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Twisted bilayer graphene. V. Exact analytic many-body excitations in Coulomb Hamiltonians:

Charge gap, Goldstone modes, and absence of Cooper pairing

B. Andrei Bernevig,1,* Biao Lian,1 Aditya Cowsik,1 Fang Xie,1 Nicolas Regnault,1,2 and Zhi-Da Song 1,†

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Laboratoire de Physique de l’Ecole normale superieure, ENS, Université PSL, CNRS, Sorbonne Université,

Université Paris-Diderot, Sorbonne Paris Cité, Paris, France

(Received 28 October 2020; revised 15 April 2021; accepted 16 April 2021; published 11 May 2021)

We find exact analytic expressions for the energies and wave functions of the charged and neutral excitations

above the exact ground states (at rational filling per unit cell) of projected Coulomb Hamiltonians in twisted

bilayer graphene. Our exact expressions are valid for any form of the Coulomb interaction and any form of

AA and AB/BA tunneling. The single charge excitation energy is a convolution of the Coulomb potential with

a quantum geometric tensor of the TBG bands. The neutral excitations are (high-symmetry group) magnons,

and their dispersion is analytically calculated in terms of the form factors of the active bands in TBG. The

two-charge excitation energy and wave functions are also obtained, and a sufficient condition on the graphene

eigenstates for obtaining a Cooper pair from Coulomb interactions is obtained. For the actual TBG bands at the

first magic angle, we can analytically show that the Cooper pair binding energy is zero in all such projected

Coulomb models, implying that either phonons and/or nonzero kinetic energy are needed for superconductivity.

Since Vafek and Kang [Phys. Rev. Lett. 125, 257602 (2020)] showed that the kinetic energy bounds on the

superexchange energy are less 10−3 in Coulomb units, the phonon mechanism becomes then very likely. If

nonetheless the superconductivity is due to kinetic terms which render the bands nonflat, one prediction of our

theory is that the highest Tc would not occur at the highest DOS.
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I. INTRODUCTION

The rich physics of the experimentally observed insulat-
ing states in magic angle twisted bilayer graphene (TBG) at
integer number of electrons per unit cell and the superconduct-
ing phase with finite doping above the insulating states has
attracted considerable interest [1–111]. The single-particle
picture predicts a gapless metallic state at electron number
±(3, 2, 1), and hence the insulating states have to follow
from many-body interactions. The initial observations of the
insulating states [2–5] were then followed by the experimental
discovery by both scanning tunneling microscope [20,21] and
transport [6,11,22–25] that these states might exhibit Chern
numbers, even when the TBG substrate is not aligned with
hBN, which would indicate a many-body origin of the Chern
insulator.

These remarkable experimental advances have been fol-
lowed by extensive theoretical efforts aimed at their expla-
nation [51–104]. Using a strong-coupling approach where
the interaction is projected into a Wannier basis, Kang and
Vafek [71] constructed a special Coulomb Hamiltonian, of an
enhanced symmetry, where the ground state (of Chern number
0) at ±2 electrons per unit cell can be exactly obtained (with
rather weak assumptions). In Ref. [110], we have showed
that the type of Kang-Vafek type Hamiltonians [71] (hereby
called positive semidefinite Hamiltonians - PSDH) are actu-
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ally generic in projected Hamiltonians, and that the presence
of extra symmetries [38,63,71] renders some Slater determi-
nant states to be exact eigenstates of PSDH. We found at zero
filling, these states are the ground states of PSDH. At nonzero
integer filling, these states are the ground states of the PSDH
under weak assumptions (first considered by Kang and Vafek
[71]). With a unitary particle-hole (PH) symmetry first derived
in Ref. [43], the PSDH projected to the active bands has
enhanced U(4) (in all the parameter space) and U(4) × U(4)
(in a certain, first chiral limit) symmetries first mentioned in
Refs. [71–73]. We showed [109,110] that these symmetries
are valid for PSDHs of TBG irrespective of the number of
projected bands. We also found that, for two projected bands
in the first chiral limit (a second chiral limit, of U(4) × U(4)
defined in Ref. [109] was also found), ground states of dif-
ferent Chern numbers are exactly degenerate [110]. These
ground states are all variants of U(4) ferromagnets (FM) in
valley/spin. When kinetic energy is added or away from the
chiral limit, the lowest/highest Chern number becomes the
ground state in low/high magnetic field, which explains/is
consistent with experimental findings [6,11,20–25].

In this paper, we show that the Kang-Vafek type of
PSDH also allow, remarkably, for an exact expression of
the charge ±1 excitation (relevant for transport gaps) energy
and eigenstate, neutral excitation (relevant for the Goldstone
and thermal transport), and charge ±2 excitation (relevant
for possible Cooper pair binding energy). We show that the
charge excitation dispersion is fully governed by a gener-
alized “quantum geometric tensor” of the projected bands,
convoluted with the Coulomb interaction. The smallest charge
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1 excitation gap is at the ŴM point. The neutral, and charge ±2
excitation, on top of every FM ground state can also be ob-
tained as a single-particle diagonalization problem, despite
the state having a thermodynamic number of particles. The
neutral excitation has an exact zero mode, which we iden-
tify with the FM U(4)-spin wave, and whose low-momentum
dispersion (velocity) can be computed exactly. The charge
±2 excitations allows for a simple check of the Richardson
criterion [112–115] of superconductivity: we check if states
appear below the noninteracting two-particle continuum. We
find a sufficient criterion for the appearance/lack of Cooper
binding energy in these type of PSDH Hamiltonian systems
based on the eigenvalues of the generalized “quantum ge-
ometric tensor.” We analytically show that, generically, the
projected Coulomb Hamiltonians cannot exhibit Cooper pair-
ing binding energy. As such, this implies that either phonons
or nonzero kinetic energy are needed for superconductivity.
Since the Ref. [103] showed that the kinetic energy bounds
on the superexchange energy are less 10−3 in Coulomb units,
the phonon mechanism becomes becomes likely. If however,
experimentally, the kinetic energy is stronger, a Coulomb
mechanism for superconductivity is still possible. Since we
proved that flat bands cannot Cooper pair under Coulomb, a
prediction of a Coulomb with nonflat bands mechanism for
superconductivity would be that the highest superconducting
temperature does not happen at the point of highest density
of states DOS. This is in agreement with recent experimental
data [25].

II. THE POSITIVE SEMIDEFINITE HAMILTONIAN

AND ITS GROUND STATES

We generically consider the TBG system with a Coulomb
interaction Hamiltonian projected to the active eight lowest
bands (2 per spin-valley flavor) obtained by diagonalizing the
single-particle Bistritzer-MacDonald (BM) [1] TBG Hamil-
tonian (see Appendix A 1 for a brief review, and more detail
in Refs. [107,108]). The projected single-particle Hamiltonian
reads

H0 =
∑

n=±1

∑

kηs

ǫn,η(k)c†
k,n,η,s

ck,n,η,s, (1)

where we define η = ± for graphene valleys K and K ′, s =
↑,↓ for electron spin, and n = ±1 for the lowest conduc-
tion/valence bands in each spin-valley flavor. c

†
k,n,η,s

is the
electron creation operator of energy band n, with the origin
of k chosen at Ŵ point of the moiré Brillouin zone (MBZ).

The density-density Coulomb interaction, when projected
into the active bands of Eq. (1), always takes the form of
a positive semidefinite Hamiltonian (PSDH) (see proof in
Ref. [109], see also brief review in Appendix A 2):

HI =
1

2�tot

∑

G

∑

q∈MBZ

Oq,GO−q,−G, (2)

where �tot is the sample area, and G runs over all vectors in
the (triangular) moiré reciprocal lattice Q0. This Hamiltonian
is of a same positive semidefinite form as that Kang and
Vafek [71] obtained by projecting the Coulomb interaction
into the Wannier basis of the active bands. In this work,
we will omit the kinetic energy. Due Ref. [110], the energy

splitting between the degenerate ground states of Eq. (2) is
smaller than 0.1meV per electron. As shown in the rest of
this work, the characteristic energy of charged and neutral
excitations is about 10 meV. Thus it is safe to neglect the
kinetic energy for most of the excitations. But some of the
U(4) Goldstone modes might be opened a small gap due to the
kinetic energy. We leave this effect of kinetic energy to future
studies.

The Oq,G operator takes the form

Oq,G =
∑

k,m,n,η,s

√
V (G + q)M (η)

m,n(k, q + G)

×
(

ρ
η

k,q,m,n,s −
1

2
δq,0δm,n

)
, (3)

where V (q) is the Fourier transform of the Coulomb inter-
action, ρ

η

k,q,m,n,s
= c

†
k+q,m,η,s

ck,n,η,s is the density operator in

band basis, and the − 1
2
δq,0δm,n factor is a chemical potential

added to respect many-body charge conjugation symmetry
(see Appendix A 2 a and Ref. [109]). For theoretical deriva-
tions, we shall keep V (q) general except that we assume
V (q) � 0 and only depends on q = |q|; although for numer-
ical calculations we will take V (q) = 2πe2ξ tanh(qξ/2)/ǫq

for dielectric constant ǫ(∼6) and screening length ξ (∼10 nm)
(see Appendix A 2). In particular, O−q,−G = O

†
q,G, and thus

HI in Eq. (2) is a PSDH. An important quantity in Eq. (3)
for our many-body Hamiltonian are the form factors, or the
overlap matrices, of a set of bands m, n (Appendix A 2 a)

M (η)
m,n(k, q + G) =

∑

αQ

u∗
Q−G,α;mη(k + q)uQ,α;nη(k), (4)

where uQα;nη is the Bloch wave function of band n and valley
η (here α = A, B denotes the microscopic graphene sublat-
tices, and Q are sites of a honeycomb momentum lattice with
definition in Appendix A 1, see also Ref. [107] for details). A
nonzero Berry phase of the projected bands renders the spectra
of the PSDH Eq. (2) not analytically solvable: the Oq,G’s
at different q, G generically do not commute (unless in the
stabilizer code limit discussed in Refs. [109,110]), and hence
the PSDH is not solvable. The properties of the PSDH Eq. (2)
depend on the quantitative and qualitative (symmetries) prop-
erties of the form factors in Eq. (4), which are detailed in
Refs. [107–109] and briefly reviewed in Appendix A 2 a.
First, in Ref. [107], we showed that M (η)

m,n(k, q + G) falls
off exponentially with |G|, and can be neglected for |G| >√

3kθ , where kθ = 2|K| sin(θ/2) is the distance between the
K points of two graphene sheets. Furthermore, we showed in
Refs. [108,109] that by gauge fixing the C2z, T , and unitary
particle-hole symmetry P [43], the form factors can be rewrit-
ten into a matrix form in the n, η basis as [see Eq. (A11)]

M (η)
mn (k, q + G) =

3∑

j=0

(M j )m,η;n,ηα j (k, q + G), (5)

where M0 = ζ 0τ 0, M1 = ζ xτ z, M2 = iζ yτ 0, and M3 =
ζ zτ z, and α j (k, q + G) are real scalar functions satisfying
[Eqs. (A12) and (A13) in Appendix A 3].

