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We investigate the twisted bilayer graphene (TBG) model of Bistritzer and MacDonald (BM) [Bistritzer and

MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011)] to obtain an analytic understanding of its energetics and

wave functions needed for many-body calculations. We provide an approximation scheme for the wave functions

of the BM model, which first elucidates why the BM KM -point centered original calculation containing only four

plane waves provides a good analytical value for the first magic angle (θM ≈ 1◦). The approximation scheme

also elucidates why most of the many-body matrix elements in the Coulomb Hamiltonian projected to the active

bands can be neglected. By applying our approximation scheme at the first magic angle to a ŴM -point centered

model of six plane waves, we analytically understand the reason for the small ŴM -point gap between the active

and passive bands in the isotropic limit w0 = w1. Furthermore, we analytically calculate the group velocities

of the passive bands in the isotropic limit, and show that they are almost doubly degenerate, even away from

the ŴM point, where no symmetry forces them to be. Furthermore, moving away from the ŴM and KM points,

we provide an explicit analytical perturbative understanding as to why the TBG bands are flat at the first magic

angle, despite the first magic angle is defined by only requiring a vanishing KM -point Dirac velocity. We derive

analytically a connected “magic manifold” w1 = 2
√

1 + w
2
0 −

√
2 + 3w

2
0 , on which the bands remain extremely

flat as w0 is tuned between the isotropic (w0 = w1) and chiral (w0 = 0) limits. We analytically show why going

away from the isotropic limit by making w0 less (but not larger) than w1 increases the ŴM -point gap between

the active and the passive bands. Finally, by perturbation theory, we provide an analytic ŴM point k · p two-band

model that reproduces the TBG band structure and eigenstates within a certain w0,w1 parameter range. Further

refinement of this model are discussed, which suggest a possible faithful representation of the TBG bands by a

two-band ŴM point k · p model in the full w0, w1 parameter range.

DOI: 10.1103/PhysRevB.103.205411

I. INTRODUCTION

The interacting phases in twisted bilayer graphene (TBG)

are one of the most important new discoveries of the last few

years in condensed matter physics [1–111]. The theoretical

prediction that interacting phases would appear in this sys-

tem was made based on the appearance of flat bands in the

noninteracting Bistritzer-MacDonald (BM) Hamiltonian [1].

This Hamiltonian is at the starting point of the understanding

of every aspect of strongly correlated TBG (and other moiré

systems) physics [2–27]. Remarkably, it even predicts quite

accurately the so-called “magic angles” at which the bands

become flat, and is versatile enough to accommodate the

presence of different hoppings in between the AA and the AB

stacking regions of the moiré lattice. The BM Hamiltonian

is in fact a large class of k · p models, which we will call

BM-like models, where translational symmetry emerges at a

small twist angle even though the actual sample does not have

an exact lattice commensuration.

*bernevig@princeton.edu
†biao@princeton.edu

This paper is the first of a series of six papers on TBG

[107–111], for which we present a short summary here. In

this paper we investigate the spectra and matrix elements of

the single-particle BM model by studying the k · p expan-

sion of the BM model at ŴM point of the moiré Brillouin

zone. In TBG II [107] we prove that the BM model with the

particle-hole (PH) symmetry defined in Ref. [43] is always

stable topological, rather than fragile topological as revealed

without PH symmetry [43–45,76]. We further study TBG with

Coulomb interactions in Refs. [108–111]. In TBG III [108]

we show that the TBG interaction Hamiltonian projected

into any number of bands is always a Kang-Vafek type [71]

positive semi-definite Hamiltonian (PSDH), and generically

exhibit an enlarged U(4) symmetry in the flat band limit

due to the PH symmetry. This U(4) symmetry for the lowest

eight bands (two per spin valley) was previously shown in

Ref. [72]. We further reveal two chiral-flat limits, in both of

which the symmetry is further enhanced into U(4) × U(4)

for any number of flat bands. The U(4) × U(4) symmetry for

the lowest eight flat bands in the first chiral limit was first

discovered in Ref. [72]. With kinetic energy, the symmetry in

the chiral limits will be lowered into U(4). TBG in the second

chiral limit is also proved in TBG II [107] to be a perfect
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metal without single-particle gaps [112]. In TBG IV [109],

under a condition called flat metric condition (FMC) which

is defined in this paper [Eq. (20)], we derive a series of exact

insulator ground/low-energy states of the TBG PSDH within

the lowest eight bands at integer fillings in the first chiral-flat

limit and even fillings in the nonchiral-flat limit, which can

be understood as U(4) × U(4) or U(4) ferromagnets. We also

examine their perturbations away from these limits. In the first

chiral-flat limit, we find exactly degenerate ground states of

Chern numbers νC = 4 − |ν|, 2 − |ν|, . . . , |ν| − 4 at integer

filling ν relative to the charge neutrality. Away from the chiral

limit, we find the Chern number 0 (±1) state is favored at

even (odd) fillings. With kinetic energy further turned on,

up to second order perturbations, these states are intervalley

coherent if their Chern number |νC | < 4 − |ν|, and are valley

polarized if |νC | = 4 − |ν|. At even fillings, this agrees with

the K-IVC state proposed in Ref. [72]. At fillings ν = ±1,±2,

we also predict a first order phase transition from the lowest

to the highest Chern number states in magnetic field, which

is supported by evidences in recent experiments [14–16,24–

27]. In TBG V [110] we further derive a series of exact charge

0,±1,±2 excited states in the (first) chiral-flat and nonchiral-

flat limits. In particular, the exact charge neutral excitations

include the Goldstone modes (which are quadratic). This al-

lows us to predict the charge gaps and Goldstone stiffness.

In the last paper of our series TBG VI [111] we present a

full Hilbert space exact diagonalization (ED) study at fillings

ν = −3,−2,−1 of the projected TBG Hamiltonian in the

lowest eight bands. In the (first) chiral-flat and nonchiral-flat

limits, our ED calculation with FMC verified that the exact

ground states we derived in TBG IV [109] are the only ground

states at nonzero integer fillings. We further show that in the

(first) chiral-flat limit, the exact charge ±1 excitations we

found in TBG V [110] are the lowest excitations for almost

all nonzero integer fillings. In the nonchiral case with kinetic

energy, we find the ν = −3 ground state to be Chern number

±1 insulators at small w0/w1 [ratio of AA and AB interlayer

hoppings, see Eq. (4)], while undergoing a phase transition

to other phases at large w0/w1, in agreement with the recent

density matrix renormalization group studies [80,81]. For ν =
−2, while we are restricted within the fully valley polarized

sectors, we find the ground state prefers ferromagnetic (spin

singlet) in the nonchiral-flat (chiral-nonflat) limit, in agree-

ment with the perturbation analysis in Refs. [72,109].

To date, most of our understanding of the BM-like models

comes from numerical calculations of the flat bands, which

can be performed in a momentum lattice of many moiré Bril-

louin zones, with a cutoff on their number. The finer details of

the band structure so far seem to be peculiarities that vary with

different twisting angles. However, with the advent of interact-

ing calculations, where the Coulomb interaction is projected

into the active, flat bands of TBG, a deeper, analytic under-

standing of the flat bands in TBG is needed. In particular,

there is a clear need for an understanding of what quantitative

and qualitative properties are not band-structure details. So

far the analytic methods have produced the following results:

by solving a model with only four plane waves (momentum

space lattice sites, on which the BM is defined), Bistritzer and

MacDonald [1] found a value for the twist angle for which

the Dirac velocity at the KM moiré point vanishes. This is

FIG. 1. Several quantitative characteristics of the Bistritzer and

MacDonald model that require explanation. In particular, an analytic

understanding of the active band flatness is available only in the

chiral limit w0 = 0. However, the band is very flat far away from

the chiral limit. Several other features of the bands are pointed out.

called the magic angle. In fact, the full band away from the

KM point is flat, a fact which is not analytically understood.

A further analytic result is the discovery that, in a limit of

vanishing AA hopping, there are angles for which the band

is exactly flat. This limit, called the chiral limit [37], has an

extra chiral symmetry. However, it is not analytically known

why the bands remain flat in the whole range of AA coupling

between the isotropic limit (AA = AB coupling) and the chiral

limit. We note that the realistic magic angle TBG is in be-

tween these two limits due to lattice relaxations [113–116].

A last analytical result is the proof that, when particle-hole

symmetry is maintained in the BM model [43], the graphene

active bands are topological [42–47,76,117,118].

This leaves a large series of unanswered questions. Rather

than listing them in writing, we find it more intuitive to vi-

sualize the questions in a plot of the band structure of TBG

in the isotropic limit at the magic angle and away from it,

towards the chiral limit. In Fig. 1 we plot the TBG low-energy

band structure in the moiré Brillouin zone, and the questions

that will be answered in the current paper. To distinguish them

with the high symmetry points (Ŵ, M, K, K ′) of the monolayer

graphene Brillouin zone (BZ), we use a subindex M to denote

the high symmetry points (ŴM, MM , KM , K ′
M ) of the moiré BZ

(MBZ). Some salient features of this band structure are: (1)

In the isotropic limit, around the first magic angle, it is hard

to obtain two separate flat bands; it is hard to stabilize the

gap to passive bands over a wide range of angles smaller

than the first magic angle. In fact, Ref. [43] computes the

active bands separated regions as a function of twist angle, and

finds a large region of gapless phases around the first magic

angle. (2) The passive bands in the isotropic limit are almost

doubly degenerate, even away from the ŴM point, where no

symmetry forces them to be. Moreover, their group velocities

seem very high, i.e., they are very dispersive. (3) While the

analytic calculation of the magic angle [1] shows that the

Dirac velocity vanishes in the isotropic limit at AA-coupling

w0 = 1/
√

3 (in the appropriate units, see below), it does not

explain why the band is so flat even away from the Dirac point,

for example on the KM-ŴM-MM-KM line. (4) Away from the

isotropic limit, while keeping w1 = 1/
√

3, the gap between

the active and passive bands increases immediately, while the

bandwidth of the active bands does not increase. (5) The flat

bands remain flat, over the wide range of w0 ∈ [0, 1/
√

3],
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FIG. 2. Matrix elements needed for the interacting

problem. Specifically, the form factors M (η)
m,n(k, q + G) =∑

α

∑
Q∈Q± u∗

Q−G,α;mη(k + q)uQ,α;nη(k) of the Coulomb interaction

are needed. They correspond to the overlap of the Bloch state at

momentum k, on the momentum lattice Q, uQ,α;nη(k) with the

Bloch state at momentum q + k on the momentum lattice Q + G,

u∗
Q−G,α;mη(k + q). Here m, n are band indices, α = A, B is the

graphene sublattice index, η is the valley index, G is a reciprocal

momentum, and Q is the honeycomb momentum lattice generated

by the moiré reciprocal vectors shown in this figure.

from chiral to the isotropic limit. Also, our observation (6) in

Fig. 1 shows that since the gap between the active and passive

bands is large in the chiral limit compared to the bandwidth of

active bands, a possible k · p Hamiltonian for the active bands

might be possible.

A further motivation for the analytic investigation of

the TBG Bistritzer-MacDonald model is to understand

the behavior of the matrix elements M (η)
m,n(k, q + G) =∑

α

∑
Q∈Q± u∗

Q−G,α;mη(k + q)uQ,α;nη(k) as a function of G,

which we call the form factor (or overlap matrix). These are

the overlaps of different Bloch states in the TBG momentum

space lattice (see Fig. 2) and their behavior is important for the

form factors of the interacting problem [108,109]. These will

be of crucial importance for the many-body matrix elements

[107,111] as well as for justifying the approximations made

in obtaining exact analytic expressions for the many-body

ground states [109] and their excitations [110].

We provide an analytic answer to all the above questions

and observations. We will focus on the vicinity of the first

magic angle. We first provide an analytic perturbative frame-

work in which to understand the BM model, and show that

for the two flat bands around the first magic angle, only a

very small number of momentum shells is needed. We justify

our framework analytically, and check it numerically. This

perturbative framework also shows that M (η)
m,n(k, q + G) is

negligible for G more than two times the moiré BZ (MBZ)

momentum—at the first magic angle, irrespective of k, q.

We then provide two approximate models involving a very

small number of momentum lattice sites, the tripod model (KM

centered, also discussed in Ref. [1]), and a new, ŴM centered

model. The tripod model captures the physics around the KM

point (but not around the ŴM point), and we show that the

Dirac velocity vanishes when w1 = 1/
√

3 irrespective of w0.

The ŴM centered model captures the physics around the ŴM

point extremely well, as well as the physics around the KM

point. Moreover, an approximation of the ŴM centered model

with only six plane waves, which we call the hexagon model,

has an analytic sixfold exact degeneracy at the ŴM point in

the isotropic limit w1 = w0 = 1/
√

3, which is the reason for

feature (1) in Fig. 1. By performing a further perturbation

theory in these six degenerate bands away from the ŴM point,

we obtain a model with an exact flat band at zero energy on

the ŴM-KM line, and almost flat bands on the ŴM-MM line,

answering (3) in Fig. 1. In the same perturbative model, the

velocity of the dispersive bands—which can be shown to be

degenerate—can be computed and found to be the same with

the bare Dirac velocity (with some directional dependence),

answering (2) in Fig. 1. Away from the isotropic limit, our per-

turbative model, which we still show to be valid for w0 � w1

(but not for w0 ≫ w1), allows for finding the analytic energy

expressions at the ŴM point, and seeing a strong dependence

on w0 answering (3) in Fig. 1. At the same time, one can

obtain all the eigenstates of the hexagon model at the ŴM

point after tedious algebra, which can serve as the starting

point of a perturbative k · p expansion of the two-active band

Hamiltonians. With this, we provide an approximate two-band

continuum model of the active bands, and find the mani-

fold w1(w0) = 2

√
1 + w

2
0 −

√
2 + 3w

2
0 with w0 ∈ [0, 1/

√
3],

where the bandwidth of the active bands is the smallest, in

this approximation. The radius of convergence for the k · p

expansion is great around the ŴM point but is not particularly

good around the KM point for all w0,w1 parameters, but can

be improved by adding more shells perturbatively, which we

leave for further work. A series of useful matrix element

conventions are also provided.

II. NEW PERTURBATION THEORY FRAMEWORK FOR

LOW-ENERGY STATES IN k · p CONTINUUM MODELS

In this section we provide a general perturbation theory for

the k · p BM-type Hamiltonians that exist in moiré lattices.

We exemplify it in the TBG BM model, but the general

characteristics of this model allow this perturbation theory

to be generalizable to other moiré system. The TBG BM

Hamiltonian is defined on a momentum lattice of plane waves.

Its symmetries and expressions have been extensively exposed

in the literature (including in our paper [107]), and we only

briefly mention them here for consistency. We first define

kθ = 2|K| sin(θ/2) as the momentum difference between K

point of the lower layer and K point of the upper layer

of TBG, and denote the Dirac Fermi velocity of monolayer

graphene as vF . To make the TBG BM model dimensionless,

we measure all the energies in units of vF kθ , and measure

all the momentum in units of kθ . Namely, any quantity E

(k) with the dimension of energy (momentum) is redefined

as dimensionless parameters

E → E/(vF kθ ), k → k/kθ . (1)
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FIG. 3. (a) The Brillouin zones of two graphene layers. The

gray solid line and red dots represent the BZ and Dirac cones of

the top layer, and the gray dashed line and blue dots represent the

BZ and Dirac cones of the bottom layer. (b) The lattice formed

by adding q1,2,3 iteratively. Red and blue circles represent Q+ and

Q−, respectively. (c) Relation of graphene BZ and moiré BZ in the

commensurate case. Here we take the graphene BZ reciprocal vectors

b1 = 3bM1 + 2bM2, b2 = −2bM1 + 5bM2.

We will then work with the dimensionless single particle

Hamiltonian for the valley η = +, which in the second quan-

tized form reads [1,43,107]

Ĥ
(+)
0 =

∑

k∈MBZ

∑

sαβ

∑

QQ′∈Q±

HQα,Q′β (k)c†
k,Q,+,αs

ck,Q′,+,βs, (2)

where MBZ stands for moiré BZ, the momentum k is mea-

sured from the center (ŴM as shown in Fig. 3) point of the

MBZ, s =↑,↓ is spin, and α, β denotes the two indices

of A, B sublattices. Here the dimensionless first quantized

Hamiltonian HQα,Q′β (k) is given by

HQα,Q′β (k) = δQ,Q′[(k − Q) · σ]αβ

+
3∑

j=1

(
δQ−Q′,q j

+ δQ′−Q,q j

)
(Tj )αβ , (3)

where

Tj = w0σ0 + w1

[
cos

2π

3
( j − 1)σx + sin

2π

3
( j − 1)σy

]
,

(4)

with w0 being the interlayer AA hopping and w1 being the

interlayer AB hopping, σ = (σx, σy), and σ0,x,y,z stand for

the identity and Pauli matrices in the two-dimensional sub-

lattice space. k takes value in MBZ, and k = 0 corresponds to

the ŴM point in the moiré BZ. We define q1 as the difference

between the K momentum of the lower layer of graphene and

the rotated K of the upper layer, and q2 and q3 as the C3z

and C−1
3z rotations of q1 (see Fig. 3). The moiré reciprocal

lattice Q0 is then generated by the moiré reciprocal vectors

bM1 = q3 − q1 and bM2 = q3 − q2, which contains the origin.

We also define Q+ = q1 + Q0 and Q− = −q1 + Q0 as the

moiré reciprocal lattices shifted by q1 and −q1, respectively.

Q ∈ Q± is then in the combined momentum lattice Q+ ⊕ Q−,

which is a honeycomb lattice. For valley η = +, the fermion

degrees of freedom c
†
k,Q,+,αs

with Q ∈ Q+ and Q ∈ Q− are

from layers 1 and 2, respectively. Since energy and momen-

tum are measured in units of vF kθ and kθ , we have that

|qi| = 1, and both w0 and w1 are dimensionless energies. It

should be noticed that, for infinite cutoff in the lattice Q,

we have c
†
k+bMi,Q,ηαs = c

†
k,Q−bMi,ηαs 
= c

†
k,Q,ηαs, as proved in

Refs. [43,107]. In practice, we always choose a finite cutoff

�Q for Q (�Q denotes the set of Q sites kept).

We note that in the Hamiltonian (3) we have adopted the

zero angle approximation [1,107], namely, we have approxi-

mated the Dirac kinetic energy k · σ±θ/2 (± for layers 1 and

2, respectively) as k · σ, where σ±θ/2 are the Pauli matrices

σ rotated as a vector by angle ±θ/2 about the z axis. With

the zero angle approximation, the Hamiltonian (3) acquires a

unitary particle-hole symmetry [43], which is studied in detail

in another paper of ours [107]. In the absence of the zero angle

approximation, the particle-hole symmetry is only broken up

to 1% [107] near the first magic angle, and is exact in the (first)

chiral limit w0 = 0 [106]. We also note that different variants

of the TBG BM model exist in the literature, which further

include nonlocal tunnelings, interlayer strains, or k dependent

tunnelings [119–122]. However, we shall only focus on the

BM model in Eq. (3) in this paper.

It is the cutoff �Q that we are after: we need to quantize

what is the proper cutoff Q ∈ �Q in order to obtain a fast

convergence of the Hamiltonian. We devise a perturbation

theory which gives us the error of taking a given cutoff in

the diagonalization of the Hamiltonian in Eq. (3). For the first

magic angle we will see that this cutoff is particularly small,

allowing for analytic results.

A. Setting up the shell numbering of the momentum

lattice and Hamiltonian

We now consider the question of what momentum shell

cutoff �Q should we keep in performing a perturbation theory

of the BM model. In effect, considering an infinite cutoff for

the Q lattice, we can build the BM model centered around any

point k0 in the MBZ, by sending

k → k − k0, Q → Q − k0 (5)

in Eq. (3); however, it makes sense to pick k0 as a high-

symmetry point in the MBZ, and try to impose a finite cutoff

�Q in the shifted lattice Q. Two important shifted lattices k0

can be envisioned, see Fig. 4. These lattices will be developed

and analyzed in Sec. III; here we only focus on the perturba-

tive framework of Eq. (3), which is the same for either of these

two lattices (and in fact, on a lattice with any k0 center).

