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We derive the explicit Hamiltonian of twisted bilayer graphene (TBG) with Coulomb interaction projected into

the flat bands and study the symmetries of the Hamiltonian. First, we show that all projected TBG Hamiltonians

can be written as positive semidefinite Hamiltonians, an example of which was found in work by Kang and

Vafek [Phys. Rev. Lett. 122, 246401 (2019)]. We then prove that the interacting TBG Hamiltonian exhibits an

exact U(4) symmetry in the exactly flat band (nonchiral-flat) limit. We further define, besides a first chiral limit

where the AA stacking hopping is zero, a second chiral limit where the AB/BA stacking hopping is zero. In the

first chiral-flat limit (or second chiral-flat limit) with exactly flat bands, the TBG is enhanced to have an exact

U(4)×U(4) symmetry, whose generators are different between the two chiral limits. While in the first chiral limit

and in the nonchiral case these symmetries have been found in work by Bultinck et al. [Phys. Rev. X 10, 031034

(2020)], for the eight lowest bands, we here prove that they are valid for projection into any 8nmax particle-

hole symmetric TBG bands, with nmax > 1 being the practical case for small twist angles <1◦. Furthermore,

in the first or second chiral-nonflat limit without flat bands, an exact U(4) symmetry still remains. We also

elucidate the link between the U(4) symmetry presented here and the similar but different U(4) of Kang and

Vafek [Phys. Rev. Lett. 122, 246401 (2019)]. Furthermore, we show that our projected Hamiltonian can be

viewed as the normal-ordered Coulomb interaction plus a Hartree-Fock term from passive bands, and exhibits

a many-body particle-hole symmetry which renders the physics symmetric around charge neutrality. We also

provide an efficient parametrization of the interacting Hamiltonian. The existence of two chiral limits with an

enlarged symmetry suggests a possible duality of the model yet undiscovered.

DOI: 10.1103/PhysRevB.103.205413

I. INTRODUCTION

Twisted bilayer graphene (TBG) near the magic angle

θ ≈ 1.1◦ hosts flat electron bands and exhibits remarkable

interacting phases including correlated insulators, Chern in-

sulators, and superconductors [1–111]. Both transport [2–17]

and scanning tunneling microscope [18–25] experiments

show the correlated insulators and Chern insulators originate

from strong many-body interactions. Extensive theoretical

studies have been devoted to understanding the electron inter-

actions in TBG [51–104]. Kang and Vafek [71] proposed that,

by projecting in a non-maximally-symmetric Wannier basis, a

non-negative interaction Hamiltonian can be obtained, whose

ground state at ν = ±2 electrons per unit cell (with respect to

charge neutrality) is an exactly solvable insulator with some

mild approximation. A U(4) symmetry was also identified for

the TBG interaction [71–73] (both Refs. [71,72] identified a

U(4), which we show here to be similar but different), which

was shown to enlarge into a U(4)×U(4) symmetry in the chiral

limit w0 = 0 [72]. However, these symmetries were proposed

only for the eight lowest bands (two bands per valley-spin)

around the charge neutrality point, which applies for the first

magic angle, while the TBG theoretically and experimentally
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exhibits, for example, 32 low-energy “active” bands (eight

bands per valley-spin) around charge neutrality at lower an-

gles θ = 0.45◦ [28].

In this paper, we derive the explicit TBG Hamiltonian

Coulomb Hamiltonian projected within any number of 8nmax

(2nmax per spin per valley, nmax � 1) particle-hole symmetric

low-lying moiré bands. For the first magic angle, the number

of bands where the projection makes sense is eight (two per

spin-valley) moiré bands in momentum space; for smaller

angles, the number increases. We show the exact projected

Coulomb interaction Hamiltonian can always be written into

a Kang-Vafek type [71] non-negative form, which we hereby

call positive semidefinite Hamiltonian (PSDH). The projected

Hamiltonian we derived can be understood as the normal-

ordered Coulomb interaction in the active bands plus a

Hartree-Fock potential from the passive bands. Furthermore,

the projected Hamiltonian has a many-body particle-hole

symmetry, which ensures that all the physics are particle-

hole symmetric about charge neutrality, in agreement with

the overall picture of the experimental observations. We then

study the TBG symmetries in the flat band limit. We prove the

existence of not one but two (first and second) chiral limits de-

fined by zero hopping at either AA or AB/BA stackings. We

prove that the projected TBG Hamiltonian in the nonchiral-

flat limit has an exact U(4) symmetry, which breaks to a

U(2) × U(2) when kinetic energy is added (nonchiral-nonflat

case). This symmetry is enhanced into an exact U(4)×U(4)
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FIG. 1. Illustration of the relation between the graphene BZs of

two layers and the moiré BZ (MBZ). Blue solid and red empty circles

represent Q+ and Q−, respectively.

symmetry in either the first chiral-flat limit or the second

chiral-flat limit. The U(4)×U(4) symmetry for the first chiral

limit, and for projection into two low-lying active bands was

obtained in Ref. [72], but we here extend it to any number of

projected bands as well as to a second chiral limit. In the first

chiral-nonflat limit or the second chiral-nonflat limit, a kinetic

term is also considered, and the bands are not flat; however,

we show that an exact U(4) symmetry still remains. All these

symmetries, in all limits, are shown to be not only valid for

the eight active bands at the first magic angle [72] but also for

the projected Hamiltonian within any number of particle-hole

symmetric bands. This is relevant at smaller twist angles:

In Ref. [28], it was experimentally and theoretically found

that 32 bands (eight bands per valley/spin) contribute to the

low-energy physics. Besides, for Hamiltonian projected in the

lowest eight bands (two bands per spin per valley), we reveal

that the Hamiltonian in the first or second chiral limit can

be enhanced into a stabilizer code Hamiltonian under certain

assumptions. Furthermore, we elucidate the similarities and

differences between the U(4) symmetry of Kang and Vafek

[71] and the U(4) in the current paper. The explicit form and

symmetries of Hamiltonian here greatly simplify the study of

TBG many-body states, as we will discuss in Refs. [109] and

[110].

II. BISTRITZER-MACDONALD MODEL AND

COULOMB INTERACTION

We first present a short overview of the Bistritzer-

MacDonald (BM) model [1] to define our notations. The

reader might refer to Refs. [107,108] for a in-depth discus-

sion. For convenience, we also provide a detailed summary

in Appendix A. To begin, we assume c
†
p,α,s,l

denotes the

creation operator of the spin s =↑,↓ electron at momentum

p in the graphene sublattice α = A, B and layer l = ± (de-

noting top and bottom) of TBG, where p is measured from

the Ŵ point of the graphene Brillouin zone (BZ) of layer l .

The low-energy physics of TBG is concentrated at the two

graphene valleys K, K ′ (which we denote as valleys η = ±)

at momenta p = ±Kℓ in layer ℓ, respectively [1]. We further

define q j = C
j−1

3z (K− − K+) ( j = 1, 2, 3), where C3z is the

three-fold rotation about z axis [see Fig. 1(a)]. The kinetic

Hamiltonian of TBG is then given by the continuum model

[1,108] as

Ĥ0 =
∑

k∈MBZ

∑

ηαβs

∑

QQ′

[
h

(η)

Q,Q′ (k)
]
αβ

c
†
k,Q,η,α,s

ck,Q′,η,β,s, (1)

where η = ± and s =↑,↓ are the valley and spin indices,

and the momentum k is measured from the center (ŴM point)

of the moiré BZ (MBZ). The momenta Q, Q′ ∈ {Q+,Q−} is

shown in Fig. 1(b), where we have defined Q± = Q0 ± q1,

and Q0 is the moiré reciprocal lattice generated by recip-

rocal vectors bM j = q3 − q j ( j = 1, 2). The electron basis

c
†
k,Q,η,α,s

is defined as c
†
ηKη·l +k−Q,α,s,η·l if Q ∈ Ql . The detailed

kinetic term h
(η)

Q,Q′ (k) at valley η = ± is given in Appendix

A. In particular, there are two parameters w0 and w1 in the

single-particle Hamiltonian h
(η)

Q,Q′ (k) which correspond to the

interlayer hoppings at AA and AB/BA stacking centers, re-

spectively [see Eq. (A7)]:

w0 � 0 : AA hopping,

w1 � 0 : AB/BA hopping. (2)

Generically, w0 < w1 due to the lattice relaxation and corru-

gation [108,112–115].

The Coulomb interaction term in TBG takes the form (for

details, see Appendix C 1)

ĤI =
1

2	tot

∑

G∈Q0

∑

q∈MBZ

V (q + G)δρ−q−Gδρq+G, (3)

where

δρq+G =
∑

η,α,s,k,Q∈Q±

(
c

†
k+q,Q−G,η,α,s

ck,Q,η,α,s −
1

2
δq,0δG,0

)

(4)

is the total electron density at momentum q + G relative

to the charge neutral point (CNP) of the uncoupled twisted

bilayer graphene without interlayer couplings (which has a

density 〈c†
k+q,Q−G,η,α,s

ck,Q,η,α,s〉 = 1
2
δq,0δG,0), and 	tot is the

total area of TBG. The interaction coefficient

V (q) = πξ 2Uξ

tanh(ξ |q|/2)

ξ |q|/2
(5)

is the Fourier transform of the Coulomb potential with dielec-

tric constant ǫ screened by top and bottom gates at distance

ξ away, where Uξ = e2/ǫξ (see Appendix C). Typical TBG

experiments have a screening length ξ ≈ 10 nm [7,8] and di-

electric constant ǫ ∼ 6 as estimated from the hBN substrates.

This yields Uξ ≈ 24 meV.

Due to the absence of spin-orbit coupling, the total Hamil-

tonian

Ĥ = Ĥ0 + ĤI (6)

of TBG has the spinless symmetries

[C3z, Ĥ ] = [C2z, Ĥ ] = [T, Ĥ ] = 0 , (7)

where C3z is the threefold z-axis rotation symmetry

satisfying C3zc
†
k,Q,η,α,s

C−1
3z = (eiη2πσz/3)βαc

†
C3zk,C3zQ,η,β,s

,

C2z is the twofold z-axis rotation symmetry satisfying

C2zc
†
k,Q,η,α,s

C−1
2z = (σx )βαc

†
−k,−Q,−η,β,s

, and T is the

antiunitary time-reversal symmetry satisfying TiT −1 = −i

and T c
†
k,Q,η,α,s

T −1 = c
†
−k,−Q,−η,α,s

. Besides, each graphene
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FIG. 2. The single-valley TBG band structure at θ = 1.05◦ (with

exact ph symmetry P) for (a) the nonchiral-nonflat limit with w0 =
0.8wBM and w1 = wBM, (b) the first chiral limit with w0 = 0 and

w1 = wBM, and (c) the second chiral limit w0 = wBM and w1 = 0,

where wBM = 110 meV is the hopping in the original Bistritzer-

MacDonald TBG model [1]. In particular, in the second chiral limit,

the band structure is a perfect metal where all bands are connected

(proof given in Ref. [108]).

valley exhibits a charge U(1) symmetry and a spin rotational

SU(2) symmetry, leading to a global U(2)×U(2) symmetry of

two valleys (see Appendix A 3).

There also exists a unitary single-particle particle-hole (ph)

transformation P [43,108], which anticommutes with Ĥ0 in

Eq. (1) (see Appendix A 3) and commutes with ĤI in Eq. (3):

{P, Ĥ0} = 0, [P, ĤI ] = 0, (8)

where P is defined by Pc
†
k,Q,η,α,s

P−1 = ζQc
†
−k,−Q,η,α,s

, with

ζQ = ±1 for Q ∈ Q±. In particular, [P, ĤI ] = 0 can be seen

by noting that δρq+G in Eq. (3) satisfies Pδρq+GP−1 =
δρ−q−G. We note that an antiunitary ph transformation P =
PC2zT can also be defined, which is adopted in some literature

[72,108].

III. PROJECTED HAMILTONIAN

We denote the eigenstates and eigenvectors of h
(η)

Q,Q′ (k) in

Eq. (1) as ǫn,η(k) and uQαnη(k) (which are spin independent),

where the integer n �= 0 is the band index so defined that n > 0

(n < 0) labels the |n|th conduction (valence) band of valley η.

Near the first magic angle θ ≈ 1.1◦, the lowest conduction

and valence bands (n = ±1) of two spins and two valleys of

TBG form eight extremely flat bands which are energetically

isolated from the higher bands [Fig. 2(a)]. Therefore, it is

appropriate to project the Hamiltonian into the eight flat bands

for low-energy physics at the first magic angle. At higher

magic angles, the number of low-energy bands increase; for

instance, around the second magic angle θ ≈ 0.5◦ [1], the

lowest conduction and valence bands form 32 (eight per spin

or valley, |n| � 4) low-energy bands [28]. In this case, the

projection of Hamiltonian into more ph symmetric bands is

needed for studying low-energy physics. Therefore, to keep

our discussions generic, we consider the projection into a set

of 8nmax number of ph symmetric low-energy bands |n| �
nmax with any nmax � 1. As we will show, since the symme-

tries C2z, T, P which we will study are closed within each pair

of bands ±n, it is sufficient to focus on the two-dimensional

band space of each pair of bands ±n when examining the

symmetries of the projected Hamiltonian.

The projection of the kinetic Hamiltonian Ĥ0 in the set of

bands |n| � nmax is thus (which we denote by H0 without hat)

H0 =
∑

|n|�nmax

∑

kηs

ǫn,η(k)c†
k,n,η,s

ck,n,η,s, (9)

where c
†
k,n,η,s

=
∑

Q,α uQαnη(k)c†
k,Q,η,α,s

gives the band basis

of electrons and ±nmax are the highest and lowest bands we

project into. Meanwhile, the projection of Coulomb interac-

tion ĤI in the flat bands can be written as (denoted by HI

without hat; see Appendix C 2)

HI =
1

2	tot

∑

q∈MBZ

∑

G∈Q0

O−q,−GOq,G, (10)

where

Oq,G =
∑

kηs

∑

|m|,|n|�nmax

√
V (q + G)M (η)

m,n(k, q + G)

×
(

ρ
η

k,q,m,n,s −
1

2
δq,0δm,n

)
. (11)

Here we have defined the coefficient called the form factors

(overlaps):

M (η)
m,n(k, q + G) =

∑

α,Q∈Q±

u∗
Q−G,αmη(k + q)uQ,αnη(k), (12)

and ρ
η

k,q,m,n,s
= c

†
k+q,m,η,s

ck,n,η,s is the density operator. The

form factors (overlaps) M (η)
m,n(k, q + G) were shown to ex-

hibit properties such as exponential decay in the magnitude

of G in Ref. [107]. As such, only |G| = 0 and |G| = |bM1
|

momentum vectors will contribute to Oq,G, with all other G

leading to exponentially smaller form factors (overlaps). We

now note that O−q,−G = O
†
q,G, such that O−q,−GOq,G is a pos-

itive semidefinite operator for any q, G. Thus, the interaction

Hamiltonian HI , being a sum of positive semidefinite opera-

tors, is also positive semidefinite. We call such Hamiltonians

positive semidefinite Hamiltonians (PSDH).

Below, we investigate the symmetries of the projected

Hamiltonian H = H0 + HI in various different limits. Without

loss of generality, we will consider the subspace of a particular

pair of ph symmetric bands n = ±nB with 1 � nB � nmax,

since all the single-particle symmetries we will be discussing

are closed within the band pair n = ±nB.

Hereafter, we shall use ζ a, τ a, sa to denote the identity

matrix (a = 0) and Pauli matrices (a = x, y, z) in the energy

band n = ±nB, valley η = ±, and spin s =↑,↓ bases, respec-

tively. In particular, when nB = 1, our discussion applies to

the projected Hamiltonian in the lowest eight flat bands near

the first magic angle.

IV. SYMMETRIES IN THE GENERIC

NONCHIRAL-NONFLAT CASE

The projected Hamiltonian H = H0 + HI preserves

all the discrete TBG symmetries C3z, C2z, T (see

Appendix C). Moreover, the projected Hamiltonian

respects the global U(2)×U(2) spin-charge rotational

symmetry of two valleys, which has eight group generators
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Sab =
∑

k(sab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ (a = 0, z and

b = 0, x, y, z; repeated indices are summed automatically

hereafter). Within each band pair n = ±nB, the matrices sab

are given by

s0b = ζ 0τ 0sb, szb = ζ 0τ zsb, (b = 0, x, y, z). (13)

We note that sab has no nonzero matrix elements between

different pairs of ph symmetric bands nB �= n′
B. Also, note that

the operators Sab preserve the electron momentum k.

Another k-preserving transformation is given by the com-

bined unitary operator C2zP (P is the ph transformation),

which acts as

(C2zP)c†
k,Q,η,α,s(C2zP)−1 = ζQ(σx )βαc

†
k,Q,−η,β,s, (14)

and thus satisfies (C2zP)2 = 1. Since (C2zP)H0(C2zP)−1 =
−H0, the single-particle band energies satisfy ǫn,η(k) =
−ǫ−n,−η(k), and the eigenstate wave functions satisfy

ζQ(σx )βαuQ,α,n,η(k) = [BC2zP(k)]−n,−η;nηuQ,β,−n,−η(k), where

BC2zP(k) is the unitary sewing matrix of C2zP. This implies

(C2zP)c†
k,n,η,s

(C2zP)−1 = [BC2zP(k)]−n,−η;nηc
†
k,−n,−η,s

. (15)

Using the explicit form of BC2zP(k), one can prove that

[C2zP, Oq,G] = 0 (see Appendix D 2), and thus

{C2zP, H0} = 0, [C2zP, HI ] = 0. (16)

Therefore, C2zP is a commuting symmetry of HI but not H0.

Furthermore, there is a many-body charge conjugation

symmetry Pc defined by C2zPT followed by the interchange of

annihilation and creation operators, namely, Pcc
†
k,n,η,s

P−1
c =

(C2zPT )ck,n,η,s(C2zPT )−1 (see Appendix C 4). By showing

that PcOq,GP
−1
c = −Oq,G, one can prove that the projected

Hamiltonian within bands |n| � nmax satisfies [see Eq. (C33)

in Appendix C 4]

Pc(H0 + HI )P−1
c = H0 + HI . (17)

In particular, Pc maps a many-body state from filling ν to

−ν, where ν is the number of electrons per moiré unit cell

relative to the CNP. Therefore, Pc ensures that the eigenstates

of the projected Hamiltonian H = H0 + HI is ph symmetric

about ν = 0, in agreement with the (big picture) experimental

observations.

We note that HI in Eq. (10) is not normal ordered. We

can rewrite HI =:HI : +�HI + EI , where :HI : is the normal

ordered four-fermion interaction, �HI is a quadratic fermion

term, and EI is a constant. One can then show that �HI =
1
2
(H ν=−4nmax

HF − H
ν=4nmax

HF ), where H ν
HF is the Hartree-Fock po-

tential in the projected bands contributed by all the occupied

bands below filling ν (see Appendix C 5) and the factor of

4 comes from two spins and two valleys. Note that Hν
HF sums

over all the bands below filling ν, instead of only the projected

active bands (see derivation in Appendix C 5). Therefore, �HI

can be understood as the mean-field Hartree-Fock potential

from the remote bands projected away symmetrized about the

CNP. We note that :HI : alone does not have the Pc symmetry,

and thus �HI is indispensable as an effective background

Hartree-Fock potential.