A further simplification [72] happens in a region of the
parameter space where the AA interlayer coupling w0 = 0
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[72], which is called the (first) chiral limit [37] (a similar
simplification occurs in a second chiral limit [109]). In this
limit there is another chiral symmetry C anticommuting with
the single-particle Hamiltonian, which further imposes the
constraints α1(k, q + G) = α3(k, q + G) = 0 (see Ref. [110]
and Appendix A 3). The first chiral limit also allows for the
presence of a Chern band basis in which bands of Chern
number eY = ±1 are created by the operators

d
†
k,eY ,η,s

=
1

√
2

(c†
k,+,η,s

+ ieY c
†
k,−,η,s

), (6)

In Ref. [108], we detail the gauge-fixing for this basis. The
Chern basis is also discussed in Refs. [72,74,108]. The form
factors under the Chern basis take the simple diagonal form

M (η)
eY

(k, q + G) = α0(k, q + G) + ieY α2(k, q + G). (7)

The symmetries of the projected Hamiltonian in the
nonchiral (w0,w1 	= 0) and two chiral w0 = 0 or w1 = 0
limits are important. We will use the matrices ζ a, τ a, sa

with a = 0, x, y, z as identity and x, y, z Pauli matrices in
(particle-hole related) band, valley and spin-space respec-
tively. In Ref. [109] (short review in Appendix A 2 c), we have
showed that the PSDH has a U(4) symmetry in the nonchiral
limit (with single-particle representations of generators sab =
{ζ yτ ysa, ζ yτ xsa, ζ 0τ 0sa, ζ 0τ zsa} with a, b = 0, x, y, z in the
energy band basis c

†
k,+,η,s), and a U(4) × U(4) symmetry in

the two chiral-flat limits (with single-particle representations
of generators sab

± = (1 ± eY )τ asb/2 in the Chern band basis

d
†
k,eY ,η,s

[108], Appendix A 2 b), mirroring the results obtained
by Refs. [42,71–73] for projection into the two active bands.
We note that in Ref. [109] we showed these symmetries
hold for any number of PH symmetric projected bands. In
Appendixes A 2 c and A 2 e, we provide a summary of these
detailed results. Adding the kinetic term in the first chiral
limit breaks the U(4) × U(4) symmetry of the projected in-
teraction to a U(4) subset(with generators s̃ab = ζ 0τ asb in
the energy band basis, (a, b = 0, x, y, z)). The symmetries we
found in the first chiral and nonchiral limits agrees with that
in Ref. [72], and the relation between our U(4) symmetry
generators and those of Kang and Vafek [71] are given in
Ref. [109]. We will restrict our study within the nonchiral-flat
limit and first chiral-flat limit in this paper. Thus, without
ambiguity, we will simply call the first chiral limit the “chiral
limit.”

With these symmetries, in the nonchiral-flat limit (where
the projected kinetic Hamiltonian H0 = 0), one can write
down exact eigenstates of the PSDH Eq. (2), which we
have analyzed in full detail in Ref. [110] and review in Ap-
pendix A 3 b. In the nonchiral limit, Oq,G is diagonal in η

and s, and filling both n = ± bands of any valley/spin gives a
Chern number 0 eigenstate for all even fillings ν = 0,±2,±4
(along with any U(4) rotation) [110]:

|�ν〉 =
∏

k

(
(ν+4)/2∏

j=1

c
†
k,+,η j ,s j

c
†
k,−,η j ,s j

)
|0〉, (8)

where {η j, s j} are distinct valley-spin flavors which are fully
occupied. They form the [(2NM )(ν+4)/2]4 irreducible represen-
tation (irrep) of the nonchiral-flat limit U(4) symmetry group,
where [λp]4 is short for the Young tableau notation [λ, λ, · · · ]4

with 0 � p � 4 identical rows of length λ (see Ref. [110]
for a brief review). With M (η)

m,n(k, q + G) in Eq. (A11), we
have that the state |�ν〉 is an eigenstate of Oq,G satisfying
Oq,G|�ν〉 = δq0NMAG|�ν〉, where AG is given by [Eq. (A34)]

AG = ν

√
V (G)

NM

∑

k

α0(k, G), (9)

where NM is the total number of moiré unit cells. For ν = 0,
the state Eq. (8) is always a ground state as it is annihilated by
Oq,G [110].

In the first chiral-flat limit (where H0 = 0 and w0 = 0), the
projected Hamiltonian Eq. (2) has as eigenstates, the filled

band wave functions [110] (see Appendix A 3 a for brief re-
view):

∣∣�ν+,ν−
ν

〉
=

∏

k

(
ν+∏

j1=1

d
†
k,+1,η j1

,s j1

ν−∏

j2=1

d
†
k,−1,η j2

,s j2

)
|0〉, (10)

where ν+ − ν− = νC is the total Chern number of the state
and ν+ + ν− = ν + 4 (0 � ν± � 4) is the total number of
electrons per moiré unit cell in the projected bands, k runs
over the entire MBZ and the occupied spin/valley indices
{η j1 , s j1} and {η j2 , s j2} can be arbitrarily chosen. Moreover,
these eigenstates of Eq. (2) are also eigenstates of Oq,G in
Eq. (3), satisfying Oq,G|�ν+,ν−

ν 〉 = δq0NMAG|�ν+,ν−
ν 〉, where

AG is still given by Eq. (9). They form the ([N
ν+
M ]4, [N

ν−
M ]4) ir-

rep of U(4) × U(4) (Young tableaux notation, see Ref. [110]).
For a fixed integer filling factor ν, we found that the states
with different Chern numbers νC are all degenerate in the
chiral-flat limit [110]. In particular, at charge neutrality ν =
0, the U(4) × U(4) multiplet of |�ν+,ν−

0 〉 with Chern num-
ber νC = ν+ − ν− = 0,±2,±4 are exact degenerate ground
states. At nonzero fillings ν, we cannot guarantee that the
ν 	= 0 eigenstates are the ground states.

In Ref. [110], we found that under a weak condition, the
eigenstates Eqs. (8) and (10) become the ground states of HI

for all integer fillings −4 � ν � 4 (ν even in Eq. 8). If the q =
0 component of the form factor M (η)

m,n(k, G) is independent of
k for all G’s, i.e.,

flat metric condition: M (η)
m,n(k, G) = ξ (G)δm,n, (11)

then all the states in Eqs. (8) and (10) become ground
states of HI by an operator shift [Eq. (A29)] [71,109,110]
(see Appendixs A 3 b and A 3 a). We noted in Ref. [107]
that this flat metric condition is always true for G = 0, for
which M (η)

m,n(k, 0) = δmn from wave-function normalization.
In Ref. [107] we have shown that, around the first magic
angle, M (η)

m,n(k, G) ≈ 0 for |G| >
√

3kθ for i = 1, 2. Hence,
the condition Eq. (11) is valid for all G with the exception
of the 6 smallest nonzero G satisfying |G| =

√
3kθ . Hence,

the condition is largely valid, and our numerical analysis
[107] confirms its validity for k in a large part of the MBZ.
The idea to impose a similar condition as Eq. (11) first used
by Kang and Vafek [71] to find the ν = ±2 ground state
for their PSDH. Due to a slightly different U(4) symmetry,
our U(4) FM states are different, but overlap with the Kang
and Vafek ones in the chiral limit, as discussed in detail in
Refs. [109,110].
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We note that for ν 	= 0, the states in Eqs. (8) and (10)
still remain the exact ground states if the flat metric condition
Eq. (11) is not violated too much [110,111]. This is because
they correspond to gapped insulator eigenstates [110,111]
when condition Eq. (11) is satisfied, and the flat metric condi-
tion Eq. (11) has to be largely broken to bring down another
state into the ground state. From now on, we “call” Eqs. (8)
and (10) ground states of the system.

Remarkably, as we will show in the rest of our paper below,
one can analytically find a large series of excitations above the
ground states Eqs. (8) and (10).

Our excitations will be build out of acting with the band
creation and annihilation operators on the ground states in
Eqs. (8) and (10). We first need to compute the commutators
in the nonchiral Hamiltonian (see Appendix B, in particular,
Appendix B 1)

[Oq,G, c
†
k,n,η,s

] =
∑

m

√
V (G + q)M (η)

m,n(k, q + G)c†
k+q,m,η,s

,

[Oq,G, ck,n,η,s] = −
∑

m

√
V (G + q)M (η)∗

m,n

× (k,−q − G)ck−q,m,η,s, (12)

where we have used the property M (η)∗
m,n (k,−q − G) =

M (η)
n,m(k − q, q + G) [109]. In the chiral limit, the same op-

erators read in the Chern basis (see Appendix B 2)

[Oq,G, d
†
k,eY ,η,s

] =
√

V (G + q)MeY
(k, q + G)d†

k+q,eY ,η,s
,

[Oq,G, dk,eY ,η,s] = −
√

V (G + q)M∗
eY

(k,−q − G)dk−q,eY ,η,s.