We introduce a numbering of the “shells” in momentum

space Q on this lattice. In the KM-centered lattice [Fig. 4(b)]

which is a set of hexagonal lattices but centered at one of the

“sites” (the KM point, corresponding to the choice k0 = −q1),

the sites of shells n are denoted Ani, with n − 1 being the

minimal graph distance (minimal number of bonds traveled

on the honeycomb lattice from one site to another) from the

center A11, while i goes to the number of Q sites with the

same graph distance n − 1. The truncation in Q corresponds

to a truncation in the graph distance n − 1. In particular, with

lattice Q centered at the KM point, the momentum hopping

Ti in the BM Hamiltonian Eq. (3) then only happens between

sites in two different shells n ↔ n + 1 but not between sites

in the same shell. The simplest version of this model, with a
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FIG. 4. Lattices centered around momentum k0 on which one

can calculate the TBG Hamiltonian. (a) The hexagon centered model

(ŴM -centered model, in which we build “shells” by graph distance

from the hexagon centered at the ŴM point. The circles denote the

different shells, although going to a larger graph distance will make

the circles into hexagons. There are two different types of subshells

in each shell, the A and the B subshells in this model. The A shells

connect to the B shells, but the A sites within a shell also contain

hoppings within themselves. The B sites hop only to A sites. (b) The

triangle centered at the KM -point model in which we build shells by

graph distance from the KM point centered at the origin. The circles

denote the different shells, although going to a larger graph distance

will make the circles into triangles. There are only one type of shells,

the A shells in this model. The A sites within a shell do not hop to

other sites within each shell.

truncation at n = 2, with sites A11 and A21, A22, A23 was used

by Bistritzer and MacDonald to show the presence of a “magic

angle”—defined as the angle for which the Dirac velocity

vanishes. We call this the tripod model. This truncated model

(the tripod model) does not respect the exact C2x symmetry,

although it becomes asymptotically good as more shells are

added. The magic angle also does not explain analytically the

flatness of bands, since it only considers the velocity vanishing

at one point KM . However, the value obtained by BM [1] for

the first magic angle is impressive: despite considering only

two shells (four sites), and despite obtaining this angle from

the vanishing velocity of bands at only one point (KM in the

BZ), the bands do not change much after adding more shells.

Moreover, they are flat throughout the whole BZ, not only

around the KM point. The Dirac velocity also does not change

considerably upon introducing more shells.

We now introduced a yet unsolved lattice, the ŴM-centered

model in Fig. 4(a), which corresponds to the choice k0 = 0 in

Eq. (5). This model, which we call ŴM centered was not solved

by BM, perhaps because of the larger Hilbert space dimension

than the KM-centered one. It however respects all the symme-

tries of the TBG (except Bloch periodicity, which is only fully

recovered in the large cutoff �Q limit) at any finite number of

shells and not only in the large shell number limit. While not

relevant for the perturbation theory described here, we find it

useful to partition one shell n in the ŴM-centered lattice into

two subshells An and Bn, each of which has 6n sites. The first

shell is A1 given by the six corners of the first MBZ; then we

define An as the shell with a minimal graph distance 2(n − 1)

to shell A1, and Bn as the shell with a minimal graph distance

2n − 1 to shell A1. Ani and Bni where i = 1, . . . , 6n is the

index of sites in the subshell An or Bn. The partitioning in

subshells is useful when we realize that the hopping Ti in the

BM Hamiltonian Eq. (3) can only happen between An and Bn

shells, between Bn and An + 1 shells, and within an An shell,

but not within the same Bn shell. In Appendix A we provide

an explicit efficient way of implementing the scattering matrix

elements of the BM Hamiltonian Eq. (3), and provide a block

matrix form of the BM Hamiltonian in the shell basis defined

here. Written compactly, the expanded matrix elements in

Appendix A read

(HAn,An)Q1,Q2
=
{

Tj if Q1 − Q2 = ±q j,

0 otherwise
(6)

for the hopping terms, and similarly for HAn,Bn where Q1, Q2

are the initial and final momenta in their respective shells. Fi-

nally for k-dependent dispersion we take a linearized model:

(Hk,An/Bn)Q1Q2
= (k − Q1) · σδQ1Q2

, (7)

which is accurate in the small-angle low-energy approxima-

tions we make. Recall that the momentum is measured in units

of kθ = 2|K| sin(θ/2) with θ the twist angle, while the energy

(and Hamiltonian matrix elements) are in units of vF kθ . We

may now write the dimensionless BM Hamiltonian H (k) in

Eq. (3) in block form as

H =




HkA1 + HA1,A1 HA1,B1 0 · · ·
H

†
A1,B1 HkB1 HB1,A2 · · ·
0 H

†
B1,A2 HkA2 + HA2,A2

. . .
... 0

. . .
. . .




≡




M1 N1 0 0 . . . 0 0

N
†
1 M2 N2 0 . . . 0 0

0 N
†
2 M3 N3 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . ML−1 NL−1

0 0 0 0 . . . N
†
L−1 ML




, (8)

where L is the shell cutoff that we choose. In the above

equation, the M, N block form of the matrix is a schematic,

in the sense that both the ŴM-centered model Fig. 4(a) and the

KM-centered model Fig. 4(b) can be written in this form, albeit

with different Mn, Nn, n = 1, . . . L. Also, each Mn depends

on k, which for space purposes was not explicitly written in

Eq. (8).

B. General Hamiltonian perturbation for bands close to zero

energy with ramp-up term

In general, Eq. (8), with generic matrices Mi, Ni represents

any Hamiltonian with short range hopping (here on a momen-

tum lattice), and not much progress can be made. However,

for our BM Hamiltonians, we know several facts which render

them special:

(1) The Hamiltonian in Eq. (3) has very flat bands, at close

to zero energy |E | � 0.02vF kθ . Numerically, the energy of the

flat bands ≪ w1 and w0, since numerically we know that the

first magic angle happens at w1 (or w0) around 1/
√

3.

(2) The block-diagonal terms Mn contain a ramping up di-

agonal term Eq. (7), of eigenvalue |k − Q|. The k momentum
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runs in the first MBZ, which means that |k| � 1. Since Q for

the nth shell is proportional to n, higher order shells contribute

larger terms to the diagonal of the BM Hamiltonian.

We now show that, despite the higher shell diagonal terms

being the largest in the BM Hamiltonian, they contribute ex-

ponentially little to the physics of the low-energy (flat) bands.

This should be a generic property of the moiré systems.

The Mn, Nn Block Hamiltonian Eq. (8) acts on the spinor

wave function (ψ1, ψ2, ψ3, . . . , ψL−1, ψL ) where the 
n’s

are the components of the wave function on the shells n =
1, 2, 3, . . . , L − 1, L, and L is the cutoff shell. Notice that they

likely have different dimensions: in the ŴM-centered model,

ψ1 is a 12-dimensional spinor (six vertices of the first hexagon

momentum Q—for subshell A1i, i = 1, . . . , 6—times 2 for

the αβ indices), ψ2 is also a 12-dimensional spinor (six legs

coming out of the vertices of the first hexagon momentum

Q—for subshell B1i, i = 1, . . . , 6—times 2 for the αβ in-

dices), ψ3 is a 24-dimensional spinor (12 vertices of the

momentum Q—for subshell A2i, i = 1, . . . , 12—times 2 for

the αβ indices), and ψ4 is also a 24-dimensional spinor (12

legs coming out of the vertices of the previous momentum

shell Q—for subshell B2i, i = 1, . . . , 12—times 2 for the αβ

indices), etc. To diagonalize H we write down the action of H

in Eq. (8) on the wave function ψ = (ψ1, ψ2, . . . , ψL ):

M1ψ1 + N1ψ2 = Eψ1,

. . .

N
†
n−1ψn−1 + Mnψn + Nnψn+1 = Eψn,

. . .

N
†
L−1ψL−1 + MLψL = EψL, (9)

and solve iteratively for ψ1 starting from the last shell. We

find that

ψL = (E − ML )−1N
†
L−1ψL−1,

ψL−1 = [E − ML−1 − NL−1(E − ML )−1N
†
L−1]−1N

†
L−2ψL−2,

ψL−2 = {E − ML−2 − NL−2[E − ML−1 − NL−1(E − ML )−1N
†
L−1]−1N

†
L−2}−1N

†
L−3ψL−3

. . . (10)

We notice three main properties:

(1) Mn ≈ n for large shells n ≫ 1 is generically an invert-

ible matrix with eigenvalues of the order ±n for the nth shell.

This is because Mn is just the ramp-up term, block diagonal

with the diagonal being (k − Q) · σ for Q in the nth subshell

of B type; if the subshell is of A type, then the matrix is

still generically invertible, as it contains the diagonal term

(k − Q) · σ plus the small (since w0,w1 ≈ 1/
√

3) hopping

Hamiltonian HAn,An (see Appendix A). Nonetheless, because

the magnitude of the momentum term increases linearly with

|k − Q| ≫ 1 for momenta Q outside the first two shells n > 2,

while the hopping term has constant magnitude, HkAn domi-

nates the BM Hamiltonian.

(2) Since we are interested in the flat bands E ≈ 0 (E ≈
0.02 in vF kθ ), we can expand in E/Mn terms, especially after

the first n > 2 shells, and keep only the zeroth and first order

terms. We use

(E − M )−1 ≈ −M−1 − M−1EM−1 (11)

if the eigenvalues of E are smaller than those of ME ≪ M.

(3) For the first magic angle, the off-diagonal terms are

also smaller than the diagonal terms, for the first magic angle,

and for |Q| � 2, we have that Nn−1M−1
n N

†
n−1 ≪ 1 for n � 2

and for w0,w1 ≈ 1/
√

3 (more details on this will be given

later).

With these approximations, we obtain that the general so-

lution is

ψn = (EPn − Mn + Rn)−1N
†
n−1ψn−1m, (12)

where Pn is defined recursively as

PL−n = NL−nM−1
L−n+1PL−n+1M−1

L−n+1N
†
L−n + 1 (13)

subject to PL = 1 and Rn is

RL−n = NL−nM−1
L−n+1RL−n+1M−1

L−n+1N
†
L−n

+ NL−nM−1
L−n+1N

†
L−n, (14)

with RL = 0, RL−1 = NL−1M−1
L N

†
L−1, PL = 1. This continues

until the first shell, where we have

ψ2 = [EP2 − M2 + R2]−1N
†
1 ψ1. (15)

C. Form factors and overlaps from the general

perturbation framework

Notice that the wave function for the E ≈ 0 bands decays

exponentially (ψn ≈ 1
n
ψn−1) over the momentum space Q as

we go to larger and larger shells. This is due to the inverses

in the linear ramp-up term Mn ∝ n of Eq. (12) [a consequence

of the Q term in Eq. (7)]. This has immediate implications for

the form factors. For example, in Refs. [108–110] we have to

compute

M (η)
m,n(k, q + G) =

∑

α

∑

Q∈Q±

u∗
Q−G,α;mη(k + q)uQ,α;nη(k)

(16)

for m, n the indices of the active bands, and for different

G ∈ Q0. Notice that almost all |G| � |Q| change the shells

(with the exception of |G| = 1): if Q is in the subshell An/Bn,

while G is of order |G| � 2|̃b1| with b̃1 the moire reciprocal

vector, then Q − G is not in the subshell An/Bn. Hence,

considering |Q − G| > |Q| without loss of generality, we

have, for 2|̃b1| � |G| � |Q|:

u∗
Q−G,α;mη(k + q) �

|Q|!
|(Q − G)|!u∗

Q,α;nη(k + q) (17)
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for any m, n. Since the wave functions of the active flat bands

at (or close to) zero energy exponentially decay with the shell

distance from the center we can approximate

M (η)
m,n(k, q + G) ≈

∑

α

∑

Q or Q−G∈An, Bn, n�n0

×u∗
Q−G,α;mη(k + q)uQ,α;nη(k), (18)

with n0 a cutoff. For any k, q, the (maximum of any com-

ponents of the) wave functions on the subshells A2, B2 are

of order 1/3!, 2!/4! times the components of the wave func-

tions on the subshells A1, B1. Hence we can restrict to small

shell cutoff in the calculation of form factor matrices n0 = 1

(meaning only the subshells A1, B1 are taken into account),

while paying at most a 15% error. Conservatively, we can keep

n0 = 2 and pay a much smaller error <3%.

Next, we ask for which G momenta are the function

M (η)
m,n(k, q + G) considerably small. Employing Eq. (17), we

see that M (η)
m,n(k, q + G) falls off exponentially with increas-

ing G, and certainly for |G| > 2|̃b1| they are negligible. The

largest contributions are for G = 0 and for |G| = |̃b1|, i.e., for

G being one of the fundamental reciprocal lattice vectors. We

hence make the approximation:

M (η)
m,n(k, q + G) ≈

∑

α

∑

Q or Q−G∈A1, B1

u∗
Q−G,α;mη(k + q)

× uQ,α;nη(k)
(
δG,0 + δ|G|,|̃b1|

)
. (19)

This is one of the most important results of our perturbative

scheme. In Refs. [108–111] we employ heavily an approx-

imation called the “flat metric condition” (see [110] for the

link between this condition and the quantum metric tensor)

to show that some exact eigenstates of the interacting Hamil-

tonian are in fact, ground states. The flat metric condition

requires that

Flat metric condition: M (η)
m,n(k, G) = ξ (G)δm,n. (20)

In light of our findings on the matrix elements Eq. (19), we

see that the flat metric condition is satisfied for |G| � 2|̃b1|,
as the matrix element vanishes M (η)

m,n(k, G) ≈ 0 → ξ (G) ≈ 0

for |G| � 2|̃b1|. For G = 0, the condition Eq. (20) is al-

ways satisfied, even without any approximation Eq. (19), as

it represents the block wave function orthonormality. Hence,

the flat metric condition Eq. (20) is almost always satis-

fied, with one exception: the only requirement in the flat

metric condition is M (η)
m,n(k, G) = ξ (G)δm,n for |G| = |̃b1|.

There are six G vectors that satisfy this condition, namely

G = ±b̃1,±b̃2,±(̃b2 − b̃1). The overlaps are all related by

symmetry.

In Fig. 5(a) we plot the eigenvalues at q = 0 of the M†M

matrix. We see clearly that these eigenvalues are virtually

negligible for |G| � 2b̃i, and that for |G| = |b̃i| they are at

most 1/3 of the value for |G| = 0.

D. Further application of general perturbation

framework to TBG

While Eqs. (12) to (14) represent the general perturbation
theory of Hamiltonians with a linear (growing) ramping term
for almost zero energy bands, we need further simplifications

FIG. 5. The magnitude of the form factor (overlap ma-

trix) M (η=+)(k, q + G), calculated for w0 = 0.4745 and w1 =
0.5931. (a) The colored dots are the G vectors we consider in

M (η=+)(k, q + G). Different colors represent different length of G.

(b) The eigenvalues of M (η=+)†(k, q + G)M (η=+)(k, q + G) as func-

tions of k. In the left and right panels we choose q = 0 and q = 1

2
kM ,

respectively, where kM is the MM momentum in the moiré BZ.

to practically apply them to the TBG problem. However, the
form of the (k − Q) · σ + HAn,An, which is not nicely invert-
ible (although it can be inverted), and the form of HBn−1,An

(see Appendix A for the notation of these matrix elements),
which is not diagonal, makes the matrix manipulations dif-
ficult, and unfeasible analytically for more than two shells.
Hence further approximations are necessary in order to make
analytic progress.

First, we want to estimate the order of magnitudes of PL−n

and RL−n terms in Eqs. (13) and (14). Recall that our energy
is measured in units of vF kθ , which for angle of 1◦ is around
180 meV. We note the following facts:

(1) The diagonal terms HkAn are of order |n − |k||, while
the HkBn are of order |n + 1 − |k|| with k in the first Bril-
louin zone (|k| < 1). Therefore, HkB1 � 1, HkA2 > 1, and all
the other HkAn, HkBn are considerably larger. This shows that
Mn+1 in Eq. (8) is of order n, due to the dominance of the
momentum term in relation to the hopping terms.

(2) HAnBn and HBn−1An are proportional to Tj , so they are
of order α = w1/(vF kθ ). Near the first magic angle (θ ≈ 1◦,

or w1 ≈ 1/
√

3 in units of vF kθ ), α ≈ 0.6/θ with the angle in
degrees (hence smaller angles have larger α). By Eq. (8), this
means the matrices Nn ∼ HBnAn+1 are of order α.

These facts allow us to estimate Pn in Eq. (13):

Pn ∝ |Nn|2|Mn+1|−2|Pn+1| + 1

∝ (vF kθ )2α2(vF kθn)−2|Pn+1| + 1

= α2n−2|Pn+1| + 1. (21)

For n � 2 therefore Pn = 1 up to a correction term no more

than α2n−2 < 0.1. Therefore we are justified (up to a 10%

error) of neglecting all Pn, n � 2 terms. Similarly, using these

estimates and substituting into Rn in Eq. (14), we see that

|Rn| �
α2

(n + 1)2
|Rn+1| + (vF kθ )α2

(n + 1)

� 0.04|Rn+1| + 0.09(vF kθ ) (22)

when n � 2 at the first magic angle α ≈ 0.6. Again this will

allow us to neglect the Rn term for n � 2.

This means that shells after the first one can be neglected

at the first magic angle. More generally, only the first N shells

will be needed for understanding the N th magic angle.

In order to see the validity of the above approximations

more concretely, it is instructive to write down the two-shell
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(A1, B1, A2, B2) Hamiltonian explicitly, and estimate the con-

tribution of the second shell. A1 and B1 are 12-dimensional

Hilbert spaces while A2 and B2 are 24-dimensional Hilbert

spaces, see Appendix A. Further shells are only a gen-

eralization of the ones below. We write the eigenvalue

equation:

(HkA1 + HA1,A1)ψA1 + HA1,B1ψB1 = EψA1,

H
†
A1,B1ψA1 + HkB1ψB1 + HB1,A2ψA2 = EψB1,

H
†
B1,A2ψB1 + (HkA2 + HA2,A2)ψA2 + HA2,B2ψB2 = EψA2,

HA2,B2ψA2 + HkB2ψB2 = EψB2. (23)

We integrate out from the outer shell to the first to obtain the equations

(HkA1 + HA1,A1)ψA1 + HA1,B1ψB1 = EψA1,

H
†
A1,B1ψA1 + {HkB1 + HB1,A2[E − (HkA2 + HA2,A2) − HA2,B2(E − HkB2)−1H

†
A2,B2]−1H

†
B1,A2}ψB1 = EψB1, (24)

and to finally obtain

EψA1 = (HkA1 + HA1,A1 + HA1,B1{E − HkB1 − HB1,A2[E − (HkA2 + HA2,A2)

− HA2,B2(E − HkB2)−1H
†
A2,B2]−1H

†
B1,A2}−1H

†
A1,B1)ψA1. (25)

Solving the above equation would give us the eigenstate en-

ergies, as well as the reduced eigenstate wave functions ψA1.

However, even for two shells above, this is not analytically

solvable, hence further approximations are necessary. We im-

plement our approximations here.

(1) First, focusing on the first magic angle of 1◦, from

numerical calculations we know that the energy of the active

bands |E | < 60 meV ≈ 0.3vF kθ . Hence EH−1
kB1 < 0.3 and fur-

thermore EH−1
kBn, EH−1

kAn < 0.3n−1 for n � 2. This justifies the

approximation around the first magic angle:

(E − HkB1)−1 = −H−1
kB1

− EH−2
kB1

(26)

and

(E − Hk(A,B)n)−1 = −H−1
k(A,B)n − EH−2

k(A,B)n (27)

for n � 2. Region of validity of this approximation: this

approximation is independent on w0,w1, the interlayer tun-

neling. It, however, depends on θ as well as on the energy

range of the bands we are trying to approximate. For ex-

ample, for θ = 0.3◦, an energy range |E | � 60 meV would

mean that |E/vF kθ | � 1. This gives |EH−1
kBn

|, |EH−1
kAn

| < n−1

and hence we would only be able to neglect shells larger

than n = 3. In particular, in order to obtain convergence for

bands of energy E at angle θ , we can neglect the shells at

distance n = 2 + [E/vF kθ ] (where x means the integer part

of x). Hence, as the twist angle is decreased, and if we are

interested in obtaining convergent results for bands at a fixed

energy, we will need to increase our shell cutoff to obtain a

faithful representation of the energy bands. If we keep the

number of shells fixed, we will obtain faithful (meaning in

good agreement with the infinite cutoff limit) energies only

for bands in a smaller energy window as we decrease the

twist angle. Notice that this approximation does not depend on

w0,w1 and hence it is not an approximation in the interlayer

coupling.