V. U(4) SYMMETRY IN THE NONCHIRAL-FLAT LIMIT

In the limit of exactly flat |n| � nmax bands, we have

H0 = 0, so the projected Hamiltonian is simply H = HI . By

Eq. (16), C2zP becomes a symmetry of H . Note that C2zP

preserves the electron momentum k and thus is a local unitary

symmetry. Accordingly, the C2zP symmetry and the spin-

charge U(2)×U(2) symmetry together generate a global U(4)

symmetry of the Hamiltonian H = HI . To see this, we define

an operator

Sy0 =
∑

k,s

∑

nn′ηη′

[BC2zP(k)]nη,n′η′c
†
k,n,η,s

ck,n′,η′,s (18)

with sewing matrix BC2zP(k) of C2zP. It can be proved that

[Sy0, HI ] = 0 (see Appendix D 2). Note that Sy0 is identical

to C2zP when acting on single-electron states. For many-

body states, one can show that C2zP = eiπSy0/2 (up to a phase

factor). With the eight generators S0b, Szb of U(2)×U(2)

(b = 0, x, y, z), we can define another 8 operators Sxb =
− i

2
[Sy0, Szb] and Syb = i

2
[Sx0, Szb]. The 16 operators Sab then

satisfy the Lie algebra of U(4):

[Sab, Scd ] =
∑

e f

f ab,cd
e f

Se f , (a, b = 0, x, y, z), (19)

where f ab,cd
e f

are U(4) group structure constants defined by

[τ asb, τ csd ] =
∑

e f f ab,cd
e f

τ es f .

It is useful to fix the gauge of wave functions to obtain an

explicit form of Sab. We do this by requiring

(C2zT )c†
k,n,η,s

(C2zT )−1 = c
†
k,n,η,s

, (20)

which imposes (σx )αβuQ,β,n,η(k) = u∗
Q,α,n,η(k). (σx )αβuQ,β,n,η

(k) = u∗
Q,α,n,η(k) = u−Q,α,n,−η(−k). A consistent k-

independent gauge for C2zP is then

(C2zP)c†
k,n,η,s

(C2zP)−1 = −sgn(n)ηc
†
k,−n,−η,s

. (21)

In addition, we require a k-space continuous gauge [which is

crucial for the useful bases Eqs. (26) and (28)] defined below

to have well-defined Berry curvature (see Sec. B 3):

lim
q→0

|u†
n,η(k + q)un,η(k) − u

†
−n,η(k + q)u−n,η(k)| = 0. (22)

Under this gauge, we can rewrite the 16 U(4) generators

as Sab =
∑

k(sab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ (a, b = 0, x, y, z),

where the matrices sab within each ph pair of bands n = ±nB

read

sab = {ζ 0τ 0sb, ζ yτ xsb, ζ yτ ysb, ζ 0τ zsb}. (23)

We note that sab has no nonzero matrix elements be-

tween different pairs of ph symmetric bands nB �= n′
B.

Meanwhile, the form factors (overlaps) M (η)
m,n(k, q + G) =

[M(k, q + G)]mη,nη are gauge fixed into the following matrix

form in the band and valley basis (Appendix C 3):

M(k, q + G) =
3∑

j=0

M jα j (k, q + G), (24)

where α j (k, q + G) are real nmax × nmax matrices, and we

have defined M0 = ζ 0τ 0, M1 = ζ xτ z, M2 = iζ yτ 0, and M3 =
ζ zτ z in the space of each pair of band basis n = ±nB (1 �

205413-4



TWISTED BILAYER GRAPHENE. III. INTERACTING … PHYSICAL REVIEW B 103, 205413 (2021)

nB � nmax), all of which are real matrices. Here M jα j means

the Kronecker direct product of matrices M j and α j .

We note that we could further fix the gauges of the k

nonpreserving symmetries C2z, T , and P in a k-independent

way consistent with Eqs. (20)–(22) [see Appendix B 2 and

Eq. (B18)]. Under a further gauge fixing C2zc
†
k,n,η,sC

−1
2z =

c
†
−k,n,−η,s, one can show that the functions α j (k, q + G) (0 �

j � 4) satisfy the conditions in Eqs. (C24) and (C25). In

particular, these conditions require

α0(k, G) = αT
0 (−k, G),

α j (k, G) = −αT
j (−k, G), ( j = 1, 2, 3), (25)

at q = 0 (see Appendix C 3).

With the gauge fixing of Eqs. (20)–(22), we can define a

new basis within the pair of bands n = ±nB as

d
(nB )†
k,eY ,η,s

=
c

†
k,nB,η,s

+ ieY c
†
k,−nB,η,s√

2
, (eY = ±1), (26)

which we show in Appendix B 3 have well-defined Berry cur-

vatures. The reason for the notation eY = ±1 is because this

basis is the eigenbasis of the Pauli matrix ζy with eigenvalue

eY in the two-dimensional energy band basis of n = ±nB. We

shall call the basis (26) the irrep basis, for the reason below.

At each k and Chern number eY , as shown in Appendix

D 2 b, the four irrep basis creation operators d
(nB )†
k,eY ,η,s

of valleys

η = ± and spins s =↑,↓ form the basis of a fundamental

U(4) irreducible representation (irrep), where the generators

Sab have 4 × 4 representation matrices

sab(eY ) = {τ 0sb, eY τ xsb, eY τ ysb, τ zsb}. (27)

This can be seen by observing that d
(nB )†
k,eY ,η,s

diagonalizes the

matrix ζ y in Eq. (23) with the eigenvalue being eY . Note

that the two irreps sab(eY ) with eY = ±1 differ by a uni-

tary transformation τ z, namely, a π valley rotation about z

axis. Despite this difference by a unitary transformation, the

two irreps sab(eY ) are both the fundamental irrep of U(4).

In Young-tableaux accepted notations, we shall denote the

fundamental irrep of U(4) as [1]4 and the trivial identity irrep

of U(4) as [0]4 (see Appendix D 1, and see Ref. [109] for

a detailed explanation of the Young tableaux notations). An

electron with a fixed eY = ±1 and k thus occupies a U(4) irrep

[1]4.

For nB = 1, namely, for the lowest conduction and valence

bands n = ±1, we denote the basis in Eq. (26) in simplified

notations without upper index as

d
†
k,eY ,η,s

=
c

†
k,+1,η,s

+ ieY c
†
k,−1,η,s√

2
, (eY = ±1), (28)

which will be extensively used for solving the pro-

jected Hamiltonian within the lowest eight flat bands in

Refs. [109–111]. As proved in Ref. [108] (see also similar

discussions in Refs. [72,74]) and briefly reviewed in Appendix

B 3, if a pair of energy bands n = ±nB are disconnected with

other bands, the irrep band we defined in Eq. (26) will carry a

Chern number eY e2,nB
, where e2,nB

is the Wilson loop winding

number of the two bands n = ±nB. Due to the nontrivial

topological winding number e2,1 = 1 in the n = ±1 bands

[43–47,76,116,117], the irrep basis d
†
k,eY ,η,s

in Eq. (28) of all

k for each fixed eY , η, s form the basis of a Chern band of

Chern number eY = ±1 (see proof in details in Ref. [108] and

also a brief review in Appendix B 3), provided the n = ±1

energy bands are gapped from the higher bands (which is

true near the first magic angle). For this reason, we shall call

d
†
k,eY ,η,s (within the n = ±1 energy band space) the Chern

band electron basis, or simply the Chern basis. We note that

our Chern basis in Eq. (28) is (adiabatically) equivalent to the

Chern bands defined in Refs. [72,74].

If the |n| � nmax bands are gapped from higher bands but

are connected among themselves, we would expect the net

Chern number of the nmax irrep basis d
(nB )†
k,eY ,η,s (1 � nB � nmax)

to be equal to eY (see Appendix B 3).

VI. U(4)×U(4) SYMMETRY IN THE (FIRST)

CHIRAL-FLAT LIMIT

The symmetry of flat-band TBG is enhanced when w0 =
0 < w1 in Eq. (2), which is known as the chiral limit [37].

In this paper, we shall also call it the first chiral limit, to

distinguish with the second chiral limit defined below in

Sec. VIII. In this first chiral limit, there is a unitary chiral

transformation C acting as Cc
†
k,Q,η,α,s

C−1 = (σz )βαc
†
k,Q,η,β,s

,

which satisfies CĤ0C
−1 = −Ĥ0 and C2 = 1. Therefore, the

energy band eigenstates satisfy ǫn,η(k) = −ǫ−n,η(k) and

(σz )βαuQ,α,n,η(k) = [BC (k)]−n,η;nηuQ,β,−n,η(k), where BC (k)

is the unitary sewing matrix of C. This implies Cc
†
k,n,η,sC

−1 =
[BC (k)]−n,η;nηc

†
k,−n,η,s.

When projected into the flat bands |n| � nmax, by Eq. (11),

one can prove that [C, Oq,G] = 0, and thus

{C, H0} = 0, [C, HI ] = 0. (29)

Therefore, in the first chiral-flat limit where H0 = 0 and thus

H = HI , the chiral transformation C becomes a symmetry.

Note that C preserves the electron momentum k and thus is

a local unitary symmetry.

We can then define a Hermitian operator

S′z0 =
∑

k,s

∑

nn′ηη′

[BC (k)]nη,n′η′c
†
k,n,η,sck,n′,η′,s, (30)

which commutes with HI . Note that S′z0 is identical to C when

acting on single-electron states. For many-body states, one can

verify that C = eiπS′z0/2 (up to a phase factor). Its commuta-

tions with the 16 U(4) generators Sab in Eq. (19) yield another

16 new operators S′ab, and one can prove that Sab and S′ab

form the 32 generators of a U(4)×U(4) group (Appendix D 3).

This can be seen explicitly under the gauge fixing of Eqs. (20)

and (21), for which the only k-independent gauge choice

(up to a global sign) for C is Cc
†
k,n,η,s

C−1 = isgn(n)ηc
†
k,−n,η,s

(Appendix D 3). We note that this gauge choice is also con-

sistent with the k-independent gauge fixings of C2z, T and P

in Eq. (B18). The 16 new generators can then be expressed

as S′ab =
∑

k(s′ab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ (a, b = 0, x, y, z),

where s′ab within each pair of bands n = ±nB are given by

s′ab = {ζ yτ 0sb, ζ 0τ xsb, ζ 0τ ysb, ζ yτ zsb}. (31)

We note that s′ab has no nonzero matrix elements between

different pairs of ph symmetric bands nB �= n′
B. We can
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further linear combine Sab and S′ab into operators Sab
± =∑

k(sab
± )m,η,s;n,η′,s′c

†
k,m,η,s

ck,n,η′,s′ (a, b = 0, x, y, z), where

sab
± = (ζ 0 ± ζ y)τ asb/2. (32)

One can then verify that

[
Sab

eY
, Scd

e′
Y

]
= δeY ,e′

Y

∑

e f

f ab,cd
e f

Se f
eY

, (eY = ±1), (33)

where f ab,cd
e f

are the U(4) structure constants in Eq. (19).

Therefore, each set of Sab
eY

(eY = ±1) generates a U(4) group,

leading to a total U(4)×U(4) symmetry. We note that the

nonchiral-flat U(4) in Eq. (23) is not one of the two U(4)s

with fixed eY here, although it is a subgroup of the first

chiral-flat U(4)×U(4) here.

The 4 irrep band (Chern band if nB = 1) basis creation

operators d
(nB )†
k,eY ,η,s

(of valley-spin flavors η = ±, s =↑,↓) at

a fixed k and eY in Eq. (26) occupy a fundamental irrep

of the U(4) generated by Sab
eY

and a trivial identity irrep of

the U(4) generated by Sab
−eY

(eY = ±1). The corresponding

representation matrices of Sab
± are

sab
± = (1 ± eY )τ asb/2, (34)

which can be derived by replacing matrix ζ 0 (ζ y) by its

eigenvalue 1 (eY ) in the irrep band basis d
(nB )†
k,eY ,η,s

. If we use

([λ1]4, [λ2]4) to represent a U(4)×U(4) irrep which is the

tensor product of an irrep [λ1]4 of the first U(4) and an irrep

[λ2]4 of the second U(4), we see that the irrep basis d
(nB )†
k,+1,η,s

at a fixed k occupies an irrep ([1]4, [0]4), while the irrep basis

d
(nB )†
k,−1,η,s

at a fixed k occupies an irrep ([0]4, [1]4).

Furthermore, in Appendix D 3 we proved that [see

Eq. (D30)] the C symmetry restricts

α1(k, q + G) = α3(k, q + G) = 0 (35)

in Eq. (24). This makes Oq,G in Eq. (11) diagonal in index eY

in the basis d
(nB )†
k,eY ,η,s

[see Eq. (D45)], and thus the number of

electrons in the nmax irrep bands (particularly, Chern band if

nmax = 1) with a fixed eY is conserved.

VII. U(4) SYMMETRY IN THE (FIRST) CHIRAL-NONFLAT

LIMIT

We now turn to the first chiral-nonflat case which is in the

first chiral limit w0 = 0 [thus Eq. (29) holds], but does not

have exactly flat bands (H0 �= 0). Since the chiral symmetry

implies ǫn,η(k) = −ǫ−n,η(k), the projected kinematic term in

Eq. (9) within each pair of bands n = ±nB can be rewritten as

H
(nB )
0 =

∑

k

ǫ+nB,η(k)(ζ zτ 0s0)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ . (36)

As a result, H0 only commutes with 16 out of the 32

U(4)×U(4) generators Sab and S′ab in Eqs. (23) and (31).

We denote these 16 generators commuting with H0 as S̃ab =∑
k(s̃ab)m,η,s;n,η′,s′c

†
k,m,η,sck,n,η′,s′ , where s̃ab within each pair of

bands n = ±nB read

s̃ab = ζ 0τ asb, (a, b = 0, x, y, z). (37)

They form the 16 generators of a U(4) group. In particular,

the representation matrix s̃x0 of generator S̃x0 at each k is

given by the sewing matrix of iCC2zP, and thus S̃x0 is identical

to iCC2zP when acting on single-electron states. For many-

body states, one has iCC2zP = eiπ S̃x0/2 (up to a phase factor).

Therefore, in the first chiral-nonflat limit with H0 �= 0, there

is a global U(4) symmetry generated by S̃ab, which is reduced

from the U(4)×U(4) symmetry of the first chiral-flat limit.

We note that this first chiral-nonflat U(4) here (Eq. (37)) is

different from the nonchiral-flat U(4) (Eq. (23)).

Since S̃ab is proportional to ζ 0 in the band basis, the energy

band creation operators c
†
k,n,η,s

in each band n at a fixed k

occupy a fundamental irrep [1]4 of the first chiral-nonflat U(4)

group. Equivalently, the irrep band (Chern band if nB = 1)

creation operators d
(nB )†
k,eY ,η,s

for fixed eY , nB, and k also occupy

a fundamental U(4) irrep [1]4. For the irrep of either c
†
k,n,η,s

or

d
(nB )†
k,eY ,η,s

, the representation matrices of S̃ab are given by

s̃ab(n) = s̃ab(eY ) = τ asb (a, b = 0, x, y, z). (38)

Note that the representation matrices s̃ab(n) [or s̃ab(eY )] are

independent of n (or eY ). This is in contrast to the nonchiral-

flat limit, where the representation matrices of Sab for eY =
±1 differ by a unitary transformation τz [although eY = ±1

therein still give the same fundamental nonchiral-flat U(4)

irrep; see Eq. (27)].

VIII. U(4)×U(4) SYMMETRY IN THE SECOND

CHIRAL-FLAT LIMIT

We find that there exists a second chiral limit w1 = 0 < w0

where the continuous symmetry of TBG is largely enhanced,

similar to the situation in the first chiral limit discussed in

Secs. VI and VII. Although this limit is far from the exper-

imental reality of the TBG samples, its existence suggests the

possibility of a possible hidden duality in the BM model and

its interactions. For w1 = 0 < w0, we can define a second

chiral transformation C′ satisfying C′2 = 1 and C′Ĥ0C
′−1 =

−Ĥ0, which acts as C′c†
k,Q,η,α,s

C′−1 = (σz )βαζQc
†
k,Q,η,β,s

with

ζQ = ±1 for Q ∈ Q±. This new chiral symmetry has unusual

commutation relations with the twofold rotation C2z, time-

reversal T , and the unitary particle-hole symmetry P (see

Appendix D 5 a and Ref. [108] for details). It also satisfies (see

Appendix D 5)

{C′, H0} = 0, [C′, HI ] = 0, (39)

similar to the first chiral symmetry C [Eq. (29)]. Note that the

second chiral symmetry C′ preserves electron momentum k.

In the second chiral-flat limit with w1 = 0 and H0 = 0, similar

to the first chiral-flat limit, we can define a symmetry

S′′z0 =
∑

k,s

∑

nn′ηη′

[BC′
(k)]nη,n′η′c

†
k,n,η,sck,n′,η′,s, (40)

where BC′
(k) is the sewing matrix of C′. Together with

Sab in Eq. (19), it generates a U(4)×U(4) group with 32

generators S′ab
± (see Appendix D 5). Under the gauge fix-

ings of Eqs. (20) and (21), and a further gauge fixing for

C′ as C′c†
k,n,η,s

C′−1 = isgn(n)ηc
†
k,−n,η,s

[which is consistent

with the continuous condition (22); see Appendix D 5 b],

we find S′ab
± =

∑
k(s′ab

± )m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ , where s′ab
±
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within each pair of bands n = ±nB read

s′ab
± = (ζ 0 ± ζ y)τ asb/2. (41)

Again, we note that s′ab
± has no nonzero matrix elements be-

tween different pairs of ph symmetric bands nB �= n′
B.

It is worthwhile to mention that, due to the unusual com-

mutation relations of C′ with C2z, T , and P which flip k,

one cannot further fix the sewing matrices of C2z, T , and

P into a k-independent form as in Eq. (B18). Instead, the

sewing matrices of these k flipping symmetries have to be

k-dependent, for instance, given by Eq. (D65) in Appendix

D 5 b. This is closely related to the topologically protected

double degeneracies at C2z-invariant points of the MBZ, as

proved in Ref. [108].

In this second chiral-flat limit, the four irrep band basis cre-

ation operators d
(nB )†
k,eY ,η,s (η = ±, s =↑,↓) at a fixed k and eY in

Eq. (26) occupy a fundamental irrep of the U(4) generated by

S′ab
eY

and a trivial identity irrep of the U(4) generated by S′ab
−eY

(eY = ±1). The corresponding representation matrices of S′ab
±

are

s′ab
± = (1 ± eY )τ asb/2, (42)

which can be see by substituting matrix ζ 0 (ζ y) by its eigen-

value 1 (eY ) in the irrep band basis d
(nB )†
k,eY ,η,s

. Therefore, the

irrep basis d
(nB )†
k,+1,η,s

at a fixed k occupies an irrep ([1]4, [0]4)

of the second chiral-flat U(4)×U(4), while the irrep basis

d
(nB )†
k,−1,η,s

at a fixed k occupies an irrep ([0]4, [1]4).

Furthermore, in Appendix D 5 we proved that [see

Eq. (D66)] the C′ symmetry restricts

α1(k, q + G) = α3(k, q + G) = 0 (43)

in Eq. (24).

However, with w1 = 0 < w0, there is barely an angle

where a set of low-energy bands become flat, and it is proved

in Ref. [108] that all the energy bands are topologically con-

nected into a perfect metal (see Fig. 2(c), Appendix D 5, and

Refs. [108,118]). This makes the second chiral-flat limit less

related to experimental realities, although it can possibly be

achieved by artificial patterning of the moiré lattice to enhance

AA hopping. Besides, we note that for the lowest ph band

pair of nB = 1, the “Chern band basis” d
†
k,eY ,η,s

in Eq. (28)

no longer has a well-defined Chern number, since the n = ±1

bands are connected with all the higher bands.

We also note that although the representation matrices in

the two chiral limits in Eqs. (32) and (41) are the same, their

physical operations are different, since they are generated by

the sewing matrices of the first chiral symmetry C and the

second chiral symmetry C′, respectively.