(13)

From these equations, we can obtain the commutators of
O−q,−GOq,G with the band electron creation operators in the
nonchiral case as

[O−q,−GOq,G, c
†
k,n,η,s]

=
∑

m

P(η)
mn (k, q + G)c†

k,m,η,s

+
√

V (G + q)
∑

m

(
M (η)

m,n(k, q + G)c†
k+q,m,η,s

O−q,−G

+
∑

m

M (η)
m,n(k,−q − G)c†

k−q,m,η,s
Oq,G

)
(14)

and in the first chiral limit in Chern basis as

[O−q,−GOq,G, d
†
k,eY ,η,s

]

= P(k, q + G)d†
k,eY ,η,s

+
√

V (G + q)(MeY
(k, q + G)d†

k+q,eY ,η,s
O−q,−G

+ MeY
(k,−q − G)d†

k−q,eY ,η,s
Oq,G), (15)

respectively. Similar relations for [O−q,−GOq,G, ck,n,η,s]
and [O−q,−GOq,G, dk,eY ,η,s], where M (η)(k, q + G) →
M (η)∗(k,−q − G), are derived in Appendix B. The matrix
factor P is the convolution of the Coulomb potential and the
form factor matrices. In the nonchiral case, P is a matrix
given by

P(η)
mn (k, q + G) = V (G + q)(M (η)†M (η))mn(k, q + G). (16)

In the first chiral limit, it is a number independent on eY :

P(k, q + G)) = V (G + q)|MeY
(k, q + G)|2

= V (G + q)
(
α2

0 (k, q + G) + α2
2 (k, q + G)

)
,

(17)

where α0(k, q + G) and α2(k, q + G) are the decomposition
of the form factors in Eq. (7). The above commutators and
the existence of exact eigenstates Eqs. (10) and (8), which are
ground states with the flat metric condition Eq. (11), allow
for the computation of part of the low energy excitations
with polynomial efficiency. We now show the summary of
the computation for the bands of charge +1, +2 and neutral
excitations. The charge −1,−2 excitations can be found in
Appendixes C 3 and E 4, respectively.

III. CHARGE ±1 EXCITATIONS

A. Method to obtain the ±1 excitation spectrum

To find the charge one excitations (adding an electron into
the system), we sum the commutators in Eq. (14) over q, G,
and use the fact that the ground states in Eqs. (8) and (10) sat-
isfy (Oq,G − AGNMδq,0)|�〉 = 0 for coefficient AG in Eq. (9)
in their corresponding limits. For any state |�〉 in Eqs. (8) and
(10), we find

[HI − µN, c
†
k,n,η,s]|�〉 =

1

2�tot

∑

m

Rη
mn(k)c†

k,m,η,s|�〉, (18)

where N is the electron number operator, and the matrix

Rη
mn(k) =

∑

Gqm′

V (G + q)M
(η)∗
m′m (k, q + G)M

(η)
m′n(k, q + G)

+
∑

G

2NMA−G

√
V (G)M (η)

m,n(k, G) − µδmn. (19)

We hence see that, if |�〉 is one of the |�ν+,ν−
ν 〉 Eq. (10) or one

of the |�ν〉 Eq. (8) eigenstates of HI , then c
†
k,m,η,s

|�〉 can be
recombined as eigenstates of HI with eigenvalues obtained by
diagonalizing the 2 × 2 matrix Rη

mn(k).
In the nonchiral case, the eigenstates |�ν〉 we found in

Ref. [110] (and re-written in Eq. (8)) have both active bands
n = ±1 in each valley η and spin s either fully occupied or
fully empty.

In this case, we can consider two charge +1 states
c

†
k,n,η,s

|�〉 (n = ±) at a fixed k in a fully empty valley η and
spin s. These two states then form a closed subspace with
a 2 × 2 subspace Hamiltonian Rη(k) defined by Eq. (19).
Diagonalizing the matrix Rη(k) then gives the excitation
eigenstates and excitation energies. Furthermore, at ν = 0,
the state |�ν=0〉 in Eq. (8) is the ground state of the inter-
action Hamiltonian HI regardless of the flat metric condition
Eq. (11), and hence c

†
k,n,η,s

|�ν=0〉 always gives the charge
excitation above the ground state.

If we further assume the flat band condition Eq. (11) (or
its violation is small enough), all eigenstates |�ν〉 become
exact ground states and the second row of Eq. (19) vanishes
(see Appendix C 1 a). Since the U(4) irrep of the ground state
|�ν〉 is [(2NM )(ν+4)/2]4, the U(4) irrep of the charge 1 excited
state is given by [(2NM )(ν+4)/2, 1]4. A similar equation for the
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FIG. 1. Exact charge ±1 excitations given by the simplified ex-

citation matrix [Eq. (20)] for three different w0/w1 at the twist angle

θ = 1.05◦. Here we change w0 while keeping w1 = 110 meV fixed.

Other parameters are given in Appendix A. These excitations are

exact at the charge neutrality point (ν = 0) for generic state and are

exact at finite integer fillings if the flat metric condition is satisfied.

The charge +1 and −1 excitations are degenerate. The exact charge

±1 excitations obtained using the full excitation matrix [Eq. (19)]

without assuming the flat metric condition are given in Figs. 5 and 6

in Appendix C 4. The charge gap in those cases shrinks considerably.

charge −1 excitations is derived in in Appendix C 3, where
we denote the excitation matrix as R̃.

As explained in Appendix A 3, when the flat metric con-
dition is satisfied, the second term in Rη [Eq. (19)] can be
canceled by the chemical potential term (the third term), and
thus we obtain a simplified expression for Rη independent

of ν:

Rη
mn(k) =

∑

Gqm′

V (G + q)M
(η)∗
m′m (k, q + G)M

(η)
m′n(k, q + G).

(20)

It is worth noting that Eq. (20) is exact for ν = 0 even without
the flat metric condition Eq. (11), because the coefficient AG

[Eq. (9)] in the second term of Rη [Eq. (19)] and the chemical
potential in the third term of Rη vanish at ν = 0.

The simplified matrix R̃η for charge −1 excitation with
the flat metric condition Eq. (11) is the complex conjugation
of Rη, i.e.,R̃η

mn(k) = Rη∗
mn(k). This shows that, the charge −1

excitations are degenerate with the charge +1 excitations if
either ν = 0 or the flat metric condition Eq. (11) is satisfied.
The charge +1 excitation dispersion determined by Eq. (20)
(which does not depend on ν) is plotted in Fig. 1.

The parameters used in the calculation to obtain the spec-
trum are given in Appendix A. We find that, with the flat
metric condition imposed, the charge ±1 excitation (Fig. 1)
is gapped, and the minimum is at the Ŵ point, with a large dis-
persion velocity. The exact charge ±1 excitations at different
fillings obtained using the full Rη matrix [Eq. (19)] of realistic
parameters [which break the flat metric condition Eq. (11)] are
given in Figs. 5 and 6 in Appendix C 4.

The degeneracy of the excitation spectrum depends on the
filling ν of the ground state. In the nonchiral-flat U(4) limit,
Rη does not depend on spin, and R+, R− have the same
eigenvalues because they are related by the symmetry C2zP,
where P is a single-body unitary PH symmetry (App. A 2 a)
[43,108,109]. Thus charge +1 excitations in different valley-
spin flavors have the same energy. For the state |�ν〉 [Eq. (8)],

the +1 excitations in the empty (4 − ν)/2 spin-valley flavors
are degenerate. Correspondingly, −1 excitations in the occu-
pied (4 + ν)/2 spin-valley flavors are also degenerate.

In the (first) chiral-flat limit, and with the flat metric con-
dition Eq. (11) [or at ν = 0 without (11)], the expression for
the charged excitations in the Chern basis d

†
k,eY ,η,s|�

ν+,ν−
ν 〉 be-

comes diagonal and independent of eY [see Appendix C 2 for
the chiral-flat limit without the flat metric condition Eq. (11)]:

[
HI − µN, d

†
k,eY ,η,s

]
|�〉 =

1

2�tot

R0(k)d†
k,eY ,η,s

|�〉,

R0(k) =
∑

G,q

P(k, q + G), (21)

provided that the Chern band eY (= ±1) in valley η and spin s

is fully empty and P(k, q + G) given in Eq. (17). We obtain

R0(k) =
∑

G,q

V (G + q)[α0(k, q + G)2 + α2(k, q + G)2].

(22)
The spectrum at the magic angle is shown in Fig. 1. The
U(4) × U(4) irrep of the charge +1 excited states with
eY = 1 and eY = −1 are given by ([N

ν+
M , 1]4, [N

ν−
M ]4) and

([N
ν+
M ]4, [N

ν−
M , 1]4), respectively. The charge −1 excitation

details can be found in Appendix C 3.
Since in the chiral-flat limit the scattering matrix R0(k)

is identity in the eY space, the excitation has degeneracy in
addition to the valley-spin degeneracies. For a state in Eq. (10)
with filling ν, the charge +1 and −1 excitations have degen-
eracies 4 − ν and 4 + ν, respectively.

B. Bounds on the charge ±1 excitation gap

In this section, we will focus on the charge neutrality point
(ν = 0), where the second and third terms in Rη(k) [Eq. (19)]
vanish, and nonzero integer fillings ν = ±1,±2,±3 with the
flat metric condition Eq. (11) such that the second and third
terms in Rη(k) cancel each other. In these cases, Rη(k) is
a positive semidefinite matrix and hence has non-negative
eigenvalues. We are able to obtain some analytical bounds for
the gap of the ±1 excitation. Detail calculations are given in
Appendix C 1 b. Since charge ±1 excitations in this case are
degenerate, our conclusion below for charge +1 excitations
also apply to charge −1 excitations.