(2) The second approximation is regarding w0,w1: be-

cause α = w1/vF kθ ≈ 0.6 at the first magic angle, we can do

a perturbation expansion in the powers of α. We remark that

Hk,Bn, Hk,An ∼ n ≫ α for n � 2 and θ = 1◦. We also remark

that H−1
k,B1α � 0.6 for all k in the first BZ (the largest value,

H−1
KM ,B1α = 0.6 is reached for k at the KM corner of the moiré

BZ). As such, we find terms of the following form scale as

HAnBnH−1
kA,BnH

†
AnBn ∼ α2n−1 (n � 2),

HBn−1AnH−1
kA,BnH

†
Bn−1An ∼ α2n−1 (n � 2),

HB1A1H−1
kB1H

†
B1A1 ∼ α2. (28)

With Eqs. (26)–(28) one can see that in Eq. (25) the leading

order contributions of the terms involving the second shell

(A2, B2) are roughly ∼|HA1,B1|2|HkB1|−2|HB1,A2|2|HkA2|−1 ∼
α4/2 ∼ 0.05. It is hence a relatively good approximation to

neglect shells higher than n = 1 for angle θ = 1◦. For exam-

ple, at the KM point, neglecting the n = 2 shell will induce

a less than 10% percent error. Region of validity of this ap-

proximation: Notice that as the twist angle is decreased, α

increases. In general, the relative error of the nth shell is

roughly HBn−1AnH−2
kAn

H
†
Bn−1An ∼ α2/n2, so we can neglect the

shells for which n ≫ α where ≫ should be considered twice

the value of α. Hence, for an angle of 0.5◦ (α = 1.2) we can

neglect all shells greater than 3, etc. For angle 1/n of the first

magic angle we can neglect all shells above n + 1.

All the above remarks, which were made for the ŴM-

centered model, can also be extended to the KM-centered

model in Fig. 4(b). In particular, the tripod model in Fig. 8(b),

containing only the A1, A2 shells, is a good approximation to

the infinite model around the Dirac point, giving the correct

first magic angle.

E. Further approximation of the one-shell (A1, B1)

Hamiltonian in TBG

In the previous section we claimed that, remarkably, a

relatively good approximation of the low-energy BM model

can be obtained by taking a cutoff of one shell, where we
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only consider the first A subshell and the first B subshell. The

eigenvalue equations are

(HkA1 + HA1,A1)ψA1 + HA1,B1ψB1 = EψA1,

H
†
A1,B1ψA1 + HkB1ψB1 = EψB1, (29)

which can be solved for ψB1 to obtain

ψB1 = (E − HkB1)−1H
†
A1,B1ψA1. (30)

Eliminating ψB1 we find the eigenvalue equation for the first

A shell (which includes the coupling to the first B shell):

[HkA1 + HA1,A1 + HA1,B1(E − HkB1)−1H
†
A1,B1]ψA1 = EψA1.

(31)

This is a 12 × 12 nonlinear eigenvalue equation in E . At this

point we will make a few assumptions in order to simplify the

eigenvalue equation. In particular, we would like to make this

a linear matrix eigenvalue equation. Since we are interested

close to E = 0 we may assume that E ≪ HkB1. This allows

us to treat the B shell perturbatively, obtaining
(
HkA1 + HA1,A1 − HA1,B1H−1

kB1H
†
A1,B1

)
ψA1 = EψA1. (32)

Our approximation Hamiltonian is

HApprox1(k) = HkA1 + HA1,A1 − HA1,B1H−1
kB1H

†
A1,B1. (33)

We note that HApprox1(k) is a further perturbative Hamiltonian

for the n = 1 shell (A1, B1). For k small, around the ŴM

point, we expect this to be an excellent approximation of

the n = 1 shell Hamiltonian [and since the n = 1 shell is a

good approximation of the infinite shell, then HApprox1(k) is

expected to be an excellent approximation of the full BM

Hamiltonian close to the ŴM point]. The good approximation

is expected to deteriorate as k gets closer to the boundary of

the MBZ, since HA1,B1H−1
kB1H

†
A1,B1 increases as k approaches

the MBZ boundary. This is because H−1
kB1 has larger terms as

k approaches the MBZ boundary. However, we expect still

moderate qualitative agreement with the BM Hamiltonian.

We also predict that taking two shells (A1, B1, A2, B2) would

give an extremely good approximation to the infinite shell BM

model.

F. Numerical confirmation of our perturbation scheme

The series of approximations performed in Secs. II D and

II E are thoroughly numerically verified at length in Appendix

B. We here present only a small part of the highlights. In

Fig. 6 we present the n = 1, 2, 3 shell (one shell is made out

of A, B subshells) results of the BM Hamiltonian in Eq. (3),

for two values of w0,w1. We virtually see no change between

two and three shells (see also Appendix B), we verify this for

higher shells and for many more values of w0,w1, around—

and away from, within some manifolds (w0,w1) explained in

Sec. III—the magic angle. Hence our perturbation framework

works well, and confirms the irrelevance of the n > 2 shells.

The n = 1 shell band structure in Fig. 6, while in excellent

agreement to the n = 2 shells around the ŴM point, contains

some quantitative differences from the n = 2 shell (equal to

the infinite cutoff) away from the ŴM point. However, the

generic aspects of the band structure, low bandwidth, almost

exact degeneracy (at n = 1, becoming exact with machine

precision in the n > 2) at the KM point are still present even

FIG. 6. Comparison of the different cutoff shells of the BM

model in Eq. (3), for two values of w0, w1. (more data available in

Appendix B). We clearly see that n = 2 has reached the infinite cutoff

limit (the band structure does not change from n = 2 and n = 3,

while n = 1 (only one shell, A1, B1 subshells) shows excellent agree-

ment around the ŴM point, and good agreement even away from the

ŴM point (for example see the second row).

in the n = 1 case, as our perturbative framework predicts in

Secs. II D and II E.

Our approximations of the n = 1 shell Hamiltonian in

Sec. II E have brought us to the perturbative HApprox1(k) in

Eq. (33). Around the first magic angle we claim that this

Hamiltonian is a good approximation to the band structure of

the n = 1 shell, especially away from MBZ boundary. The

n = 1 shell is only a 15% difference on the n = 2 shell and

that the n = 1 shell is within 5% of the thermodynamic limit,

we then make the approximation that HApprox1 explains the

band structure of TBG within about 20%. The approximations

are visually presented in Fig. 8(a), and the band structure of

the approximation HApprox1 to the one-shell Hamiltonian is

presented in Fig. 7. We see that around the ŴM point, the

Hamiltonian HApprox1(k) in Eq. (33) has a very good match

to the BM Hamiltonian Eq. (3), while away from the ŴM

point the qualitative agreement, small bandwidth, crossing

at (close to) KM (the crossing is at KM for the infinite shell

FIG. 7. Band structure of the approximation HApprox1(k) to the

one-shell Hamiltonian, versus the infinite limit approximation, for

the w0 = w1 = 1/
√

3 magic point. The n = 1 shell Hamiltonian

band structure is undistinguishable from HApprox1(k), and is plotted

in Appendix B.
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FIG. 8. The two types of approximate models used for analytics.

(a) The one-shell (A1, B1) model which we have theoretically argued

and numerically substantiated to represent a good approximation

for values w0, w1 � 1/
√

3. Analytically we will first solve it by

perturbation theory around the hexagon model, which involves only

the A1 sites. The shell B1 will be added perturbatively to obtain

HApprox1(k) in Eq. (33). (A second way to solve for this Hamiltonian

will be presented later.) (b) The tripod model, which involves the

two shells A1 (also known as the KM point) and A2. Due to the same

considerations as for the ŴM -centered model, this should be a good

approximation for the infinite shell model for w0, w1 � 1/
√

3. This

is the same model as solved by Bistritzer and MacDonald [1]. We

find that the magic angle at which the Dirac velocity vanishes at the

KM point is given by w1 = 1/
√

3, ∀w0.

cutoff by symmetry, but can deviate slightly from KM for

finite cutoff).

In Appendix B we present many different tests which

confirm all aspects of our perturbative framework, differ-

ent twist angles and AA, AB coupling. We test the n =
1, 2, 3, 4, . . . shells, and also further test the validity of the

approximation HApprox1(k) to the n = 1 shell Hamiltonian

in Sec. II E.

III. ANALYTIC CALCULATIONS ON THE BM MODEL:

STORY OF TWO LATTICES

We will now analytically study the approximate Hamil-

tonian in Eq. (33). While in Secs. II D and II E we have

focused on the ŴM-centered lattice, the same approximations

can be made in the KM-centered lattice, where the HApprox1(k)

changes to HApprox1(k) = HkA1 + HA1,A2H−1
kA2H

†
A1,A2. The two

types of approximations are schematically shown in Fig. 8

in the ŴM- and KM-centered lattice. First, we start with the

tripod model [Fig. 8(b)] to extend the Bistritzer-MacDonald

calculation of the magic angle in the isotropic limit and find

a “first magic manifold,” where the Dirac velocity vanishes in

the tripod model (and is very close to vanishing in the infinite

shell BM model). We then solve the 1-shell ŴM-centered

model [Fig. 8(a)], defined by Eq. (33), which is supposed

to faithfully describe TBG at and above the magic angle, as

proved in Sec. II. This is a 12 × 12 Hamiltonian, with no

known analytic solutions, formed by shell 1: A1, B1, where

the B part of the first shell B1 is taken into account perturba-

tively, as HA1,B1H−1
kB1

H
†
A1,B1.

A. The KM-centered “tripod model” and the first

magic manifold

For completeness we solve for the magic angle in the

model in the KM-centered model of Fig. 4 by taking only

four sites, one in shell A1 and three in shell A2. We call

this approximation, depicted in Fig. 8(b), the tripod model.

This model is identical to the one solved by Bistritzer and

MacDonald in the isotropic limit. However, we will solve

for the Dirac velocity away from the isotropic limit, to find

a manifold w1(w0) where the Dirac velocity vanishes. The

tripod Hamiltonian HTri(k,w0,w1), with k measured from the

KM point, reads

HTri(k,w0,w1)

=




k · σ T1(w0, w1) T2(w0, w1) T3(w0, w1)

T1(w0, w1) (k − q1) · σ 0 0

T2(w0, w1) 0 (k − q2 ) · σ 0

T3(w0, w1) 0 0 (k − q3) · σ


.

(34)

The Schrödinger equation in the basis (ψA11
, ψA21

, ψA22
, ψA23

)

reads

k · σψA11
+∑

i=1,2,3 Ti(w0,w1)ψA2i
= EψA11

, (35)

TiψA11
+ (k − qi ) · σψA2i

= EψA2i
, i = 1, 2, 3. (36)

From the second equation we find ψA2i
= [E − (k − qi ) ·

σi]
−1TiψA11

and plug it into the first equation to obtain

EψA11
= k · σψA11

+
3∑

i=1

Ti

E + (k − qi ) · σ

E2 − (k − qi )2
TiψA2i

≈ k · σψA11
−

3∑

i=1

Ti[(E + (k − qi ) · σ ]

× (1 + 2k · qi )TiψA2i
, (37)

where we neglect E2 as small and expand the denominator to

first order in k to focus on momenta near the KM Dirac point.

Keeping only first order terms in E , k (not their product as

they are both similarly small), and using that |qi| = 1, ∀i =
1, 2, 3, we find

(
1 − 3w

2
1

)
k · σψA11

=
[
1 + 3

(
w

2
0 + w

2
1

)]
EψA11

(38)

and hence we find that the Dirac velocity vanishes on a mani-

fold of w0,w1 given by w1 = 1√
3

and ∀w0, which we call the

first magic manifold. The angle for which the Dirac velocity

vanishes at the KM point is hence not a magic angle but a

magic manifold. However, a further restriction needs to be

imposed: w0 cannot be too large, since from our approxima-

tion scheme in Secs. II D and II E, if w0 ≫ 1/
√

3, the tripod

model would not be a good approximation for the BM model

with a large number of shells; hence we restrict ourselves to

w0 � 1/
√

3, and define

First magic manifold: w0 � w1 = 1√
3
. (39)

The tripod model, Fig. 4(b), in which we found the first magic

manifold, does not respect the exact C2x symmetry of the

lattice, although it becomes asymptotically accurate as the

number of shells increases. The magic angle also does not
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explain analytically the flatness of bands, since it only con-

siders the velocity vanishing at one point. However, the value

obtained by BM for the magic angle is impressive; despite

considering only four sites and the KM point, the bands do

not change much after adding more shells, and they are flat

throughout the whole Brillouin zone, not only around the KM

point. Why is the entire band so flat at this value? We answer

this question by examining the ŴM-centered model below.

B. The ŴM-centered hexagon model and the second

magic manifold

In Sec. II E we introduced a yet unsolved approximate

model HApprox1(k) in Eq. (33), the ŴM-centered model in

Fig. 4(a). This model respects all the symmetries of TBG,

and we have showed in Appendix B that it represents a good

approximation to the infinite cutoff limit. As we can see in

Fig. 15, the band dispersions of the n = 1 shell model is very

similar to that of n = 2. After n = 2 shells the difference to

the infinite cutoff band structure is not visible by eye.

An analytic solution for the 12 × 12 Hamiltonian

HApprox1(k) in Eq. (33) is not possible at every k. We hence

separate the Hamiltonian into HHex(k,w0,w1) = HkA1 +
HA1,A1, then treat the smaller part HA1,B1H−1

kB1
H

†
A1,B1 perturba-

tively, for w0,w1 �
√

3. We will try to solve the first (largest)

part of HApprox1(k): the A1 shell model HHex(k,w0,w1) =
HkA1 + HA1,A1 which we call the hexagon model:

HHex(k,w0,w1) =




(k − q1) · σ T2(w0,w1) 0 0 0 T3(w0,w1)

T2(w0,w1) (k + q3) · σ T1(w0,w1) 0 0 0

0 T1(w0,w1) (k − q2) · σ T3(w0,w1) 0 0

0 0 T3(w0,w1) (k + q1) · σ T2(w0,w1) 0

0 0 0 T2(w0,w1) (k − q3) · σ T1(w0,w1)

T3(w0,w1) 0 0 0 T1(w0,w1) (k + q2) · σ




. (40)

This is still a 12 × 12 Hamiltonian and its eigenstates cannot

be analytically obtained at general k. In particular, it is also

not illuminating to focus on a 12 × 12 Hamiltonian when we

want to focus on the physics of the two active bands and the

low-energy physics of the dispersive passive bands. As such

we make a series of approximations, which also elucidate

some of the questions posed in Fig. 1. We first analytically find

a set of bands which can act as a perturbation theory treatment.

1. Energies of the hexagon model at k = 0 for arbitrary w0, w1

The only momentum where the hexagon model

HHex(k,w0,w1) can be solved is the ŴM point. This is

fortunate, as this point preserves all the symmetries of TBG,

and is a good starting point for a perturbative theory. We find

the 12 eigenenergies of HHex(k = 0,w0,w1) given in Table I.

By analyzing these energies as a function of w0,w1, we

can answer the question (1) in Fig. 1 and give arguments for

question (3) in Fig. 1. Numerically, at (and around) the first

magic angle—which as per the tripod model is defined as

TABLE I. Eigenvalues of the hexagon model in Eq. (40) at ŴM

point (k = 0). The values for general w0, w1 and for w0 = w1 = 1√
3

are given, and Dege. is short for degeneracy.

Band Energy at k = 0 for any w0, w1 w0 = w1 = 1√
3

Dege.

E1 2w1 −
√

1 + w
2
0 0 1

E2 −2w1 +
√

1 + w
2
0 0 1

E3,4 − 1

2
(
√

4 + w
2
0 −

√
9w

2
0 + 4w

2
1 ) 0 2

E5,6
1

2
(
√

4 + w
2
0 −

√
9w

2
0 + 4w

2
1 ) 0 2

E7,8 − 1

2
(
√

4 + w
2
0 +

√
9w

2
0 + 4w

2
1 ) −√

13/3 2

E9,10
1

2
(
√

4 + w
2
0 +

√
9w

2
0 + 4w

2
1 )

√
13/3 2

E11 −2w1 −
√

1 + w
2
0 −4/

√
3 1

E12 2w1 +
√

1 + w
2
0 4/

√
3 1

w1 = 1/
√

3—and in the isotropic limit w0 = w1, the system

exhibits two very flat active bands, not only around the KM

point but everywhere in the MBZ. It also exhibits a very small

gap (sometimes nonexistent) between the active bands and

the passive bands, around the values w0 = w1 = 1/
√

3. The

hexagon model HHex(k,w0,w1) explains both these obser-

vations. We find that the eigenenergies of HHex(k = 0,w0 =
1/

√
3,w1 = 1/

√
3), in the isotropic limit, are given in the

third column of Table I. Remarkably, in the isotropic limit

w0 = w1, and at the first magic angle w1 = 1/
√

3, the bands

at the ŴM point are sixfold degenerate at energy 0. The two

active bands are degenerate with the two passive bands above

them and the two passive bands below them. This degen-

eracy is fine tuned, but the degeneracy breaking terms in

the next shells (subshells B1, A2, B2, etc.) are perturbative.

Hence the gap between the active and the passive bands will

remain small in the isotropic limit, answering question (1)

in Fig. 1.

From the tripod model, the two active bands have energy

zero at the KM point, and vanishing velocity at w1 = 1√
3
.

Moreover, they also have energy zero at the ŴM point in the

hexagon model (a good approximation for the infinite case

at the ŴM point). This now gives us two points (ŴM, KM) in

the MBZ where the bands have zero energy; at one of those

points, the band velocity vanishes. This gives us more analytic

arguments that the band structure remains flat than just the

KM point velocity, i.e., point (3) in Fig. 1. We further try to

establish band properties away from the ŴM, KM points by per-

forming a further perturbative treatment of HHex(k,w0,w1)

using the eigenstates at ŴM .

2. k �= 0 six-band approximation of the hexagon model

in the isotropic limit

In the isotropic limit at w0 = w1 = 1/
√

3, the sixfold de-

generacy point of the hexagon model HHex(k,w0,w1) at ŴM
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prevents the development of a Hamiltonian for the two active

bands. However, since the gap (= √
13/3) between the six

zero modes E1,...,6(k = 0,w0 = 1√
3
,w1 = 1√

3
) in Table I and

the rest of the bands E7,...,12(k = 0,w0 = 1√
3
,w1 = 1√

3
) is

large at ŴM , we can build a six-band k · p Hamiltonian away

from the ŴM point:

H6-band
i j (k) = 〈ψEi

|HHex

(
k,w0 = w1 = 1√

3

)

− HHex

(
k = 0,w0 = w1 = 1√

3

)∣∣ψE j

〉

=
〈
ψEi

∣∣I6×6 ⊗ k · �σ
∣∣ψE j

〉
, (41)

where |ψE j
〉 with j = 1, . . . , 6 are the zero energy eigenstates

of HHex(k = 0,w0 = w1 = 1√
3

). We find these eigenstates

in Appendix C, where we place them in C3,C2x eigenvalue

multiplets. The 6 × 6 Hamiltonian is the smallest effective

Hamiltonian at the isotropic point, due to the sixfold degener-

acy of bands at ŴM .

The explicit form of the Hamiltonian H6-band(k) is given in

Appendix C, Eq. (C7). Due to the large gap between the six

bands (degenerate at ŴM) and the rest of the bands, it should

present a good approximation of the hexagon model at finite

k for w0 = w1 =
√

3. The approximate H6-band(k) is still not

generically diagonalizable (solvable) analytically. However,

we can obtain several important properties analytically. First,

the characteristic polynomial

Det[E − H6-band(k)] = 0

⇒
[
13E2 − 12

(
k2

x + k2
y

)
E + kx

(
k2

x − 3k2
y

)]2 = 0. (42)

Or, parametrizing (kx, ky) = k(cos θ, sin θ ), where |k| = k,

we have

[13E3 − 12k2E + k3 cos(3θ )]2 = 0. (43)

The characteristic polynomial reveals several properties of the

six-band approximation to the hexagon model.

(1) The exponent of 2 in the characteristic polynomial

reveals that all bands of this approximation to the hexagon

model are exactly doubly degenerate. This explains the almost

degeneracy of the flat bands [point (3) in Fig. 1], but further-

more it explains why the passive bands, even though highly

dispersive, are almost degenerate for a large momentum range

around the ŴM point in the full model (see Fig. 14): they

are exactly degenerate in the six-band approximation to the

hexagon model; corrections to this approximation come from

the remaining six bands of the hexagon model, which reside

extremely far (energy
√

13/3), or from the B1 shell, which

we established is at most 20% in the MBZ—and smaller

around the ŴM point. Thus, the almost double degeneracy of

the passive bands pointed out in (2) of Fig. 1 is explained.