IX. U(4) SYMMETRY IN THE SECOND

CHIRAL-NONFLAT LIMIT

With the TBG bands in the second chiral limit poorly flat,

the second chiral-nonflat limit where w1 = 0 < w0 and H0 �=
0 gives a more physical limit, which may be realized by artifi-

cial patterning of moiré lattices. In this limit, similar to the first

chiral-nonflat limit, we can prove that (see Appendix D 6) a

U(4) symmetry remains, which is generated by the remaining

iC′C2zP symmetry. The 16 U(4) generators are a subset of the

TABLE I. Symmetries in different limits. The last column shows

the contributing ph and chiral symmetries.

TBG limit H0 w0 w1 Symmetry ph/chiral

Nonchiral-nonflat �= 0 >0 >0 U(2)×U(2)

Nonchiral-flat = 0 >0 >0 U(4) C2zP

(1st) chiral-flat = 0 = 0 >0 U(4)×U(4) C2zP, C

(1st) chiral-nonflat �= 0 = 0 >0 U(4) iCC2zP

2nd chiral-flat = 0 >0 = 0 U(4)×U(4) C2zP, C′

2nd chiral-nonflat �= 0 >0 = 0 U(4) iC′C2zP

generators S′ab
± in the second chiral-flat limit [Eq. (41)], which

we denote by S̃′ab =
∑

k(s̃′ab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ , where

s̃′ab within each pair of bands n = ±nB is given by

s̃′ab = ζ 0τ asb. (44)

This simply gives the spin-valley rotations without affecting

the space of energy band indices n. Accordingly, either the

energy band basis c
†
k,n,η,s or the irrep band basis d

(nB )†
k,eY ,η,s at a

fixed k and n or eY occupy a fundamental U(4) irrep, with the

representation matrices of S̃′ab given by

s̃′ab(n) = s̃′ab(eY ) = τ asb (a, b = 0, x, y, z). (45)

X. THE STABILIZER CODE LIMIT

Generically, the projected interaction Hamiltonian HI in

Eq. (10) cannot be analytically diagonalized, since generically

[Oq,G, Oq′,G′ ] �= 0 for q �= q′ or G �= G′ [see Eq. (C16)], and

thus the terms O−q,−GOq,G in HI are noncommuting.

However, in the case we are only projecting into the lowest

eight bands with n = ±1 (namely, nmax = 1), there is limit

which we call the stabilizer code limit, where the Hamiltonian

becomes similar to (but not strictly identical to; see Appendix

E) a stabilizer code Hamiltonian with all of its terms mutually

commuting. The stabilizer code limit is defined in either the

first chiral-flat limit (with first chiral symmetry C) or the sec-

ond chiral-flat limit (with second chiral symmetry C′), where

Eq. (35) or (43) is satisfied, and the condition is that the form

factors M(k, q + G) in Eq. (24) are k independent for any

q, G. In this limit, as we proved in Appendix E, one would

have [Oq,G, Oq′,G′ ] = 0. Thus, all the terms O−q,−GOq,G in

the Hamiltonian H = HI in Eq. (10) will be commuting:

[O−q,−GOq,G, O−q′,−G′Oq′,G′ ] = 0. (46)

This stabilizer code-like Hamiltonian has all of its many-body

eigenstates exactly solvable, which will be solved in a separate

paper [109].

XI. DISCUSSION

We have demonstrated that for the projected Hamiltonian

with Coulomb interaction in the lowest 8nmax (2nmax per spin-

valley) bands of any nmax � 1, there exists various different

limits where global U(4) or U(4)×U(4) symmetries emerge.

For nmax, there exists a stabilizer code limit for the Hamilto-

nian in either the first or the second chiral flat limit, where

all the terms in the Hamiltonian are mutually commuting.

Our conclusions are summarized in Table I and Fig. 3. Near
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FIG. 3. The relations between the symmetries of projected

Hamiltonian within any set of ph symmetric bands of full spin-valley

flavors in various limits. The arrows point along the directions along

which the symmetry groups are enhanced into a larger one.

the first magic angle, the low-energy physics is expected to

be governed by the projected Hamiltonian with nmax = 1. A

projected Hamiltonian within higher number of bands could

be a good approximation at higher magic angles, where more

than two bands per spin-valley can become flat.

The U(4) symmetry in the nonchiral-flat limit in Eq. (23)

and U(4)×U(4) symmetry in the first chiral-flat limit in

Eq. (32) that we prove here agree with those discussed in

Ref. [72] for the lowest eight flat bands near the first magic

angle. We note that, however, we show the symmetries are

generic for the projection into any number of ph symmetric

bands with full spin-valley degrees of freedom. Besides, we

have identified a second chiral limit, which also enjoys a

U(4)×U(4) symmetry in a second chiral-flat limit. We have

also derived the explicit irrep band basis of the symmetries in

all the different limits. Furthermore, we showed that under a

strong condition, the projected Hamiltonian in the lowest eight

bands in the first or second chiral-flat limit becomes similar to

a stabilizer code Hamiltonian, thus allowing one to exactly

solve all the many-body eigenstates, which we will study in

Ref. [109].

A U(4) symmetry in the flat band limit is also discussed

in Ref. [71], which is constructed based on a non-maximally-

symmetric Wannier basis. (These Wannier functions break the

C2zT and C2zT P symmetries, which protect the fragile topol-

ogy [43–45] and stable topology [108] in TBG, respectively.)

The U(4) symmetry in Ref. [71] is closest to our first chiral-

nonflat U(4) symmetry that we introduce in Eq. (37) since they

have the same generators τ asb (a, b = 0, x, y, z). However,

Ref. [71] does not assume the CC2zP symmetry but requires

the flatness of the two bands, which is in contradiction to our

first chiral-nonflat U(4), which assumes the CC2zP symmetry

and does not require flat bands. The reason Ref. [71] needs

flat bands is the absence of exact CC2zP symmetry. We show

in Appendix F that, if the CC2zP symmetry is imposed to the

Wannier functions, then the two U(4) symmetries become the

same and do not require the flatness of bands.

The TBG interacting Hamiltonian, symmetries, and gauge

fixings we derived here provide a solid ground for future

theoretical studies. In the various limits we discussed, the

many-body eigenstates of TBG should fall into irreps of U(4)

or U(4)×U(4) groups. Besides, the generic PSDH form of

the projected interaction HI in Eq. (10) allows us to look for

ground states of the Kang-Vafek type in the flat band limit.

We will study the ground states and excitations of TBG in

these limits analytically and numerically in separate papers

[109–111]. The existence of several limits with identical large

continuous symmetry groups (but different generators) of the

BM interacting Hamiltonian, as shown in Fig. 3, suggests the

presence of a yet to be found duality of this model.
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APPENDIX A: REVIEW OF THE SINGLE-PARTICLE

HAMILTONIAN

The quantitative and symmetry aspects of the single-

particle Hamiltonian of TBG are discussed in detail in

Refs. [107,108]. For completeness, here we briefly review the

notations and conclusions for the single-particle Hamiltonian.

1. Bases

We denote the fermion operator in the plane-wave basis

of graphene layer l as c
†
p,α,s,l

. Here p is measured from

the Ŵ point of the monolayer graphene Brillouin zone (BZ),

α = A, B represents the AB sublattice, s =↑,↓ is the spin

index, and l = ± is the layer index. We define K+ as the K

point in the top-layer graphene BZ and K− as the K point in

the bottom-layer graphene BZ. K+ and K− differ by a twist

angle θ (Fig. 1). For concreteness, we assume Kl is along the

direction with an angle −lθ/2 to the px axis. Each graphene

layer l contains two valleys, K and K′, at momenta ηKl , where

η = ± denotes graphene valleys K and K′, respectively.

For later use, we define the two-dimensional (2D) mo-

menta

q1 = (K− − K+) = kθ (0, 1)T ,

q2 = C3zq1 = kθ

(
−

√
3

2
,−

1

2

)T

,

q3 = C2
3zq1 = kθ

(√
3

2
,−

1

2

)T

, (A1)
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where kθ = |K− − K+| = 2|K+| sin(θ/2) for twist angle θ .

We can then define the moiré BZ (MBZ) for the TBG moiré

lattice, which is generated by the moiré reciprocal vectors

bM1 = q3 − q1, bM2 = q3 − q2. (A2)

2. Single-particle Hamiltonian

When the twist angle between the two graphene layers

is small (θ ≈ 1◦), an approximate valley-U(1) symmetry and

an approximate moiré translation symmetry emerge. Accord-

ingly, the single-particle Hamiltonian is decoupled between

two valleys η = ±.

To concentrate on the low-energy physics of the two val-

leys, we define Q0 = ZbM1 + ZbM2 as the triangular moiré

reciprocal lattice sites generated by the moiré reciprocal vec-

tors bM1 and bM2 in Eq. (A2). We then define two shifted

momentum lattices Q+ = q1 + Q0 and Q− = −q1 + Q0. We

then define the low-energy fermion operators c
†
k,Q,η,α,s at val-

ley η and Q ∈ Q± as

c
†
k,Q,+,α,s

=
{

c
†
K++k−Q,α,s,+ Q ∈ Q+

c
†
K−+k−Q,α,s,− Q ∈ Q−

, (A3)

c
†
k,Q,−,α,s

=
{

c
†
−K−+k−Q,α,s,− Q ∈ Q+

c
†
−K++k−Q,α,s,+ Q ∈ Q−

, (A4)

where k takes value in the MBZ, and k = 0 is chosen at the

center (ŴM point) of the MBZ. In practice, we always take

a finite cutoff for Q0,+,−; the largest Q in Q± should have

a norm much smaller than |K+|. We denote the number of

points in Q0,+,− as |Q0,+,−|.
The single-particle Hamiltonian of TBG for small twist

angle θ is given by [1,107,108]

Ĥ0 =
∑

k∈MBZ

∑

ηαβs

∑

QQ′

[
h

(η)

Q,Q′ (k)
]
αβ

c
†
k,Q,η,α,s

ck,Q′,η,β,s, (A5)

where h
(η)

Q,Q′ (k) is the first-quantized momentum space Hamil-

tonian at valley η in the sublattice space, and Q, Q′ ∈ Q±. At

valley K (η = +), we have

h
(+)
Q,Q′ (k) = vF (k − Q) · σδQ,Q′ +

3∑

j=1

TjδQ,Q′±q j
, (A6)

where vF is the graphene Fermi velocity, and the matrices

Tj = w0σ0 + w1

[
σx cos

2π ( j − 1)

3
+ σy sin

2π ( j − 1)

3

]
.

(A7)

Here σ0 and σ = (σx, σy) are the 2 × 2 identity matrix and

Pauli matrices in the space of sublattice indices, while w0 � 0

and w1 � 0 are the interlayer hoppings at the AA and AB

stacking centers of TBG, respectively. Generically, in realistic

systems w0 < w1 due to the lattice relaxation. In the absence

of lattice relaxation, one has w0 = w1.

At valley K′ (η = −), we have

h
(−)
Q,Q′ (k) = σxh

(+)
−Q,−Q′ (−k)σx = −vF (k − Q) · σ

∗δQ,Q′

+
3∑

j=1

(σxTjσx )δQ,Q′±q j
, (A8)

where σ
∗ = (σx,−σy).

3. Symmetries

Here we summarize the symmetries of TBG, which can be

found in Ref. [43] and are expanded on in Ref. [108].

1. Discrete symmetries. Since graphene has zero spin-orbit

coupling (SOC), we can define a set of spinless symmetries

for TBG. In TBG, there are spinless unitary discrete rotational

symmetries C2z, C3z, and C2x, and the spinless antiunitary

time-reversal symmetry T , which satisfy

[C3z, Ĥ0] = [C2z, Ĥ0] = [C2x, Ĥ0] = [T, Ĥ0] = 0. (A9)

We denote the action of a spinless symmetry operator g on the

fermion basis c
†
k,Q,η,α,s

as

gc
†
k,Q,η,α,s

g−1 =
∑

Q′η′β

[D(g)]Q′η′β,Qηαc
†
gk,Q′,η′,β,s

, (A10)

where D(g) is the representation matrix of the symmetry

operation g in the space of indices {Q, η, α}, and gk is the

momentum after acting g on momentum k. In particular,

C2zk = T k = −k. The representation matrices for the dis-

crete symmetries of TBG are given by

[D(C3z )]Q′η′β,Qηα = δQ′,C3zQδη′,η

(
eiη 2π

3
σz

)
βα

, (A11)

[D(C2x )]Q′η′β,Qηα = δQ′,C2xQδη′,−η(σx )βα, (A12)

[D(C2z )]Q′η′β,Qηα = δQ′,−Qδη′,−η(σx )βα, (A13)

[D(T )]Q′η′β,Qηα = δQ′,−Qδη′,−ηδβ,α, (A14)

Moreover, T is antiunitary, so TiT −1 = −i.

In particular, the combined symmetry C2zT does not

change k, i.e., C2zT k = k, and the representation matrix is

[D(C2zT )]Q′η′β,Qηα = [D(C2z )D(T )]Q′η′β,Qηα

= δQ′,Qδη′,η(σx )β,α. (A15)

2. U(2)×U(2) spin-charge rotation symmetry. The

graphene has zero (negligible) spin-orbit coupling (SOC).

Since the single-particle Hamiltonian of TBG has two decou-

pled valleys η = ±, and the SOC is zero, the electron SU(2)

spins of each valley can be rotated freely. Each valley also

has a charge U(1) rotation symmetry. This leads to a global

U(2)×U(2) symmetry. The eight generators of the U(2)×U(2)

symmetry are given by

Ŝab =
∑

k

(τ a)ηη′ (sb)ss′c
†
k,Q,η,α,s

ck,Q,η′,α,s′ ,

(a = 0, z, b = 0, x, y, z), (A16)

where we have defined τ a and sa (a = 0, x, y, z) as the 2 ×
2 identity and Pauli matrices in the valley and spin spaces,

respectively.

3. Particle-hole (ph) transformation P. In addition to

the above symmetries, TBG also has a unitary particle-hole

(ph) “symmetry” [43], which satisfies the anticommutation

relation

{P, Ĥ0} = 0. (A17)
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The action of P is given by

Pc
†
k,Q,η,α,s

P−1 =
∑

Q′η′β

[D(P)]Q′η′β,Qηαc
†
−k,Q′,η′,β,s

, (A18)

with the representation matrix

[D(P)]Q′η′β,Qηα = δQ′,−Qδη′,ηδβ,αζQ , (A19)

where ζQ = ±1 for Q ∈ Q±, respectively. Note that P trans-

forms creation operators to creation operators (rather than

annihilation operators) and maps sites Q ∈ Q± into −Q ∈
Q∓. Since P flips the single-particle Hamiltonian Ĥ0, it is not

a commuting symmetry of TBG but only reflects a relation be-

tween the positive and negative energy spectra. Furthermore,

the ph transformation P satisfies

P2 = −1, [P,C3z] = 0, {P,C2x} = 0,

{P,C2z} = 0, {P, T } = 0, [P,C2zT ] = 0. (A20)

4. Eigenstates

The solutions to the single-particle Hamiltonian Ĥ0 in

Eq. (A5) allows us to define the energy band basis

c
†
k,n,η,s

=
∑

Qα

uQα;nη(k)c†
k,Q,η,αs

, (A21)

where uQα;nη(k) is the eigenstate wave function of energy

band n of the first quantized single-particle Hamiltonian

h
(η)

Q,Q′ (k) in valley η. It satisfies

∑

Q′,β

[
h

(η)

Q,Q′ (k)
]
αβ

uQ′β;nη(k) = ǫn,η(k)uQα;nη(k), (A22)

where ǫn,η(k) is the single-particle energy of eigenstate

uQα;nη(k). Note that the wave function uQα;nη(k) and energy

ǫn,η(k) are independent of spin s, because of the absence of

SOC. In each valley and spin, we shall use integers n > 0 to

label the nth conduction band, and use integer n < 0 to label

the |n|th valence band (thus n �= 0). The lowest conduction

and valence bands in each valley-spin flavor is thus labeled by

n = ±1.

Since c
†
k+bMi,Q,ηαs

= c
†
k,Q−bMi,ηαs

for reciprocal vector bMi

(i = 1, 2), we generalize the eigenstate wave function to mo-

menta k outside the MBZ by the embedding relation for

shifting momentum k by a reciprocal vector bMi:

uQα;nη(k + bMi ) = uQ−bMi,α;nη(k). (A23)

This ensures our energy band basis is defined periodically in

the MBZ, namely, c
†
k+bMi,nηs = c

†
knηs. Besides, due to the C2z

symmetry and ph symmetry P, the energy spectrum satisfies

ǫn,η(k) = ǫn,−η(−k) , ǫn,η(k) = −ǫ−n,η(−k) . (A24)

The single-particle Hamiltonian can then be rewritten in

the energy band basis as

Ĥ0 =
∑

k

∑

nηs

ǫn,η(k)c†
knηs

cknηs. (A25)

APPENDIX B: GAUGE FIXING AND THE CHERN

BAND BASIS

In this Appendix, we fix the gauge for the energy band

basis c
†
knηs

in Eq. (A21), so that we are able to obtain an

explicit form of the interaction Hamiltonian in Appendix C 3.

We will also define a Chern band basis, whose gauge fixing

was shown in Ref. [108], using the energy band basis.

1. Sewing matrices

The discrete symmetries in Appendix A 3 yield certain

relations among the eigenstate wave functions related by these

symmetries. For the purpose of gauge fixing, here we will

discuss these relations among eigenstate wave functions for

operators C2z, T , and P.

For notation simplicity, we denote the wave function

uQα;nη(k) as a column vector unη(k) in the space of indices

{Q, α}. Furthermore, when a representation matrix D(g) of

an operation g [defined in Eqs. (A11) to (A19)] acts on a

wave function unη′ (k), we denote the resulting wave function

in valley η for short as [D(g)]ηη′unη′ (k), the components of

which are given by
∑

Q′βη′ [D(g)]Qαη,Q′βη′uQ′β;nη′ (k). Namely,

we suppress the indices {Q, α} of the representation matrix

D(g) for short.

When g is a symmetry operator satisfying [Ĥ0, g] = 0 (or

{Ĥ0, g} = 0), if unη′ (k) is an eigenstate wave function at mo-

mentum k, the wave function [D(g)]ηη′unη′ (k) (an additional

complex conjugation is needed if g is antiunitary) must also

be an eigenstate wave function at momentum gk at the same

(or opposite) single-particle energy. For symmetries C2z, T ,

and P, this allows us to define the sewing matrices Bg(k) in

the band and valley space connecting the symmetry related

eigenstates by

[D(C2z )]ηη′unη′ (k) =
∑

m

[BC2z (k)]mη,nη′umη(−k), (B1)

[D(T )]ηη′u∗
nη′ (k) =

∑

m

[BT (k)]mη,nη′umη(−k), (B2)

[D(P)]ηη′unη′ (k) =
∑

m

[BP(k)]mη,nη′umη(−k). (B3)

For nondegenerate wave function unη′ (k) in valley η′, since

C2z and T commute with the Ĥ0 and flips the valley η, while P

anticommutes with Ĥ0 and preserves the valley η, we generi-

cally have

[BC2z (k)]mη,nη′ = δη,−η′δm,ne
iϕ

C2z

n,η′ (k)
,

[BT (k)]mη,nη′ = δη,−η′δm,ne
iϕT

n,η′ (k)
,

[BP(k)]mη,nη′ = δη,η′δ−m,ne
iϕP

n,η′ (k)
. (B4)

Accordingly, the action of a symmetry operator g on the en-

ergy band fermion operators [defined in Eq. (A21)] is given

by

gc
†
k,n,η′,sg

−1 =
∑

mη

[Bg(k)]mη,nη′c
†
gk,m,η,s

. (B5)

Since the three symmetries satisfy the relations

C2
2z = 1, T 2 = 1, P2 = −1, {P,C2z} = 0,

{P, T } = 0, [C2z, T ] = 0, (B6)
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with the above notations, the symmetries C2z, T , and P allow

us to define

BC2z (−k)BC2z (k) = BT (−k)BT ∗(k) = −BP(−k)BP(k) = I,

BP(−k)BC2z (k) = −BC2z (−k)BP(k),

BP(−k)BT (k) = −BT (−k)BP∗(k),

BT (−k)BC2z∗(k) = −BC2z (−k)BT (k), (B7)

where Bg∗(k) stands for the complex conjugation of matrix

Bg(k), and I is the identity matrix in the n, η space. More

discussions on the sewing matrices can be found in Ref. [108].