We rewrite the Rη(k) matrix as Rη
mn(k) =

(M (η)†(k)V M (η)(k))mn, where now M (η)(k) with given η

and k is a matrix of the dimension 2NM · NG × 2 (with 2
because we are projecting into the two active TBG bands).
NM is number of moiré unit cells, NG is the number of plane
waves (MBZs) taken into consideration. By separating the
{q, G} = 0 contribution, and using Weyl’s inequalities we
find in Appendix C 1 b that the energies of the excited states
are �

1
2
V (q = 0)/�tot. The bound 1

2
V (q = 0)/�tot is small

but nonzero for large but finite �tot. This shows that the states
c

†
k,n,η,s|�〉 are not exactly degenerate to the ground state |�〉

(note that we did not prove these are the unique ground states).
The excited states of the PSDH appears to give rise to

finite gap charge 1 excitations. The largest gap happens in
the atomic limit or a material, where 〈um(k + q)|un(k)〉 =
δmn, for which Rmn = δmn

∑
q,G V (q + G) = δmn�totV (r =

0). Hence the gap is 1
2
V (r = 0). Away from the atomic limit,
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the gap is reduced, but will generically remain finite. We now
give an argument for this. Since we know that TBG is far away
from an atomic limit—the bands being topological, we expect
a reduction in this gap. We perform a different decomposition
of the matrix Rη

mn: we separate it into G = 0 and G 	= 0
sums (see Appendix C 1 c). The G 	= 0 part, besides being
negligible for |G| �

√
3kθ [107], is also positive semidefinite,

and the eigenvalues of Rη
mn are bounded by (and close to) the

G = 0 part:

Rη
mn(k) �

∑

q

V (q)M
(η)∗
m′,m(k, q)M

(η)
m′,n(k, q), (23)

where q is summed over the MBZ, and the inequality means
that the eigenvalues of the left-hand side are equal to or larger
than the eigenvalues of the right-hand side. We then rewrite
the right-hand side as

∑
q V (q)(δmn − G

mn
η (k, q)), where we

call the positive semidefinite matrix G
mn(k, q) the generalized

“quantum geometric,” whose trace is the generalized Fubini-
Study metric. For small momentum transfer q, we can show
that Gmn(k, q) =

∑
i j qiq jG

mn
i j (k) + O(q3). where G

mn
i j (k) is

the conventional quantum geometric tensor (and the Fubini-
Study metric) [77,116] defined by

G
mn
i j (k) =

N∑

a,b=1

∂ki
u∗

a,m(k)

(
δa,b −

∑

l∈B

ua,l (k)u∗
b,l (k)

)

× ∂k j
ub,n(k), (24)

in which m, n ∈ B are energy band indices and i, j are spatial
direction indices of the orthonormal vectors um(k) in a N

dimensional Hilbert space, with k being the momentum (or
other parameter). The Gmn(k, q) tensor quantifies the distance
between two eigenstates in momentum space.

Generically, we expect [77] that the inner product between
two functions at k and k + q to fall off as q increases, leaving
a finite term in Rη

mn(k), the electron gap, at every k. In trivial
bands in the atomic limit, the positive semidefinite matrix
G

mn(k, q) reaches its theoretical lower bound 0 and hence the
charge 1 gap is maximal. In topological bands, such as TBG,
the quantum metric has a lower bound and hence the charge 1
gap is reduced.

IV. CHARGE NEUTRAL EXCITATIONS

A. Method to obtain charge neutral excitations

To obtain the charge neutral excitations, we choose the
natural basis c

†
k+p,m2,η2,s2

ck,m1,η1,s1
|�〉, where |�〉 is any of the

exact ground states and/or eigenstates in Eqs. (10) and (8)
and p is the momentum of the excited state. The scattering
matrix of these basis can be solved as easily as a one-body
problem, despite the fact that Eqs. (10) and (8) hold a ther-
modynamic number of electrons. The details are given in
Appendix D. For |�〉 being a state in Eq. (8), the scattering
of c

†
k+p,m2,η2,s2

ck,m1,η1,s1
|�〉 by the interaction is

[
HI − µN, c

†
k+p,m2,η2,s2

ck,m1,η1,s1

]
|�ν〉

=
1

2�tot

∑

m,m′

∑

q

S
(η2,η1 )
m,m′;m2,m1

(k + q, k; p)

× c
†
k+p+q,m,η2,s2

ck+q,m′,η1,s1
|�ν〉, (25)
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FIG. 2. Exact charge neutral excitations with the flat metric con-

dition being imposed for three different w0/w1 at the twist angle θ =
1.05◦. Here we change w0 while keeping w1 = 110meV fixed. Other

parameters are given in Appendix A. These excitations are exact at

the charge neutrality point (ν = 0) for generic states and are exact

at finite integer fillings if the flat metric condition is satisfied. The

exact charge neutral excitations at different fillings without imposing

flat metric condition are given in Figs. 7 and 8 in Appendix D 4.

Note the softening of further Goldstone modes from finite to zero

w0, reflecting the symmetry enhancement of the first chiral limit.

The continuum above the Goldstone modes is fundamentally made

of independent particle-hole excitations

S
(η2,η1 )
m,m′;m2,m1

(k + q, k; p)

= δq,0

(
δm,m2

R̃
η1

m′m1
(k) + δm′,m1

Rη2
mm2

(k + p)
)

− 2
∑

G

V (G + q)M (η2 )
m,m2

(k + p, q + G)M
(η1 )∗
m′,m1

× (k, q + G), (26)

where Rη
mn(k) (Eq. (19)) and R̃η

mn(k) are the charge ±1 ex-
citation matrices. A valley-spin flavor in |�ν〉 (Eq. (8)) is
either fully occupied or fully empty, thus {η1, s1} belongs
to the valley-spin flavors which are fully occupied, while
{η2, s2} belongs to the valley-spin flavors which are not
occupied. Equation (26) shows that the neutral excitation
scattering matrix is a sum of the two single-particle energies
(δm,m2

R̃η1
mm1

(k1) + δm,m1
Rη2

mm2
(k2)) plus an interaction term. By

translation invariance, the scattering preserves the total mo-
mentum p. The spectrum of the charge neutral excitations
at each p is a diagonalization problem of a matrix of the
dimension 4NM × 4NM , where the left and right indices are
(k + q, m, m′) and (k, m2, m2), respectively.

The excitation spectrum with the flat metric condition
Eq. (11) being imposed, i.e.,with the Rη [Eq. (19)] being
replaced by the simplified Eq. (20), is shown in Fig. 2. As
explained in Appendix III A, the simplified charge ±1 matri-
ces R and R̃ do not depend on the filling ν. Thus the obtained
charge neutral excitation dispersion also do not depend on ν.
Figure 2 is exact for ν = 0 even when the flat metric condition
is not satisfied since Eq. (20) is exact for ν = 0. The exact
charge neutral excitations at different fillings without impos-
ing the flat metric condition Eq. (11) are given in Figs. 7 and
8 in Appendix D 4.

It is worth noting that, in the Figs. 2, 7, and 8 we just
plot the eigenvalues of the scattering matrix Eq. (26), which
does not assume any information of the occupied valley-spin
flavors in the ground state. In practice, for a given ground state
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TABLE I. The little groups (remaining symmetry subgroups) and

the number of Goldstone modes (denoted by GMs in the table)

of the ground states |�ν+,ν−
ν 〉 in the (first) chiral-flat U(4) × U(4)

limit. Only ν � 0 states are tabulated since the symmetry and Gold-

stone modes of ν > 0 states are same as the ν < 0 states since

they are related by the many-body charge-conjugation operator (Ap-

pendix A 2 c) [109]. Only states with ν+ � ν− are tabulated since

|�ν+,ν−
ν 〉 and |�ν−,ν+

ν 〉 have the equivalent little groups upon in-

terchanging of the two U(4)s, and thus have the same number of

Goldstone modes.

Little group Number of GMs Ground states

U(4) × U(4) 0 |�4,0
0 〉

U(1) × U(3) × U(4) 3 |�1,0
−3 〉, |�3,0

−1 〉
U(2) × U(2) × U(4) 4 |�2,0

−2 〉
U(1) × U(3) × U(1) × U(3) 6 |�1,1

−2 〉, |�3,1
0 〉

U(2) × U(2) × U(1) × U(3) 7 |�2,1
−1 〉

U(2) × U(2) × U(2) × U(2) 8 |�2,2
0 〉

|�〉, the spectrum branch annihilating (creating) electrons in
empty (occupied) states does not exist.

B. Goldstone modes

Solving Eq. (26) provides us with the expression for the
neutral excitations at momentum p on top of the TBG ground
states, including the Goldstone mode, whose dispersion re-
lation can be obtained in terms of the quantum geometry
factors of the TBG. In general, the scattering matrix is not
guaranteed to be positive semidefinite, and negative energy
would imply instability of the ground states. However, in a
large (physical) range of parameters (Appendix A) of TBG at
the twist angle θ = 1.05◦, we find that, as shown in Figs. 2, 7,
and 8, the energies of charge neutral excitations of the exact
ground states |�ν〉 in Eq. (8) in the nonchiral-flat limit and
|�ν+,ν−

ν 〉 in Eq. (10) in the chiral-flat limit are non-negative,
implying these are indeed stable ground states. As shown in
Figs. 5 and 7 and discussed in Appendixes C 4 and D 4, strong
(first) chiral symmetry breaking may lead to an instability to
a metallic phase.