(2) Along the ŴM-KM line we have kx = 0, ky = k and

hence the characteristic polynomial becomes

ŴM − KM :
(
13E3 − 12k2

y E
)2 = 0. (44)

This implies two further properties: (1) The “active” bands

of the approximation of the hexagon mode are exactly flat at

E = 0 for the whole ŴM-KM line, thereby explaining their flat-

ness for a range of momenta; notice that our prior derivations

FIG. 9. Band structure of the six-band approximationH6-band to

the hexagon model for the w0 = w1 = 1/
√

3 magic point. (a) The

six zero energy eigenstates at ŴM marked by the red circle are used

to obtain a perturbative Hamiltonian for the six lowest bands across

all the BZ. As the six bands are very well separated from the other

six, we expect a good approximation over a large part of the BZ.

The active and passive bands in the dashed square are almost doubly

degenerate. In the right panel, the six lowest bands of the hexagon

model, for a smaller energy range, are shown. Notice the passive

bands are undistinguishably twofold degenerate by eye (not an exact

degeneracy, they split close to KM , see left plot) Note the Dirac fea-

ture of the passive bands. The active bands split at KM in the hexagon

model, but the B1 shell addition makes them degenerate. (b) The

first order approximation to the hexagon model using the six zero

energy bands at the ŴM point gives exactly doubly degenerate bands

over the whole BZ. It gives the correct velocity of the Dirac nodes,

zero dispersion of active bands on ŴM -KM , and a small dispersion of

active bands on ŴM -MM , with known velocities. Along these lines,

all eigenstates are k independent.

found that the active bands have zero energy at KM , ŴM and

vanishing Dirac velocity at KM for w0 = w1 =
√

3; our cur-

rent derivation shows that the approximately flat bands along

the whole ŴM-KM line originate from the doubly degenerate

zero energy bands of the hexagon model. (2) The dispersive

(doubly degenerate) passive bands, for w0 = w1 =
√

3, have

a linear dispersion

E = ±
√

12/13k (45)

along ŴM-KM , with velocity 2
√

3/13 = 0.960769, close to the

Dirac velocity. This explains property (2) in Fig. 1. Note that

the velocity is equal to 2/[E9,10(k = 0,w0 = 1/
√

3,w1 =
1/

√
3)] or two over the gap to the first excited state. This

approximation is visually shown in Fig. 9.

(3) Remarkably, the eigenstates along along the ŴM-KM

line can also be obtained (see Appendix D). Along this line,

the eigenstates of all bands of the H6-band Hamiltonian ap-

proximation to the hexagon model are ky independent (see

Appendix D)!

(4) Along the ŴM-MM line (kx = k, ky = 0) the character-

istic polynomial becomes

ŴM − MM : (k + E )2(k2 − 13kE + 13E2)2 = 0. (46)

Hence the energies are E = −k, a highly dispersive (dou-

bly degenerate) hole branch passive band of velocity −1;

E = 1
2
(1 + 3√

13
)k (≈0.916025k), another highly dispersive

doubly degenerate electron branch passive band. This ex-

plains property (2) in Fig. 1. Notice that this velocity

is 1
2
(1 + 1

E9,10 (k=0,w0=1/
√

3,w1=1/
√

3)
). The third dispersion is
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TABLE II. Eigenvalues of the hexagon model in Eq. (40) at

ŴM point (k = 0) at the second magic manifold w1 =
√

1+w
2
0

2
. The

notation Dege. is short for degeneracy.

Band Energy at k = 0 at w1 =
√

1+w
2
0

2
Dege.

E1,2 0 2

E3,4

√
10w

2
0
+1−

√
w

2
0
+4

2
2

E5,6 −
√

10w
2
0
+1−

√
w

2
0
+4

2
2

E7,8 −
√

10w
2
0
+1+

√
w

2
0
+4

2
2

E9,10

√
10w

2
0
+1+

√
w

2
0
+4

2
2

E11 −2
√

1 + w
2
0 1

E12 2
√

1 + w
2
0 1

E = 1
2
(1 − 3√

13
)k (≈0.0839749k), a weakly dispersive dou-

bly degenerate active band. This explains the very weak, but

nonzero dispersion of the bands on ŴM-MM . The eigenstates

along this line can also be obtained (see Appendix D). The

approximation is visually shown in Fig. 9.

(5) Along the ŴM-MM , the eigenstates of all bands of the

H6-band Hamiltonian approximation to the hexagon model are

kx independent (see Appendix D)!

(6) In the six-band model, eigenstates are independent of

k on the manifold kx = ky.

3. Energies of the hexagon model at k = 0 away from the

isotropic limit and the second magic manifold

In the isotropic limit (which coincides with the magic angle

of the tripod model), w0 = w1 = 1/
√

3, due to the sixfold

degeneracy of the ŴM point, it is impossible to obtain an

approximate Hamiltonian that is less than a 6 × 6 matrix.

Moving away from the isotropic limit, and staying in the range

of approximations w0,w1 �
1√
3
, the hexagon model is a good

starting point for a perturbative expansion. We now ask what

values of w1,w0 might have a “simple” expression for their

energies.

We see that if w1 =
√

1+w
2
0

2
, the sixfold degeneracy

at the ŴM point at zero energy for w1 = 1/
√

3 splits

into a 2(enforced) + 2(accidental) + 2(enforced)-fold degen-

eracy. There is an accidental twofold degeneracy of the active

bands at zero energy, and a gap to the passive bands which

have an symmetry enforced degeneracy. The twofold acci-

dental degeneracy at zero energy along w1 =
√

1+w
2
0

2
is the

important property of this manifold in parameter space. The

eigenvalues of the hexagon model in this case are given in

Table II.

Although the perturbative addition of the B1 shell will

split the ŴM point E1,2(k = 0,w0,w1 =
√

1+w
2
0

2
) = 0 degen-

eracy, we find that this zero energy doublet of the hexagon

model is particularly useful to calculate a k · p perturbation

theory of the active bands, as many perturbative terms can-

cel. In particular, we see that the gap between the active

band zero energy doublet and the passive bands [E3,4(k =

0,w0,w1 =
√

1+w
2
0

2
)] of the hexagon model becomes large in

the chiral limit [E3,4(k = 0,w0 = 0,w1 =
√

1+w
2
0

2
= 1/2) =

−1/2]. We note that this explains property (4) of Fig. 1:

from the hexagon model, the gap between the active and the

passive bands is, in effect, proportional to w1 − w0. Since

the bandwidth of the TBG model is known to be smaller

than this gap, we will use the ŴM point doublet of states

E1,2(k = 0,w0,w1 =
√

1+w
2
0

2
) = 0 to perform a perturbative

expansion. We define this paramter manifold as the “second

magic manifold”:

Second magic manifold: w1 =
√

1+w
2
0

2
, w0 � 1/

√
3.

IV. TWO-BAND APPROXIMATIONS ON THE

MAGIC MANIFOLDS

A. Differences between the first and second magic manifolds

We have defined two manifolds in parameter space where

the two active bands of the hexagon model are separated from

the passive bands. Hence, we can do a perturbative expansion

in the inverse of the gap from the passive to the active bands.

We first briefly review the differences between the two magic

manifolds

First magic manifold: w0 � w1 = 1/
√

3.

(1) For these values of w0,w1, the Dirac velocity at KM

vanishes in the tripod model, which is a good approximation

to the infinite cutoff model. Hence the velocity at the KM point

in the infinite model should be small. The Dirac node is at

E = 0.

(2) One end of the first magic manifold, the isotropic point

w0 = w1 = 1/
√

3 is also the endpoint of the second magic

manifold, and exhibits the sixfold degeneracy at E = 0 at the

ŴM point in the hexagon model.

(3) Away from the isotropic point, on the first magic man-

ifold, a gap opens everywhere between the six states of the

hexagon model. At the ŴM point, the sixfold degenerate bands

at the isotropic limit split when going away from this limit,

into a 2 (symmetry enforced) -1-1-2 (symmetry enforced)

degeneracy configuration. Hence the two active bands, in

the hexagon model, split from each other in the first magic

manifold.

(4) The splitting of the active bands in the hexagon model

in the first magic manifold is corrected by the addition of the

B1 shell as the term HA1,B1H−1
kB1H

†
A1,B1 in Eq. (33).

(5) The active bands, when computed with the full Hamil-

tonian without approximation, are very flat on the first magic

manifold (much flatter than on the second magic manifold),

and there is a full, large gap to the passive bands (see Fig. 10).

Second magic manifold: w1 =
√

1+w
2
0

2
, w0 � 1/

√
3.

(1) The hexagon model exhibits a doublet of zero energy

active bands at ŴM along the entire second magic manifold.

(2) One end of the second magic manifold, the isotropic

point w1 = w0 = 1/
√

3 is also the endpoint of the first magic

manifold, and exhibits a sixfold degeneracy at E = 0 at the

ŴM point in the hexagon model and a vanishing Dirac velocity

in the tripod model.
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FIG. 10. Plots of the active bands band structure on the first magic manifold, w1 = 1/
√

3, w0 �
√

3, for a large number of shells. In the

second row, the gap to the passive bands is large and outside the range. The Dirac velocity is small for all values of w0/w1 (it vanishes in the

tripod model, but has a finite value once further shells are included), and the bands are extremely flat. The ratio of active bands bandwidth to

the active-passive band gap decreases upon decreasing w0/w1.

(3) Away from the isotropic point, on this manifold, the

bands do not have a vanishing velocity at the Dirac point.

(4) The eigenstates of the active bands are simple (simpler

than on the first magic manifold) on this manifold, with simple

matrix elements (as proved below). A perturbation theory can

be performed away from the ŴM point and away from this

manifold to obtain a general Hamiltonian for k,w0,w1. The

B1 shell can then also be included perturbatively as the term

HA1,B1H−1
kB1H

†
A1,B1 in Eq. (33).

(5) The active bands are not the flattest on this manifold.

They are much less flat than on the first magic manifold, due

to the fact that the Dirac velocity does not vanish (is not small)

at the KM point on the second magic manifold.

B. Two-band approximation for the active bands of the hexagon

model on the second magic manifold

We now try to obtain a two-band model on the mani-

fold w1 =
√

1 + w
2
0/2,∀w0 � 1/

√
3, for which we use the

ŴM-point HHex(k = 0,w0,w1 =
√

1+w
2
0

2
) as a zeroth order

Hamiltonian and perform a k · p expansion away from the ŴM

point.

Figure 10 shows that away from the isotropic limit, the

gap that opens at the ŴM point between the formerly sixfold

degenerate bands can be much larger than the bandwidth of

the active bands even for modest deviations from the isotropic

limit. We have explained this from the behavior of the six-

band approximation to the hexagon model, and from knowing

the analytic form of the ŴM-point energy levels in the hexagon

model. We have also obtained the eigenstates of all the ŴM-

energy levels in Appendix E 2. It is then sufficiently accurate

to treat the manifold of the two ŴM-point zero energy states at

w1 =
√

1+w02

2
,∀w0 � 1/

√
3 as the bases of the perturbation

theory.

To perform a two-band model approximation to the

hexagon model, we take the unperturbed Hamiltonian to be

HHex(k = 0,w0,w1 =
√

1 + w
2
0/2) (the hexagon model on

the second magic manifold) in Eq. (40). For this Hamilto-

nian we are able to obtain all the eigenstates analytically in

Appendix E 2. The perturbation Hamiltonian, on the second

magic manifold, is

Hperturb(k,w0) = HHex


k,w0,w1 =

√
1 + w

2
0

2




− HHex


k = 0,w0,w1 =

√
1 + w

2
0

2




= I6×6 ⊗ k · �σ . (47)

The manifold of states which are kept as “important” are

the two zero energy eigenstates of HHex(k = 0,w0,w1 =√
1 + w

2
0/2), given in Eq. (E7). This manifold will be de-

noted as ψ with a band index m ∈ {1, 2}. The manifold of

“excited” states, which will be integrated out, is made up of

the eigenstates Eqs. (E8), (E9), (E10), and (E11), each doubly

degenerate, and Eqs. (E12) and (E13), each nondegenerate.

This manifold will be denoted as ψ with a band index l ∈
{3, 4, . . . , 12}. We now give the expressions for the pertur-

bation theory up to fifth order. We here give only the final

results, for the expression of the matrix elements computed in

perturbation theory, see Appendix F 2.

We first note that the first order (linear in k) perturbation

term is H
(1)
mm′ (k,w0) = 〈ψm|Hperturb(k,w0)|ψm′〉 = 0. This is a

particular feature of the second magic manifold and renders

the perturbation theory simple. Furthermore, it implies that,

on the second magic manifold, the active bands of the hexagon

model have a quadratic touching at the ŴM point, as confirmed

numerically. Due to the vanishing of these matrix elements,

one can perform quite a large order perturbative expansion.

It can be shown that the nth order perturbation is

proportional to 1/(3w
2
0 − 1)n−1, with symmetry-preserving

functions of k (see Appendix F 2). Up to the fifth order, the

full two-band approximation to the hexagon Hamiltonian can
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be expressed as

HHex
2-band


k,w0,w1 =

√
1 + w

2
0

2




= d0(k,w0)σ0 + d1(k,w0)(σy +
√

3σx ),

where

d0(k,w0) = 4w0

9

√
w

2
0 + 1

(
1 − 3w

2
0

)2

[(
w

2
0 − 3

)

− 4
(
29w

6
0 − 223w

4
0 − 357w

2
0 − 9

)

9
(
1 − 3w

2
0

)2(
w

2
0 + 1

)
(
k2

x + k2
y

)]

× kx

(
k2

x − 3k2
y

)
(48)

and

d1(k,w0) = 4w
2
0

3

√
w

2
0 + 1

(
3w

2
0 − 1

)

×
[

− 1 +
2
(
35w

4
0 + 68w

2
0 + 9

)(
k2

x + k2
y

)

9
(
w

2
0 + 1

)(
3w

2
0 − 1

)2

]

×
(
k2

x + k2
y

)
, (49)

while the Pauli matrices σ j here are in the basis defined in

Appendix E 2 a (rather than the basis of graphene sublattice).

In particular, we note that the eigenstates of the k · p model

HHex
2-band(k,w0,w1 =

√
1+w

2
0

2
) are independent of k up to the

fifth order perturbation within the hexagon model.

C. Away from the second magic manifold: Two-band active

bands approximation of the hexagon model

We now want to perform calculations away from the sec-

ond magic manifold, and possibly connect the perturbation

theory with the first magic manifold. There are two ways of

doing this, while still using the ŴM-point wave functions as a

basis (we cannot solve the hexagon model exactly at any other

k point). One way is to solve for the wave functions at the ŴM

point for all w0,w1, and use these states to build a perturbation

theory that way. However, away from the special first and

second magic manifolds, the expression of the ground states is

complicated. The second way is to use the eigenstates already

obtained for the second magic manifold w1 =
√

1+w
2
0

2
and

obtain a perturbation away from the second magic manifold.

In this section we choose the latter.

We take the unperturbed Hamiltonian to be HHex(k =
0,w0,w1 =

√
1 + w

2
0/2) (the hexagon model on the second

magic manifold) in Eq. (40). For this Hamiltonian we are

able to obtain all the eigenstates analytically in Appendix

E 2. The perturbation Hamiltonian, away the second magic

manifold, is

Hperturb(k,w0,w1)

= HHex(k,w0,w1) − HHex

(
k = 0,w0,w1 =

√
1 + w

2
0

2

)

= I6×6 ⊗ k · �σ + HHex

(
k = 0, 0,w1 −

√
1 + w

2
0

2

)
. (50)

We now give the expressions for the perturbation theory up

to fourth order. We here give only the final results, for the

expression of the matrix elements computed in perturbation

theory, see Appendices F 2 and F 3.

We first note that the first order Hamiltonian is

H
(1)
mm′ (k,w0,w1) =

(
√

w
2
0 + 1

2
− w1

)
(σy +

√
3σx ). (51)

Hence we find there is now a linear order term in the

Hamiltonian—as it should since the two states degenerate at

ŴM on the second magic manifold are no longer degenerate

away from it. Because of this, many other terms in the further

degree perturbation theory become nonzero, and the pertur-

bation theory has a more complicated form. We present all

details in Appendix F 3 and here show only the final result, up

to fourth order. We can label the two-band Hamiltonian as

HHex
2-band(k,w0,w1) = d0(k,w0,w1)σ0

+ d1(k,w0,w1)(σy +
√

3σx ), (52)

where the expressions of d0(k,w0,w1) and d1(k,w0,w1) are

given in Eqs. (F35) and (F36) in Appendix F 3. The pertur-

bation is made on the zero energy eigenstates of HHex(k =
0,w0,w1 =

√
1+w

2
0

2
). If w1 =

√
1+w

2
0

2
, then the expressions

reduce to our previous Hamiltonian Eq. (F20). Notice that so

far, remarkably the eigenstates are not k dependent, they are

just the eigenstates of (σy +
√

3σx ).

D. Two active bands approximation of the n = 1 shell model

HApprox1(k) on the second magic manifold

In Sec. IV B we have obtained an effective model for the

two active bands of the hexagon model on the second magic

manifold w1 =
√

1+w02

2
, ∀w0 � 1/

√
3 using the ŴM-point

HHex(k = 0,w0,w1 =
√

1+w
2
0

2
) as zeroth order Hamiltonian.

We expect this to be valid around the ŴM point. We know

that a good approximation of the TBG involves at least n = 1

shells: the A1 subshell, which is the hexagon model, and the

B1 subshell, which is taken into account perturbatively in

HApprox1(k) of Eq. (33). After detailed calculations given in

Appendix F 4, we find the first order perturbation Hamiltonian

given by

H (B1)(k,w0,w1) = 1∏
i=1,2,3 |k − 2qi|2|k + 2qi|2

×
∑

µ=0,x,y,z

d̃µ(k,w0,w1)σµ, (53)
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FIG. 11. Plots of the ratio of the bandwidth of the active bands for the large number of shells to the analytic bandwidth � in Eq. (56), for

different values of w0, w1, including the two magic manifolds. In the regime of validity of our approximations, we can see that this ratio is

substantially above 90%.

where d̃µ(k,w0,w1) are given in Eqs. (F39)–(F42) of Ap-

pendix F 4. This represents the first order HApprox1(k)

projected into the zero energy bands of the hexagon model

on the second magic manifold. We note that the B1 shell

perturbation expressions can only be obtained to first order.

Second and higher orders are particularly tedious and not

illuminating. Note that, to first order in perturbation theory on

the second magic manifold, only the term HA1,B1H−1
kB1

H
†
A1,B1

contributes to the approximate two-band Hamiltonian. Also,

we obtained the perturbation of HA1,B1H−1
kB1

H
†
A1,B1 for generic

w0,w1 projected into the second magic manifold ŴM point

bands of the hexagon model.

E. Two-band approximation for the active bands of the n = 1

shell model HApprox1(k) in Eq. (33) for any w0,w1 �
1√
3

We are now in a position to describe the two active

bands of the approximate Hamiltonain of the one-shell model

in Eq. (33), HApprox1 = HkA1 + HA1,A1 − HA1,B1H−1
kB1H

†
A1,B1 by

adding H (B1)(k,w0,w1) of Eq. (54) to HHex
2band(k,w0,w1) of

Eq. (53). We note that this is still perturbation theory per-

formed by using the ŴM-point HHex(k = 0,w0,w1 =
√

1+w
2
0

2
)

as a zeroth order Hamiltonian:

H2-band(k,w0,w1) = HHex
2-band(k,w0,w1) + H (B1)(k,w0,w1).

(54)

We now find some of the predictions of this Hamiltonian.

The energies of the two bands of Eq. (55) at ŴM point are

E±(w0,w1) = ±
(−4

√
w

2
0 + 1w1 + w

2
0 + w

2
1 + 2

2

√
w

2
0 + 1

)
(55)

over the full range of w0,w1 � 1/
√

3. Remarkably we find

an amazing agreement between the energy of the bands at ŴM

point and the numerics. We find that the bandwidth of the flat

band at ŴM point is

�(w0,w1) = 2|E±(w0,w1)|. (56)

This matches incredibly well with the actual values. In Fig. 11

we plot the ratio of actual active bandwidth at ŴM point from

the large number of shell model to � in Eq. (56), for values

w0 < 1/
√

3, w0 < w1 < 1/
√

3. Note that even though we are

sometimes going far from the second magic manifold values

w0,w1 =
√

1 + w
2
0/2 where the perturbation theory is valid,

the ratio holds up well, and is actually never smaller than 0.8

or larger than 1. We are using w0 < w1 because the pertur-

bation theory is around the manifold w0,w1 =
√

1 + w
2
0/2 �

1√
3

for which w0 < w1. For w1 < w0 the approximation be-

comes worse, but is outside of the validity regime.