The combination of the three symmetries yields two inde-

pendent symmetry operations C2zT and C2zP, which do not

change k. Note that C2zT is antiunitary and C2zP is unitary.

Their sewing matrices are defined by

[D(C2z )D(T )]ηη′u∗
nη′ (k) =

∑

m

[BC2zT (k)]mη,nη′umη(k), (B8)

[D(P)D(C2z )]ηη′unη′ (k) =
∑

m

[BC2zP(k)]mη,nη′umη(k). (B9)

For nondegenerate eigenstates at momentum k (nondegener-

ate within one valley), they are given by

[BC2zT (k)]mη,nη′ = δη,η′δm,ne
iϕ

C2zT

n,η′ (k)
,

[BC2zP(k)]mη,nη′ = δ−η,η′δ−m,ne
iϕ

C2zP

n,η′ (k)
, (B10)

where by definition we have ϕ
C2zT

n,η′ (k) = ϕT
n,η′ (k) +

ϕ
C2z

n,−η′ (−k) and ϕ
C2zP

n,η′ (k) = ϕ
C2z

n,η′ (k) + ϕP
n,−η′ (−k). The sewing

matrices of C2zT and C2zP are subject to the constraint that

(C2zT )2 = (C2zP)2 = 1, [C2zT,C2zP] = 1, (B11)

and thus they satisfy

BC2zT (k)BC2zT ∗(k) = [BC2zP(k)]2 = I,

BC2zP(k)BC2zT (k) = BC2zT (k)BC2zP∗(k). (B12)

2. Gauge fixing

We will now gauge fix the wave functions and sewing

matrices of the k-preserving symmetry operations C2zT and

C2zP. By Eqs. (B10) and (B12), we are able to choose the

following k-independent choices for the sewing matrices:

[BC2zT (k)]mη,nη′ = δη,η′δm,n,

[BC2zP(k)]mη,nη′ = −sgn(n)η′δ−η,η′δ−m,n. (B13)

Accordingly, the symmetry actions on the band basis fermion

operators are given by

(C2zT )c†
k,n,η,s

(C2zT )−1 = c
†
k,n,η,s

,

(C2zP)c†
k,n,η,s

(C2zP)−1 = −sgn(n)ηc
†
k,−n,−η,s

. (B14)

This, however, does not yet fix the entire phases of the energy

basis at momentum k, since the sewing matrices in Eq. (B13)

are invariant under the unitary transformation of wave func-

tions unη(k) → sgn(n)ηunη(k) at each individual k. To further

fix this gauge freedom for different k ∈ MBZ, we start by

choosing a momentum k = k0 where eigenstates within one

valley are nondegenerate and choosing a fixing of the band

basis at k0 satisfying Eq. (B13). We then fix the band basis of

bands ±n at other k �= k0 by requiring

fn,η(k + q, k)

= |u†
n,η(k + q)un,η(k) − u

†
−n,η(k + q)u−n,η(k)| (B15)

to be a continuous function of k and q that satisfies

lim
q→0

fn,η(k + q, k) = 0 (B16)

for all k. Meanwhile, we require the wave functions un,η(k)

at all k to satisfy Eq. (B13). This fixes the relative sign

between wave functions un,η(k) and u−n,η(k) in a way that is

continuous in k. Note that we do not require the wave function

un,η(k) itself to be globally continuous in k of the entire MBZ,

which is impossible when the band n is topological. However,

locally un,η(k) can always be chosen to be continuous in k,

provided un,η(k) is nondegenerate at momentum k. We will

see the importance of condition (B16) in Appendix B 3 again.

We also note that we could alternatively define the contin-

uous condition between the same n but opposite η bands as

limq→0 |u†
n,η(k + q)un,η(k) − u

†
n,−η(k + q)un,−η(k)| = 0. To-

gether with Eq. (B13), this is equivalent to condition (B16).

In particular, we see that all the sewing matrices in

Eq. (B13) are closed within each pair of bands n = ±nB for

any nB � 1. The same is true for all the sewing matrices

we will consider in this paper, which are either commuting

or anticommuting with the single-particle Hamiltonian Ĥ0.

Within the space of each pair of ph symmetric bands with

band indices n = ±nB, if we use ζ a and τ a (a = 0, x, y, z)

to denote the identity and Pauli matrices in the energy band

n = ±nB space and the valley space, respectively, the sewing

matrices in Eq. (B13) can be rewritten as

BC2zT (k) = ζ 0τ 0, BC2zP(k) = ζ yτ y. (B17)

We also mention that for nB = 1 (i.e., within the lowest con-

duction and valence bands n = ±1 per spin per valley) when

k is at KM or K ′
M point of the MBZ, bands n = +1 and n = −1

are degenerate. In this case, we still choose the eigenstate

basis at KM or K ′
M point such that Eqs. (B17) and (B16) are

satisfied.

Lastly, we note that we can further fix the relative gauge

between wave functions at momenta k and −k by fixing the

sewing matrices of C2z and P. In particular, for k not at the

P-invariant momenta, which are ŴM and the three equivalent

MM in TBG, one can choose the sewing matrices of C2z, T ,

and P between each pair of bands n = ±nB as

BC2z (k) = ζ 0τ x, BT (k) = ζ 0τ x, BP(k) = −iζ yτ z,

(B18)

which are consistent with Eq. (B17). As proven in the next

subsection, with the gauge condition Eq. (B16), the sewing

matrix BP(k) must have additional minus signs, i.e., BP(k) =
iζ yτ z, at an odd (even) number of the four P-invariant

momenta if the two bands n = ±nB have an odd (even) topo-

logical winding number protected by C2zT , and at the other

odd (even) P-invariant momenta BP(k) are −iζ yτ z, the same

as those at generic momenta. Accordingly, the sewing ma-

trices BC2z (k) and BT (k) also have the additional minus at

momenta where BP(k) has the minus sign. In this work, we

choose BP(kŴM
) = −iζ yτ z and BP(kMM

) = iζ yτ z. It should be
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noticed that Eq. (B18) is incompatible with the second chiral

symmetry, which we explain in Sec. D 5.

For the purpose of this paper, we will use the gauge

conditions in Eqs. (B17) and (B18) for gauge fixing of the

interaction Hamiltonian in Appendix C.

3. The Irrep band basis and Chern band basis

After we have gauge fixed the wave functions as shown in

Eqs. (B17) and (B16), we have defined a new basis d
(nB )†
k,eY ,η,s

in

Eq. (26) within the band space of each pair of ph symmetric

bands n = ±nB, which we call the irrep basis:

d
(nB )†
k,eY ,η,s

=
c

†
k,nB,η,s

+ ieY c
†
k,−nB,η,s√

2
, (eY = ±1). (B19)

In particular, for nB = 1, we call them the Chern band basis

within the lowest two bands (in each valley-spin flavor), which

we denote for simplicity as d
(1)†
k,eY ,η,s

= d
†
k,eY ,η,s

, as given in

Eq. (28), where eY = ±1. This basis will be useful when we

discuss the symmetries in various limits in Appendix D.

In this Appendix, we briefly show that the basis d
(nB )†
k,eY ,η,s

defines a band with well-defined Berry curvature, and for a

fixed eY , η, s gives a band with Chern number

CnB

eY ,η,s = eY e2,nB
, (B20)

where e2,nB
∈ Z is the Wilson loop winding number of the

two bands n = ±nB, provided the pair of bands n = ±nB are

disconnected with other bands. More details can be found in

Ref. [108].

The wave functions of the Chern band basis in Eq. (B19)

are given by (denoted by wave functions with a prime)

u′
eY ,nB,η(k) =

u+nB,η(k) + ieY u−nB,η(k)
√

2
. (B21)

Due to the condition in Eq. (B16),

we know that limq→0 u
†
+nB,η(k +

q)u+nB,η(k) = limq→0 u
†
−nB,η(k + q)u−nB,η

(k). Therefore, we find the Chern band wave functions

satisfy the continuous condition

lim
q→0

∣∣u′†
eY ,nB,η(k + q)u′

e′
Y ,nB,η(k)

∣∣

=
1

2
lim
q→0

∣∣u†
+nB,η(k + q)u+nB,η(k)

+ eY e′
Y u

†
−nB,η(k + q)u−nB,η(k)

∣∣

= δeY ,e′
Y
. (B22)

This continuous condition [which is due to condition (B16)]

allows us to define a continuous Berry curvature for the Chern

band wave function u′
e′

Y ,nB,η
(k).

We first focus in the valley η = + sector. The sewing

matrix for C2zT restricted in valley η = + is given by

BC2zT (k) = ζ 0 [see Eq. (B17)]. Under this gauge, according

to Ref. [45], the non-Abelian Berry’s connection [A(k)]mn =
iu

†
m,+(k)∂kun,+(k) will take the form

A(k) =
(

0 ia(k)

−ia(k) 0

)
(B23)

in the energy band basis un,+(k) of n = ±nB. The sign of

wave functions un,+(k) is fixed in such a way that a(k) is

globally continuous in the BZ, excluding the Dirac nodes

between the two bands ±nB (recall that we assume the bands

±nB are disconnected from other bands, thus there can be

Dirac nodes between them only if nB = 1), which is always

possible [45]. In particular, this way of sign fixing is consistent

with Eq. (B16), since the vanishing of the diagonal Berry’s

connection requires limq→0 |u†
m,η(k + q)un,η(k)| = δm,n.

It is known that the Wilson loop winding number of two

bands isolated from other bands is given by the Euler class

[45]:

e2,nB
=

1

2π

∑

i

∮

∂Di

dk · a(k) =
1

2π

∫

MBZ−
∑

i Di

d2k 	(k),

(B24)

where Di is a sufficiently small region containing the ith Dirac

point in the BZ, and 	(k) = ∇k × a(k).

With Eq. (B23), we can derive the Berry connection of the

irrep band basis d
†
k,eY ,+,s

at k away from Dirac points as

A′
eY

(k) = iu
′†
eY ,nB,+(k)∂ku′

eY ,nB,+(k)

=
i

2

[
u

†
+nB,+(k)∂ku+nB,+(k)+ieY u

†
+nB,+(k)∂ku−nB,+(k)

− ieY u
†
−nB,+(k)∂ku+nB,+(k)+u

†
−nB,+(k)∂ku−nB,+(k)

]

= eY a(k). (B25)

Furthermore, the Berry curvature can be shown to be nondi-

vergent at the Dirac points between the two bands n = ±nB

(see proof in Ref. [108]; if nB > 1, there are no Dirac points

between bands n = ±nB). Therefore, by Eq. (B24), we find

the irrep basis d
(nB )†
k,eY ,+,s carries a Chern number given by

Eq. (B20).

Further, note that the C2z symmetry maps the irrep basis

d
(nB )†
k,eY ,+,s into d

(nB )†
−k,eY ,−,s [see Eq. (B18)]. Since C2z does not

change the Chern number, we conclude that the Chern number

of the irrep basis d
(nB )†
k,eY ,η,s in the MBZ is simply given by

Eq. (B20).

In particular, for the lowest two bands nB = 1, the bands

are topological and carry a winding number e2 = 1 [43–45].

Therefore, for the Chern band basis (the irrep basis with nB =
1) d

†
−k,eY ,−,s, we have Chern number

CeY ,η,s = eY , (B26)

and thus the name “Chern band basis” within the lowest two

bands (see Ref. [108] for a more careful treatment at the Dirac

points at CNP, which does not change the conclusion).

For nB > 1, if the two bands n = ±nB are isolated from

other bands, they will be trivial, and thus e2,nB
= 0 for nB > 1

[43–45]. Therefore, they will have Chern number CnB
eY ,η,s = 0.

Now we show that if e2,nB
is odd, then the sign of the

sewing matrix BP(k) must be k dependent: For η = +, BP(k)

can be chosen as −iζ y at all the momenta except one or three

of the P-invariant momenta, where BP(k) must be iζ y. To see

this, we assume BP(k) = −iχ (k)ζ y, where χ (k) = ±1, and

transform it into the Chern band basis Eq. (B21). We obtain

BP′
eY ,e′

Y
(k) = u

′†
eY ,nB,+(−k)D(P)u′

eY ,nB,+(k)

= −iχ (k)eY δeY ,e′
Y
. (B27)
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Therefore, P leaves each branch of the Chern band basis,

which has the Chern numbers e2,nB
eY , invariant. iP can be

equivalently thought as an inversion symmetry for each Chern

band since it squares to 1 and changes k to −k. The “inver-

sion” eigenvalues of the Chern band eY are given by χ (k)eY

for k being the P-invariant momentum. Due to the relation

between Chern number and inversion eigenvalues, we have

(−1)e2,nB =
∏

K

χ (K ), (B28)

where K indexes the four P-invariant momenta. Therefore, the

right-hand side must be −1 (1) if e2,nB
is odd (even), implying

χ (K ) = −1 at one or three (zero, two, or four) of the four

P-invariant momenta. The sign of BP(k) in the other valley

η = − can be obtained from the constraint between BC2zP(k)

and BP(k).

In the case when a pair of bands n = ±nB are not isolated,

the Chern number CnB
eY ,η,s is not clearly well defined. We leave

this question for future studies.

APPENDIX C: INTERACTING HAMILTONIAN WITH

COULOMB INTERACTION

In this Appendix, we write down the interaction Hamilto-

nian of TBG for the Coulomb interaction with screening from

the top and bottom gates.

1. Low-energy interaction

We denote the (screened) Coulomb interaction in TBG

between two electrons of distance r as V (r). Usually, TBG

samples in experiments feel the Coulomb screenings from the

top and bottom gates. Here we assume the TBG has a top gate

plate and bottom gate plate which are distance ξ away in the z

direction. The screened Coulomb interaction is then given by

Ṽ (r) = Uξ

∞∑

n=−∞

(−1)n

√
(r/ξ )2 + n2

, (C1)

where Uξ = e2/(ǫξ ), with ǫ being the dielectric constant,

and r = |r|. We call ξ the screening length, which is usually

around 10 nm and comparable to the moiré lattice constant.

For ǫ ≈ 6 from typical hBN substrates, and ξ ≈ 10 nm, we

have Uξ ≈ 24 meV. Using the 2D Fourier transformation for-

mula that

∫
d2q

(2π )2
·

e−ξq+iq·r

q
=

∫ ∞

0

dq

∫ 2π

0

dθe−ξq+iqr cos θ

=
∫ 2π

0

dθ
1

ξ − ir cos θ

=
∮

|z|=1

dz

ξz − ir(z2 + 1)/2

=
1

2π

1√
ξ 2 + r2

, (ξ � 0), (C2)

FIG. 4. The interaction V (q) as a function of ξq given by

Eq. (C3).

we find the Fourier transformation of the Coulomb interaction

(C1) is

V (q) =
∫

d2re−iq·rṼ (r)

= ξUξ

∞∑

n=−∞

∫
d2r

(−1)ne−iq·r
√

r2 + (nξ )2

= 2πξUξ

∞∑

n=−∞

∫
d2r

∫
d2q′

(2π )2
(−1)|n| e

−|n|ξq′+i(q′−q)·r

q′

= 2πξUξ

∞∑

n=−∞

∫
d2q′δ2(q − q′)(−1)n e−|n|ξq′

q′

= 2πξUξ

∞∑

n=−∞
(−1)n e−|n|ξq

q
= (πξ 2Uξ )

tanh(ξq/2)

ξq/2

=
2πe2

ǫ

tanh(ξq/2)

q
, (C3)

where q = |q|, and we have used the formula
∑∞

n=−∞ e−|n|x =
1 − 2e−x

1+e−x = tanh ( x
2

). Note that V (−q) = V (q). The function

V (q) with respect to ζq is plotted in Fig. 4.

The Coulomb interaction of the 2D TBG electrons can

be written in the momentum space under the graphene plane

wave basis as c
†
p,α,s,l

as

ĤI =
1

2	tot

∑

p,p′,q∈GBZ

∑

α,α′,s,s′,l,l ′

V (q)

(
c

†
p+q,α,s,l

cp,α,s,l −
1

2
δq,0

)

×
(

c
†
p′−q,α′,s′,l ′cp′,α′,s′,l ′ −

1

2
δq,0

)
, (C4)

where p, p′, q take values in the microscopic graphene BZ,

and 	tot is the total area of TBG. Note that we did not

normal order the interaction Hamiltonian ĤI in Eq. (C4),

and have subtracted a 1
2
δq,0 term in the two brackets of

fermion operators. Normal ordering or removing the term
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1
2
δq,0 only shifts ĤI by a chemical potential term of the form

µ
∑

p,α,s,l c
†
p,α,s,l

cp,α,s,l , which does not change the general

physics. However, the advantage of the form in Eq. (C4) is

that the Hamiltonian ĤI is symmetric about the filling of the

charge neutral point (CNP). In particular, this chemical poten-

tial shift allows us to easily obtain a many-body ph symmetric

projected Hamiltonian, as we will derive below and discuss

in more details in Appendix C 4. The derived many-body ph

symmetric projected Hamiltonian is the most appropriate one,

as it effectively properly includes the Hartree-Fock contribu-

tions from the passive bands (Appendix C 5).

The low-energy physics of TBG is concentrated at

microscopic electron momenta p around the two valleys

±Kl . Since V (q) decays quickly when q ≫ 1/ξ , and in

TBG |Kl | ≫ 1/ξ , we can ignore the terms in Eq. (C4) with

|q| ∼ |Kl | connecting two valleys. After this approximation,

at low energies we can assume p and p + q (p′ and p′ + q)

belong to the same graphene valley, namely, only intravalley

scattering is preserved. Rewriting the fermion operators using

Eqs. (A3) and (A4), we can rewrite the low-energy interaction

Hamiltonian as

ĤI =
1

2	tot

∑

G∈Q0

∑

q∈MBZ

V (q + G)δρ−q−Gδρq+G, (C5)

where

δρq+G =
∑

η,α,s

∑

k∈MBZ

∑

Q∈Q±

(
c

†
k+q,Q−G,η,α,s

ck,Q,η,α,s −
1

2
δq,0δG,0

)
. (C6)

Physically, δρq+G is the Fourier transform of the total electron density at momentum q + G relative to the filling of the graphene

CNP (since the CNP of TBG when the two layers are decoupled is at half filling 〈c†
k+q,Q−G,η,α,sck,Q,η,α,s〉 = 1

2
δq,0δG,0 in both

graphene layers).

2. Projected Hamiltonian

We now project the TBG Hamiltonian into the lowest 8nmax bands |n| � nmax in each spin and valley. When the twist angle

θ is close to the magic angle θM ≈ 1.1◦, a reasonable projected Hamiltonian is with nmax = 1. To distinguish them from the

unprojected Hamiltonians Ĥ0 and ĤI in Eqs. (A5) and (C5), which have hats, we denote the projected kinetic and interaction

Hamiltonians as H0 and HI (without hats), and the total projected Hamiltonian as H = H0 + HI .