In Tables II and I, we have tabulated the little group (de-
fined as the remaining symmetry subgroup of the state) and
the number of Goldstone modes for each ground state in
Eqs. (8) and (10). As examples, here we only derive the little
groups and number of Goldstone modes for |�1,1

−2 〉 (10) and
|�−2〉 (8). The little groups and Goldstone modes for other
states can be obtained by the same method. First we consider
the ground state |�1,1

−2 〉 in the (first) chiral-flat U(4) × U(4)
limit, which has vanishing total Chern number. Recall that
the U(4) × U(4) irrep of |�1,1

−2 〉 is ([N1
M]4, [N1

M ]4). In each

TABLE II. The little groups (remaining symmetry subgroups)

and the number of Goldstone modes (GMs) of the ground states |�ν〉
in the nonchiral-flat U(4) limit.

Little group Number of GMs Ground states

U(1) × U(3) 3 |�−2〉, |�2〉
U(2) × U(2) 4 |�0〉

of the eY = ±1 sectors, only one U(4) spin-valley flavor is
occupied. Hence the little group of the state |�1,1

−2 〉 in each eY

sector is U(1) × U(3), where the U(1) is the phase rotation
in the occupied flavor and the U(3) is the unitary rotations
within the three empty flavors. Thus the total little group of
the state |�1,1

−2 〉 is U(1) × U(3) × U(1) × U(3), which has
the rank (number of independent generators) 20. Since the
Hamiltonian has a symmetry group U(4) × U(4) which has
rank 32, we find the number of broken symmetry generators
to be 32 − 20 = 12. On the other hand, since all the Gold-
stone modes we derived are quadratic [similar to the SU(2)
ferromagnets, see Eq. (30)], it is known that [117] the number
of Goldstone modes is equal to 1/2 of the number of broken
generators, namely, 12/2 = 6. This is because a quadratic
Goldstone mode is always a complex boson, which is equiva-
lent to two real boson degrees of freedom corresponding to 2
broken generators.

Next, we consider the ground state |�−2〉 in the nonchiral-
flat U(4) limit. Since the U(4) irrep of |�−2〉 is [2NM]4, only
one U(4) spin-valley flavor is occupied. Thus the little group
of |�−2〉 is U(1) × U(3), where the U(1) is within the occu-
pied flavor and the U(3) is within the 3 empty flavors. Hence
the number of broken generators is 16 − 10 = 6, where 16
and 10 are the ranks of U(4) × U(4) and U(1) × U(3), and
the number of (quadratic) Goldstone modes is 6/2 = 3.

In the above paragraph, we have shown that state |�1,1
−2 〉

in the chiral-flat limit has three more Goldstone modes than
|�−2〉 in the nonchiral-flat limit, although their wave functions
are identical. This is because, if we slightly go away from the
(first) chiral-flat limit towards the nonchiral-flat limit, i.e.,take
the parameter 0 < w0 ≪ w1, some branches of the Goldstone
modes will be gapped by a finite w0, as shown in Figs. 2, 7,
and 8.

The number of Goldstone modes can also be obtained
by examining the scattering matrix in Eq. (26). Here we
take |�1,1

−2 〉 as an example. As discussed in Appendix IV C,

in the first chiral limit, the state d
†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1
|�1,1

−2 〉
will be scattered to d

†
k′+p,eY 2,η2,s2

dk′,eY 1,η1,s1
|�1,1

−2 〉 through the

scattering matrix SeY 2,eY 1
(k′, k; p), which does not depend

on η1, s1, η2, s2, and SeY 2,eY 1
(k′, k; 0) has an exact zero state

for eY 2 = eY 1 (Appendix D 3). Now we count the number
of Goldstone modes on top of |�1,1

−2 〉 using this property of
scattering matrix.

Suppose the occupied flavors in |�1,1
−2 〉 are

{eY , η, s} = {+1,+,↑}, {−1,+,↑}. Then, for the state
d

†
k+p,eY 1,η2,s2

dk,eY 1,η1,s1
|�1,1

−2 〉 to be nonvanishing, {eY1
, η1, s1}

can only take the values in the two eY -valley-spin flavors
{+1,+,↑}, {−1,+,↑}, and {η2, s2} can only take values in
the other three valley-spin flavors in each eY sector. There are
in total 6 nonvanishing channels. Since each channel has an
zero mode given by the zero of SeY 1,eY 1

(k′, k; 0), there are 6
Goldstone modes, consistent with the group theory analysis
in Table I.

C. Exact Goldstone mode and its stiffness in the (first)

chiral-flat U(4) × U(4) limit

In the first chiral limit, we are able to obtain the
Goldstone modes analytically. We pick the basis as
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d
†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1
|�ν+,ν−

ν 〉, where the valley-spin flavor
{η1, s1} with Chern band basis eY 1 is fully occupied and the
valley-spin flavor {η2, s2} and Chern band basis eY 2 is fully
empty. The PSDH scatters the basis to

∑

k′

SeY 2,eY 1
(k′, k; p)d†

k′+p,eY 2,η2,s2
dk′,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
, (27)

where the scattering matrix S does not depend on η1, η2,
s1, s2. The simple commutators between O−q,−GOq,G and
fermion creation and annihilation operators in the chiral limit
[Eq. (15)] lead to a simple scattering matrix. We here focus on
the eY 1 = eY 2, p = 0 channel. For generic ν = 0 states and the
ν = ±1,±2,±3 states with flat metric condition [Eq. (11)],
we have

SeY ;eY
(k + q, k; 0)

= 2δq,0

∑

G,q′

V (G + q′)[α0(k, q′ + G)2 + α2(k, q′ + G)2]

− 2
∑

G

V (G + q)[α0(k, q + G)2 + α2(k, q + G)2].

(28)

The general expression of SeY 2;eY 1
(k + q, k; p) for all chan-

nels without imposing the flat metric condition is given in
Appendix D 2. We first show the presence of an exact zero
eigenstate of Eq. (28) by remarking that the scattering matrix
SeY ;eY

(k + q, k; 0) satisfies (irrespective of η1,2, s1,2):
∑

q

SeY ;eY
(k + q, k; 0) = 0. (29)

This guarantees that the rank of the scattering matrix is not
maximal, and that there is at least one exact zero energy
eigenstate, with equal amplitude on every state in the Hilbert
space:

∑
k d

†
k,eY ,η2,s2

dk,eY ,η1,s1
|�ν+,ν−

ν 〉. More details are given
in Appendixes D 3 and D 3 a. The U(4)× U(4) multiplet of this
state is also at zero energy. Moreover, the scattering matrix
SeY ;eY

(k + q, k; 0) is positive semidefinite. The details of this
proof can be found in App. D 3 a.

Since the p = 0 state has zero energy, for small p, by
continuity, there will be low-energy states in the neutral con-
tinuum. By performing a k · p perturbation in the p = 0 states
in Eq. (D11), one can compute the dispersion of the low-lying
states. Full details are given in Appendix D 3 b. In the chiral
limit, and imposing the flat metric condition Eq. (11) we find,
by using αa(k, q + G) = αa(−k,−q − G) for a = 0, 2 and
as expected for the Goldstone of a FM, the linear term in p

vanishes and

EGoldstone(p) =
1

2

∑

i j=x,y

mi j pi p j, (30)

to second order in p. We find the Goldstone stiffness

mi j =
1

2�tot

∑

k,q,G

V (G + q)
[
α0(k, q + G)∂ki

∂k j
α0(k, q + G)

+α2(k, q + G)∂ki
∂k j

α2(k, q + G)

+ 2∂ki
α0(k, q + G)∂k j

α0(k, q + G)

+ 2∂ki
α2(k, q + G)∂k j

α2(k, q + G)
]
. (31)
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FIG. 3. The eigenvalues of the mass tensor of the Goldstone

mode in the first chiral limit (31). Here w1 is in units of meV.

Since C3z symmetry is unbroken in the ground states in
Eq. (10), an isotropic mass tensor mi j ∝ δi j is expected. The
eigenvalues of mi j with different values of w1 are plotted in
Fig. 3.

V. CHARGE ±2 EXCITATIONS

A. Method to obtain ±2 excitations

We now derive the charge ±2 excitations. We choose a ba-
sis for the charge +2 excitations as c

†
k+p,m2,η2,s2

c
†
−k,m1,η1,s1

|�〉,
where |�〉 is any of the exact ground states and or eigenstates
in Eqs. (8) and (10) (for which (Oq,G − AGNMδq,0)|�〉 = 0)
and p is the momentum of the excited state. Hence {η1, s1},
{η2, s2} belong to the valley-spin flavors which are not occu-
pied. The details of the commutators of the Hamiltonian and
the basis are given in Appendix E. We find

[
HI − µN, c

†
k+p,m2,η2,s2

c
†
−k,m1,η1,s1

]
|�〉

=
1

2�tot

∑

m,m′,q

T
(η2,η1 )

m,m′;m2,m1
(k + q, k; p)

× c
†
k+q+p,m,η2,s2

c
†
−k−q,m′,η1,s1

|�〉, (32)

T
(η2,η1 )

m,m′;m2,m1
(k + q, k; p)

= δq,0

(
δm,m2

Rη1
mm1

(−k) + δm,m1
Rη2

mm2
(k + p)

)

+ 2
∑

G

V (G + q)M (η2 )
mm2

(k + p, q + G)

× M
(η1 )
m′m1

(−k,−q − G), (33)

where Rη
mn(k) are the charge +1 excitation matrices in

Eq. (19). We see that the charge +2 excitation energy is a
sum of the two single-particle energies plus an interaction
energy. By the translational invariance, scattering preserves
the momentum (p) of the excited state. The spectrum of the
excitations at a given p is a diagonalization problem of a
matrix of the dimension 4NM × 4NM . The scattering matrix T̃

of the charge −2 excitations is derived in Appendix E 4. It has
the same form as T here except that the charge +1 excitation
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FIG. 4. Exact charge ±2 excitations with the flat metric con-

dition being imposed for three different w0/w1 at the twist angle

θ = 1.05◦. Here we change w0 while keeping w1 = 110 meV fixed.