For the two magic manifolds, also shown in Figs. 11 and

12, the agreement is very good. We point out several consis-

tency checks. First, remarkably, the set of approximations that

led us to finding a two-band Hamiltonian becomes exact at

some points.

(1) The ŴM point bandwidth at w0 = w1 = 1/
√

3 van-

ishes �( 1√
3
, 1√

3
) = 0. This degeneracy reproduces the exact

result, in the one-shell model (see n = 1 in Fig. 13, the sixfold

degeneracy at the ŴM point). The approximate model of the

one-shell HApprox1 of Eq. (33) also has an exact sixfold degen-

eracy at the ŴM point at w0 = w1 = 1/
√

3 (the two bands here

being part of the sixfold manifold). It is remarkable that our

two-band projection perturbation approximation reproduces

this degeneracy exactly, especially since it is supposed not to

work close to w0 = w1 = 1/
√

3—where the gap to the active

bands is 0 and the ŴM point becomes sixfold degenerate.

(2) At w0 = w1 = 0, the bandwidth at ŴM is �(0, 0) = 2.

This is again an exact result for the infinite shell model. Indeed,

at the ŴM point, the BM Hamiltonian with zero interlayer

coupling has a gap = 2|q1| = 2.
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FIG. 12. ŴM point bandwidth of the active bands (large num-

ber of shells) on the manifold �(w0, w1) = 0 (w1 = 2
√

1 + w
2
0 −√

2 + 3w
2
0) of zero analytic bandwidth [Eq. (56)] divided by the

bandwidth of the active bands in the chiral limit [(w0, w1) =
(0, 1√

3
)]. Note that this number is extremely small away from w0 =

w1 = 1√
3
, showing that our analytic manifold of smallest bandwidth

[�(w0,w1) = 0] also exhibits small bandwidth in the large cell

number. Inset: The curve w1 = 2
√

1 + w
2
0 −

√
2 + 3w

2
0 for which

�(w0, w1) = 0 for 0 � w0 �
1√
3
. Note that w1 changes extremely

little 1% (stays within 1% of 1√
3
) during the entire sweeping of w0.

(3) We now ask: what is the w0,w1 manifold, under this

approximation, for which the ŴM point bandwidth is zero?

This is easily solved to give:

Two-band model with zero bandwidth at ŴM :

w1 = 2

√
w

2
0 + 1 −

√
3w

2
0 + 2, w0 ∈

[
0,

1√
3

]
.

(57)

Figure 12 plots the ratio of the bandwidth of the full BM

model on this manifold to the bandwidth at at the chiral limit

w0 = 0,w1 = 1√
3

(which is already really small!). We can

see that, for most of the w0 ∈ (0, 1/
√

3), this ratio is below

0.1, showing us that we have identified an extremely small

bandwidth manifold.

(4) What are the values of w1 on this manifold? Re-

markably, as can be seen in Fig. 12, w1 = 2

√
w

2
0 + 1 −

√
3w

2
0 + 2 is an almost fully constant over the interval w0 ∈

(0, 1/
√

3): it changes by around 1% only. Moreover, its values

(0.578–0.586) are very close to 1/
√

3 ≈ 0.57735. Hence our

approximation explains the flatness of the bands over the first

magic manifold, 0 � w0 �
1√
3
,w1 = 1√

3
: This manifold is al-

most the same as the one for which our analytical approximate

calculation gives zero gap. Hence property (6) of Fig. 1 is

answered.

(5) At w0 = 0, one has w1 = 2

√
w

2
0 + 1 −

√
3w

2
0 + 2 =

2 −
√

2 in Eq. (57), for which the bandwidth is 0 in our

perturbative model. As we show in Appendix F 5, this value

of w1 coincides with the exact value for which the ŴM band-

width is zero in the approximation Hamiltonian HApprox1 of

Eq. (33). Furthermore, at w0 = 0, the value w1 = 2 −
√

2 also

coincides with the exact value of zero ŴM bandwidth in the

no-approximation Hamiltonian of the n = 1 shell Hamiltonian

(of A1, B1 subshells) (see Appendix F 5).

(6) At w0 = 0, the value w1 = 2

√
w

2
0 + 1 −

√
3w

2
0 + 2 =

2 −
√

2 for which the bandwidth of our approximate two-band

model is projected to be zero is numerically very close to the

value of 0.586 quoted for the first magic angle in the chiral

limit [37]. In fact, at w0 = 0,w1 = 2 −
√

2 the bandwidth of

the active bands is half of that at w1 = 0.586.

F. Region of validity of the two-band model and further

fine tuning

The two-band approximation to the n = 1 shell model has

a radius of convergence in k space in the first MBZ. This

radius of convergence is easily estimated from the following

argument. In Table II, the (maximum) gap, at the ŴM point,

between the active and the passive bands in the hexagon model

(and in the region w0 � 1/
√

3) is at w0 = 0 and equals 1/2.

The distance, in the MBZ between ŴM and KM points, equals

1. Hence we expect that our two-band model will work for

|k| ≪ 1/2, as our numerical results confirm. The form factor

matrices can be computed for this range of k analytically, by

using the full hexagon Hamiltonian in Eq. (52) plus the B1

shell perturbation in Eq. (53). They will be presented in a

future publication.

The k = KM point is outside the range of validity of the

two-band model, and hence this does not capture the gapless

Dirac point for all values of w0,w1. However, with some

physical intuition, we can obtain a two-band model that has a

gap closing at the KM point. In Fig. 9 we see that the hexagon

model does not have a gap closing between the active bands

at the KM point. However, in Figs. 18, 19, and 20 we see that

HApprox1(k) in Eq. (33) has a gap closing close to, or almost at

the KM point. This means that one of the main roles of the B1

shell is to close the KM gap, leading to the Dirac point.

Hence we can use the two-band model of the first

order approximation to the hexagon model, Eq. (51),

H
(1)
mm′ (k,w0,w1) = (

√
w

2
0+1

2
− w1)(σy +

√
3σx ) along with

the two-band model first order approximation for the B1-shell

H (B1)(k,w0,w1) to obtain a first order two-band approxima-

tion Hamiltonian: H (1)(k,w0,w1) + H (B1)(k,w0,w1). Note

that H (1)(k,w0,w1), the two-band first order approximation

to the hexagon model, has two flat k independent bands.

We now impose the condition: H (1)(k = KM ,w0,w1) +
H (B1)(k = KM ,w0,w1) = 0 to find the manifold (w1,w0) on

which this condition happens. Notice that, a priori, there is no

guarantee that the result of this condition will give a manifold

that is anywhere near the values of w1,w0 considered in

this paper, for which our set of approximations is valid (i.e.,

w0,w1 not much larger than 1/
√

3). We find

H (1)(k = KM,w0,w1) + H (B1)(k = KM,w0,w1) = 0 (58)

⇒
Two-band model degenerate at KM :

w1 = 1
32

(
63

√
w

2
0 + 1 −

√
2977w

2
0 + 1953

)
. (59)
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FIG. 13. Plots of the band structure for different parameters around the first magic angle, and for different ranges of the y axis. Notice no

change from n = 2 to n = 4, in agreement with the theoretical discussions.

Remarkably, we note that as w0 is tuned from 1/
√

3 to 0, w1

only changes from (1/
√

3) = 0.57735 and 3
32

(21 −
√

217) =
0.587726! Hence the isotropic point is included in this man-

ifold, and w1 changes by only about 2% as w0 is tuned from

the isotropic point to the chiral limit. We hence propose this

model as a first, heuristic k · p model for the active bands on

the w1(w0) manifold in Eq. (58). Importantly, this model will

have (A) flat bands with small bandwidth; (B) identical gap

between the active bands at the ŴM point with the TBG BM

model; and (C) gap closing at the KM point (Fig. 14).

V. CONCLUSIONS

In this paper we presented a series of analytically justified

approximations to the physics of the BM model [1]. These

FIG. 14. Comparison between (a) the active bands of the BM

model at the w0 = 0, w1 ≈ 0.588 point and (b) the bands of the

two-band first order approximation to HApprox1(k) in Eq. (33). Notice

that the bandwidth at the ŴM point is virtually identical, that the bands

are flat, and that they close gap at the KM point.

approximations allow for an analytic explanation of several

properties of the BM model such as (1) the difficulty to

stabilize the gap, in the isotropic limit from active to pas-

sive bands over a wide range of angles smaller than the first

magic angle. (2) The almost double degeneracy of the passive

bands in the isotropic limit, even away from the ŴM point,

where no symmetry forces them to be. (3) The determina-

tion of the high group velocities of the passive bands. (4)

The flatness of the active bands even away from the Dirac

point, around the magic angle which has w1 = 1/
√

3. (5) The

large gap, away from the isotropic limit (with w1 = 1/
√

3),

between the active and passive bands, which increases imme-

diately with decreasing w0, while the bandwidth of the active

bands does not increase. (6) The flatness of bands over the

wide range of w0 ∈ [0, 1/
√

3], from chiral to the isotropic

limit. Also, we provided a 2 × 2 k · p Hamiltonian for the

active bands, which allowed for an analytic manifold on

which the bandwidth is extremely small: w1 = 2

√
w

2
0 + 1 −

√
3w

2
0 + 2, w0 ∈ [0, 1√

3
].

However, the most important feature uncovered in this

paper is the development of an analytic perturbation theory

which justifies neglecting most of the matrix elements [form

factors/overlap matrices, see Eq. (19)], which will appear

in the Coulomb interaction [108]. The exponential decay of

these matrix elements with momentum will justify the use

of the “flat metric condition” in Eq. (20) and allow for the

determination of exact Coulomb interaction ground states and

excitations [108–111].

Future research in the BM model is likely to uncover many

surprises. Despite the apparent complexity of the model and

the need for numerical diagonalization, one cannot help but

think that there is a 2 × 2 k · p model valid over the whole

area of the MBZ, for all w0,w1 around the first magic angle.

Our two-band model is valid around the ŴM point—for a large
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interval but not for the entire MBZ, although we can fine tune

to render the qualitative aspects valid at the KM point also.

A future goal is to find an approximate summation, based on

our perturbative expansion, where outer shells can be taken

into account more carefully and possibly summed together in

a closed-form series, thereby leading to a much more accurate

k · p model. We leave this for future research.
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APPENDIX A: MATRIX ELEMENTS OF THE ŴM-CENTERED MODEL

We introduce the shells in the ŴM-centered model. The An j sites of the nth A shell [see Fig. 4(a)] are situated at

QAn j
= (n − 1)(q1 − q2) + ( j − 1)(q2 − q3) + q1, j = 1, . . . , n,

QAnn+ j
= C6QAn j

= (n − 1)(q1 − q3) + ( j − 1)(q2 − q1) − q3, j = 1, . . . , n,

QAn2n+ j
= C2

6 QAn j
= (n − 1)(q2 − q3) + ( j − 1)(q3 − q1) + q2, j = 1, . . . , n,

QAn3n+ j
= C3

6 QAn j
= (n − 1)(q2 − q1) + ( j − 1)(q3 − q2) − q1, j = 1, . . . , n,

QAn4n+ j
= C4

6 QAn j
= (n − 1)(q3 − q1) + ( j − 1)(q1 − q2) + q3, j = 1, . . . , n,

QAn5n+ j
= C5

6 QAn j
= (n − 1)(q3 − q2) + ( j − 1)(q1 − q3) − q2, j = 1, . . . , n. (A1)

There are 6n A sites in the nth shell. The Bn j sites of the nth B shell [see Fig. 4(a)] are situated at

QBn j
= QAn j

+ q1, QBnn+ j
= QAnn+ j − q3, QBn2n+ j

= QAn2n+ j
+ q2,

QBn3n+ j
= QAn3n+ j

− q1, QBn4n+ j
= QAn4n+ j

+ q2, QBn5n+ j
= QAn5n+ j

− q2, j = 1, . . . , n. (A2)

There are 6n B sites in the nth shell. The basis we take for the BM Hamiltonian in Eq. (3) is then

(A1, B1, A2, B2, . . . , AN, BN ) = (A11, A12, A13, A14, A15, A16, B11, B12, B13, B14, B15, B16, A21, A22, . . .), (A3)

where N is the cutoff in the number of shells that we take. Each shell n has 6n A sites and 6n B sites.

The separation of shell n = 1, . . . ,∞ into A and B is necessary in the ŴM-centered model due to the structure of the matrix

elements. Unlike in the KM-centered model, where different shells hop from one to another but not within a given shell, in the

ŴM-centered model, the A shells hop between themselves too. Explicitly, the nonzero matrix elements within the nth A shell are

called HAn,An:

HAn,An = Ann ↔ Ann+1 : T2; An2n ↔ An2n+1 : T1; An3n ↔ An3n+1 : T3;

An4n ↔ An4n+1 : T2; An5n ↔ An5n+1 : T1; An6n ↔ An6n+1 : T3. (A4)

In the B shell there are no matrix elements between different B sites, but there are matrix elements between the A and B sites

in the same shell n. They are called HAn,Bn and the nonzero elements are

HAn,Bn = An j ↔ Bn j : T1; Ann+ j ↔ Bnn+ j : T3; An2n+ j ↔ Bn2n+ j : T2;

An3n+ j ↔ Bn3n+ j : T1; An4n+ j ↔ Bn4n+ j : T3; An5n+ j ↔ Bn5n+ j : T2;

j = 1, . . . , n, n = 1, . . . ,∞. (A5)

Last set of couplings are between the n − 1th B shell Bn − 1 and the nth shell An are HBn−1,An with nonzero matrix elements

given by

HBn−1,An = Bn − 1 j ↔ An j : T2, j = 1, . . . , n − 1; Bn − 1 j−1 ↔ An j : T3, j = 2, . . . , n;

Bn − 1n+ j ↔ Ann+ j : T1, j = 1, . . . , n − 1; Bn − 1n+ j−1 ↔ Ann+ j : T2, j = 2, . . . , n;

Bn − 12n+ j ↔ An2n+ j : T3, j = 1, . . . , n − 1; Bn − 12n+ j−1 ↔ An2n+ j : T1, j = 2, . . . , n;

Bn − 13n+ j ↔ An3n+ j : T2, j = 1, . . . , n − 1; Bn − 13n+ j−1 ↔ An3n+ j : T3, j = 2, . . . , n;

Bn − 14n+ j ↔ An4n+ j : T1, j = 1, . . . , n − 1; Bn − 14n+ j−1 ↔ An4n+ j : T2, j = 2, . . . , n;

Bn − 15n+ j ↔ An5n+ j : T3, j = 1, . . . , n − 1; Bn − 15n+ j−1 ↔ An5n+ j : T1, j = 2, . . . , n. (A6)
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FIG. 15. Plots of the band structure for different parameters around the first magic angle, and for different ranges of the y axis. Notice no

change from n = 2 to n = 4, in agreement with the theoretical discussions.

The diagonal matrix elements are (k − Q)σδQ,Q′ where the Q′, Q’s are given by the shell distance: We call these HkAn or HkBn

depending on whether the Q is on the A or B shell. Note that the Hamiltonian within the B shell is HkBn while the Hamiltonian

within the A shell is HkAn + HAn,An. We now have defined all the nonzero matrix elements of the Hamiltonian. In block-matrix

form, it takes the expression

H =




HkA1 + HA1,A1 HA1,B1 0 0 0 · · ·
H

†
A1,B1 HkB1 HB1,A2 0 0 · · ·
0 H

†
B1,A2 HkA2 + HA2,A2 HA2,B2 0 · · ·

0 0 H
†
A2,B2 HkB2 HB2,A3 · · ·

0 0 0 H
†
B2,A3 HkA3 + HA3,A3 · · ·

...
...

. . .
...




.

APPENDIX B: NUMERICAL CONFIRMATION OF THE

PERTURBATIVE FRAMEWORK

What our discussion in Secs. II D and II E shows is that:

(1) For the first magic angle, we can neglect all shells greater

than 2, while having a good approximation numerically. (2)

For the next, smaller, magic angle, we need to keep more

shells in order to obtain a good approximation. We have tested

that machine precision convergence can be obtained for the

active bands by choosing a cutoff of 5–6 shells. We test this

next, along with other conclusions of Secs. II D and II E. In

particular:

(1) We first confirm our analytic conclusion that shells

above n > 2 do not change the spectrum for the first magic

angle (and for larger angles than the first magic angle). Fig-

ures 14, 15, and 16 show the spectrum for several values of

w0,w1 around (or larger than) the first magic angle character-

ized by w0 = 1/
√

3 for the KM-centered model and by w0 =
w1 = 1/

√
3 for the ŴM-centered model model in Sec. III. For

the KM-centered model, the magic angle does not depend on

w1 but for the ŴM-centered model it does, see Sec. III. For

either w0 or w1 � 1/
√

3, we see that the spectrum looks com-

pletely unchanged from n = 2 to n = 4 shells. From n = 2

to n = 4 shells, the largest change is smaller than 1%, and

invisible to the naked eye. Above n = 4 shells, the spectrum

is numerically the same within machine precision. We con-

firm our first conclusion: To obtain a faithful model for TBG

around the first magic angle, we can safely neglect all shells

above n = 2. Keeping the n = 2 shells gives us a Hamiltonian

which contains the A1, B1, A2, B2 shells in Fig. 4(a), giving

a Hamiltonian that is a 72 × 72 matrix, too large for analytic

tackling. Hence further approximations are necessary, as per

Secs. II D and II E, which we further numerically confirm.

(2) We confirmed our perturbation theory predictions of

Secs. II D and II E for angles smaller than the first magic

angle. In Fig. 17 we confirm the analytic prediction that at

angle 1/n times the first magic angle, we can neglect all the

shells above n + 1.

(3) We confirmed our perturbation theory predictions

Secs. II D and II E that—for the first magic angle and below

(w0,w1 � 1/
√

3)—keeping only the first shell induces only a

20% error in the band structure. We have already established

that keeping up to n = 2 shells at the first magic angle gives

the correct band structure within less than 5%. Figures 14,

15, and 16 also contain the n = 1 shells band structure for

a range of angles around and above the first magic angle

w0,w1 � 1/
√

3. We see that the band structures differ little to

very little, while keeping the main characteristics, from n = 1

to n = 2. In particular, in the chiral limit of w0 = 0 and for

w1 = 1/2 (along what we call the second magic manifold, see
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FIG. 16. Plots of the band structure for different parameters around the first magic angle, and for different ranges of the y axis. Notice no

change from n = 2 to n = 4, in agreement with the theoretical discussions.

Sec. IV) the band structures do not visibly differ at all (see

Fig. 15, lowest row) from n = 1 to n = 2. Hence for the first

magic angle, to make analytic progress, we will consider only

the n = 1 shell, to a good approximation. This gives a 24 × 24

Hamiltonian, which is still analytically unsolvable. Hence

further approximations are necessary, such as HApprox1(k) in

Eq. (33).

(4) We test the prediction that HApprox1(k) in Eq. (33)

approximates well the band structure of TBG around (and

for angles larger than) the magic angle for a series of

values of w0,w1 � 1/
√

3, Figs. 18, 19, and 20. We see

remarkable agreement between HApprox1(k) and the n = 1

Hamiltonian. We also see good agreement with the large shell

limit. For values of the parameters w0 = 0,w1 = 1
2

in the

second magic manifold (see Sec. IV), the HApprox1(k) and the

n = 1, 2, 3, . . . shells give rise to bands undistinguishable

by eye (see Fig. 19, last row). We will hence use HApprox1(k)

as our TBG Hamiltonian. This is a 12 × 12 Hamiltonian

that cannot be solved analytically. Hence further analytic

approximations are necessary.

APPENDIX C: EIGENSTATES OF THE HEXAGON MODEL AT THE ŴM POINT

We provide the explicit expressions for the six-band model approximation for the hexagon model at w0 = w1 = 1/
√

3. The

basis we choose is made of simultaneous eigenstates of C3z and H for the states |ψ j (k = 0,w0 = w1 = 1√
3

)〉 = ψE j
j = 1, . . . , 6

in Eq. (41):

ψE1
=




ζ1

e−i(2π/3)σzη1

ei(2π/3)σzζ1

η1

e−i(2π/3)σzζ1

ei(2π/3)σzη1




, ζ1 = 1

2
√

2

(
1

1

)
, η1 = 1√

3
(−2iσz − σy)ζ1 = 1

2
√

6

(
−i

i

)
, (C1)
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FIG. 17. Plots of the band structure for different parameters far away from the first magic angle: at half, a third, and a fourth of the first

magic angle. Notice that for an angle 1/n times the magic angle we can neglect all shells above n + 1, which confirms our perturbation theory

result. For the first magic angle, above n = 2 shells, the band structure goes not change. For half the magic angle, the band structure above

n = 3 shells does not change (but the band structure at n = 2 shells is changed compared to the n = 3 band structure). For a third of the magic

angle, the band structure above n = 4 shells does not change (but the band structure at n = 2, 3 shells is changed compared to the n = 4 band

structure. For a quarter of the magic angle, the band structure above n = 5 shells does not change (but the band structure at n = 2, 3, 4 shells

is changed—dramatically—compared to the n = 6 band structure.