From Eq. (A25), we can easily write down the projected kinetic Hamiltonian into |n| � nmax bands as

H0 =
∑

|n|�nmax

∑

ηs

∑

k∈MBZ

ǫn,η(k)c†
knηs

cknηs . (C7)

To find the projected interaction Hamiltonian, we first note that due to Eq. (A21), the density operator in Eq. (C6) can be

written as

δρG+q =
∑

ηαs

∑

k

∑

Q∈Q±

((
∑

mn

u∗
Q−G,α;mη(k + q)uQ,α;nη(k)c†

k+q,m,η,s
ck,n,η,s

)
−

1

2
δq,0δG,0

)

=
∑

ηαs

∑

k

∑

Q∈Q±

∑

m,n

u∗
Q−G,α;mη(k + q)uQ,α;nη(k)

(
c

†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δmn

)
, (C8)

where from the first line to the second line we have used the completeness relation

δG,0 =
∑

nη

u∗
Q−G,α;nη(k)uQ,α;nη(k). (C9)

We then define the form factor (overlap) matrix as given in Eq. (12), which we reprint here for convenience:

M (η)
m,n(k, q + G) =

∑

α

∑

Q ∈ Q±

u∗
Q−G,α;mη(k + q)uQ,α;nη(k). (C10)

We note that if k + q is outside the first BZ, it must be brought into the first BZ using the embedding relation in Eq. (A23). This

further simplifies Eq. (C8) into

δρG+q =
∑

kηs

∑

m,n

Mη
m,n(k, q + G)

(
c

†
k+q,m,η,sck,n,η,s −

1

2
δq,0δmn

)
. (C11)

We can then define a projected density operator δρG+q by restricting |m|, |n| � nmax in Eq. (C11):

δρG+q =
∑

kηs

∑

|m|,|n|�nmax

Mη
m,n(k, q + G)

(
c

†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δmn

)
, (C12)
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and substitute δρG+q into Eq. (C5) to obtain the projected interaction Hamiltonian HI in the n = ±1 bands. To simplify the form

of the interaction Hamiltonian, we define a set of operators

Oq,G =
√

V (q + G)δρG+q =
∑

kηs

∑

|m|,|n|�nmax

√
V (q + G)M (η)

m,n(k, q + G)

(
ρ

η

k,q,m,n,s
−

1

2
δq,0δm,n

)
, (C13)

and the electron density operator within the flat bands

ρ
η

k,q,m,n,s
= c

†
k+q,m,η,s

ck,n,η,s. (C14)

We can then write the projected interaction Hamiltonian as

HI =
1

2	tot

∑

q∈MBZ

∑

G∈Q0

O−q,−GOq,G , (C15)

as given in the main text Eq. (10). In particular, we have

[Oq,G, Oq′,G′ ] =
∑

k,m,n,n′,η,s

√
V (G + q)V (G′ + q′)ρ

η

k,q+q′,m,n,s

×
[
M

(η)
m,m′ (k + q′, q + G)M

(η)
m′,n(k, q′ + G′) − M

(η)
m′,n(k, q + G)M

(η)
m,m′ (k + q, q′ + G′)

]
, (C16)

which in general does not vanish if q �= q′ or G �= G′. Therefore, different terms in the interaction Hamiltonian HI do not

commute.

3. Gauge fixing of the interaction

Equation (C10) give the generic definition of the coefficient M (η)
m,n(k, q + G). Here we fix the form of this coefficient under

the gauge fixing of Eq. (B17). Under this gauge, the following constraints must be satisfied:

(I) Hermiticity condition:

M (η)∗
mn (k, q + G) = M (η)

nm (k + q,−q − G) , (C17)

which is trivially satisfied by the definition in Eq. (C10).

(II) The C2zT symmetry yields the real condition

M (η)
m,n(k, q + G) =

∑

α

∑

Q∈Q±

[D(C2zT )umη(k + q)]Q−G,α[D(C2zT )u∗
nη(k)]Q,α

=
∑

α

∑

Q∈Q±

u∗
Q,ᾱ;nη(k)uQ−Gᾱ,mη(k + q) =

∑

α

∑

Q∈Q±

u∗
Q+G,α;nη(k)uQα,mη(k + q)

= M (η)∗
mn (k, q + G). (C18)

(III) Due to the combination operation C2zP, which has the sewing matrix D(C2zP) = ζ yτ y in each pair of bands n = ±nB

[Eq. (B17)], we have

M (η)
mn (k, q + G) =

∑

α

∑

Q∈Q±

[D(C2zP)u∗
mη(k + q)]Q−G,α[D(C2zP)unη(k)]Q,α

=
∑

α

∑

Q∈Q±

(ζy)mm′u∗
Q−Gα,m′,−η(k + q)uQ,α;n′,−η(k)(ζy)n′n

= [ζ yM (−η)(k, q + G)ζ y]m,n, (C19)

where we write M (η)
mn in short as a matrix M (η) in the band space, and ζ α means the Pauli matrix within each pair of bands ±n.

(IV) For momenta k and k + q not at MM points, due to the C2z symmetry, which has the sewing matrix B(C2z )(k) = ζ 0τ x

[Eq. (B18)], we further have

M (η)(k, q + G) = M (−η)(−k,−q − G). (C20)

For the case where k is at MM and k + q is not at MM , the sewing matrices are given by −BC2z (k) = BC2z (k + q + G) = iζ 0τ x

due to the discussion in Appendix B 2, and hence the above condition changes to

M (η)(k, q + G) = −M (−η)(−k,−q − G). (C21)

For the case where k is not at MM and k + q is at MM , the M matrix also satisfies Eq. (C21) for the same reason. For the case

where k is at MM and q = 0, the sewing matrices are given by BC2z (k) = BC2z (k + G) = −iζ 0τ x and hence the M matrix satisfies

Eq. (C20).
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We can generically parametrize Mη
m,n(k, q) as

Mη
m,n(k, q + G) =

∑

a=0,x,y,z

∑

b=0,z

(ζ a)mn(τ b)ηηαab(k, q + G) , (C22)

where only b = 0, z are allowed, since Mη
m,n(k, q + G) is diagonal in valley η. We have assumed αab(k, q + G) are nmax × nmax

matrices, and is tensor produced with ζ a in each pair band basis n = ±nB and the valley Pauli matrix τ b. Condition III requires

M to be commutative with ζ yτ y in the band and valley indices, which restricts M matrix to decompose into four terms

M(k, q + G) = ζ 0τ 0α0(k, q + G) + ζ xτ zα1(k, q + G) + iζ yτ 0α2(k, q + G) + ζ zτ zα3(k, q + G). (C23)

We note that if nmax = 1, α0,1,2,3(k, q + G) are simply numbers, while if nmax > 1, α0,1,2,3(k, q + G) will be matrices. Condition

II requires Mη
m,n(k, q + G) to be real, and thus α0,1,2,3(k, q + G) are all real (matrix) functions. We denote the matrix coefficient

of α j (k, q + G) in Eq. (C23) as M j . Besides, condition I requires

(1) αa(k, q + G) = αT
a (k + q,−q − G) for a = 0, 1, 3, α2(k, q + G) = −αT

2 (k + q,−q − G). (C24)

Finally, for k and k + q not at MM points, condition IV requires

(2) αa(k, q + G) = αa(−k,−q − G) for a = 0, 2, αa(k, q + G) = −αa(−k,−q − G) for a = 1, 3. (C25)

In particular, the combination of Eqs. (C24) and (C25) implies that at q = 0, we have

α0(k, G) = αT
0 (−k, G), α j (k, G) = −αT

j (−k, G), ( j = 1, 2, 3). (C26)

It is worth noting that even though Eq. (C25) is derived with assumption that k and k + q are not at the MM momentum, it

is also true for k at MM and q = 0 because condition IV [Eq. (C20)], from which Eq. (C25) is derived, is true for k at MM and

q = 0. Therefore, Eq. (C26), the combination of Eqs. (C24) and (C25) at q = 0, is true for k over the whole BZ.

4. Many-body charge conjugation symmetry of the Projected Hamiltonian

The full projected Hamiltonian H = H0 + HI has a many-body charge-conjugation symmetry, which ensures that all the

physical phenomena is ph symmetric about the filling of the charge neutrality point (CNP) at ν = 0.

We define the many-body charge conjugation Pc as the single-particle transformation C2zT P followed by an interchange

between electron annihilation operators c and creation operators c†, namely,

Pcc
†
k,n,η,s

P−1
c = c−k,m,η′,s[B

C2zT P(k)]mη′,nη(k), Pcck,n,η,sP
−1
c = c

†
−k,m,η′,s[B

C2zT P∗(k)]mη′,nη . (C27)

Under the gauge fixings of Eq. (B17) and Eq. (B18), one has B
C2zT P

mη′,nη = BP
mη′,nη = (−iζ yτ z )mη′,nη [Eq. (B18)] within each pair of

bands n = ±nB. We now show Pc is a symmetry of the projected Hamiltonian.

Because of the relation ǫn,η(k) = −ǫ−n,η(−k), the kinetic Hamiltonian is invariant under Pc up to a constant:

PcH0P
−1
c =

∑

k,nη,s

ǫn,η(k)c−k,−n,ηc
†
−k,−n,η

=
∑

k,nη,s

ǫ−n,η(−k)c†
−k,−n,η

c−k,−n,η + const. = H0 + const. (C28)

Next, we note that the projected density operator δρq+G in Eq. (C12) satisfies

Pcδρq+GP
−1
c =

∑

ηmns

∑

k

[ζ yMη(k, q + G)ζ y]mn

(
c−k−q,m,η,sc

†
−k,n,η,s

−
1

2
δq,0δmn

)

=
∑

ηmns

∑

k

[ζ yMη(k, q + G)ζ y]mn

(
−c

†
−k,n,η,s

c−k−q,m,η,s +
1

2
δq,0δmn

)

=
∑

ηmns

∑

k

[ζ yMη(−k + q, q + G)ζ y]mn

(
−c

†
k+q,n,η,s

ck,m,η,s +
1

2
δq,0δmn

)
(C29)

due to Eqs. (C23) and (C25), we have

Mη
m,n(k, q + G) =

∑

m′n′

ζ
y

m′,mM
η

m′,n′ (−k,−q − G)ζ
y

n′n , (C30)

and hence

Pcδρq+GP
−1
c =

∑

ηmns

∑

k

Mη
mn(k − q,−q − G)

(
−c

†
k+q,n,η,s

ck,m,η,s +
1

2
δq,0δmn

)
. (C31)
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Due to Eq. (C17), Mη
mn(k − q,−q − G) = Mη

nm(k, q + G), and thus

Pcδρq+GP
−1
c =

∑

ηmns

∑

k

Mη
mn(k, q + G)

(
−c

†
k+q,m,η,s

ck,n,η,s +
1

2
δq,0δmn

)
= −δρq+G. (C32)

Therefore, according to Eq. (C13), we have PcOq,GP
−1
c = −Oq,G, and thus the projected interaction in Eq. (C15) has the

charge-conjugation symmetry [Pc, HI ] = 0. In total, we have

PcHP−1
c = H −

∑

|n|�nmax

∑

k,η,s

ǫn,η(k) = H (C33)

for H = H0 + HI , where we have used the fact that ǫn,η(k) = −ǫ−n,η(−k) in Eq. (A24) due to the single-particle ph symmetry

P. Note that Pc maps a many-body state at filling ν to filling −ν, where ν is the number of electrons per moiré unit cell relative

to the CNP. Therefore, one expects the TBG ground states at ν and −ν to be ph symmetric.

5. Contributions from the passive bands in the Projected Hamiltonian: Hartree-Fock Potential

We note that the projected interaction Hamiltonian HI in Eq. (C15) is not normal ordered. We can rewrite HI into normal-

ordered part and some quadratic fermionic terms as

HI = Hnorm
I + �H (1) + �H (2) + const., (C34)

where Hnorm
I is the normal ordered Hamiltonian, and H (1) and �H (2) are specified below. By defining interaction parameters

U
(η′η)

m′n′;mn
(q; k′k) =

∑

G∈Q0

V (G + q)M
(η′ )
m′,n′ (k

′,−q − G)M (η)
m,n(k, q + G), (C35)

we can rewrite each term as

Hnorm
I =

1

2	tot

∑

qkk′∈MBZ

∑

ηη′ss′

∑

m,n;m′,n′

U
(η′η)

m′n′;mn
(q; k′k)c†

k+q,m,η,s
c

†
k′−q,m′,η′,s′ck′,n′,η′,s′ck,n,η,s, (C36)

�H (1) = −
1

2	tot

∑

kk′

∑

ηη′ss′

∑

m,n;m′

U
(η′η)

m′m′;mn
(0; k′k)c†

k,m,η,s
ck,n,η,s, (C37)

and

�H (2) =
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

U
(ηη)

m′n′;mm′ (q; k, k − q)c†
k,m,η,s

ck,n′,η,s, (C38)

where we have used the fact that U
(η′η)
m′n′;mn(q; k′k) = U

(ηη′ )
mn;m′n′ (−q; kk′) which trivially holds by exchanging the two M matrices in

the definition (C35). By summing over only |m|, |n| � nmax, HI gives the projected Hamiltonian. In the following, we prove that

H
(1)
I and H

(2)
I can be heuristically understood as the Hartree and Fock potential of the higher passive bands |n| > nmax which

are projected out. We emphasize that the difference between the HI and its normal-ordered version is not just a simple chemical

potential shift, contrary to the unprojected interaction Hamiltonian ĤI .

We first note that the full interaction Hamiltonian ĤI before projection is simply given by Eqs. (C36)–(C38) with summation

over all band indices m, n, m′, n′. We now derive the Hartree-Fock Hamiltonian of the full Hamiltonian ĤI at filling ν = −4nmax

(number of electrons per moiré unit cell relative to the CNP). The occupied single-particle bands at ν = −4nmax produce a mean

field

〈c†
k,m,η,s

ck′,n,η′,s′〉 = �(−nmax − m)δk,k′δm,nδη,η′δs,s′ , (C39)

where we define �(x) = 1 if x > 0, and �(x) = 0 if x � 0. We shall use the property of interaction parameter U
(η′η)
m′n′;mn(q; k′k) =

sgn(mn)U
(η′−η)
m′n′;−m,−n(q; k′k) = sgn(m′n′)U

(−η′η)
−m′−n′;m,n(q; k′k) = U

(ηη′ )
mn;m′n′ (−q; kk′), which can be verified by the properties of the

M matrices through Eq. (C23)–(C25). We then find the Hartree term

H
ν=−4nmax

H =
1

2	tot

∑

kk′

∑

ηη′ss′

∑

m,n;m′

[2�(−nmax − m′) − 1]U
(η′η)
m′m′;mn

(0; k′k)c†
k,m,η,s

ck,n,η,s

= −
1

2	tot

∑

kk′

∑

ηη′ss′,m,n

∑

|m′|�nmax

U
(η′η)
m′m′;mn

(0; k′k)c†
k,m,η,s

ck,n,η,s, (C40)
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and the Fock term

H
ν=−4nmax

F = −
1

2	tot

∑

k,q

∑

η,s

[
∑

m,n′;m′

�(−nmax − m′)U
(ηη)

m′n′;mm′ (q; k + q, k)c†
k+q,m,η,s

ck+q,n′,η,s

+
∑

m′,n;m

�(−nmax − m)U
(ηη)
m′m;mn(q; k + q, k)c†

k,m′,η,s
ck,n,η,s

]

= −
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

�(−nmax − m′)
[
U

(ηη)

m′n;mm′ (q; k + q, k) + U
(ηη)

mm′;m′n(−q; k, k + q)
]
c

†
k+q,m,η,s

ck+q,n,η,s

= −
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

2�(−nmax − m′)U
(ηη)

m′n;mm′ (q; k, k − q)c†
k,m,η,s

ck,n,η,s.

(C41)

Similarly, one can show the Hartree term at ν = 4nmax is given by

H
ν=4nmax

H = −H
ν=−4nmax

H , (C42)

and the Fock term at ν = 4nmax is

H
ν=4nmax

F = −
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

2�(nmax + 1 − m′)U
(ηη)

m′n;mm′ (q; k, k − q)c†
k,m,η,s

ck,n,η,s. (C43)

Therefore, when projected into the lowest 8nmax bands (2nmax per spin-valley), we find the difference between our particle-hole

symmetric Hamiltonian and its normal-ordered version:

�H (1) = H
ν=−4nmax

H = −H
ν=4nmax

H , �H (2) = 1
2

(
H

ν=−4nmax

F − H
ν=4nmax

F

)
. (C44)

Note that the interaction satisfies the orthonormal condition
∑

m′ U
(ηη)
m′n;mm′ (q; k, k − q) =

∑
G V (q + G)δm,n, so under the single-

particle ph transformation P which takes Pc
†
k,m,η,s

P−1 = −sgn(m)ηc
†
−k,−m,η,s

, we have

PH
ν=−4nmax

F P−1 = −
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

2�(−nmax − m′)sgn(mn)U
(ηη)

m′n;mm′ (q; k, k − q)c†
−k,−m,η,s

c−k,−n,η,s

= −
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

2�(nmax + 1 + m′)U
(ηη)

m′n;mm′ (q; k, k − q)c†
k,m,η,s

ck,n,η,s

= −
1

2	tot

∑

k,q

∑

η,s

∑

m,n′;m′

2[1 − �(nmax + 1 − m′)]U
(ηη)

m′n;mm′ (q; k, k − q)c†
k,m,η,s

ck,n,η,s

= −H
ν=4nmax

F − µV

∑

k,m,η,s

c
†
k,m,η,s

ck,m,η,s,

(C45)

where we have used the ph symmetry of interaction U
(ηη′ )
mn;m′n′ (q; k, k′) = sgn(mnm′n′)U

(ηη′ )
−m,−n;−m′,−n′ (−q; −k,−k′). The constant

µV is defined by µV = 1
	tot

∑
q,G V (q + G), which is a coefficient of a chemical potential term.

6. U(2)×U(2) spin-charge rotational symmetry

In Eq. (A16), we have given the generators of the

U(2)×U(2) symmetry of the single-particle Hamiltonian H0

from the spin-charge rotational symmetry in each valley.

Here we show that the projected interaction Hamiltonian also

respects the U(2)×U(2) symmetry. Hereafter, with the under-

standing that we assume the gauge fixing given by Eqs. (B17)

and (B16) [we note that Eq. (B16) is only used for defining

the irrep band basis in Eq. (B19), which will be useful in the

discussion of nonchiral-flat U(4) irreps in Appendix D 2 b], we

shall use ζ a, τ a, sa to denote the identity matrix (a = 0) and

Pauli matrices (a = x, y, z) in the each pair of bands n = ±nB,

valley η = ±, and spin s =↑,↓ bases, respectively.

When projected into the 8nmax flat bands of |n| � nmax,

the eight generators Sab (a = 0, z, b = 0, x, y, z) of the

U(2)×U(2) symmetry in Eq. (A16) take the form

Sab =
∑

k,m,η,s;n,η′,s′

(sab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ ,

(a = 0, z, b = 0, x, y, z), (C46)

where the matrices within each pair of bands n = ±nB are

given by

s0b = ζ 0τ 0sb, szb = ζ 0τ zsb, (b = 0, x, y, z). (C47)

In particular, S0b and Szb give the global spin-charge U(2) ro-

tations and the valley spin-charge U(2) rotations, respectively.

It is easy to see that both S0b and Szb are diagonal in valley

η and only act on spin s. Since the operator Oq,G defined in

Eq. (C13) is diagonal in valley η, and all the coefficients are
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independent of spin s, we conclude that

[Oq,G, S0b] = [Oq,G, Szb] = 0. (C48)

Accordingly, the interaction HI in Eq. (C15) respects the

U(2)×U(2) symmetry, and so does the full projected Hamil-

tonian H = H0 + HI .

APPENDIX D: ENHANCED SYMMETRIES IN

VARIOUS LIMITS

In this Appendix, we will show that the U(2)×U(2) sym-

metry [Eq. (C46)] of the full Hamiltonian H = H0 + HI is

enhanced into higher symmetries in various limits of TBG.

Since all these higher symmetries involve the U(4) group, we

first briefly review the algebra of the U(4) group.

1. Brief Review of the U(4) group

The U(N) group is defined by all the N × N unitary matri-

ces U satisfying U †U = IN , where IN is the identity matrix.