Other parameters are defined in Appendix A. These excitations are

exact at charge neutrality point (ν = 0) for generic states and are

exact at finite integer fillings if the flat metric condition is satisfied.

The charge +2 and −2 excitations are degenerate. The exact charge

±2 excitations at different fillings without imposing the flat metric

condition are given in Fig. 9 and 10 in Appendix E 5. Note bound

states above but not below the two-particle continuum, confirming

our analytic proof and showing the lack of Cooper pairing in TBG

projected Coulomb Hamiltonians

matrix Rη is replaced by charge −1 excitation matrix R̃η and
the M matrix is replaced by the complex conjugation of M.

The spectrum of charge ±2 excitations with the flat metric
condition Eq. (11) imposed is shown in Fig. 4. By impos-
ing the flat metric condition, we can replace the Rη matrix
[Eq. (19)] in Eq. (33) by the simplified Eq. (20). Since Eq. (20)
does not depend on ν, the obtained charge +2 excitation
dispersion also do not depend on ν. Figure 4 is exact for
ν = 0 even when the flat metric condition is not satisfied
since Eq. (20) is exact for ν = 0. Due to the many-body
charge-conjugation symmetry at ν = 0 [109], the charge −2
excitations are degenerate with the charge +2 excitations.
Exact charge ±2 excitations without imposing the flat metric
condition Eq. (11) at different fillings are given in Figs. 9 and
10 in Appendix E 5.

B. Absence of Cooper pairing in the projected

Coulomb Hamiltonian

The exact expression of the three-particle excitation spec-
trum [Eq. (33)] allows for the determination of the Cooper
pair binding energy (if any). We notice the scattering ma-
trix Eq. (33), T (η2,η1 )(k + q, k; p), differs by a sign from the
neutral charge energy Eq. (26). It is the sum of energies of
two charge +1 excitations at momenta k + p,−k plus an
interaction matrix, while Eq. (26) is the sum of charge +1 and
−1 excitations minus an interaction matrix. This allows us to
use the Richardson criterion [112–115] for the existence of
Cooper pairing by examining the binding energy as follows:

�(N + 2) = E (N + 2) + E (N ) − 2E (N + 1) < 0, (34)

where E (N ) is the energy of the lowest state at N particles. We
now assume that the lowest state of the charge +2 excitation
continuum obtained by diagonalizing the matrices Eq. (33) is
the lowest energy state at two particles above the ground state,

which is confirmed by numerical calculations for a range of
parameters [111]. We note that Eq. (19) is the charge +1 ex-
citation. The lowest energy of the noninteracting two-particle
spectrum is 2 min(R), where min(R) is the smallest eigenvalue
of Rη(k) over k ∈ MBZ and valley flavors η = ±.

Hence we can write the binding energy as min(T ) −
2 min(R), where min(T ) represents the minimal eigenvalues
of T (η2,η1 )(k + q, k; p) over momenta p ∈ MBZ and different
valley flavors η2, η1. For later convenience, we denote the sum
of the first two terms of Eq. (33) as Appendix

T
(η2,η1 )′

m,m′;m2,m1
(k + q, k; p)

= δq,0

(
δm,m2

Rη1
mm1

(−k) + δm,m1
Rη2

mm2
(k + p)

)
(35)

and the last term of Eq. (33) as

T
(η2,η1 )′′

m,m′;m2,m1
(k + q, k; p)

= 2
∑

G

V (G + q)M (η2 )
mm2

(k + p, q + G)M
(−η1 )∗
m′m1

× (k, q + G). (36)

We therefore have T = T ′ + T ′′ in short notations. Here
we have used the time-reversal symmetry: M

(η1 )
m′m1

(−k,−q −
G) = M

(−η1 )∗
m′m1

(k, q + G), as explained in Appendix E 3. We
use Weyl’s inequalities to find sufficient conditions for the
presence and absence of superconductivity. In particular, for
given p, η2, η1, the smallest eigenvalue of T (η2,η1 )(k + q, k; p)
is smaller than the smallest eigenvalue of T (η2,η1 )′(k + q, k; p)
plus the largest eigenvalue of T (η2,η1 )′′(k + q, k; p). Hence we
have min(T ) � min(T ′) + max(T ′′) = 2 min(R) + max(T ′′).

Therefore a sufficient criterion for the presence of Cooper
pairing binding energy is that T (η2,η1 )′′(k + q, k; p) has all
eigenvalues negative:

∀η1, η2, p, Eig
[
T

(η2,η1 )′′
mm′;m2m1

(k + q, k; p)
]

< 0. (37)

On the other hand, for given p, η2, η1, the smallest eigenvalue
of T (η2,η1 )(k + q, k; p) is larger than the smallest eigen-
value of T (η2,η1 )′(k + q, k; p) plus the smallest eigenvalue of
T (η2,η1 )′′(k + q, k; p). Hence we have min(T ) � min(T ′) +
min(T ′′) = 2 min(R) + min(T ′′). Therefore, a sufficient crite-
rion for the absence of Cooper pairing binding energy is that
T (η2,η1 )′′(k + q, k; p) is positive semidefinite:

∀η1, η2, p, Eig
[
T

(η2,η1 )′′
mm′;m2m1

(k + q, k; p)
]
� 0. (38)

From the charge +2 excitation spectra in Figs. 4, 9, and
10 we can see that the spectrum of T consists of two parts:
the two-particle continuum, which is given by the sums of
two charge +1 excitations, and a set of charge +2 collective
modes above the two-particle continuum. Thus it seems that
T ′′ are always non-negative positive.

In Appendix E 3, we proved that, for the projected
Coulomb Hamiltonian with the time-reversal symmetry, the
matrix T (η,−η)′′(k + q, k; p), which corresponds to excitations
of two particles from different valley, is positive semidefinite.
Thus there is no inter-valley pairing superconductivity of the
PSDH HI at the integer fillings ν of the ground states in
Eqs. (8) and (10). We expect this property to hold slightly
away from integer fillings. Since TBG shows superconductiv-
ity at ν = 2 or slightly away from integer fillings, our results
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show that either kinetic energy or phonons are responsible for
pairing.

Here we briefly sketch the proof. We consider the expec-
tation value of T (η,−η)′′(k + q, k; p) on an arbitrary complex
function φm2,m1

(k):

〈T ′′〉ηφ (p) =
∑

k1,k2

∑

mm′m2m2

T (η,−η)′′(k2, k1; p)

× φ∗
mm′ (k2)φm2,m1

(k1). (39)

As detailed in Appendix E 3, substituting the definition of the
M matrix (Eq. (4) into Eq. (36), we can rewrite the expectation
value as

〈T ′′〉ηφ (p) =
2

NG

∑

k1k2G1G2

Tr[W †(k2 + G2)W (k1 + G1)]

× V (k2 + G2 − k1 − G1), (40)

where

W (k + G)=
∑

m2,m1,G

um2,η(k + p + G)φm2,m1
(k)u†

m1,η
(k + G).

(41)
Here um2,η(k + G) is the 2NQ × 1 vector uQ−G,α;m2,η(k) and
W (k + G) is a 2NQ × 2NQ matrix, with NQ being the Q lattice
size (see Appendix A 1 for definition of the Q lattice). For
simplicity, we use a and b to represent the composite indices
(Q, α). Then 〈T ′′〉ηφ (p) can be written as

∑
ab W

†
ab

VWab, where
now Wab is viewed as an NM × 1 vector and V an NM × NM

matrix. Since V is positive semidefinite, for each pair of a, b,
the summation over k1, k2, G1, G2 is non-negative. Thus T ′′

is positive semidefinite since 〈T ′′〉ηφ (p) � 0 for arbitrary φ.
In Appendix E 3, we also proved that, for η2 = η1 = η,

T (η,η)′′(k + q, k; p) is also positive semidefinite due to the
symmetry PC2zT , with P being the unitary single-body PH
symmetry of TBG [43,108]. Therefore neither the intervalley
pairing nor the intravalley Cooper pair has binding energy in
the projected Coulomb Hamiltonian for any integer fillings ν

in the chiral-flat limit, and for any even fillings ν = 0,±2,±4
in the nonchiral-flat limit.

VI. CONCLUSIONS

In this paper, we have calculated the excitation spectra
of a series positive semidefinite Hamiltonians (PSDHs) ini-
tially introduced by Kang and Vafek [71] that generically
appear [109] in projected Coulomb Hamiltonians to bands
with nonzero Berry phases and which exhibit ferromagnetic
states as ground states, under weak assumptions [109,110].
These assumptions were also used by Kang and Vafek [71] to
find the ν = 2 ground states in TBG. In this paper, we show
that not only the ground states, but a large number of low-
energy excited states can be obtained in PSDHs. We obtain the
general theory for the charge ±1,±2 and neutral excitations
energies and eigenstates and particularize it to the case of
TBG insulating states. We find that charge +1 excitations are
gapped, with the smallest gap at the Ŵ point. In both the (first)
chiral-flat and nonchiral-flat limits, we find the Goldstone
stiffness of the ferromagnetic state, as well as the Cooper
pairing binding at integer fillings. In particular, we proved
by the Richardson criterion [112–115] that Cooper pairing is

not favored at integer fillings (even fillings when nonchiral) in
the flat band limit. Since superconductivity has been observed
in experiments with screened Coulomb potentials [7–9] (such
as at ν = 2), we conjecture the origin of superconductivity
in TBG is not Coulomb, but is contributed by other mecha-
nisms, e.g.,the electron-phonon interaction [59,60,85], or due
to kinetic terms. In particular, our theorem shows that the
Luttinger-Kohn mechanism of creating attractive interactions
out of repulsive Coulomb forces is ineffective for flat bands.
A similar statement can be made for the superexchange in-
teraction. A finite kinetic energy is hence required for these
mechanisms.