ψE2
=




ζ2

e−i(2π/3)σzη2

ei(2π/3)σzζ2

η2

e−i(2π/3)σzζ2

ei(2π/3)σzη2




, ζ2 = 1

2
√

6

(
1

−1

)
, η2 = 1√

3
(−2iσz − σy)ζ2 = 1

2
√

2

(
−i

−i

)
, (C2)

ψE3
=




ζ3

e−i(2π/3)(σz−σ0 )η3

ei(2π/3)(σz−σ0 )ζ3

η3

e−i(2π/3)(σz−σ0 )ζ3

ei(2π/3)(σz−σ0 )η3




, ζ3 = 1√
26(5 −

√
13)

(
2

3 −
√

13

)
,

η3 = 1√
3

(
σy

2
+ 3i

2
σx + iσz

)
ζ3 = i√

78(5 −
√

13)

(
5 −

√
13

1 +
√

13

)
, (C3)

ψE4
=




ζ4

e−i(2π/3)(σz−σ0 )η4

ei(2π/3)(σz−σ0 )ζ4

η4

e−i(2π/3)(σz−σ0 )ζ4

ei(2π/3)(σz−σ0 )η4




, ζ4 = 1√
26(5 +

√
13)

(
2

3 +
√

13

)
,
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FIG. 18. Plots of the band structure of HApprox1 for different parameters around the first magic angle, and for different ranges of the y axis.

For convenience we also replot the n = 1, 2, 3 shells band structure. Notice the good agreement of HApprox1 with the n = 1 shell Hamiltonian,

and, further on, the good approximation of the n = 2, 3 band structures by this Hamiltonian. For the chiral limit w0 = 9/10
√

3, w1 =√
1 + w

2
0/2, the approximate HApprox1 is a remarkably good approximation of the n = 1 shell and a good approximation to the thermodynamic

limit, albeit with the Dirac point slightly shifted.

η4 = 1√
3

(
σy

2
+ 3i

2
σx + iσz

)
ζ4 = i√

78(5 +
√

13)

(
5 +

√
13

1 −
√

13

)
, (C4)

ψE5
=




ζ5

e−i(2π/3)(σz+σ0 )η5

ei(2π/3)(σz+σ0 )ζ5

η5

e−i(2π/3)(σz+σ0 )ζ5

ei(2π/3)(σz+σ0 )η5




, ζ5 = 1√
26(5 −

√
13)

(
3 −

√
13

2

)
,

η5 = 1√
3

(
σy

2
− 3i

2
σx + iσz

)
ζ5 = −i√

78(5 −
√

13)

(
1 +

√
13

5 −
√

13

)
, (C5)

ψE6
=




ζ6

e−i(2π/3)(σz+σ0 )η6

ei(2π/3)(σz+σ0 )ζ6

η6

e−i(2π/3)(σz+σ0 )ζ6

ei(2π/3)(σz+σ0 )η6




, ζ6 = 1√
26(5 +

√
13)

(
3 +

√
13

2

)
,

η6 = 1√
3

(
σy

2
+ 3i

2
σx + iσz

)
ζ6 = −i√

78(5 +
√

13)

(
1 −

√
13

5 +
√

13

)
. (C6)
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FIG. 19. Plots of the band structure of HApprox1 for different parameters around the first magic angle, and for different ranges of the y axis,

which helps us focus on different bands. For convenience we also replot the n = 1, 2, 3 shells band structure. Notice the remarkable (almost

undistinguishable by eye) agreement of HApprox1 with the n = 1 shell Hamiltonian, and the, further on, good approximation of the n = 2, 3

band structures by this Hamiltonian. For the chiral limit w0 = 0, w1 = 1/2, the approximate HApprox1 is a remarkably good approximation of

the thermodynamic limit—undistinguishable by eye—while for all other values it is a very good approximation. The Dirac point in the chiral

limit w0 = 0, w1 =
√

1 + w
2
0/2 is at KM even for the HApprox1.

The basis ψE1
, ψE2

has C3z = 1, the basis ψE3
, ψE4

has C3z = ei2π/3, and the basis ψE5
, ψE6

has C3z = e−i2π/3. The 6 by 6

Hamiltonian in Eq. (41) under these 6 basis takes the form

H6-band
i j

(
k,w0 = w1 = 1√

3

)
=




02 A1k− A
†
2k+

A
†
1k+ 02 A3k−

A2k− A
†
3k+ 02


, (C7)

where k± = kx ± iky, 02 is the 2 by 2 zero matrix, and

A1 =




2
√

13−13

13
√

5−
√

13

√
6
√

13+22−1√
13(

√
13+5)

1
52

(
√

13 − 13)
√√

13 + 5

√
1
26

(
√

13 + 4) −
√

3

13(
√

13+5)


,

A2 =




2
√

13−13

13
√

5−
√

13
− 1

52
(
√

13 − 13)
√√

13 + 5
√

6
√

13+22−1√
13(

√
13+5)

−
√

1
26

(
√

13 + 4) +
√

3

13(
√

13+5)


,

A3 =




1√
13

2
√

13−5
√

6
√

13+22+
√

78
√

13+286+2

52
√

3

2
√

13−5
√

6
√

13+22+
√

78
√

13+286+2

52
√

3
− 2(

√
13+8)−

√
6
√

13+22+
√

78
√

13+286

26(
√

13+2)


.

(C8)

We note that ψE1
, ψE2

also serves as the Gamma point basis of the two-band approximation at w1 =
√

1 + w
2
0/2 in Sec. IV.
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FIG. 20. Plots of the band structure of HApprox1 for different parameters around the first magic angle, and for different ranges of the y axis,

which helps us focus on different bands. For convenience we also replot the n = 1, 2, 3 shells band structure. Notice the remarkable (almost

undistinguishable by eye) agreement of HApprox1 with the n = 1 shell Hamiltonian, and the, further on, good approximation of the n = 2, 3

band structures by this Hamiltonian. For the chiral limit w0 = 0, w1 = 1/
√

3, the approximate HApprox1 is a remarkably good approximation of

the n = 1 Hamiltonian, and a good approximation to the thermodynamic limit. The Dirac point is slightly moved away from the KM point.

APPENDIX D: EIGENSTATES OF ALONG THE ŴM-KM LINE kx = 0 AND ON THE ŴM-MM LINE ky = 0

1. Eigenstates of H6-band
i j [k = (0, ky),w0 = w1 = 1√

3
]

On the ŴM-KM line, the energies (already mentioned in the main text) are

E6-band

[
k = (0, ky),w0 = w1 = 1√

3

]
=
(

− 2

√
3

13
ky,−2

√
3

13
ky, 2

√
3

13
ky, 2

√
3

13
ky, 0, 0

)
. (D1)

The energies have eigenstates (not orthonormalized yet)

ψ1;6-band

[
k = (0, ky),w0 = w1 = 1√

3

]

=
(

− 1

200

√
1

221
(5570051i

√
3 − 153112

√
13 + 1077176i

√
39 + 17078669),

191760161i
√

3 + 166713618
√

13 − 59265370i
√

39 − 527508405

200
√

2074(13477
√

13 − 45994)
,

−2437915i
√

3 + 698430
√

13 + 569554i
√

39 − 3303424

100
√

22570(49
√

13 − 156)
,

23i(26i − 1222
√

3 + 86i
√

13 + 221
√

39)

1300
√

370
, 0, 1

)
,

ψ2;6-band

[
k = (0, ky),w0 = w1 = 1√

3

]

=
(

1

200
(−23)

√
1

221
(37641i

√
3 + 808

√
13 − 2136i

√
39 − 91159),
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23

100

√√√√705768
√

13 − 8i

√
39(886369537 − 160909896

√
13) + 4606081

26962
,

23[−881719i
√

3 + 56(−687 + 3704i
√

3)
√

13 + 52881]

600
√

22570(49
√

13 − 156)
,

104(775 − 596i
√

3) + 529i(25
√

3 + 23i)
√

13

2600
√

370
, 1, 0

)
,

ψ3;6-band

[
k = (0, ky),w0 = w1 = 1√

3

]

=
(

1

200

√
1

221
(5570051i

√
3 + 8(19139 − 134647i

√
3)

√
13 + 17078669),

−191760161i
√

3 + 166713618
√

13 − 59265370i
√

39 + 527508405

200
√

2074(13477
√

13 + 45994)
,

2437915i
√

3 + 698430
√

13 + 569554i
√

39 + 3303424

100
√

22570(49
√

13 + 156)
,

23(−1222i
√

3 + 86
√

13 − 221i
√

39 − 26)

1300
√

370
, 0, 1

)
,

ψ4;6-band

[
k = (0, ky),w0 = w1 = 1√

3

]

=
(

23

200

√
1

221
i(91159i + 37641

√
3 + 808i

√
13 + 2136

√
39),

23

100

√√√√−705768
√

13 + 8i

√
39(160909896

√
13 + 886369537) + 4606081

26962
,

23i[52881i + 881719
√

3 + 56
√

13(3704
√

3 + 687i)]

600
√

22570(49
√

13 + 156)
,

104(775 − 596i
√

3) + 529(23 − 25i
√

3)
√

13

2600
√

370
, 1, 0

)
,

ψ5;6-band

[
k = (0, ky),w0 = w1 = 1√

3

]

=
(

1

529

√
2

51
(710 − 19i

√
3),

2

529

√
2

1037
(−2732 + 659i

√
3),− 1

529

√
185

61
(2483 + 5763i

√
3), 0,

1

46
(47 − 19i

√
3), 1

)
,

ψ6;6-band

[
k = (0, ky),w0 = w1 = 1√

3

]

=
(

1

46

√
185

17
(5

√
3 + 11i),

1

46

√
185

1037
(−57 − 71i

√
3),

3(31 − 46i
√

3)

23
√

61
, 1, 0, 0

)
. (D2)

Fundamentally, what we notice is that the bands are ky independent!

2. Eigenstates of H6-band
i j [k = (kx, 0),w0 = w1 = 1√

3
]

On the ŴM-MM line, the energies (already mentioned in the main text) are

E6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(

−kx,−kx,
1

26
(3

√
13 + 13)kx,

1

26
(3

√
13 + 13)kx,−

1

26
(3

√
13 − 13)kx,−

1

26
(3

√
13 − 13)kx

)
. (D3)

The energies have eigenstates (not orthonormalized yet)

ψ1;6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(

− 219
√

3 + 115i

52
√

34
,

1609 − 63i
√

3

52
√

2074
,

3(1253 + 41i
√

3)

52
√

22570
,

69(−5 − 3i
√

3)

52
√

370
, 0, 1

)
,
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ψ2;6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(69

√
3

34

26
,

69(9 − i
√

3)

52
√

2074
,−23i(

√
3 − 151i)

52
√

22570
,

277 − 112i
√

3

26
√

370
, 1, 0

)
,

ψ3;6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(

7(−10569i
√

3 + 17434
√

13 − 2949i
√

39 + 62876)√
34(3

√
3 − i)(323

√
13 − 65)

,
481425i

√
3 + 307265

√
13 + 145119i

√
39 + 1454167

4
√

2074(323
√

13 − 65)
,

× 9i(10385i + 10526
√

3 + 4333i
√

13 + 736
√

39)

2
√

22570(61
√

13 − 247)
,

69(169i
√

3 + 8
√

13 − 45i
√

39 + 26)

52
√

370(8
√

13 − 29)
, 0, 1

)
,

ψ4;6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(

69(−1679i
√

3 + 5303
√

13 − 457i
√

39 + 19129)

2
√

34(3
√

3 − i)(323
√

13 − 65)
,

69(6479i
√

3 + 3374
√

13 + 1939i
√

39 + 12004)

2
√

2074(323
√

13 − 65)
,

23i(16877i + 3295
√

3 + 4843i
√

13 + 2705
√

39)

4
√

22570(61
√

13 − 247)
,
−36205i

√
3 − 14941

√
13 + 10699i

√
39 + 64675

104
√

370(8
√

13 − 29)
, 1, 0

)
,

ψ5;6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(

69(−1679i
√

3 + 5303
√

13 − 457i
√

39 + 19129)

2
√

34(3
√

3 − i)(323
√

13 − 65)
,

69(6479i
√

3 + 3374
√

13 + 1939i
√

39 + 12004)

2
√

2074(323
√

13 − 65)
,

23i(16877i + 3295
√

3 + 4843i
√

13 + 2705
√

39)

4
√

22570(61
√

13 − 247)
,
−36205i

√
3 − 14941

√
13 + 10699i

√
39 + 64675

104
√

370(8
√

13 − 29)
, 1, 0

)
,

ψ6;6-band

[
k = (kx, 0),w0 = w1 = 1√

3

]

=
(

69(1679i
√

3 + 5303
√

13 − 457i
√

39 − 19129)

2
√

34(3
√

3 − i)(323
√

13 + 65)
,

69(−6479i
√

3 + 3374
√

13 + 1939i
√

39 − 12004)

2
√

2074(323
√

13 + 65)
,

23(−3295i
√

3 − 4843
√

13 + 2705i
√

39 + 16877)

4
√

22570(61
√

13 + 247)
,

i(64675i + 36205
√

3 + 14941i
√

13 + 10699
√

39)

104
√

370(8
√

13 + 29)
, 1, 0

)
. (D4)

Fundamentally, what we notice is that the bands are kx independent!

APPENDIX E: SOLUTIONS OF EIGENSTATES FOR THE HEXAGON MODEL

We now solve the eigenvalue equation

HHex(k,w0,w1)ψ = Eψ (E1)

for the hexagon model in Eq. (40) in the basis ψ (k,w0,w1) = (ψA11
, ψA12

, ψA13
, ψA14

, ψA15
, ψA16

)(k,w0,w1) where each

ψA1i
(k,w0,w1) is a two-component spinor of Fig. 8, for different values of k,w0,w1.

1. Eigenstate solution at k = 0 for arbitrary w0,w1

The eigenvalue equation cannot be solved for general k,w0,w1 and we hence concentrate on several cases. First, we only

can solve only the k = 0 point. Using | �qi · �σ | = 1, we find

ψ6 = E + q2 · σ

E2 − 1
(T1ψ5 + T3ψ1), ψ4 = E + q1 · σ

E2 − 1
(T3ψ3 + T2ψ5), ψ2 = E + q3 · σ

E2 − 1
(T2ψ1 + T1ψ3),

[
(E + q3 · σ )(E2 − 1) − E

(
T 2

2 + T 2
1

)
− T2q1 · σT2 − T1q2 · σT1

]
ψ5 = T2(E + q1 · σ )T3ψ3 + T1(E + q2 · σ )T3ψ1,

[
(E + q2 · σ )(E2 − 1) − E

(
T 2

1 + T 2
3

)
− T1q3 · σT1 − T3q1 · σT3

]
ψ3 = T1(E + q3 · σ )T2ψ1 + T3(E + q1 · σ )T2ψ5,

[
(E + q1 · σ )(E2 − 1) − E

(
T 2

2 + T 2
3

)
− T2q3 · σT2 − T3q2 · σT3

]
ψ1 = T2(E + q3 · σ )T1ψ3 + T3(E + q2 · σ )T1ψ5, (E2)
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where shorthand notation Ti = Ti(w0,w1), ψi = ψA1i
(k = 0,w0,w1). Using the expressions of Ti from Eq. (4), we rewrite the

last three equations above as

[
E (E2 − 1)σ0 + q3 · σ

(
E2 − 1 + w

2
0 + 2w

2
1

)
− E

(
2
(
w

2
0 + w

2
1

)
σ0 + w0w1(σx +

√
3σy)

)]
ψ5

=
{

E

[(
w

2
0 − w

2
1

2

)
σ0 − w0w1σx + i

√
3

2
w

2
1σz

]
+
(
w

2
0 − w

2
1

)
q1 · σ

}
ψ3

+
{

E

[(
w

2
0 − w

2
1

2

)
σ0 + w0w1

1

2
(σx −

√
3σy) − i

√
3

2
w

2
1σz

]
+
(
w

2
0 − w

2
1

)
q2 · σ

}
ψ1,

[
E (E2 − 1)σ0 + q2 · σ

(
E2 − 1 + w

2
0 + 2w

2
1

)
− E

(
2
(
w

2
0 + w

2
1

)
σ0 + w0w1(σx −

√
3σy)

)]
ψ3

=
{

E

[(
w

2
0 − w

2
1

2

)
σ0 + w0w1

1

2
(σx +

√
3σy) + i

√
3

2
w

2
1σz

]
+
(
w

2
0 − w

2
1

)
q3 · σ

}
ψ1

+
{

E

[(
w

2
0 − w

2
1

2

)
σ0 − w0w1σx − i

√
3

2
w

2
1σz

]
+
(
w

2
0 − w

2
1

)
q1 · σ

}
ψ5,

[
E (E2 − 1)σ0 + q1 · σ

(
E2 − 1 + w

2
0 + 2w

2
1

)
− E

(
2
(
w

2
0 + w

2
1

)
σ0 − 2w0w1σx

)]
ψ1

=
{

E

[(
w

2
0 − w

2
1

2

)
σ0 + w0w1

1

2
(σx +

√
3σy) − i

√
3

2
w

2
1σz

]
+
(
w

2
0 − w

2
1

)
q3 · σ

}
ψ3

+
{

E

[(
w

2
0 − w

2
1

2

)
σ0 + w0w1

1

2
(σx −

√
3σy) + i

√
3

2
w

2
1σz

]
+
(
w

2
0 − w

2
1

)
q2 · σ

}
ψ5. (E3)

Plugging in the expressions for the energy E , we can obtain the relations between ψi. However, these are messy, and we choose

to find the eigenstates on several, simpler, manifolds in the w0,w1 parameter space.