The matrices U are generated by all the linearly indepen-

dent N × N Hermitian matrices, and thus the total number

of generators is N2. In particular, for the U(4) group, the 16

generators can be represented by the tensor product of two sets

of 2 × 2 identity and Pauli matrices τ a and sa (a = 0, x, y, z)

as

sab
0 = τ asb, (a, b = 0, x, y, z). (D1)

We denote their commutation relations as
[
sab

0 , scd
0

]
= f ab,cd

e f
s

e f

0 . (D2)

Then f ab,cd
e f

are the group structure constants, which are the

same for all representations of U(4) group.

The set of all the 4 × 4 matrices U defines the four-

dimensional fundamental irreducible representation (irrep)

of the U(4) group, and the representation matrices of the

generators are exactly given by Eq. (D1). There is also a one-

dimensional trivial identity irrep, in which the representation

matrices of all generators sab
0 = 0. We shall use the following

notation to denote the fundamental irrep and trivial identity

irrep of the U(4) group:

U(4) fundamental irrep: [1]4,

U(4) trivial identity irrep: [0]4. (D3)

We will not explain the meaning of these notations, except

that we mention they are consistent with the Young tableau

notations for U(4) irreps we explain and adopt in Ref. [109].

2. U(4) symmetry in the nonchiral-flat limit

a. The symmetry

We now assume the magic angle TBG is in the nonchiral-

flat limit, where the projected kinetic Hamiltonian in Eq. (C7)

becomes exactly H0 = 0, while both w0 > 0 and w1 > 0 in

Eq. (A7). In this case, the total projected Hamiltonian is H =
HI . We will show that there is an enhanced U(4) symmetry.

To see this, we first show that C2zP is a symmetry of H =
HI . With the sewing matrix of C2zP given by BC2zP(k) = ζ yτ y

in Eq. (B17), we have

(C2zP)Oq,G(C2zP)−1 =
∑

kηs

∑

m,n=±1

√
V (q + G)M (η)

m,n(k, q + G)

(
(C2zP)c†

k+q,m,η,s
ck,n,η,s(C2zP)−1 −

1

2
δq,0δm,n

)

=
∑

kηs

∑

|m|,|n|�nmax

√
V (q + G)

(
[ζ yM (−η)(k, q + G)ζ y]mnc

†
k+q,m,η,s

ck,n,η,s −
1

2
M (η)

m,n(k, q + G)δq,0δm,n

)

=
∑

kηs

∑

|m|,|n|�nmax

√
V (q + G)M (η)

m,n(k, q + G)

(
c

†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δm,n

)
= Oq,G, (D4)

where we have used Eq. (C19). Therefore, we have [C2zP, Oq,G] = 0, and thus the interaction Hamiltonian HI in Eq. (C15)

satisfies

[C2zP, HI ] = 0. (D5)

Besides, since [C2z, H0] = 0 and {P, H0} = 0, we have {C2zP, H0} = 0, which implies ǫn,η(k) = −ǫ−n,−η(k). If we want to have

[C2zP, H0] = 0, we would have to require ǫn,η(k) = ǫ−n,−η(k), which is only possible when ǫn,η(k) = 0, namely, only in the

exact flat band limit with projected kinetic term H0 = 0.

The C2zP symmetry allows us to define the following operator as a commuting symmetry of the projected Hamiltonian

H = HI :

Sy0 =
∑

k,s

∑

nn′ηη′

[BC2zP(k)]nη,n′η′c
†
k,n,η,s

ck,n′,η′,s =
∑

k,s

∑

nn′ηη′

[ζ yτ y]nη,n′η′c
†
k,n,η,s

ck,n′,η′,s , (D6)

where we have used the gauge fixing of Eq. (B17), and ζ y only acts within each pair of bands n = ±nB. We note that when Sy0

acts on single-electron states c
†
k,n,η,s

|0〉 where |0〉 is the vacuum, it is the same as the operation of C2zP. To see this is a symmetry,

we note that

[Sy0, Oq,G] =
∑

k,s

∑

nn′ηη′

([ζ yτ y, M(k, q + G)])nη,n′η′c
†
k,n,η,sck,n′,η′,s = 0, (D7)
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where we have used the fact that the M(k, q + G) matrix commutes with ζ yτ y from condition (C23), a result of the C2zP

symmetry. Therefore, Sy0 is a commuting symmetry of the interaction Hamiltonian HI in Eq. (C15), namely,

[Sy0, HI ] = 0. (D8)

Recall that HI has a U(2)×U(2) symmetry with eight generators S0b and Szb (b = 0, x, y, z) in Eq. (C46). The commutators

of Sy0 in Eq. (D6) with the eight U(2)×U(2) generators then yields 16 Hermitian operators in total:

Sab =
∑

k,m,η,s;n,η′,s′

(sab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ , (a, b = 0, x, y, z), (D9)

where within each pair of bands n = ±nB

sab = {ζ 0τ 0sb, ζ yτ xsb, ζ yτ ysb, ζ 0τ zsb}, (a, b = 0, x, y, z). (D10)

More specifically, the new generators are given by

Sxb = −
i

2
[Sy0, Szb], Syb =

i

2
[Sx0, Szb]. (D11)

It is then easy to see that the 16 operators Sab satisfy the

commutation relations of U(4) generators,

[Sab, Scd ] = f ab,cd
e f

Se f , (D12)

where f ab,cd
e f

are the U(4) structure constants defined in

Eq. (D2). Therefore, we find in the nonchiral-flat limit, the

projected interaction Hamiltonian HI has an enhanced U(4)

symmetry.

The Cartan subalgebra of the U(4) generators in Eq. (D10)

can be chosen as

Cartan: ζ 0τ 0s0, ζ 0τ 0sz, ζ 0τ zs0, ζ 0τ zsz. (D13)

We note that although we proved the symmetry of

Sy0 under the fixed gauge (B17), the definition of Sy0 =∑
k,s

∑
nn′ηη′ [BC2zP(k)]nη,n′η′c

†
k,n,η,s

ck,n′,η′,s in Eq. (D6) is

gauge invariant. This can be seen by noting that under

a gauge transformation c
†
k,n,η,s

→ eiφn,η c
†
k,n,η,s

, the sewing

matrix elements change according to [BC2zP(k)]nη,n′η′ →
e−iφn,η+iφn′ ,η′ [BC2zP(k)]nη,n′η′ .

b. The single-electron irreps

The k-independent representation matrices of Eq. (D10)

at each momentum k can be decomposed into fundamental

U(4) irreps. This can be done by transforming into a new basis

where ζ y is diagonalized. This turns out to be exactly the irrep

band basis d
(nB )†
k,eY ,η,s

= 1√
2
(c†

k,+nB,η,s
+ ieY c

†
k,−nB,η,s

) we defined

earlier in Eq. (26) (see also Ref. [108]). For nB = 1, eY = ±1

gives the Chern number of the band basis. The single-electron

state in irrep band eY

d
(nB )†
k,eY ,η,s

|0〉 (D14)

has eigenvalue ζ y = eY . It is then easy to see that the represen-

tations of the U(4) generators Sab for the single-electron state

(D14) are given by

sab(eY ) = {τ 0sb, eY τ xsb, eY τ ysb, τ zsb}. (D15)

Therefore, the single-electron state (D14) for a fixed eY , or

equivalently the irrep band fermion operator d
†
k,eY ,η,s

for a

fixed eY , occupies a fundamental irrep [1]4 of the U(4) group.

However, we note that the eY = +1 and eY = −1 irreps differ

by a π valley rotation eiπτ z/2 about the z axis.

For many-body Fock states created by multiple d
(nB )†
k,eY ,η,s

, the

U(4) representation is given by the tensor product of the U(4)

fundamental irreps [1]4 of each d
(nB )†
k,eY ,η,s

. Such tensor product

representations can be further decomposed into U(4) irreps,

which we will not discuss here but rather in our upcoming

paper of the many-body states of the PSDHs [109].

3. U(4)×U(4) symmetry in the (first) chiral-flat limit

In this Appendix, we demonstrate that by setting w0 =
0 < w1 (the chiral condition) and setting the projected ki-

netic Hamiltonian H0 to zero (flat condition), the system has

a unitary U(4)×U(4) symmetry. We call this limit the first

chiral-flat limit.

a. The chiral symmetry at w0 = 0

In the first chiral-flat limit, since w0 = 0, the single-particle

Hamiltonian of TBG acquires an additional unitary chiral

symmetry C, which satisfies the anticommutation relation

with the full single-particle Hamiltonian Ĥ0 in Eq. (A5):

{C, Ĥ0} = 0. (D16)

The action of C is given by

Cc
†
k,Q,η,α,s

C−1 =
∑

Q′η′β

[D(C)]Q′η′β,Qηαc
†
k,Q′,η′,β,s

, (D17)

with the representation matrix

[D(C)]Q′η′β,Qηα = δQ′,Qδη′,η(σz )β,α. (D18)

Note that C preserves the electron momentum k. Since C

flips the single-particle Hamiltonian Ĥ0, it is not a commuting

symmetry of TBG, but only reflects a relation between the

positive- and negative-energy spectra. The transformation C

satisfies

C2 = 1, {C,C2z} = 0, [C, T ] = 0,

[C, P] = 0, {C,C2zT } = 0, {C,C2zP} = 0. (D19)

b. The full symmetry

When transformed into the energy band basis, the chiral

symmetry C implies

ǫn,η(k) = −ǫ−n,η(k), (D20)
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[D(C)]ηη′unη′ (k) =
∑

m

[BC (k)]mη,nη′umη(k), (D21)

where

[BC (k)]mη,nη′ = δη,η′δ−m,ne
iϕC

n,η′ (k)
. (D22)

This implies the transformation

Cc
†
k,n,η′,sC

−1 =
∑

mη

[BC (k)]mη,nη′c
†
k,m,η,s

. (D23)

By the relations {C,C2zT } = {C,C2zP} = 0, the sewing ma-

trix of C satisfies

BC (k)BC2zT (k) = −BC2zT (k)BC∗(k) ,

BC (k)BC2zP(k) = −BC2zP(k)BC (k). (D24)

Under the gauge fixing of Eq. (B17), we have BC2zT (k) =
ζ 0τ 0, and BC2zP(k) = ζ yτ y. The only k-independent gauge for

sewing matrix of C in consistency with Eqs. (D22) and (D24)

within each pair of bands n = ±nB is then (up to a global

minus sign)

BC (k) = ζ yτ z. (D25)

In particular, this k-independent gauge fixing (D25) of C

automatically ensures the continuous gauge fixing condition

(B16), which is crucial for defining the irrep band basis

in Eq. (26). To see this, note that Eq. (D25) tells us that

u−n,η(k) = isgn(n)ηun,η(k) for band n = ±nB, and thus we

have

fn,η(k + q, k) = |u†
n,η(k + q)un,η(k) − u

†
−n,η(k + q)u−n,η(k)|

= |u†
n,η(k + q)un,η(k)[1 − sgn(n)2η2]| = 0

(D26)

for any k and q, satisfying Eq. (B16).

We also note that this gauge fixing of C is consistent with

the gauge fixings of both C2z and P separately in Eq. (B18).

Basically, the relations {C,C2z} = 0 and [C, P] = 0 require

BC (−k)BC2z (k) = −BC2z (k)BC (k),

BC (−k)BP(k) = BP(k)BC (k), (D27)

which is satisfied by Eq. (D25).

For the projected Hamiltonian H = H0 + HI , we now show

that C is a symmetry of the interaction Hamiltonian HI and

further constrains the matrix M(k, q + G) in Eq. (C23). To

see this, we note that with the relation (D21) due to C sym-

metry, the definition of M(k, q + G) in Eq. (C10) satisfies

(written as a matrix in the n, η space)

M (η)
m,n(k, q + G) =

∑

α

∑

Q ∈ Q±

u∗
Q−G,α;mη(k + q)uQ,α;nη(k)

=
∑

α

∑

Q ∈ Q±

[u†
mη(k + q)D†(C)]Q−G,α[D(C)unη(k)]Q,α

= [BC (k + q)†]mη,m′η′

∑

α

∑

Q ∈ Q±

u∗
Q−G,α;m′η′ (k + q)uQ,α;n′η′ (k)[BC (k)]n′η′,nη, (D28)

or in matrix form,

M(k, q + G) = BC (k + q)†M(k, q + G)BC (k). (D29)

We note that Eq. (D29) is independent of gauge fixings. If we take the gauge fixed form of M(k, q + G) in Eq. (C23) and the

gauge fixing of C in Eq. (D25), we find M(k, q + G) has to commute with ζ yτ z. Thus, when there is the chiral symmetry C, the

gauge fixed M(k, q + G) has to take the form

M(k, q + G) = ζ 0τ 0α0(k, q + G) + iζ yτ 0α2(k, q + G). (D30)

In particular, the functions α1(k, q + G) = α3(k, q + G) = 0.

By Eqs. (D23) and (D29), it is easy to see that

COq,GC−1 =
∑

kηs

∑

m,n=±1

√
V (q + G)M (η)

m,n(k, q + G)

(
Cc

†
k+q,m,η,s

ck,n,η,sC
−1 −

1

2
δq,0δm,n

)

=
∑

kηs

∑

m,n=±1

√
V (q + G)

(
[BC (k + q)†M(k, q + G)BC (k)]mη;nηc

†
k+q,m,η,s

ck,n,η,s −
1

2
M (η)

m,n(k, q + G)δq,0δm,n

)

=
∑

kηs

∑

m,n=±1

√
V (q + G)M (η)

m,n(k, q + G)

(
c

†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δm,n

)
= Oq,G. (D31)

Therefore, [C, Oq,G] = 0, and accordingly the projected interaction HI satisfies

[C, HI ] = 0, (D32)

implying C is a symmetry of HI .
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The C symmetry allows us to define the following operator

as a commuting symmetry of HI :

S′z0 =
∑

k,s

∑

nn′ηη′

[BC (k)]nη,n′η′c
†
k,n,η,s

ck,n′,η′,s

=
∑

k,s

∑

nn′ηη′

[ζ yτ z]nη,n′η′c
†
k,n,η,s

ck,n′,η′,s, (D33)

where we have gauge fixed its representation by Eq. (D25).

We note that when Sy0 acts on single-electron states c
†
k,n,η,s

|0〉
where |0〉 is the vacuum, it is the same as the operation of C.

To see this is a symmetry, we note that

[S′z0, Oq,G] =
∑

k,s

∑

nn′ηη′

([ζ yτ z, M(k, q + G)])nη,n′η′

× c
†
k,n,η,s

ck,n′,η′,s = 0. (D34)

Therefore, S′z0 is a commuting symmetry of the interaction

Hamiltonian HI in Eq. (C15), namely,

[S′z0, HI ] = 0. (D35)

Note that S′z0 does not commute with the single-particle

Hamiltonian H0 unless ǫn,η(k) = ǫ−n,η(k). Due to Eq. (D20),

this is only possible when ǫn,η(k) = 0, namely, in the exact

flat band limit H0 = 0.

Recall that HI already has a U(4) symmetry generated

by Sab in Eq. (D9). The commutation of Sab with S′z0 then

produces another 16 Hermitian operators:

S′ab =
∑

k,m,η,s;n,η′,s′

(s′ab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ ,

(a, b = 0, x, y, z), (D36)

where for each pair of bands n = ±nB

s′ab = {ζ yτ 0sb, ζ 0τ xsb, ζ 0τ ysb, ζ yτ zsb}, (a, b=0, x, y, z).

(D37)

In summary, the single-particle representation matrices of all

the generators Sab and S′ab can be reorganized into

{ζ 0τ asb, ζ yτ asb}, (a, b = 0, x, y, z). (D38)

It is more convenient to linear combine the U(4)×U(4)

generators as

Sab
± =

∑

k,m,η,s;n,η′,s′

(sab
± )m,η,s;n,η′,s′c

†
k,m,η,s

ck,n,η′,s′ , (D39)

where we define

sab
± = 1

2
(ζ 0 ± ζ y)τ asb, (a, b = 0, x, y, z). (D40)

In this form, it is easier to see that the 16 generators Sab
+ gen-

erate one U(4), the 16 generators Sab
− generate another U(4),

and [Sab
+ , Scd

− ] = 0. Therefore, in total they give a U(4)×U(4)

symmetry in the first chiral-flat limit.

We note that the U(4) group in the nonchiral-flat limit in

Eq. (D10) is a subgroup of the U(4)×U(4) group in the first

chiral-flat limit in Eq. (D40), but it is not one of the two tensor-

producted U(4) groups.

The Cartan subalgebra of the first chiral-flat U (4) × U (4)

generators in Eq. (D38) can be chosen as

Cartan of first chiral U (4) × U (4) :

ζ 0τ 0s0, ζ 0τ 0sz, ζ 0τ zs0, ζ 0τ zsz, ζ yτ 0s0, ζ yτ 0sz, ζ yτ zs0, ζ yτ zsz. (D41)

c. The single-electron irreps

The irreps of the U(4)×U(4) group can be obtained by the

tensor product of the irreps of the first U(4) and the second

U(4), respectively. We shall use

([λ1]4, [λ2]4) (D42)

to represent a U(4)×U(4) irrep, which is the tensor product of

an irrep [λ1]4 of the first U(4) and an irrep [λ2]4 of the second

U(4).

At each momentum k, the k-independent representation

matrices in Eq. (D40) can be decomposed into U(4)×U(4)

irreps. This can be done again by transforming into a new

basis where ζ y is diagonalized, which is exactly the irrep

band basis d
(nB )†
k,eY ,η,s

= 1√
2
(c†

k,+nB,η,s
+ ieY c

†
k,−nB,η,s

) we defined

earlier in Eq. (26), where eY = ±1 gives the irrep number of

the band basis. The single-electron state in irrep band eY

d
(nB )†
k,eY ,η,s

|0〉 (D43)

has eigenvalue ζ y = eY . It is then easy to see that the repre-

sentation matrices of the U(4)×U(4) generators Sab
± for the

single-electron state (D43) are given by the 4 × 4 matrices

sab
± = 1

2
(1 ± eY )τ asb. (D44)

Therefore, the single-electron state (D43) for a fixed eY , or

equivalently the irrep band fermion operator d
(nB )†
k,eY ,η,s for a

fixed eY , occupies an irrep of the U(4)×U(4) group. The

U(4)×U(4) irrep of d
(nB )†
k,+1,η,s is given by ([1]4, [0]4), while the

U(4)×U(4) irrep of d
†
k,−1,η,s is ([0]4, [1]4), where we recall

that [1]4 and [0]4 are the four-dimensional fundamental irrep

and the one-dimensional trivial identity irrep of U(4) group,

respectively.

We also note that the operator Oq,G in the first chiral limit

can be rewritten under irrep band basis as

Oq,G =
∑

k,eY ,η,s

√
V (G + q)[MeY

(k, q + G)]nB,n′
B

×
∑

η,s

(
d

(nB )†
k+q,eY ,η,s

d
(n′

B )

k,eY ,η,s
−

1

2
δq,0δnB,n′

B

)
, (D45)
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where

MeY
(k, q + G) = α0(k, q + G) + ieY α2(k, q + G). (D46)

Therefore, the interaction HI in Eq. (10) is diagonal in the

index eY .

For many-body Fock states created by multiple d
(nB )†
k,eY ,η,s

,

the U(4)×U(4) representation is given by the tensor product

of the U(4)×U(4) irreps ([1]4, [0]4) or ([0]4, [1]4) of each

d
(nB )†
k,eY ,η,s

. Such tensor product representations can be further

decomposed into U(4)×U(4) irreps, which will be discussed

in a separate paper [109].