In future work, the charge excitation energies of these
Hamiltonians will be obtained in perturbation theory with the
kinetic terms. A further question, of whether there are other
further eigenstates of the PSDHs, remains unsolved.
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APPENDIX A: REVIEW OF NOTATION:

SINGLE-PARTICLE AND INTERACTING HAMILTONIANS

For completeness, we here briefly review the notations
used for the single-particle and interacting Hamiltonians.
Their properties and (explicit and hidden) symmetries of both
the single-particle and the interacting problems are detailed at
length in our recent papers [107–110].

1. Single-particle Hamiltonian: short review of notation

The single-particle Hamiltonian, symmetries, and proper-
ties of the wave functions have been discussed at length in
Refs. [43,107,108]. For completeness of notation, we give its
expression here, for completeness, but we skip all details. The
total single-particle Hamiltonian is

Ĥ0 =
∑

k∈MBZ

∑

ηαβs

∑

QQ′

[
h

(η)
QQ′ (k)

]
αβ

c
†
k,Q,η,αs

ck,Q′,η,βs. (A1)
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where c
†
k,Q,η,αs

is the creation operator at momentum k (in the
moiré BZ - MBZ) in valley η (±), sublattice α (1,2), spin s

(↑↓), and moiré momentum lattice Q. The Hamiltonians in
the two valleys are

h
(+)
QQ′ (k) = δQ,Q′vF (k − Q) · σ +

3∑

j=1

(
δQ−Q′,q j

+ δQ′−Q,q j

)
Tj,

h
(−)
QQ′ (k) = δQ,Q′vF (k − Q) · σ

∗

+
3∑

j=1

(
δQ−Q′,q j

+ δQ′−Q,q j

)
σxTjσx, (A2)

where σ = (σx, σy), σ
∗ = (−σx, σy) are Pauli matrices, Tj =

w0σ0 + w1(cos 2π
3

( j − 1)σx + sin 2π
3

( j − 1)σy), and q j =
kθC

j−1
3z (0, 1)T ( j = 1, 2, 3) with kθ = 2|K| sin θ

2
being the

distance of the Graphene K momenta from the top layer and
bottom layer, θ the twist angle, w0 the interlayer AA hopping,
and w1 the interlayer AB hopping. Q belongs to a hexago-
nal momentum space lattice, Q ∈ Q±, where Q± = Q0 ± q1.
The eigenstates of Eq. (A1) take the form

c
†
knηs

=
∑

Qα

uQα;nη(k)c†
k,Q,η,αs

. (A3)

where c
†
k+G,Q,ηαs = c

†
k,Q−G,ηαs, for any moiré reciprocal wave

vector G, and hence

uQα;nη(k + G) = uQ−G,α;nη(k) (A4)

such that c
†
k+G,nηs = c

†
knηs. This is the MBZ periodic gauge.

In the numerical calculations, we take the parameters

θ = 1.05◦, |K| = 1.703 Å−1, vF = 5.944 eV Å, and w1 =
110 meV. The projected kinetic Hamiltonian in the flat bands
will be denoted by H0 (without hat), which is given in Eq. (1).

2. Interaction Hamiltonian: short review of notation

The many-body Hamiltonian, symmetries, and properties
of the wave functions, as well as the derivations, have been
discussed at length in Refs. [109,110]. For completeness of
notation, we give its expression here, for completeness, but
we skip all details. The Hamiltonian before projection was
derived to be (denoted by a hat) [109,110]:

ĤI =
1

2�tot

∑

G

∑

q∈MBZ

V (G + q)δρ−G−qδρG+q;

V (r) =
1

�tot

∑

G

∑

q∈MBZ

e−i(q+G)·rV (q + G), (A5)

where

δρq+G =
∑

η,α,s,k,Q

(
c

†
k+q,Q−G,η,α,s

ck,Q,η,α,s −
1

2
δq,0δG,0

)

(A6)
is the total electron density at momentum q + G relative to
the charge neutral point. �tot is the total area of the moiré
lattice, G sums over the moiré reciprocal lattice, and q sums
over momenta in MBZ zone.

For the analytic derivations in the current paper, we
keep V (r) generic. For the numerical plots of the en-

ergy dispersion and other properties, we use twisted bilayer
graphene Coulomb interactions screened by the electrons
in the two planar conducting gates [71,118]: V (r) =
Uξ

∑∞
n=−∞ (−1)n/

√
(r/ξ )2 + n2 with ξ = 10 nm being the

distance between the two gates, Uξ = e2/(ǫξ ) = 26 meV (in
Gauss units), ǫ ≈ 6 the dielectric constant of boron nitride.
The derivation of this interaction was explained at length in
Ref. [109,110]. It was also showed that the interaction has
nonvanishing Fourier component only for intra-valley scatter-
ing to give

V (q) = (πξ 2Uξ )
tanh (ξq/2)

ξq/2
. (A7)

For the given values of the parameters, V (q) was plotted in
Ref. [108] and is a slowly decreasing function of |q| in the BZ,
reaching (around the magic angle) about half of its maximal
value as |q| spans the whole MBZ around.

a. Gauge fixing and the projected interaction

We define for our many-body Hamiltonian the form fac-
tors, also called the overlap matrix of a set of bands m, n as

M (η)
m,n(k, q + G) =

∑

α

∑

Q

u∗
Q−G,α;mη(k + q)uQ,α;nη(k),

(A8)
In terms of which the projected density operator interaction
and Hamiltonian to a set of bands denoted by m, n can be
written as

HI =
1

2�tot

∑

G

∑

q∈MBZ

V (G + q)δρ−G−qδρG+q,

δρG+q =
∑

ηs

∑

mn∈proj

∑

k

Mη
m,n(k, q + G)

×
(

c
†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δmn

)
.

For our working convenience, we then define the operator

Oq,G =
√

V (q + G)δρG+q. (A9)

This allows us to rewrite the projected interaction Hamiltonian
HI into the form of Eqs. (2) and (3). While most of the
projected Hamiltonian properties are valid for any number
of projected bands that respect the symmetries of the system
(including PH), in TBG at the first magic angle we usually
are interested in the projection of the Hamiltonian onto the

lowest two flat bands per spin per valley of TBG (8 bands
in total). An important step in any calculations—especially
numerical—is the gauge-fixing procedure. Different gauges
for the wave functions, that make different symmetries of
the form factors Eq. (A8) more explicit, can be chosen. This
is explained at length in our manuscript Ref. [109], but for
completeness we briefly mention them here. We consider only
two active bands, the general gauge-fixing mechanism for pro-
jection in more than two bands is found in Ref. [109]. To fix
the gauge of the Bloch wave functions in Eq. (A3), |ψk,n,η,s〉 =∑

Q,α uQ,α;mη(k)c†
k,Q,η,α,s

|0〉, where uQ,α;mη(k) is the solution

of the single-particle Hamiltonian h
(η)
QQ′ (k), in each η = ±,

s = ↑↓ sector, we label the higher energy band by m = +
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and the lower band by m = −. Due to the spin-SU(2) sym-
metry, we set the real space wave functions for s = ↑↓ to be
identical and omit the index s for the single-particle states.
For a symmetry operation g, the sewing matrices B

g

n′η′,nη(k) =
〈ψgk,n′,η′ |g|ψk,n,η〉, which relate states at momentum k with
states at the transformed momentum gk can be consistently
chosen to be

BC2zT (k) = ζ 0τ 0, BC2z (k) = ζ 0τ x,

BP(k) = iζ yτ z, BC2zP(k) = ζ yτ y (A10)

for the C2zT , C2z, P symmetries of TBG where ζ a, τ a (a =
0, x, y, z) are Pauli-matrices acting on the band and valley

indices, respectively [109]. Here P is a unitary single-body
PH symmetry that transforms k to −k [43,108]. We leave
the other sewing matrices—for C3z, C2x—unfixed. With these
sewing matrices, once we obtain, by diagonalizing the single-
particle Hamiltonian, the wave functions in the valley η = +
for band m = +, then we first fix the C2zT (in TBG, this is
done at the detriment of the wave function being continuous),
then we use of the PH to generate the m = − band, while
finally, using C2z symmetry to generate the wave functions in
the valley η = −. In Ref. [109], we use the above gauge to
determine the most generic form of the M matrix coefficient
[Eq. (A8)]. We found that—away from the point w1 = 0 in
parameter space which we call “second chiral limit”—we can
decompose the M matrix into four terms [108,109]

M(k, q + G) = ζ 0τ 0α0(k, q + G) + ζ xτ zα1(k, q + G) + iζ yτ 0α2(k, q + G) + ζ zτ zα3(k, q + G), (A11)

where α0,1,2,3 are real functions which satisfy the following symmetry conditions:

αa(k, q + G) = αa(k + q,−q − G) for a = 0, 1, 3, α2(k, q + G) = −α2(k + q,−q − G), (A12)

αa(k, q + G) = αa(−k,−q − G) for a = 0, 2, αa(k, q + G) = −αa(−k,−q − G) for a = 1, 3. (A13)

In particular, the combination of Eqs. (A12) and (A13) implies that at q = 0, we have

α0(k, G) = α0(−k, G), α j (k, G) = −α j (−k, G), ( j = 1, 2, 3). (A14)

Note that the same gauge fixing can be found with projection
in a larger number of bands [109].