2. Eigenstate solution at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2

We first solve for the two zero eigenstates E1,2(k = 0,w0,w1 =
√

1+w
2
0

2
) = 0 of Table I. Equation (E2) becomes

(
3w

2
0 − 1

)
q3 · σψ5 =

(
3w

2
0 − 1

)

2
(q1 · σψ3 + q2 · σψ1),

(
3w

2
0 − 1

)
q2 · σψ3 =

(
3w

2
0 − 1

)

2
(q3 · σψ1 + q1 · σψ5),

(
3w

2
0 − 1

)
q1 · σψ1 =

(
3w

2
0 − 1

)

2
(q3 · σψ3 + q2 · σψ5). (E4)

We now have two cases.

a. Zero energy eigenstate solution at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2, w0 �= 1/

√
3

In this case 3w
2
0 − 1 
= 0 and Eq. (E4) becomes

q3 · σψ5 = 1
2
(q1 · σψ3 + q2 · σψ1); q2 · σψ3 = 1

2
(q3 · σψ1 + q1 · σψ5); q1 · σψ1 = 1

2
(q3 · σψ3 + q2 · σψ5), (E5)

with solutions (for the two zero energy eigenstates)

ψ1 = (q3 · σ )(q2 · σ )ψ3;

ψ5 = (q2 · σ )(q3 · σ )ψ3;

ψ4 = −q1 · σ [T3 + T2(q2 · σ )(q3 · σ )]ψ3;

ψ2 = −q3 · σ [T1 + T2(q3 · σ )(q2 · σ )]ψ3;

ψ6 = −q2 · σ [T3(q3 · σ )(q2 · σ ) + T1(q2 · σ )(q3 · σ )]ψ3. (E6)

The two independent zero energy eigenstates on the second magic manifold can be obtained by taking ψ3 = (1, 0) and ψ3 =
(0, 1), respectively. However, they are not orthonormal and a further Gram-Schmidt must be performed to orthogonalize them.
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We obtain

ψE1=0


k = 0,w0,w1 =

√
1 + w

2
0

2




=
(

− i(
√

3 − i)

2
√

6

√
w

2
0 + 1

, 0,−
6
√−1√

6
,

iw0

√
6

√
w

2
0 + 1

,
1

√
6

√
w

2
0 + 1

, 0,− (−1)5/6

√
6

,

− (−1)5/6
w0

√
6

√
w

2
0 + 1

,
i(
√

3 + i)

2
√

6

√
w

2
0 + 1

, 0,
i√
6
,−

6
√−1w0

√
6

√
w

2
0 + 1

)
,

ψE2=0


k = 0,w0,w1 =

√
1 + w

2
0

2




=
(

i(
√

3 + i)w0

2
√

6

√
w

2
0 + 1

,
i(
√

3 + i)

2
√

6
, 0,

(−1)5/6

√
6

√
w

2
0 + 1

,

−
3
√−1w0

√
6

√
w

2
0 + 1

,
1√
6
, 0,

6
√−1

√
6

√
w

2
0 + 1

,
w0

√
6

√
w

2
0 + 1

,− i(
√

3 − i)

2
√

6
, 0,− i

√
6

√
w

2
0 + 1

)
. (E7)

b. Nonzero energy eigenstate solutions at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2, w0 �= 1/

√
3

We can adopt the same strategy to build the other, nonzero energy orthonormal eigenstates. It is tedious (analytic diagonal-

ization programs such as Mathematica fail to provide a result, hence the algebra must be performed by hand) to write the details,

but the final answer is, for the eigenstates of energies on the first magic manifold given in Table II:

ψE3


k = 0,w0,w1 =

√
1 + w

2
0

2




= 1

4
√

6

√(
w

2
0 + 4)

(
10w

2
0 + 1

)
[
(
√

3 + 3i)
(√

3w
2
0 + i

√
10w

4
0 + 41w

2
0 + 4

)
, (

√
3 + 3i)

(
− 2

√
10w

2
0 + 1 + iw0

√
w

2
0 + 1

)
,

− (
√

3 − 3i)
(
2

√
w

2
0 + 1 +

√
3w0

√
w

2
0 + 4 − iw0

√
10w

2
0 + 1

)
,−2i

(√
3

√
w

2
0 + 1

√
w

2
0 + 4 + 6w0

)
, 12w

2
0, 0,

− (
√

3 + 3i)
(
− 2

√
w

2
0 + 1 +

√
3w0

√
w

2
0 + 4 + iw0

√
10w

2
0 + 1

)
, (

√
3 − i)

(√
3

√
w

2
0 + 1

√
w

2
0 + 4 − 6w0

)
,

(
√

3 − 3i)
(√

3w
2
0 − i

√
10w

4
0 + 41w

2
0 + 4

)
,−2

√
3
(
2

√
10w

2
0 + 1 − iw0

√
w

2
0 + 1

)
,−12w0

√
w

2
0 + 4,−12(

√
3 + i)w0

]
,

ψE4


k = 0,w0,w1 =

√
1 + w

2
0

2




= 1

4
√

6

√(
w

2
0 + 4

)(
10w

2
0 + 1

)
[
− (

√
3 + i)

(
2

√
10w

2
0 + 1 + iw0

√
w

2
0 + 1

)
,−(

√
3 + i)

(
3
√

3w
2
0 + i

√
10w

4
0 + 41w

2
0 + 4

)
,

2
(√

w
4
0 + 5w

2
0 + 4 − 6

√
3w0

)
, (

√
3 − i)

(
− 2

√
w

2
0 + 1 + 3

√
3w0

√
w

2
0 + 4 − iw0

√
10w

2
0 + 1

)
,

4(−1)5/6
(
2

√
10w

2
0 + 1 + iw0

√
w

2
0 + 1

)
, 4

√
10w

4
0 + 41w

2
0 + 4, i(

√
3 + i)

√
w

4
0 + 5w

2
0 + 4 − 6(

√
3 − 3i)w0,

(
√

3 + i)
(
2

√
w

2
0 + 1 + 3

√
3w0

√
w

2
0 + 4 + iw0

√
10w

2
0 + 1

)
,−2w0

√
w

2
0 + 1 + 4i

√
10w

2
0 + 1,

− (
√

3 − i)
(
3
√

3w
2
0 − i

√
10w

4
0 + 41w

2
0 + 4

)
, 2(1 + i

√
3)

√
w

4
0 + 5w

2
0 + 4,−4w0

√
10w

2
0 + 1 + 8i

√
w

2
0 + 1

]
, (E8)
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ψE5


k = 0,w0,w1 =
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2
0
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


= 1

4
√

6
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w
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0 + 1
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√
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√
10w
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√
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√
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√
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√
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√
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√
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√
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√
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(√

3

√
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√
w
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√
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√
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√
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√
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√
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√
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√
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√
w
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√
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√
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√
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√
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√
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√
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√
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,

ψE6
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

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√

6
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)(
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
w

2
0 + 4 − iw0

√
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√
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√
w

2
0 + 1

)
, 4

√
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√
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√
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√
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√
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√
w

2
0 + 1 + 3

√
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√
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√
10w

2
0 + 1

)
,−2w0

√
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√
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√
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√
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√
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√
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√
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√
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√
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, (E9)

ψE7
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√
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2
0 + 1 + iw0

√
w

2
0 + 1

)
,−12w0

√
w

2
0 + 4,−12(

√
3 + i)w0

]
,

ψE8


k = 0,w0,w1 =

√
1 + w

2
0

2




= 1

4
√

6

√(
w

2
0 + 4

)(
10w

2
0 + 1

)
[
− (

√
3 + i)

(
2

√
10w

2
0 + 1 − iw0

√
w

2
0 + 1

)
, (

√
3 + i)

(
3
√

3w
2
0 − i

√
10w

4
0 + 41w

2
0 + 4

)
,

− 2
(√

w
4
0 + 5w

2
0 + 4 − 6

√
3w0

)
,−(

√
3 − i)

(
− 2

√
w

2
0 + 1 + 3

√
3w0

√
w

2
0 + 4 + iw0

√
10w

2
0 + 1

)
,

− 2(
√

3 − i)
(
2

√
10w

2
0 + 1 − iw0

√
w

2
0 + 1

)
, 4

√
10w

4
0 + 41w

2
0 + 4,

(
1 − i

√
3
)√

w
4
0 + 5w

2
0 + 4 + 6

(√
3 − 3i

)
w0,

− (
√

3 + i)
(
2

√
w

2
0 + 1 + 3

√
3w0

√
w

2
0 + 4 − iw0

√
10w

2
0 + 1

)
, 2w0

√
w

2
0 + 1 + 4i

√
10w

2
0 + 1,

(
√

3 − i)
(
3
√

3w
2
0 + i

√
10w

4
0 + 41w

2
0 + 4

)
,−2i(

√
3 − i)

√
w

4
0 + 5w

2
0 + 4,−4w0

√
10w

2
0 + 1 − 8i

√
w

2
0 + 1

]
, (E10)
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ψE9


k = 0,w0,w1 =

√
1 + w

2
0

2




= 1

4
√

6

√(
w

2
0 + 4

)(
10w

2
0 + 1

)
[
(
√

3 + 3i)
(√

3w
2
0 − i

√
10w

4
0 + 41w

2
0 + 4

)
,−(

√
3 + 3i)

(
2

√
10w

2
0 + 1 − iw0

√
w

2
0 + 1

)
,

(
√

3 − 3i)
(
− 2

√
w

2
0 + 1 +

√
3w0

√
w

2
0 + 4 + iw0

√
10w

2
0 + 1

)
, 2i
(√

3

√
w

2
0 + 1

√
w

2
0 + 4 − 6w0

)
, 12w

2
0, 0,

(
√

3 + 3i)
(
2

√
w

2
0 + 1 +

√
3w0

√
w

2
0 + 4 − iw0

√
10w

2
0 + 1

)
,−(

√
3 − i)

(√
3

√
w

2
0 + 1

√
w

2
0 + 4 + 6w0

)
,

(
√

3 − 3i)
(√

3w
2
0 + i

√
10w

4
0 + 41w

2
0 + 4

)
,−2

√
3
(
2

√
10w

2
0 + 1 − iw0

√
w

2
0 + 1

)
, 12w0

√
w

2
0 + 4,−12(

√
3 + i)w0

]
,

ψE10


k = 0,w0,w1 =

√
1 + w

2
0

2




= 1

4
√

6

√(
w

2
0 + 4

)(
10w

2
0 + 1

)
[
(
√

3 + i)
(
2

√
10w

2
0 + 1 + iw0

√
w

2
0 + 1

)
, (

√
3 + i)

(
3
√

3w
2
0 − i

√
10w

4
0 + 41w

2
0 + 4

)
,

2
(√

w
4
0 + 5w

2
0 + 4 + 6

√
3w0

)
, (

√
3 − i)

(
2

√
w

2
0 + 1 + 3

√
3w0

√
w

2
0 + 4 + iw0

√
10w

2
0 + 1

)
,

4
3
√

−1
(
w0

√
w

2
0 + 1 − 2i

√
10w

2
0 + 1

)
, 4

√
10w

4
0 + 41w

2
0 + 4, i(

√
3 + i)

√
w

4
0 + 5w

2
0 + 4 + 6(

√
3 − 3i)w0,

(
√

3 + i)
(
− 2

√
w

2
0 + 1 + 3

√
3w0

√
w

2
0 + 4 − iw0

√
10w

2
0 + 1

)
, 2w0

√
w

2
0 + 1 − 4i

√
10w

2
0 + 1,

(
√

3 − i)
(
3
√

3w
2
0 + i

√
10w

4
0 + 41w

2
0 + 4

)
, 2(1 + i

√
3)

√
w

4
0 + 5w

2
0 + 4, 4w0

√
10w

2
0 + 1 − 8i

√
w

2
0 + 1

]
, (E11)

ψE11


k = 0,w0,w1 =

√
1 + w

2
0

2




=
[

(
√

3 − 3i)(w0 + i)

12

√
w

2
0 + 1

,
1

12
(−

√
3 + 3i),− 1

2
√

3
,−

3
√−1(w0 + i)

2
√

3

√
w

2
0 + 1

,
(
√

3 + 3i)(w0 + i)

12

√
w

2
0 + 1

,
1

2
√

3
,

1

12
(
√

3 − 3i),− (
√

3 − 3i)(w0 + i)

12

√
w

2
0 + 1

,− w0 + i

2
√

3

√
w

2
0 + 1

,
1

12
(−

√
3 − 3i),

1

12
(
√

3 + 3i),
w0 + i

2
√

3

√
w

2
0 + 1

]
, (E12)

ψE12


k = 0,w0,w1 =

√
1 + w

2
0

2




=
[

(
√

3 − 3i)(w0 − i)

12

√
w

2
0 + 1

,
1

12
(−

√
3 + 3i),

1

2
√

3
,

(
√

3 + 3i)(w0 − i)

12

√
w

2
0 + 1

,
(
√

3 + 3i)(w0 − i)

12

√
w

2
0 + 1

,
1

2
√

3
,

1

12
(−

√
3 + 3i),

(
√

3 − 3i)(w0 − i)

12

√
w

2
0 + 1

,− w0 − i

2
√

3

√
w

2
0 + 1

,
1

12
(−

√
3 − 3i),

1

12
(−

√
3 − 3i),− w0 − i

2
√

3

√
w

2
0 + 1

]
. (E13)

c. Zero energy eigenstate solution at k = 0 for on the second magic manifold w1 =
√

1 + w2
0/2 = w0 = 1/

√
3

There are six zero energies in Table I at this point w1 =
√

1 + w
2
0/2 = w0 = 1/

√
3. They have already been given in

Appendix C.
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APPENDIX F: PERTURBATION THEORY FOR H
(1)

mm′ (k,w0 ) = 0, Em = 0 MANIFOLD

1. Review of perturbation theory

We review the perturbation theory being performed in the main text. This formalism was first presented in Ref. [123], but we

go to higher order in current perturbation theory. We have a Hamiltonian H0 whose eigenstates we know, and is hence purely

diagonal in its eigenstate basis. We also have a perturbation Hamiltonian H ′, with both diagonal and off-diagonal elements.

Among the eigenstates of H0 we have a set of eigenstates separated by a large gap from the others, which cannot be closed by

the addition of H ′, and they represent the manifold we want to project in. These states are indexed by m, m′, m′′, m′′′, . . . while

the rest of the eigenstates are indexed by l, l ′, l ′′, l ′′′, . . . . These two form separate subspaces. We now want to find a Hamiltonian

Hmm′ which incorporates the effects of H ′ up to any desired order. We separate H ′ into a diagonal part H1 plus an off-diagonal

part H2 between these manifolds:

H ′ = H1 + H2,

(H1)mm′ = 〈ψm|H ′|ψm′〉; (H1)ll ′ = 〈ψl |H ′|ψl ′〉; (H2)ml = 〈ψm|H ′|ψl〉; (H2)mm′ = (H2)ll ′ = (H1)ml = 0. (F1)

We also have

H |ψm〉 = Em|ψm〉, H |ψl〉 = El |ψl〉. (F2)

We look for a unitary transformation:

H̃ = e−S (H0 + H ′)eS, (F3)

where S(= −S†) has only matrix elements that are off-diagonal between the subspaces, i.e., Sml = 0. The unitary transformation

is chosen such that the off-diagonal part of H̃ is zero to the desired order (Hml = 0). Since we know S, H2 are off-diagonal and

H1 is diagonal, we find that S can be obtained from the condition

H̃off-diagonal =
∞∑

j=0

1

(2 j + 1)!
[H0 + H1, S]2 j+1 +

∞∑

j=0

1

(2 j)!
[H2, S]2 j = 0 (F4)

(the off-diagonal Hamiltonian is zero). Once S is found, the diagonal Hamiltonian is

H̃diagonal =
∞∑

j=0

1

(2 j)!
[H0 + H1, S]2 j +

∞∑

j=0

1

(2 j + 1)!
[H2, S]2 j+1, (F5)

where [A, B] j = [[[[[A, B], B], B], . . .], B] where the number of B’s is equal to j. We then parametrize S = S1 + S2 + S3 + · · · ,

where Sn is order n in perturbation theory, i.e., in H ′ (or equivalently, in H1 or H2).

The terms up to order 4 are derived in Winkler’s book [123], and for our simplified problem, they are presented in the main

text. We have numerically checked their correctness. We here also present the fifth order term: this term is tedious, but we use

a particularly nice property of our eigenstate space that (H1)mm′ = 〈ψm|H ′|ψm′〉 = 0, Em = 0 for m = 1, 2 property is true only

for H ′ = I6×6 ⊗ k · σ and for the zero energy eigenstates ψm, m = 1, 2 of H0 = HHex(k = 0,w0,w1 =
√

1 + w
2
0/2). To the

desired order, we find

(S1)ml = H ′
ml

El

, (S1)lm = −H ′
lm

El

,

(S2)ml = −
∑

l ′

H ′
ml ′H

′
l ′l

ElEl ′
, (S2)lm =

∑

l ′

H ′
ll ′H

′
l ′m

ElEl ′
,

(S3)ml =
∑

l ′,l ′′

H ′
ml ′Hl ′l ′′Hl ′l

ElEl ′El ′′
− 1

3

∑

l ′m′

H ′
ml ′Hl ′m′Hm′l

(
3

E2
l

El ′
+ 1

E2
l ′ El

)
,

(S3)lm = −
∑

l ′,l ′′

H ′
ll ′Hl ′l ′′Hl ′′m

ElEl ′El ′′
+ 1

3

∑

l ′m′

H ′
lm′Hm′l ′Hl ′m

(
3

E2
l

El ′
+ 1

E2
l ′ El

)
. (F6)

Due to our property (H1)mm′ = 〈ψm|H ′|ψm′〉 = 0, Em = 0 on the second magic manifold, we find that the fourth order S4 is not

needed in order to obtain the fifth order diagonal Hamiltonian, as terms in the expression of the Hamiltonian that contain it

cancel. We find that the fifth order Hamiltonian is

H̃
(5)
diagonal = −S2H0S3 − S3H0S2 − S1H1S3 − S3H1S1 − S2H2S2

− 1
6

(
S1H0S1S2S1 + S1H0S2S2

1 + S1H0S2
1S2 + S2H0S3

1 + S1H1S3
1

+ S1S2S1H0S1 + S2S2
1H0S1 + S2

1S2H0S1 + S3
1H0S2 + S3

1H1S1

)
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+ 1
6

[
H2S2S2

1 + H2S2
1S2 + H2S1S2S1 + 3

(
S1S2H2S1 + S2S1H2S1 + S2

1H2S2

)

−
(
S2S2

1H2 + S2
1S2H2 + S1S2S1H2

)
− 3

(
S1H2S1S2 + S1H2S2S1 + S2H2S2

1

)]
. (F7)

The matrix elements of these terms give

1

6

[
H2S2S2

1 + H2S2
1S2 + H2S1S2S1 −

(
S2S2

1H2 + S2
1S2H2 + S1S2S1H2

)]
mm′

= −1

6

∑

l,l ′,l ′′

∑

m′′

H ′
ml H

′
ll ′Hl ′m′′Hm′′l ′′Hl ′′m′ + Hm′l ′′Hl ′′m′′Hm′′l ′Hl ′lHlm

ElEl ′El ′′

(
1

El

+ 1

El ′
+ 1

El ′′

)
, (F8)

1

6

[
3
(
S1S2H2S1 + S2S1H2S1 + S2

1H2S2

)
− 3

(
S1H2S1S2 + S1H2S2S1 + S2H2S2

1

)]
mm′

= −1

2

∑

l,l ′,l ′′

∑

m′′

H ′
ml H

′
ll ′Hl ′m′′Hm′′l ′′Hl ′′m′ + Hm′l ′′Hl ′′m′′Hm′′l ′Hl ′lHlm

ElEl ′El ′′

(
1

El

+ 1

El ′
+ 1

El ′′

)
, (F9)

− 1

6

(
S1H0S1S2S1 + S1H0S2S2

1 + S1H0S2
1S2 + S2H0S3

1 + S1H1S3
1

+ S1S2S1H0S1 + S2S2
1H0S1 + S2

1S2H0S1 + S3
1H0S2 + S3

1H1S1

)

= 1

6

∑

l,l ′,l ′′

∑

m′′

H ′
ml H

′
ll ′H

′
l ′m′′H

′
m′′l ′′H

′
l ′′m′ + H ′

m′l ′′H
′
l ′′m′′H

′
m′′l ′H

′
l ′lH

′
lm

ElEl ′El ′′

(
1

El

+ 1

El ′
+ 1

El ′′

)
,

(−S2H0S3 − S3H0S2 − S1H1S3 − S3H1S1 − S2H2S2)mm′ =
∑

l,l ′,l ′′,l ′′′

H ′
ml H

′
ll ′H

′
l ′l ′′Hl ′′l ′′′Hl ′′′m′

ElEl ′El ′′El ′′′
. (F10)

Hence

H̃
(5)
diagonal =

∑

l,l ′,l ′′,l ′′′

H ′
ml H

′
ll ′H

′
l ′l ′′Hl ′′l ′′′Hl ′′′m′

El El ′El ′′El ′′′
− 1

2

∑

l,l ′,l ′′

∑

m′′

H ′
ml H

′
ll ′Hl ′m′′Hm′′l ′′Hl ′′m′ + Hm′l ′′Hl ′′m′′Hm′′l ′Hl ′lHlm

El El ′El ′′

(
1

El

+ 1

El ′
+ 1

El ′′

)
.