4. U(4) symmetry in the (first) chiral-nonflat limit

We have seen that the first chiral-flat limit has a U(4)×U(4)

symmetry in the projected Hamiltonian H = HI . Here we

show that if w0 = 0 < w1 but H0 �= 0, which we define as the

nonchiral-flat limit, there is still a remaining U(4) symmetry.

a. The symmetry

When H0 �= 0, namely, when ǫnη(k) is not constantly zero,

we have H = H0 + HI , and neither C2zP nor C is a commuting

symmetry of H . However, their combination CC2zP is still a

commuting symmetry, namely,

[CC2zP, H] = [CC2zP, H0] + [CC2zP, HI ] = 0. (D47)

Therefore, the symmetry is still enhanced compared to the

nonchiral-nonflat case. This can be most easily seen as fol-

lows: Among the 32 generators in Eq. (D38), only those

with a single-particle representation matrix proportional ζ 0

is still a symmetry when H0 �= 0. This is because the kinetic

Hamiltonian in the first chiral limit (denoted by H+
0 ) can be

written as

H0 = H+
0 =

∑

k

ǫ|n|,η(k)(ζ zτ 0s0)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ ,

(D48)

where we have used the constraint ǫn,η(k) = −ǫ−n,η(k) due to

the chiral symmetry C. It is then clear that the generators in

Eq. (D38) proportional to ζ y will flip the pair of single-particle

bands n = ±nB and do not commute with H0. Therefore, we

are left with 16 generators commuting with H = H0 + HI . We

redefine their notations as follows:

S̃ab =
∑

k,m,η,s;n,η′,s′

(s̃ab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ , (D49)

where for each pair of bands n = ±nB

s̃ab = ζ 0τ asb, (a, b = 0, x, y, z). (D50)

They form the generators of a U(4) symmetry group. In par-

ticular, ζ 0τ xs0 is the sewing matrix of iCC2zP.

We note that this U(4) symmetry group in the first chiral-

nonflat limit is different from the U(4) symmetry group in the

nonchiral-flat limit [Eq. (D10)]. Here the generators S̃ab are

simply the full unitary rotations in the valley-spin space, while

the band space is not transformed.

b. The single-electron irreps

Since the generators in Eq. (D50) is proportional to ζ 0, any

fixed band basis of all valleys and spins form a fundamental

U(4) irrep. For example, we still consider the single-electron

state in the irrep band basis

d
(nB )†
k,eY ,η,s

|0〉. (D51)

For a fixed k and eY , the states in Eq. (D51) occupies a

fundamental irrep [1]4 of the first chiral-nonflat U(4), and the

representation matrices of the generators are given by

τ asb, (a, b = 0, x, y, z) (D52)

for either eY = ±1. Similarly, the many-body Fock states

created by d
(nB )†
k,eY ,η,s

are given by the tensor product of the

fundamental irreps [1]4 of each d
(nB )†
k,eY ,η,s

[109].

5. U(4)×U(4) symmetry in the second chiral-flat limit

We now consider an opposite limit where w1 = 0 < w0,

which we define as the second chiral limit. Although this

limit is far from experimental reality and the band structure

contains no flat bands over the full MBZ (but they are flat in

some directions of the MBZ) and is a perfect metal (see Fig. 2,

proof is given in Ref. [108]), the interaction Hamiltonian

enjoys a enhanced U(4)×U(4) symmetry of different physical

origin from the first chiral limit. One cannot help but hope

there is some hidden duality in the TBG problem.

a. The second chiral symmetry

When w1 = 0, we can define a second chiral transfor-

mation C′, which anticommutes with the full single-particle

Hamiltonian Ĥ0 in Eq. (A5):

{C′, Ĥ0} = 0. (D53)

The operation of C′ is given by

C′c†
k,Q,η,α,s

C′−1 =
∑

Q′η′β

[D(C′)]Q′η′β,Qηαc
†
k,Q′,η′,β,s

, (D54)

with the representation matrix

[D(C′)]Q′η′β,Qηα = ζQδQ′,Qδη′,η(σz )β,α, (D55)

where ζQ = ±1 for Q ∈ Q±. Note that C′ preserves the

electron momentum k. Since C′ flips the single-particle

Hamiltonian Ĥ0, it is not a commuting symmetry of TBG

but only reflects a relation between the positive- and negative-

energy spectra. The transformation C′ satisfies

C′2 = 1, [C′,C2z] = 0, {C′, T } = 0,

{C′, P} = 0, {C′,C2zT } = 0, {C′,C2zP} = 0. (D56)

b. The full symmetry

When transformed into the energy band basis, the second

chiral symmetry C′ implies

ǫn,η(k) = −ǫ−n,η(k), (D57)

[D(C′)]ηη′unη′ (k) =
∑

m

[BC′
(k)]mη,nη′umη(k), (D58)
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where

[BC′
(k)]mη,nη′ = δη,η′δ−m,ne

iϕC′
n,η′ (k)

. (D59)

This implies the transformation

C′c†
k,n,η′,sC

′−1 =
∑

mη

[BC′
(k)]mη,nη′c

†
k,m,η,s. (D60)

By the relations {C′,C2zT } = {C′,C2zP} = 0, the sewing ma-

trix of C′ satisfies

BC′
(k)BC2zT (k) = −BC2zT (k)BC′∗(k) ,

BC′
(k)BC2zP(k) = −BC2zP(k)BC′

(k). (D61)

Note that this constraint for the sewing matrix of C′ is exactly

the same as that for C in Eq. (D24). Therefore, within each

pair of bands n = ±nB, if we impose the gauge fixing of

Eq. (B17), we similarly find the only consistent k-independent

gauge for sewing matrix of C′ is (up to a global minus sign)

BC′
(k) = ζ yτ z. (D62)

This k-independent gauge fixing (D62) of C′ also auto-

matically ensures the continuous gauge fixing condition

(B16), which is crucial for defining the irrep band basis in

Eq. (26). This is because Eq. (D62) tells us that u−n,η(k) =
isgn(n)ηun,η(k) for band n = ±nB, which implies

fn,η(k + q, k) = |u†
n,η(k + q)un,η(k) − u

†
−n,η(k + q)u−n,η(k)|

= |u†
n,η(k + q)un,η(k)[1 − sgn(n)2η2]| = 0

(D63)

for any k and q, satisfying Eq. (B16).

However, the gauge fixing of C′ in Eq. (D62) is incon-

sistent with the k-independent gauge fixings of both C2z and

P separately in Eq. (B18). This is because [C′,C2z] = 0 and

{C′, P} = 0 require

BC′
(−k)BC2z (k) = BC2z (k)BC′

(k),

BC′
(−k)BP(k) = BP(k)BC′

(k), (D64)

which are, however, not satisfied by the simultaneous gauge

fixings of Eqs. (D62) and (B18). If we fix the sewing matrix

of C′ to be k independent as given in Eq. (D62), the sewing

matrices of C2z and P have to be k dependent. In this Ap-

pendix, we shall choose the gauge fixing of Eq. (D62) and give

up the separate gauge fixing of C2z and P in Eq. (B18), since

only their combination C2zP is used for the U(4) symmetries

discussed here.

However, we note that if a momentum k is C2z invariant

(the ŴM point and the three MM points in MBZ), the above

gauge fixing problem appears to imply the absence of well-

defined sewing matrices of C2z and P. In fact, this is because

at w1 = 0, the TBG band structure is protected to be doubly

degenerate at C2z invariant momenta, which leads to a perfect

metal (see Fig. 2 and Ref. [108] for proof). Therefore, the

pair of bands n = ±nB are connected with the other bands

at ŴM and MM points, where the projection within the two

bands n = ±nB is ill defined. The sewing matrices of C2z and

P at such C2z invariant momenta can only be written down

when the additional degenerate states at these momenta from

other bands are included. We shall not discuss this matter here,

since we will not use the sewing matrices of C2z and P in this

Appendix.

Nevertheless, we note that one could fix the gauge of C2z

and P in a simple k-dependent way, provided k is not a C2z in-

variant point. First, we divide all the C2z-noninvariant k points

into two sets K1,K2 related by C2z, namely, C2zK1 = K2. For

instance, K1 and K2 can be two half-MBZs related by C2z.

Then we can fix the sewing matrices of C2z and P (and T given

that C2z and C2zT are fixed) at C2z-noninvariant k within each

pair of bands n = ±nB as

BC2z (k) = (−1) jζ 0τ x, BT (k) = −(−1) jζ 0τ x,

BP(k) = i(−1) jζ yτ z, (for k ∈ K j ). (D65)

Since the gauge fixed sewing matrix of C′ in Eq. (D62)

is exactly the same as that of C in Eq. (D25), we can follow

a similar derivation as that from Eqs. (D28) to (D40), which

gives us the following.

First, C′ is a symmetry of HI satisfying [C′, HI ] = 0, and

the M(k, q + G) matrix is restricted to have the form

M(k, q + G) = ζ 0τ 0α0(k, q + G) + iζ yτ 0α2(k, q + G).

(D66)

The Hermitian condition of the M(k, q + G) [Eq. (C17)] re-

quires that

α0(k, q + G) = αT
0 (k + q,−q − G),

α2(k, q + G) = −αT
2 (k + q,−q − G). (D67)

For q = 0, the BC2z (k) sewing matrix implies Mη(k, G) =
M−η(−k,−G) and hence

α0(k, G) = α0(−k,−G), α2(k, G) = α2(−k,−G).

(D68)

Combining the above two constraints, we obtain

α0(k, G) = αT
0 (−k, G), α2(k, G) = −αT

2 (−k, G).

(D69)

Second, the C′ symmetry yields a U(4)×U(4) symmetry

with generators

S′ab
± =

∑

k,m,η,s;n,η′,s′

(s′ab
± )m,η,s;n,η′,s′c

†
k,m,η,s

ck,n,η′,s′ , (D70)

where we define

s′ab
± = 1

2
(ζ 0 ± ζ y)τ asb, (a, b = 0, x, y, z). (D71)

We note, however, although these generators take the same

gauge-fixed form as those in the first chiral-flat limit

[Eq. (D71)], their physical origins are different: Here the

U(4)×U(4) generators are generated by the sewing matrix of

the second chiral symmetry C′, while in the first chiral-flat

limit, the U(4)×U(4) generators are generated by the sewing

matrix of the first chiral symmetry C.

c. The single-electron irreps

We have shown that under the gauge fixings (B17) and

(D62), the U(4)×U(4) generators of the second chiral-flat

limit is exactly the same as that of the first chiral-flat

limit. Therefore, exactly parallel to the first chiral-flat limit,

the single-electron irreps in the second chiral-flat limit
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are given by the irrep band basis d
(nB )†
k,eY ,η,s

= 1√
2
(c†

k,+nB,η,s
+

ieY c
†
k,−nB,η,s

) we defined earlier in Eq. (26), where eY = ±1

gives the irrep number of the band basis. The single-electron

state

d
(nB )†
k,eY ,η,s|0〉 (D72)

with a fixed eY and k occupies a U(4)×U(4) irrep of

([1]4, [0]4) if eY = +1, and ([0]4, [1]4) if eY = −1. The rep-

resentation matrices of the U(4)×U(4) generators Sab
± for the

single-electron state (D43) are given by the 4 × 4 matrices

s′ab
± = 1

2
(1 ± eY )τ asb. (D73)

However, in this second chiral limit, we note that the basis

d
†
k,eY ,η,s

= d
(1)†
k,eY ,η,s

when nB = 1 no longer give a well-defined

Chern band in the MBZ with a definite Chern number as

illustrated in Sec. B 3, since the lowest two bands n = ±1

are gapless with the higher bands when w1 = 0 (see Fig. 2).

Neither are the bands flat, possibly giving rise to interesting,

gapless phases.

6. U(4) symmetry in the second chiral-nonflat limit

If w1 = 0 < w0, taking into account the kinetic term H0 �=
0, we are still left with a U(4) symmetry. We call this limit the

second chiral-nonflat limit. Since the U(4)×U(4) generators

in the second chiral-flat limit are exactly the same as those

in the first chiral-flat limit, the case here is mathematically

exactly the same as the first chiral-nonflat limit in Appendix

D 4. Therefore, we conclude that the second chiral-nonflat

limit has a remaining U(4) symmetry with generators given

by

S̃′ab =
∑

k,m,η,s;n,η′,s′

(s̃′ab)m,η,s;n,η′,s′c
†
k,m,η,s

ck,n,η′,s′ , (D74)

where within each pair of bands n = ±nB

s̃′ab = ζ 0τ asb, (a, b = 0, x, y, z), (D75)

under the gauge fixings of Eqs. (B17) and (D62). The only

difference is that here the U(4) symmetry is generated by the

sewing matrix of iC′C2zP, which reads ζ 0τ xs0.

This second chiral-nonflat limit is more physical, since

when w1 = 0 < w0, the bands are never too flat (Fig. 2).

APPENDIX E: THE STABILIZER CODE LIMIT

The projected interacting Hamiltonian in Eq. (10) is gener-

ically a quantum Hamiltonian, where the terms O−q,−GOq,G

do not commute, since the commutator [Oq,G, Oq′,G′ ] given in

Eq. (C16) does not vanish for generic form factors (overlaps)

M (η)
m,n(k, q + G). Thus, although it gives a PSDH, which al-

lows us to find exact ground states at certain fillings in the flat

band limit (for which H = HI ) as we will demonstrate in a

separate paper [109], it is impossible to analytically solve all

the many-body eigenstates of H = HI .

However, in the case where we are projecting only into

the eight lowest n = ±1 bands (i.e., nmax = 1), in the first (or

second) chiral-flat limit w0 = 0 (or w1 = 0) and H0 = 0, if

we further have M (η)
m,n(k, q + G) independent of k, we would

have [Oq,G, Oq′,G′ ] = 0. We call this limit the stabilizer code

limit:

stabilizer code limit

= 1st/2nd chiral-flat limit

+ k-independent form factors M(k, q + G). (E1)

Indeed, Eq. (D30) or (D66) and our k-independent assumption

lead to a k-independent form factor matrix:

M(k, q + G) = M(0, q + G)

= ζ 0τ 0α0(0, q + G) + iζ yτ 0α2(0, q + G).

(E2)

In particular, if nmax = 1, both α0(0, q + G) and α2(0, q + G)

are not matrices but just numbers, and thus they commute

among each other. Therefore, by Eq. (C16), we have

[Oq,G, Oq′,G′] ∝ M(k + q′, q + G)M(k, q′ + G′)

− M(k + q, q′ + G′)M(k, q + G) = 0.

(E3)

This yields a Hamiltonian similar to a stabilizer code Hamil-

tonian

H = HI =
1

2	tot

∑

q∈MBZ

∑

G∈Q0

O−q,−GOq,G, (E4)

where all the terms commute:

[O−q,−GOq,G, O−q′,−G′Oq′,G′ ] = 0. (E5)

Therefore, all the terms O−q,−GOq,G can be simultaneously

diagonalized, which makes all the many-body eigenstates

of the Hamiltonian exactly solvable. Note that Eq. (E4) is

not strictly a stabilizer code Hamiltonian since the terms

O−q,−GOq,G do not have a spectrum equal to 0 or 1 (moreover

their spectrum depends on q and G). Nevertheless, Eq. (E4)

has the crucial feature that makes the spectrum of a stabilizer

code solvable (namely a sum of commuting operators), thus

its name.

As we will prove in Ref. [109], the Hamiltonian H = HI

in the stabilizer code limit is an extended Hubbard model

with extended interactions and zero hoppings. Therefore, al-

though far from physical, the stabilizer code limit provides

a Hubbard-model understanding of the TBG physics, as sug-

gested by the recent experimental observations [22,23].

We will solve the stabilizer code limit Hamiltonian in

Ref. [109].

APPENDIX F: COMPARISON WITH THE U(4)x

SYMMETRY OF REF. [71]

In this Appendix, we discuss the interaction Hamiltonian

of Ref. [71] and compare it with ours. In Ref. [71], Kang

and Vafek were the first to show the appearance of a U(4)

approximate symmetry in their Hamiltonian, which is a type

of PSDH obtained by projecting into a Wannier basis.

1. The Wannier gauge

The s =↑↓ sectors are related by an SU(2) rotation. Thus,

we only need to construct Wannier functions in the s =↑
sector; the Wannier functions in the s =↓ sector can then be
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symmetrically generated. Before we introduce the Wannier

functions, let us first write the Bloch states of TBG as linear

combinations of plane waves

|ψk,n,η〉 =
1

√
N

∑

Q∈Q±

∑

Rα

uQ,α;nη(k)ei(k+Q)·(R+tα )|Rα〉, (F1)

where summations over R, α are limited to sites in the top

layer (bottom layer) graphene for Q ∈ Q+ (Q ∈ Q−), |Rα〉 is

the atomic orbital at R + tα , and N is the number of unit cells

in each of the two graphene layers. Generally, the Wannier

functions are linear combinations of the Bloch states

∣∣
wRM ,µ,η

〉
=

1
√

NM

∑

k

e−ik·RM |ψ̃k,µ,η〉,

|ψ̃k,µ,η〉 =
∑

n=±1

|ψk,n,η〉W η
n,µ(k), (F2)

where NM is the number of moiré unit cells and W η(k) at each

k is a two-by-two matrix. We denote the center of the Wannier

function |wRM ,µ,η〉 as RM + tM,µ, with RM = l1aM1 + l2aM2

being a moiré lattice and tM,µ (µ = 1, 2) being the sublattice

vectors. Here we take the unit cell basis as aM1 = (0,−1) and

aM2 = (
√

3
2

, 1
2

). Notice that the Bloch states are periodic in

momentum space, so the transformation coefficient is e−ik·R

rather than e−ik·(R+tµ ). The sewing matrices of |ψ̃k,µ,η〉 are

defined as

B
g

µη,νη′ (k) = 〈ψ̃gk,µ,η|g|ψ̃k,ν,η′〉. (F3)

The two bands in each valley have a fragile topology protected

by C2zT symmetry and a stable topology protected by the

PC2zT symmetry [108]. Thus, in order to obtain the Wannier

functions, we have to abandon smooth C2zT gauge and smooth

P gauge of |ψ̃k,µ,η〉. It is possible to choose a smooth gauge

for the remaining symmetries g = C3z,C2y, T since they do

not protect a topology. According to Kang and Vafek [42],

the two Wannier states (µ = 1, 2) in each valley locate at the

honeycomb lattice, i.e., tM,1 = 1
3
aM,1 + 2

3
aM,2 = ( 1√

3
, 0), and

tM,2 = −tM,1, and one can choose the Wannier functions to

satisfy

C′
3z

∣∣
wRM ,µ,η

〉
= eiη 2π

3

∣∣
wR′

M ,µ,η

〉
, [R′

M + tM,µ = C′
3z(RM + tM,µ)], (F4)

C2y

∣∣
wRM ,µ,η

〉
=

∑

β

γ x
νατ x

η′,η

∣∣
wR′

M ,ν,η′
〉
, [R′

M + tM,ν = C2y(RM + tM,µ)], (F5)

T |wRM ,µ,η〉 =
∣∣
wRM ,µ,−η

〉
, (F6)

where γ x is the first Pauli matrix in the moiré sublattice space,

and τ x is the first Pauli matrix in the valley space. Kang

and Vafek’s |w1,2,3,4〉 are our |wRM ,1,+〉, |wRM ,1,−〉, |wRM ,2,−〉,
|wRM ,2,+K 〉, respectively. Here we have used C′

3z to represent

the 2π/3 rotation microscopically centered at honeycomb ver-

tex of graphene. In this work, we use C3z to denote the 2π/3

rotation microscopically centered at the honeycomb center of

graphene. One should notice that the C′
3z eigenvalues, which

are eiη 2π
3 at ŴM , are different from the C3z in the BM model,

which are 1 at ŴM [43]. We will discuss the relation between

C3z and C′
3z in the end of this subsection.

