.
These versions of Ω and S are not to be confused with

those used to solve for the physical quasibreather (B3),
as the correct version to use will always be clear from
context.

With these definitions, the irrational eigenvalue prob-
lem (C4) has been reduced to the polynomial eigenvalue
problem

0 =
N∑
i=0

uiMi , (D18)

where the matrices Mi are defined

Mi = −i
L∑

λ=−L

cλ,iŜλ +

[
2

(
1− ω

2

)2

I + Ω2 + L

]
δM−i +

(
1− ω

2

)2

I (δM+4−i + δM−4−i) + (1− ω)Ω (δM+2−i + δM−2−i) ,

(D19)

L = ∇2 − `(`+ d− 2)

r2
+

(d− 1)(d− 3)

4r2
− V ′′0 −

1

2

∞∑
m∈Neven

V ′′m (D−m + Dm)− 1

2i

∞∑
m∈Nodd

V ′′m (Dm −D−m) , (D20)

where displacement matrices Dm are the matrices con-
sisting of all 1’s on the diagonal of the mth block di-
agonal. Thus, we have reduced the computation of the
Lyapunov exponents to computing the eigenvalues of the

generalized eigenvalue problem

0 =


uI −I

uI −I
. . .

. . .
uI −I

M0 M1 . . . MN−2 MN−1 + uMN




δθ
uδθ

...
uN−1δθ

 .

(D21)
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To summarize, the precision of this approximation can
be increased to the desired level by

1. increasing the resolution of the radial grid by re-
ducing dr,

2. increasing the physical radius of the simulation
rout,

3. increasing the number L of Floquet blocks kept in
the expansion,

4. increasing the order jmax,λ of the momentum ex-
pansions,

5. increasing the number of PQB harmonics kept in
the background.

Appendix E: Explicit time evolution — numerical
methods

Throughout the text, we refer to explicit numerical
simulations for validation of our results. Here we outline
the numerical setup used to compute the time evolution
of the field θ in the equations of motion (2), and the
methodology used to measure oscillon frequency ω and
radiated power P .

The radial equation of motion for the field θ(t, r) in
3 + 1 dimensions is

0 =
∂2θ(t, r)

∂t2
− ∂2θ(t, r)

∂r2
− 2

r

∂θ(t, r)

∂r
+ F (θ(t, r)) .

(E1)

We introduce the variable v = rθ, which eliminates the
friction term. We now discretize time and space, with

time steps dt and radial steps dr, and introduce the no-
tation

v(N dt,M dr) = vN (M) (E2)

Finally, we define the ratio ξ ≡ (dt/ dr)2. In this no-
tation, the equations of motion lead to the following
leading-order finite difference equation

vN+1(M) = ξ(vN (M + 1) + vN (M − 1)) + 2(1− ξ)vN (M)

− vN−1(M)− (dt2 drM)F (vN (M)/(drM)) .
(E3)

Dirichlet boundary conditions are imposed at the origin
by fixing vN (0) = 0. The oscillon is assumed to be evolv-
ing in empty space, and therefore the box size must be
chosen large enough that the radiation from the oscil-
lon reflected off the outer boundary does not propagate
backwards and interfere with the oscillon itself.

The length scale of the nth harmonic is
2π/

√
(nω)2 −m2. During an instance of destruc-

tive interference, typically the fifth harmonic dominates,
and in rare cases the seventh may contribute signifi-
cantly. Since 2π/

√
72 − 1 ≈ 0.9, we choose a safe value

of dr = 0.1/m, about 10 times smaller than the length
scale of radiation at the highest possible frequency. We
find that ξ = 1/4 leads to stable evolution for dr of
order 0.1/m. To check that this choice of dr is good,
we increased the resolution by a factor of 2 and 4 which
resulted in marginal discrepancies.

The frequency of the oscillon is then measured by
tracking the times at which vN (1) crosses through zero.
The outgoing flux is measured outside the oscillon bulk,
typically between 20 and 100 in units of the mass. We
do not measure the flux too far from the source, since
the different frequency modes travel at different veloci-
ties, and the PQB formalism does not account for this
dispersion.
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H. Bräuninger, G. Cantatore, J. Carmona, J. Castel,
S. Cetin, F. Christensen, et al., New cast limit on the
axion–photon interaction, Nature Physics 13, 584 (2017).

[4] J. H. Chang, R. Essig, and S. D. McDermott, Supernova
1987a constraints on sub-gev dark sectors, millicharged
particles, the qcd axion, and an axion-like particle, Jour-
nal of High Energy Physics 2018, 1 (2018).

[5] F. Wilczek, Problem of strong p and t invariance in the
presence of instantons, Physical Review Letters 40, 279
(1978).

[6] S. Weinberg, A new light boson?, Physical Review Letters
40, 223 (1978).

[7] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, String axiverse, Physical Review
D 81, 123530 (2010).

[8] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of
the invisible axion, Physics Letters B 120, 127 (1983).

[9] L. F. Abbott and P. Sikivie, A cosmological bound on
the invisible axion, Physics Letters B 120, 133 (1983).

[10] M. Dine and W. Fischler, The not-so-harmless axion,
Physics Letters B 120, 137 (1983).

[11] M. S. Turner, Windows on the axion, Physics Reports
197, 67 (1990).

[12] P. Sikivie, Axion cosmology, in Axions (Springer, 2008)
pp. 19–50.

[13] A. Salvio, A. Strumia, and W. Xue, Thermal axion pro-
duction, Journal of Cosmology and Astroparticle Physics
2014 (01), 011.

[14] G. G. di Cortona, E. Hardy, J. P. Vega, and G. Villadoro,
The qcd axion, precisely, Journal of High Energy Physics



32

2016, 34 (2016).
[15] A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner,

J. O. Thompson, and K. Van Tilburg, Large-
misalignment mechanism for the formation of compact
axion structures: Signatures from the qcd axion to fuzzy
dark matter, Physical Review D 101, 083014 (2020).

[16] L. J. Hall, K. Harigaya, et al., Axion kinetic misalignment
mechanism, Physical review letters 124, 251802 (2020).

[17] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Ul-
tralight scalars as cosmological dark matter, Physical Re-
view D 95, 043541 (2017).
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