(F11)

2. Calculations of the Hamiltonian matrix elements when first order vanishes

Here we calculate explicitly the perturbations of Hperturb(k,w0) = I6×6 ⊗ k · �σ in Eq. (47) up to fifth order.

a. First order

The first order perturbation can be easily seen to be zero:

H
(1)
mm′ (k,w0) = 〈ψm|Hperturb(k,w0)|ψm′〉 = 0. (F12)

b. Second order

H
(2)
mm′ (k,w0) = −

∑

l=3...12

1

El

〈ψm|Hperturb(k,w0)|ψl〉〈ψl |Hperturb(k,w0)|ψm′〉 = −
4w

2
0

(
k2

x + k2
y

)

3

√
w

2
0 + 1

(
3w

2
0 − 1

) (σy +
√

3σx ). (F13)

c. Third order

H
(3)
mm′ (k,w0) =

∑

l,l ′=3,...,12

1

ElEl ′
〈ψm|Hperturb(k,w0)|ψl〉〈ψl |Hperturb(k,w0)|ψl ′〉〈ψl ′ |Hperturb(k,w0)|ψm′〉

=
4kxw0

(
w

2
0 − 3

)(
k2

x − 3k2
y

)

9
(
1 − 3w

2
0

)2
√

w
2
0 + 1

σ0. (F14)
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d. Fourth order

For the fourth order, there are two terms: First,

H
(41 )
mm′ (k,w0) = −

∑

l,l ′,l ′′=3,...,12

1

El El ′El ′′
〈ψm|Hperturb(k,w0)|ψl〉〈ψl |Hperturb(k,w0)|ψl ′〉〈ψl ′ |Hperturb(k,w0)|ψl ′′〉

× 〈ψl ′′ |Hperturb(k,w0)|ψm′〉

=
8w

2
0

(
w

4
0 + 16w

2
0 − 9

)(
k2

x + k2
y

)2

27
(
w

2
0 + 1

)3/2(
3w

2
0 − 1

)3
(σy +

√
3σx ). (F15)

Second,

H
(42 )
mm′ (k,w0) =

∑

l,l ′=3,...,12

∑

m′′=1,2

1

El El ′

(
1

El

+ 1

El ′

)

× 〈ψm|Hperturb(k,w0)|ψl〉〈ψl |Hperturb(k,w0)|ψm′′〉〈ψm′′ |Hperturb(k,w0)|ψl ′〉〈ψl ′ |Hperturb(k,w0)|ψm′〉

=
16w

2
0

(
17w

2
0 + 9

)(
k2

x + k2
y

)2

27

√
w

2
0 + 1

(
3w

2
0 − 1

)3
(σy +

√
3σx ). (F16)

Notice that so far, the eigenstates are not k dependent, they are just the eigenstates of (σy +
√

3σx ).

e. Fifth order

The fifth order perturbation theory is not available in any book. Hence we derived it in Appendix F, for the special case for

which the manifold m of states we project in has the first order Hamiltonian H
(1)
mm′ (k,w0) = 0 and for which its energies are

Em = 0.

The fifth order also has two terms, just like the fourth order (see Appendix F). We find

∑

l,l ′,l ′′,l ′′′

H ′
ml H

′
ll ′H

′
l ′l ′′Hl ′′l ′′′Hl ′′′m′

El El ′El ′′El ′′′
=

32kx

(
w

2
0 − 3

)2
(2w

2
0 − 1)w0

(
k2

x − 3k2
y

)(
k2

x + k2
y

)

81
(
w

2
0 + 1

)3/2(
3w

2
0 − 1

)4
σ0 (F17)

and

− 1

2

∑

l,l ′,l ′′

∑

m′′

(
H ′

ml H
′
ll ′Hl ′m′′Hm′′l ′′Hl ′′m′ + Hm′l ′′Hl ′′m′′Hm′′l ′Hl ′l Hlm

ElEl ′El ′′

(
1

El

+ 1

El ′
+ 1

El ′′

)

= −
16kx

(
11w

4
0 − 94w

2
0 − 9

)
w0

(
k2

x − 3k2
y

)(
k2

x + k2
y

)

27
(√

w
2
0 + 1

(
3w

2
0 − 1

)4) σ0. (F18)

We can clearly see the structure of the order n Hamiltonian, as a perturbation in 1/(3w
2
0 − 1)n−1, with symmetry-preserving

functions of k. The full two-band approximation to the hexagon Hamiltonian is, up to fifth order, is

HHex
2band


k,w0,w1 =

√
1 + w

2
0

2


 = 4w

2
0

3

√
w

2
0 + 1

(
3w

2
0 − 1

)

[
−1 +

2
(
35w

4
0 + 68w

2
0 + 9

)(
k2

x + k2
y

)

9
(
w

2
0 + 1

)(
3w

2
0 − 1

)2

]
(
k2

x + k2
y

)
(σy +

√
3σx )

+ 4w0

9

√
w

2
0 + 1

(
1 − 3w

2
0

)2

[(
w

2
0 − 3

)
− 4

(
29w

6
0 − 223w

4
0 − 357w

2
0 − 9

)

9
(
1 − 3w

2
0

)2(
w

2
0 + 1

)
(
k2

x + k2
y

)]
kx

(
k2

x − 3k2
y

)
σ0 (F19)

better expressed as

HHex
2band

(
k,w0,w1 =

√
1 + w

2
0

2

)
= d0(k,w0)σ0 + d1(k,w0)(σy +

√
3σx ), (F20)
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where

d0(k,w0) = 4w0

9

√
w

2
0 + 1

(
1 − 3w

2
0

)2

[(
w

2
0 − 3

)
− 4(29w

6
0 − 223w

4
0 − 357w

2
0 − 9)

9
(
1 − 3w

2
0

)2(
w

2
0 + 1

)
(
k2

x + k2
y

)]
kx

(
k2

x − 3k2
y

)
(F21)

and

d1


(k,w0) =

√
1 + w

2
0

2


 = 4w

2
0

3

√
w

2
0 + 1

(
3w

2
0 − 1

)

[
−1 +

2(35w
4
0 + 68w

2
0 + 9)

(
k2

x + k2
y

)

9
(
w

2
0 + 1

)(
3w

2
0 − 1

)2

]
(
k2

x + k2
y

)
. (F22)

3. Calculations of the Hamiltonian matrix elements when first order does not vanish

We take the unperturbed Hamiltonian to be HHex(k = 0,w0,w1 =
√

1 + w
2
0/2) (the hexagon model on the second magic

manifold) in Eq. (40). For this Hamiltonian we are able to obtain all the eigenstates analytically in Appendix E 2. The perturbation

Hamiltonian, away from the second magic manifold, is

Hperturb(k,w0,w1) = HHex(k,w0,w1) − HHex

(
k = 0,w0,w1 =

√
1 + w

2
0

2

)

= I6×6 ⊗ k · �σ + HHex

(
k = 0, 0,w1 −

√
1 + w

2
0

2

)
. (F23)

a. First order

H
(1)
mm′ (k,w0,w1) = 〈ψm|Hperturb(k,w0,w1)|ψm′〉 =




√
w

2
0 + 1

2
− w1


(σy +

√
3σx ). (F24)

Hence there is now a linear term in the Hamiltonian. Because of this, many other terms in the further degree perturbation theory

become nonzero.

b. Second order

H
(2)
mm′ (k,w0,w1) = −

∑

l=3,...,12

1

El

〈ψm|Hperturb(k,w0)|ψl〉〈ψl |Hperturb(k,w0)|ψm′〉

= −
4w

2
0

(
k2

x + k2
y

)

3

√
w

2
0 + 1

(
3w

2
0 − 1

) (σy +
√

3σx ). (F25)

The second order perturbation theory is unchanged!

c. Third order

There are now two third order terms, as the first order perturbation terms do not vanish. First,

H
(31 )
mm′ (k,w0,w1) =

∑

l,l ′=3...12

1

El El ′
〈ψm|Hperturb(k,w0)|ψl〉〈ψl |Hperturb(k,w0)|ψl ′〉〈ψl ′ |Hperturb(k,w0)|ψm′〉

=
4kxw0

(
w

2
0 − 3

)(
k2

x − 3k2
y

)

9
(
1 − 3w

2
0

)2
√

w
2
0 + 1

σ0 −
8w

2
0

(
k2

x + k2
y

)(√
w

2
0 + 1 − 2w1

)

9
(
1 − 3w

2
0

)2
(σy +

√
3σx ). (F26)
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Second,

H
(32 )
mm′ (k,w0,w1) = −1

2

∑

l=3...12

∑

m′′=1,2

〈ψm|Hperturb(k,w0,w1)|ψl〉〈ψl |Hperturb(k,w0,w1)|ψm′′〈ψm′′ |Hperturb(k,w0,w1)|ψm′〉 + H.c.

E2
l

= −
2
(
17w

2
0 + 9

)(
k2

x + k2
y

)(√
w

2
0 + 1 − 2w1

)

9
(
1 − 3w

2
0

)2
(σy +

√
3σx ) (F27)

(where H.c. is the Hermitian conjugate).

The total third order Hamiltonian then reads

4kxw0

(
w

2
0 − 3

)(
k2

x − 3k2
y

)

9
(
1 − 3w

2
0

)2
√

w
2
0 + 1

σ0 −
2
(
7w

2
0 + 3

)(
k2

x + k2
y

)(√
w

2
0 + 1 − 2w1

)

3
(
1 − 3w

2
0

)2
(σy +

√
3σx ). (F28)

d. Fourth order

For the fourth order, there are now four terms: First,

H
(41 )
mm′ (k,w0,w1) = −

∑

l,l ′,l ′′=3,...,12

1

ElEl ′El ′′
〈ψm|Hperturb(k,w0,w1)|ψl〉〈ψl |Hperturb(k,w0)|ψl ′〉

× 〈ψl ′ |Hperturb(k,w0,w1)|ψl ′′〉〈ψl ′′ |Hperturb(k,w0,w1)|ψm′〉

=
8w0

(
7w

2
0 + 3

)
kx

(
k2

x − 3k2
y

)(
2w1 −

√
w

2
0 + 1

)

27
(
3w

2
0 − 1

)3
σ0

+
4w

2
0

(
k2

x + k2
y

)[
2
(
w

4
0 + 16w

2
0 − 9

)(
k2

x + k2
y

)
+
(
w

2
0 + 1

)(
5w

2
0 − 7

)(
2w1 −

√
w

2
0 + 1

)2]

27
(
w

2
0 + 1

)3/2(
3w

2
0 − 1

)3
(σy +

√
3σx ).

(F29)

Second,

H
(42 )
mm′ (k,w0) =

∑

l,l ′=3,...,12

∑

m′′=1,2

1

ElEl ′

(
1

El

+ 1

El ′

)
〈ψm|Hperturb(k,w0,w1)|ψl〉〈ψl |Hperturb(k,w0)|ψm′′〉

× 〈ψm′′ |Hperturb(k,w0,w1)|ψl ′〉〈ψl ′ |Hperturb(k,w0,w1)|ψm′〉

=
16w

2
0

(
17w

2
0 + 9

)(
k2

x + k2
y

)2

27

√
w

2
0 + 1

(
3w

2
0 − 1

)3
(σy +

√
3σx ). (F30)

Third, we have, adopting the notation 〈ψm|Hperturb(k,w0)|ψl〉 = H ′
ml , etc.,

H
(43 )
mm′ (k,w0,w1) = −1

2

∑

l,m′′,m′′′

1

E3
l

(H ′
mm′′H

′
m′′m′′′H

′
m′′′lHlm′ + H ′

ml H
′
lm′′H

′
m′′m′′′H

′
m′′′m′ )

= −
8w

2
0

(
35w

2
0 + 23

)(
k2

x + k2
y

)(√
w

2
0 + 1 − 2w1

)2

27

√
w

2
0 + 1

(
3w

2
0 − 1

)3
(σy +

√
3σx ), (F31)

H
(44 )
mm′ (k,w0,w1) = 1

2

∑

l,l ′,m′′

1

El El ′

(
1

El

+ 1

El ′

)
(H ′

ml H
′
ll ′H

′
l ′m′′Hm′′m′ + H ′

mm′′H
′
m′′lH

′
ll ′H

′
l ′m′ )

=
32kxw0

(
w

2
0 − 15

)(
k2

x − 3k2
y

)(√
w

2
0 + 1 − 2w1

)

27
(
3w

2
0 − 1

)3
σ0

+
4
(
25w

4
0 + 28w

2
0 + 27

)(
k2

x + k2
y

)(√
w

2
0 + 1 − 2w1

)2

27
(
1 − 3w

2
0

)3
√

w
2
0 + 1

(σy +
√

3σx ). (F32)
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The full fourth order Hamiltonian reads

−
8kxw0

(
w

2
0 + 21

)(
k2

x − 3k2
y

)(√
w

2
0 + 1 − 2w1

)

9
(
3w

2
0 − 1

)3
σ0

+
4
(
k2

x + k2
y

)[
2w

2
0 (35w

4
0 + 68w

2
0 + 9)

(
k2

x + k2
y

)
− 9

(
w

2
0 + 1

)(
10w

4
0 + 9w

2
0 + 3

)(
2w1 −

√
w

2
0 + 1

)2]

27
(
w

2
0 + 1

)3/2(
3w

2
0 − 1

)3
(σy +

√
3σx ). (F33)

If w1 =
√

1+w
2
0

2
, then the expressions reduce to our previous Hamiltonian. We can label the two-band Hamiltonian as

HHex
2band(k,w0,w1) = d0(k,w0,w1)σ0 + d1(k,w0,w1)(σy +

√
3σx ), (F34)

where

d0(k,w0,w1) =
4kxw0

(
w

2
0 − 3

)(
k2

x − 3k2
y

)

9
(
1 − 3w

2
0

)2
√

w
2
0 + 1

−
8kxw0

(
w

2
0 + 21

)(
k2

x − 3k2
y

)(√
w

2
0 + 1 − 2w1

)

9
(
3w

2
0 − 1

)3
σ0 (F35)

and

d1(k,w0,w1) =
(
√

w
2
0 + 1

2
− w1

)
−

4w
2
0

(
k2

x + k2
y

)

3

√
w

2
0 + 1

(
3w

2
0 − 1

) −
2
(
7w

2
0 + 3

)(
k2

x + k2
y

)(√
w

2
0 + 1 − 2w1

)

3
(
1 − 3w

2
0

)2

+
4
(
k2

x + k2
y

)[
2w

2
0

(
35w

4
0 + 68w

2
0 + 9

)(
k2

x + k2
y

)
− 9

(
w

2
0 + 1

)(
10w

4
0 + 9w

2
0 + 3

)(
2w1 −

√
w

2
0 + 1

)2]

27
(
w

2
0 + 1

)3/2(
3w

2
0 − 1

)3
, (F36)

where the perturbation is made on the zero energy eigenstates of HHex(k = 0,w0,w1 =
√

1+w
2
0

2
).

Notice that so far, remarkably the eigenstates are not k dependent, they are just the eigenstates of (σy +
√

3σx ). We did not

obtain the fifth order for this Hamiltonian: due to the fact that the first order Hamiltonian does not cancel, this is not easy to do.

4. Calculations of the B1 shell first order perturbation

We now compute the shell B1 perturbation Hamiltonian:

− HA1,B1H−1
kB1H

†
A1,B1(k,w0,w1)

= −




T1(k−2q1 )·σT1

|k−2q1|2 0 0 0 0 0

0
T3(k+2q3 )·σT3

|k+2q3|2 0 0 0 0

0 0
T2(k−2q2 )·σT2

|k−2q2|2 0 0 0

0 0 0
T1(k+2q1 )·σT1

|k+2q1|2 0 0

0 0 0 0
T3(k−2q3 )·σT3

|k−2q3|2 0

0 0 0 0 0
T2(k+2q2 )·σT2

|k+2q2|2




. (F37)

We now compute the perturbation Hamiltonian:

H (B1)(k,w0,w1) = 〈ψm| − HA1,B1H−1
kB1H

†
A1,B1(k,w0,w1)|ψm′〉

= 1∏
i=1,2,3 |k − 2qi|2|k + 2qi|2

[d̃0(k,w0,w1)σ0 + d̃x(k,w0,w1)σx + d̃y(k,w0,w1)σy + d̃z(k,w0,w1)σz],

(F38)
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where

d̃0(k,w0,w1) =
4kx

(
k2

x − 3k2
y

)(
k2

x + k2
y + 4

)[(
k2

x + k2
y

)2 − 4
(
k2

x + k2
y

)
+ 16

]
w0

(√
w

2
0 + 1 + w1 + 1

)(√
w

2
0 + 1 + w1 − 1

)
√

w
2
0 + 1

,

(F39)

d̃z(k,w0,w1) =
64kxky

(
k2

x − 3k2
y

)(
3k2

x − k2
y

)
w0

[(√
w

2
0 + 1w1 + w

2
0

)2 + w
2
0

]

(
w

2
0 + 1

)3/2
, (F40)

d̃x (k, w0,w1 ) = −
16
(√

3

√
w

2
0 + 1

{
−
[
ky

(
3k2

x − k2
y

)]2

+
[
kx

(
k2

x − 3k2
y

)]2

+ 64
}(

w
2
0 − w

2
1

)
− 2kxky

(
k2

x − 3k2
y

)(
3k2

x − k2
y

)(√
w

2
0 + 1w

2
1 + 2w

2
0w1 +

√
w

2
0 + 1w

2
0

))

w
2
0 + 1

,

(F41)

d̃y (k,w0, w1 ) = −
16
{√

w
2
0 + 1

[
− k2

y

(
3k2

x − k2
y

)2

+ k2
x

(
k2

x − 3k2
y

)2

+ 64
](

w
2
0 − w

2
1

)
+ 2

√
3kxky

(
3k2

x − k2
y

)(
k2

x − 3k2
y

)(√
w

2
0 + 1w

2
1 + 2w

2
0w1 +

√
w

2
0 + 1w

2
0

)}

w
2
0 + 1

. (F42)

This gives the first order term of HApprox1(k) projected into the zero energy bands in the hexagon model on the second magic

manifold.

5. Exact eigenvalues of the one-shell model at ŴM point

At w0 = 0 we find the ŴM point eigenenergies of the Hamiltonian HApprox1 = HkA1 + HA1,A1 − HA1,B1H−1
kB1

H
†
A1,B1 in Eq. (33)

to be the following:

(
− w

2
1 + 4w1 − 2

)

2
,

(
w

2
1 − 4w1 + 2

)

2
,

(
− w

2
1 + 2w1 − 2

)

2
,

(
− w

2
1 + 2w1 − 2

)

2
,

(
w

2
1 − 2w1 + 2

)

2
,

(
w

2
1 − 2w1 + 2

)

2
,

(
− w

2
1 − 2w1 − 2

)

2
,

(
− w

2
1 − 2w1 − 2

)

2
,

(
w

2
1 + 2w1 + 2

)

2
,

(
w

2
1 + 2w1 + 2

)

2
,

(
− w

2
1 − 4w1 − 2

)

2
,

(
w

2
1 + 4w1 + 2

)

2
. (F43)

One sees the ŴM point has zero bandwidth at w1 = 2 −
√

2, the same as that of the zero-bandwidth manifold w1 = 2
√

w
2
0 + 1 −√

3w
2
0 + 2 = 2 −

√
2 in Eq. (58) for the two-band model at w0 = 0.

Furthermore, in the chiral limit w0 = 0, the value w1 = 2
√

w
2
0 + 1 −

√
3w

2
0 + 2 = 2 −

√
2 for which the bandwidth is 0 in

our two-band model is in fact exact for the no-approximation Hamiltonian of the n = 1 shell Hamiltonian (of A1, B1 subshells).

We find its eigenvalues at ŴM to be

(
−
√

5w
2
1 − 6w1 + 9 − w1 − 1

)

2
,

(
−
√

5w
2
1 − 6w1 + 9 − w1 − 1

)

2
,

(
−
√

5w
2
1 − 6w1 + 9 + w1 + 1

)

2
,

(
−
√

5w
2
1 − 6w1 + 9 + w1 + 1

)

2
,

(√
5w

2
1 − 6w1 + 9 − w1 − 1

)

2
,

(√
5w

2
1 − 6w1 + 9 − w1 − 1

)

2
,

(√
5w

2
1 − 6w1 + 9 + w1 + 1

)

2
,

(√
5w

2
1 − 6w1 + 9 + w1 + 1

)

2
,

(
−
√

5w
2
1 + 6w1 + 9 − w1 + 1

)

2
,

(
−
√

5w
2
1 + 6w1 + 9 − w1 + 1

)

2
,

(
−
√

5w
2
1 + 6w1 + 9 + w1 − 1

)

2
,

(
−
√

5w
2
1 + 6w1 + 9 + w1 − 1

)

2
,

(√
5w

2
1 + 6w1 + 9 − w1 + 1

)

2
,

(√
5w

2
1 + 6w1 + 9 − w1 + 1

)

2
,

(√
5w

2
1 + 6w1 + 9 + w1 − 1

)

2
,

(√
5w

2
1 + 6w1 + 9 + w1 − 1

)

2
,

(
−
√

8w
2
1 − 12w1 + 9 − 2w1 − 1

)

2
,

(
−
√

8w
2
1 − 12w1 + 9 + 2w1 + 1

)

2
,

(√
8w

2
1 − 12w1 + 9 − 2w1 − 1

)

2
,

(√
8w

2
1 − 12w1 + 9 + 2w1 + 1

)

2
,

(
−
√

8w
2
1 + 12w1 + 9 − 2w1 + 1

)

2
,

(
−
√

8w
2
1 + 12w1 + 9 + 2w1 − 1

)

2
,

(√
8w

2
1 + 12w1 + 9 − 2w1 + 1

)

2
,

(√
8w

2
1 + 12w1 + 9 + 2w1 − 1

)

2
. (F44)

Therefore, we see that the active bands have zero bandwidth at w0 = 0,w1 = 2 −
√

2 in the n = 1 shell model.
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