The sewing matrices of C3z,C2y, T on |ψ̃k,µ,η〉 can be

obtained from the actions of C3z,C2y, T on the Wannier func-

tions. We have

C′
3z|ψ̃k,µ,η〉 =

1
√

NM

∑

RM

eik·RMC′
3z

∣∣WRM ,µ,η

〉

= eiη 2π
3

1
√

NM

∑

RM

eik·RM
∣∣WR′

M ,µ,η

〉

= eiη 2π
3

1
√

NM

∑

R′
M

eik·(C′−1
3z R′

M+C′−1
3z tM,µ−tM,µ )

∣∣WR′
M ,µ,η

〉

= eiη 2π
3 ei(C′

3zk−k)·tM,µ
∣∣ψ̃C′

3zk,µ,η

〉
, (F7)

where R′
M = C′

3z(RM + tM,µ) − tM,µ. Thus, the C′
3z sewing

matrix is

B
C′

3z

µη,νη′ (k) = δµνδηη′eiη 2π
3 ei(C3zk−k)·tµ . (F8)

We also have

C2y|ψ̃k,µ,η〉 =
1

√
NM

∑

RM

eik·RMC2y

∣∣
wRM ,µ,η

〉

=
∑

βη′

γ x
ν,µτ x

η′η

1
√

NM

∑

RM

eik·RM
∣∣
wR′

M ,ν,η′
〉

=
∑

βη′

γ x
β,ατ x

η′η

1
√

NM

×
∑

R′
M

eik·(C−1
2y R′

M+C−1
2y tM,ν−tM,µ )

∣∣
wR′

M ,ν,η′
〉

=
∑

νη′

γ x
ν,µτ x

η′η

∣∣ψ̃C2yk,µ,η′
〉
, (F9)

where C2ytM,ν = tM,µ and R′
M = C2y(RM + tM,µ) − tM,ν .

Thus, the C2y sewing matrix is

B
C2y

µη,νη′ (k) = γ x
µντ

x
ηη′ . (F10)

For the time-reversal, we have

T |ψ̃k,µ,η〉 =
1

√
NM

∑

RM

e−ik·RM |wR,µ,−η〉 = |ψ̃−k,µ,−η〉.

(F11)

Thus, the time-reversal sewing matrix is

BT
µη,νη′ (k) = δµντ

x
η,η′ . (F12)
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In this gauge, the C2zT sewing matrix BC2zT (k) and the P

sewing matrix B(P)(k) must have be discontinuous at some

momenta due to the topology protected by C2zT and/or PC2zT

of the two lowest bands. Correspondingly, in the Wannier ba-

sis the C2zT and P representations must be nonlocal. Usually,

an Wannier function at r (r �= 0) would be transformed to an-

other Wannier function at −r under C2zT or P. In the nonlocal

case, the Wannier function at r (r �= 0) will be transformed

to a linear combination of all the Wannier functions in the

whole 2D space under C2zT or P. Any tight-binding model in

this Wannier representation that has finite-range hopping will

break the C2zT and the P symmetries.

a. Another choice of C3z center

We find that the C′
3z operation, which is a 2π/3 rotation

at the honeycomb vertex of graphene, is the 2π/3 centered

at honeycomb center of graphene followed by a microscopic

translation, i.e., C′
3z = {1| − a1}C3z. Here a1 is the lattice basis

of single-layer graphene. The microscopic model of TBG

cannot have both C′
3z and C3z. For example, we choose the

twisting center at the honeycomb center, and then C3z is an

exact symmetry but C′
3z is only an approximate symmetry;

however, the microscopic error of C′
3z should be negligible,

diminishing at small angle. The translation −a1 will lead to

factors ei 2π
3 and e−i 2π

3 for the two valleys K and K ′, respec-

tively. Thus, the representation matrix of C′
3z in the BM model

is given by

D(C′
3z ) = ei 2π

3
τ z

D(C3z ), (F13)

where D(C3z ) is given by Eq. (A11). Thus, C3z acts on the

Wannier functions as

C3z

∣∣
wRM ,µ,η

〉
=

∣∣
wR′

M ,µ,η

〉
,

[
R′

M + tM,µ = C3z(RM + tM,µ)
]
.

(F14)

It follows that the C3z sewing matrix is

B
C3z

µη,νη′ (k) = δµνδηη′ei(C3zk−k)·tµ . (F15)

Notice that the C2y axis of Kang and Vafek’s model is same as

ours, so we do not need to change the C2y sewing matrix.

2. Interaction

Now that we have implement the Kang and Vafek Wannier

symmetries, we transform their interaction [71] into momen-

tum space. Let us denote the fermion annihilation operator of

the Wannier states as cRM ,µ,η,s. Then the Kang-Vafek interac-

tion has the form

HI =
V0

2

∑

RM

ORM
ORM

, (F16)

ORM
=

1

3
QRM

+ κTRM
, (F17)

where RM sums over all the lattice vectors (honeycomb cen-

ters), and QRM
and TRM

are given by

QRM
=

∑

η,s

∑

j∈�

c
†
RM+dM, j−tM,[ j],[ j],η,s

cRM+dM, j−tM,[ j],[ j],η,s, (F18)

TRM
=

∑

η,s

∑

j∈�

(
(−1) j−1ei(−1) j−1ηϑc

†
RM+dM, j+1−tM,[ j+1],[ j+1],η,s

cRM+dM, j−tM,[ j],[ j],η,s + H.c.
)
. (F19)

Here j sums over the six hexagon vertex around the triangle site RM , [ j] = j mod 2 is the sublattice index, and ϑ is a phase

factor. The vectors are given by dM,1 = tM,1, dM,4 = tM,2 = −tM,1, and dM, j+2 = C3zdM, j . To match our convention of Wannier

functions, we have decomposed the position (RM + dM, j) of the operator c
†
RM+dM, j−tM,[ j],[ j],η,s

into a lattice vector RM + dM, j −
tM,[ j] and a sublattice vector tM,[ j]. QRM

is the total charge on the six vertices of the honeycomb centered at RM . TRM
is a

hopping-like term where each term annihilates an electron at the vertex j and create an electron at the vertex j + 1 or j − 1.

The phase factor associated with the hopping is eiηϑ if j = 1, 3, 5 and is −e− jηϑ if j = 2, 4, 6. κ is a factor determining the

strength of the hopping-like term and is estimated as 0.16 in Ref. [71]. (κ is originally denoted as α1 in Ref. [71]. We changed

the notation to avoid confusion with the α1(k, q + G) function [Eq. (C23)] in this paper.) We can write ORM
as

ORM
=

∑

η,s

∑

j∈�

1

3
c

†
RM+dM, j−tM,[ j],[ j],η,s

cRM+dM, j−tM,[ j],[ j],η,s

+ κ
(
(−1) j−1ei(−1) j−1ηϑc

†
RM+dM, j+1−tM,[ j+1],[ j+1],η,s

cRM+dM, j−tM,[ j],[ j],η,s + H.c.
)
. (F20)

Now we apply the transformation

ORM
=

1

NM

∑

q

e−iq·RM Oq (F21)

such that the interaction can be written as our interaction form (already present in Vafek and Kang)

HI =
V0

2NM

∑

q

O−qOq. (F22)
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We transform the three terms, i.e., the QRM
term, the first term in TRM

term, and the second term in TRM
, in ORM

one by one. First,

we have

O1
q =

1

NM

∑

RM

eiRM ·qO1
RM

=
1

3NM

∑

RM

eiRM ·q
∑

η,s

∑

j∈�

c
†
RM+dM, j−tM,[ j],[ j],η,scRM+dM, j−tM,[ j],[ j],η,s

=
1

3NM

∑

RM

eiRM ·q
∑

η,s

∑

j∈�

∑

pk

e−i(RM+dM, j−tM,[ j] )·pei(RM+dM, j−tM,[ j] )·kc
†
p,[ j],η,sck,[ j],η,s

=
1

3

∑

ηs

∑

j∈�

∑

k

c
†
k+q,[ j],η,s

ck,[ j],η,s =
∑

µηs

∑

k

c
†
k+q,µ,η,s

ck,µ,η,s. (F23)

Second, we have

O2
q =

κ

NM

∑

RM

eiRM ·q
∑

η,s

∑

j∈�

(−1) j−1ei(−1) j−1ηϑc
†
RM+dM, j+1−tM,[ j+1],[ j+1],η,s

cRM+dM, j−tM,[ j],[ j],η,s

=
κ

NM

∑

RM

eiRM ·q
∑

η,s

∑

j∈�

(−1) j−1ei(−1) j−1ηϑ
∑

pk

e−i(RM+dM, j+1−tM,[ j+1] )·pei(RM+dM, j−tM,[ j] )·kc
†
p,[ j+1],η,sck,[ j],η,s

= κ
∑

η,s

∑

j∈�

(−1) j−1ei(−1) j−1ηϑ
∑

k

e−i(dM, j+1−tM,[ j+1] )·(k+q)ei(dM, j−tM,[ j] )·kc
†
k+q,[ j+1],η,s

ck,[ j],η,s. (F24)

We split the summation
∑

j∈� into
∑

j=1,3,5 and
∑

j=2,4,6, and then

O2
q = κ

∑

η,s

∑

j=1,3,5

eiηϑ
∑

k

ei(−dM, j+1+tM,2 )·qei(dM, j−tM,1−dM, j+1+tM,2 )·kc
†
k+q,2,η,sck,1,η,s

− κ
∑

η,s

∑

j=2,4,6

e−iηϑ
∑

k

ei(−dM, j+1+tM,1 )·qei(dM, j−tM,2−dM, j+1+tM,1 )·kc
†
k+q,1,η,s

ck,2,η,s. (F25)

Since tM,1 = −tM,2 and dM, j+3 = −dM, j , the phase factors of the second term are the complex conjugations of those of the first

term, and thus we can rewrite O2
q as

O2
q = κ

∑

ηs

∑

k

eiηϑω(k, q)c†
k+q,2,η,s

ck,1,η,s − e−iηϑω∗(k, q)c†
k+q,1,η,s

ck,2,η,s (F26)

with

ω(k, q) =
∑

j=1,3,5

ei(−dM, j+1+tM,2 )·qei(dM, j−tM,1−dM, j+1+tM,2 )·k. (F27)

Now we list all the involved vectors in the phase factors (tM,1 = dM,1, tM,2 = dM,4):

j = 1, −dM, j+1 + dM,4 = −aM2, dM, j − dM,1 − dM, j+1 + dM,4 = −aM2, (F28)

j = 3, −dM, j+1 + dM,4 = 0, dM, j − dM,1 − dM, j+1 + dM,4 = −aM1 − aM2, (F29)

j = 5, −dM, j+1 + dM,4 = −ã1 − aM2, d j − d1 − dM, j+1 + dM,4 = −aM1 − 2aM2. (F30)

Thus, we have

ω(k, q) = e−iaM2·qe−iaM2·k + e−i(aM1+aM2 )·k + e−i(aM1+aM2 )·qei(aM1−2aM2 )·k. (F31)

Since the third term in ORM
is the Hermitian conjugation of the second term, we have

O3
q = Q

2†
−q = κ

∑

ηs

∑

k

(
−eiηϑω(k,−q)c†

k,2,η,s
ck−q,1,η,s + e−iηϑω∗(k,−q)c†

k,1,η,s
ck−q,2,η,s

)

= κ
∑

ηs

∑

k

(
−eiηϑω(k + q,−q)c†

k+q,2,η,s
ck,1,η,s + e−iηϑω∗(k + q,−q)c†

k+q,1,η,s
ck,2,η,s

)
. (F32)

We define

β(k, q) = ω(k, q) − ω(k + q,−q). (F33)
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Thus, O2
q + O3

q can be written as

O2
q + O3

q =
∑

ηs

∑

k

eiηϑβ(k, q)c†
k+q,2,η,s

ck,1,η,s − e−iηϑβ∗(k, q)c†
k+q,1,η,s

ck,2,η,s. (F34)

Now we write the total Oq operator as

Oq =
∑

ηs

∑

k

Mη
µ,ν (k, q)c†

k+q,µ,η,s
ck,ν,η,s, (F35)

where M is

Mη(k, q) = γ 0 − iκγ yRe[eiηϑβ(k, q)] + iκγ xIm[eiηϑβ(k, q)]. (F36)

We can also express M as a 4 × 4 matrix (in the sublattice and valley spaces) as

M(k, q) =γ 0τ 0 − iκγ yRe[(cos ϑτ 0 + i sin ϑτ z )β(k, q)] + iκγ xIm[(cos ϑτ 0 + i sin ϑτ z )β(k, q)]

=γ 0τ 0 − iκγ yτ 0Re[cos ϑβ(k, q)] + iκγ xτ 0Im[cos ϑβ(k, q)] + iκγ yτ zIm[sin ϑβ(k, q)] + iκγ xτ zRe[sin ϑβ(k, q)].

(F37)

With this, we have brought the Kang-Vafek interaction to the same form as our momentum-space interactions.

3. The Kang-Vafek U(4) symmetry

It is obvious that the Kang-Vafek interaction have spin-valley U(2)×U(2) symmetry, whose generators are

γ 0τ 0sa, γ 0τ zsa, a = 0, x, y, z. (F38)

Now we show that it indeed has a U(4) symmetry. Our proof is the momentum-space version of the original proof [71]. We

introduce two matrices

�x = γ xτ 0 cos ϑ + γ yτ z sin ϑ, �y = −γ xτ z sin ϑ + γ yτ 0 cos ϑ, (F39)

and rewrite the M matrix as

M(k, q) = γ 0τ 0 + iκ�xIm[β(k, q)] + iκ�yRe[β(k, q)]. (F40)

One can verify that {�x, �y} = 0. We then apply a k-independent gauge transformation ei ϑ
2
γ zτ z

such that ei ϑ
2
γ zτ z

�xe−i ϑ
2
γ zτ z =

γ xτ 0 and ei ϑ
2
γ zτ z

�ye−i ϑ
2
γ zτ z = γ yτ 0. After the transformation, M becomes

M(k, q) = γ 0τ 0 + iκγ xτ 0Im[β(k, q)] − iκγ yτ 0Re[β(k, q)]. (F41)

Therefore, the M matrix is invariant under the U(4) generators

γ 0τ asb, a, b = 0, x, y, z. (F42)

This gauge transformation seems equivalent to setting ϑ = 0 [71]. However, after the gauge transformation, the sewing matrices

might change.

4. Relation between Kang-Vafek U(4) and the C2zP-implied U(4) symmetry

Let us first fix the C2zP gauge of the Wannier functions. According to Eq. (A20), we have

(C2zP)2 = 1, [C3z,C2zP] = 0, [C2y,C2zP] = 0, {T,C2zP} = 0, (F43)

and hence

[BC2zP(k)]2 = 1, BC3z (k)BC2zP(k) = BC2zP(C3zk)BC3z (k), (F44)

BC2y (k)BC2zP(k) = BC2zP(C2yk)BC2y (k), BT (k)BC2zP∗(k) = −BC2zP(−k)BT (k). (F45)

Since both T and C2zT P (the charge conjugation) are local in

real space, as shown in Appendix C 4, C2zP must also be a

local operator in real space. Thus, we want C2zP to be local

in the Wannier representation. However, this is incompatible

with the crystalline and time-reversal symmetries. In order to

be local in the Wannier representation, C2zP must leave the

center of each Wannier function invariant and hence will be

k independent. Since C2zP does not change the sublattice,

the sewing matrix BC2zP(k) should be diagonal in the sublat-

tice index and thus does not contain γ x,y terms. Since C2zP

changes valley, it must not contain τ 0 and τ z. Thus, BC2zP

can only have four possible terms: γ 0,zτ x,y. All the four terms

commute with BC3z (k), which only contains the terms γ 0,zτ 0.

In order to commute with BC2y (k) (γ xτ x), only γ 0τ x and γ zτ y
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are possible. However, both commute with T = τ xK , whereas

Eq. (F43) shows that C2zP anticommutes with T . Thus, a local

representation of C2zP is not compatible with the C3z,C2y, T

symmetries. In other words, C2zP in the Wannier representa-

tion that respects C3z,C2y, T symmetries must be nonlocal.

The above analysis leads to two conclusions: (i) Our

charge-conjugation symmetry must be nonlocal in the Kang-

Vafek Wannier representation, and (ii) Kang and Vafek U(4)

symmetry, which is local in the Wannier representation, is

not equivalent to the C2zP-implied U(4) symmetry, which is

nonlocal in their Wannier representation.

5. Kang-Vafek U(4) as our U(4) chiral-nonflat limit symmetry

We now ask: Is the Kang and Vafek U(4) consistent with

our U(4) implied by the C2zPC? We assume that the Kang

and Vafek model (at least approximately) preserves the C2zPC

symmetry. Here C is the chiral symmetry:

D(C)h(k)D−1(C) = −h(k), D(C)Q,α;Q′,α′ = δQ,Q′σ z
αα′ ,

C2 = 1. (F46)

Commutations between C and T,C3z,C2y,C2zP are

[T,C] = 0, [C3z,C] = 0, [C2y,C] = 0, {C,C2zP} = 0.

(F47)

Thus, we have

(C2zPC)2 = −1, [C3z,C2zPC] = 0, [C2y,

C2zPC] = 0, {T,C2zPC} = 0, (F48)

and hence

[BC2zPC (k)]2 = −1,

BC3z (k)BC2zPC (k) = BC2zPC (C3zk)BC3z (k), (F49)

BC2y (k)BC2zPC (k) = BC2zPC (C2yk)BC2y (k),

BT (k)BC2zPC∗(k) = −BC2zPC (−k)BT (k). (F50)

We try to find a k-independent solution, which means C2zPC

is local in the Wannier representation. Since C2zPC preserves

the sublattice (local) and changes valley, BC2zPC can only have

four terms iγ 0,zτ x,y, each of which squares to −1. All the

four terms commute with C3z (γ 0,z). Two terms commute with

C2y (γ xτ x): iγ 0τ x, iγ zτ y, and the two terms also anticommute

with T . Therefore, there are two solutions of BC2zPC :

BC2zPC(1) = iγ 0τ x, BC2zPC(2) = iγ zτ y. (F51)

If we can understand M [Eq. (F36)] as the inner product of

periodic part of Bloch wave functions, i.e.,

Mη
µν (k, q) ∼

√
V (q)〈uk+q,µ,η|uk,ν,η〉, (F52)

then M must commute with BC2zPC . Applying BC2zPC(1) and

BC2zPC(2) to Eq. (F37), we obtain ϑ = 0, π and ϑ = ±π
2

, re-

spectively. For ϑ = 0, π , the U(4) generators are

γ 0τ asb, a, b = 0, x, y, z; (F53)

for ϑ = ±π
2

, the U(4) generators are

γ zτ x,ysa, γ 0τ 0,zsa, a = 0, x, y, z. (F54)

Now we show that the two representations Eqs. (F53)

and (F54) are equivalent. Under the gauge transformation

(
τ 0 0

0 iτ z ), Eq. (F54) becomes Eq. (F53) and BC3z , BC2y , BT

remain unchanged.

We summarize: (i) The C2zPC can be chosen as local in

the Wannier representation. (ii) If Kang and Vafek’s model

does not have an exact C2zPC symmetry (which remains to

be checked), then, if we continuously recover the C2zPC sym-

metry, their U(4) continuously changes to our U(4) implied

by the C2zPC symmetry; this U(4) is implied by the chiral,

nonflat limit. Hence, we conjecture that the Kang and Vafek

U(4) is also invariant to the addition of some kinetic terms.

(iii) The U(4) symmetry implied by C2zPC is also local in the

Wannier representation because the U(2)×U(2) part is already

local, and the additional generator is just the C2zPC operation.

If we impose the CC2zP symmetry to the Kang and Vafek’s

tight-binding model, their U(4) symmetry would become the

chiral-nonflat U(4) symmetry, since the two U(4) symmetries

share the same generators τ asb (a, b = 0, x, y, z).
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