A further simplification occurs in the first chiral limit
w0 = 0 of the single-particle Hamiltonian due to the presence
of an extra symmetry [72,108,109]. (A similar simplifica-
tion takes place in the second chiral limit w1 = 0, found in
Refs. [108,109]). In this limit there is another (chiral) sym-
metry C of the one-body first-quantized Hamiltonian hQQ′ (k),
which in band space is defined by its sewing matrix:

BC
mη′,nη(k) = 〈ψk,m,η′ |C|ψk,n,η〉 ∝ δm,−nδη′,η. (A15)

A gauge choice in which BC
mη′,nη(k) is k independent is possi-

ble

BC (k) = ζ yτ z. (A16)

This allows us to find the wave function of the − band at
k from the + band at k, in the same valley. In Ref. [109],
we prove that the M matrix in the interaction satisfies the
chiral symmetry, BC†M(k, q + G)BC = M(k, q + G). Thus
with the chiral symmetry, M takes the form

M(k, q + G) = ζ 0τ 0α0(k, q + G) + iζ yτ 0α2(k, q + G).
(A17)

b. Chern band basis

In Ref. [108], we have shown that the two flat bands can be
recombined as two Chern bands:

d
†
k,eY ,η,s

=
1

√
2

(c†
k,+,η,s

+ ieY c
†
k,−,η,s

). (A18)

Their corresponding Berry curvatures are continuous in the
MBZ and yield Chern numbers eY = ±1, respectively. We

fixed the ambiguities by requiring that the Berry’s curvature of
each Chern band basis d

†
k,eY ,η,s

is continuous, or, equivalently,

lim
q→0

|〈u′
k+q,eY ,η,s|u

′
k,e′

Y ,η,s〉| = δeY ,e′
Y
, (A19)

where |u′
k,eY ,η,s〉 is the periodic part of the Bloch wavefunc-

tion for the operator d
†
k,eY ,η,s

. In this gauge the band d
†
k,eY ,η,s

has nonzero Chern number CeY ,η,s = eY [74,108]. The Chern

numbers of d
†
k,eY ,−,s

equals to the Chern numbers of d
†
k,eY ,+,s

,
because they are related by C2z rotation.

The M matrix in the Chern band basis becomes

M (η)
eY ,eY

(k, q + G) = MeY
(k, q + G)

= α0(k, q + G) + ieY α2(k, q + G),

(A20)

M
(η)
−eY ,eY

(k, q + G) = ηFeY
(k, q + G),

FeY
(k, q + G) = α1(k, q + G) + ieY α3(k, q + G).

(A21)

For later convenience, we have introduced the factors
MeY

(k, q + G) and FeY
(k, q + G) to represent the diagonal

element and off-diagonal element in the Chern band basis,
respectively. In the first chiral limit, where α1 = α3 = 0, we
have FeY

= 0.

c. Many-body charge-conjugation symmetry of the projected

interaction and kinetic Hamiltonian

In Ref. [109], we showed that the full projected Hamilto-
nian H0 + HI has a many-body charge-conjugation symmetry,
Pc defined as the single-particle transformation C2zT P
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followed by an interchange between electron annihila-
tion operators c and creation operators c†: Pcc

†
k,n,η,sP

−1
c =

c−k,m,η′,sB
C2zT P

mη′,nη(k):

PcH0P
−1
c = H0 + const . PcδρG+qP

−1
c = −δρG+q.

(A22)
The interaction has the charge-conjugation symmetry, and the
many-body physics is PH symmetric in this limit.

d. The U(4) symmetry of the projected Hamiltonian

in the flat-band limit

Using the unitary PH symmetry P introduced in Ref. [43],
we demonstrated in Ref. [109] that the projected TBG Hamil-
tonian has a U(4) symmetry if the kinetic energy is set to
zero (flat band limit), for any number of projected bands. This
generalizes the U(4) symmetry introduced in Ref. [72] for the
two active bands. Using the continuous symmetry operator
notation

[eiγabSab

, HI ] = 0, ∀γab ∈ R;

Sab =
∑

k,m,m′,η,η′,s,s′

c
†
k,m,η,s

sab
m,η,s;m′,η′,s′ck,m′,η′,s′ ,

(A23)

we can generate a full set of U(4) generators given by [109]

sab = {ζ 0τ 0sb, ζ yτ xsb, ζ yτ ysb, ζ 0τ zsb} (a, b = 0, x, y, z).
(A24)

where the Pauli matrices ζ a, τ a, sa with a = 0, x, y, z are
identity and x, y, z Pauli matrices in band, valley, and spin
space, respectively. For 2N1, N1 ∈ Z projected bands, the
generators would be identical, with the ζ representing the
+ = {1, . . . , N1} and − = {N1 + 1, . . . , 2N1} bands.

The kinetic plus the projected interaction term exhibit
the Cartan symmetry U(2) × U (2) subgroup of the U(4)
symmetry group of the projected interaction, which can be
most naturally chosen as the valley spin and charge: Cartan:
ζ 0τ 0s0, ζ 0τ 0sz, ζ 0τ zs0, ζ 0τ zsz.

e. Enhanced U(4) × U(4) symmetries in

the first chiral limit w0 = 0

In Ref. [109], we demonstrated in detail the presence of
two enhanced unitary U(4) × U(4) symmetry in two limits of
the single-particle parameter space the first and second chiral
limits w0 = 0 < w1 and w1 = 0 < w0. For the first chiral
limit w0 = 0, this symmetry was presented in Ref. [72] for
the case of two projected bands, but we find that it is main-
tained, in both chiral limits, for a projection in any number
of bands. For the matrix elements in Eq. (A17), the interac-
tion commutes with the following matrices, which form the
U(4) × U(4) generators [109]:

ζ 0τ asb, ζ yτ asb (a, b = 0, x, y, z). (A25)

The Cartan subalgebra of the chiral U(4) × U(4)
is the Cartan subalgebra of the U(2)nonchiral

× U(2)nonchiral × U(2)chiral × U(2)chiral: ζ 0τ 0s0, ζ 0τ 0sz,

ζ 0τ zs0, ζ 0τ zsz, ζ yτ 0s0, ζ yτ 0sz, ζ yτ zs0, ζ yτ zsz.
The U(4) implied by C2zP [Eq. (A24)] is a subgroup of this
U(4) × U(4), but not one of the U(4) factors [109].

In Ref. [108], we found that there exists a further more
convenient gauge choice for the wave functions in the chiral
limit w0 = 0, called the Chern basis (an extension to many
bands of the Chern basis in Ref. [72] to many bands), in which
we choose the single-particle representations of U(4) × U(4)
generators as

sab
+ = 1

2
(ζ 0 + ζ y)τ asb,

sab
− = 1

2
(ζ 0 − ζ y)τ asb, (a, b = 0, x, y, z), (A26)

which correspond to the first U(4) and second U(4), respec-
tively. Adding the kinetic term in the chiral limit breaks the
U(4) × U(4) symmetry of the projected interaction, to a U(4)
subset ζ 0τ asb, (a, b = 0, x, y, z).

We note that the nonchiral-flat U(4) symmetry and the
first chiral-flat U(4) × U(4) symmetry are first identified by
Ref. [72]. A similar U(4) symmetry is proposed in Ref. [71],
the difference and similarity between which and the symme-
tries reviewed here is studied in [109].

f. U(4) irrep of electrons in the nonchiral-flat case

and the Chern basis in the U(4) × U(4) chiral limit

In Ref. [109], we showed that the eight single-particle
basis of the nonchiral-flat U(4) symmetry generators given
in Eq. (A24) can be decomposed into two four-dimensional
fundamental irreps of the U(4) group, which have ζy eigenval-
ues eY = ±1, respectively, for each momentum k [Eq. (A18)].
The U(4) generators in the Chern band basis are sab(eY ) =
eY τ xsa, eY τ ysa, τ 0sa, τ zsa, respectively. We also showed
[109] that the eY = +1 irrep and the eY = −1 irrep are the
same—and not conjugate—irrep: the four-dimensional fun-
damental U(4) irrep represented by a one-box Young tableau
labeled by [1]4. We presented a detailed review of the U(4)
representations related to TBG in Ref. [109], but for the
purpose of the current paper, the notation adopted for ir-
reps is the standard Young tableau, conveniently denoted by
[λ1, λ2, · · · ]N , where λi is the number of boxes in row i

(λi � λi+1). The number of boxes in the i-th row is no smaller
than that in the (i + 1)th row. The Hook rule then provides the
dimensions of each of these irreps. In particular, [1N ]N is an
SU(N) singlet state.

In the first chiral limit w0 = 0, d
†
k,eY ,η,s

defined in Eq. (A18)
gives the single-particle basis irrep U(4) × U(4) of Eq. (A26).
We proved in Ref. [109] that d

†
k,+1,η,s

generates the ([1]4, [0]4)

irrep of U(4) × U(4), while d
†
k,−1,η,s

generates the ([0]4, [1]4)

irrep of U(4) × U(4) with generators sab
± = 1

2
(1 ± eY )τ asb,

respectively. A similar discussion is provided for the second
chiral limit w1 = 0 in Ref. [109].

In the chiral-nonflat case, the generators U(4) symmetry is
given by generators ζ 0τ asb and either the original band basis
c

†
k,m,η,s for a fixed band index m(= ±) or the Chern basis

d
†
k,eY ,η,s with a fixed eY (= ±1) form a fundamental of U(4).

3. Exact ground states in different limits: review of notation

In Ref. [110], we have examined in detail the exact ground
states in the nonchiral-flat U(4) symmetric limit and in the
chiral-flat U(4) × U(4) symmetric limit. For completeness we
briefly review the results. In Ref. [71], Kang and Vafek first
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introduced a type of Hamiltonians which have, under some
conditions, exact ground states. We have found [110] that any

translationally invariant interaction Hamiltonian projected to
some active bands can be written in a form of Ref. [71],
and that, under some conditions, exact eigenstates and ground
states can be found. The key idea of Kang and Vafek for
obtaining exact ground states is to rewrite the interacting
Hamiltonian into a non-negative form. A state with eigenvalue
zero is then ensured to be the ground state.

In Ref. [109], we proved that the projected Coulomb
Hamiltonian can be written as

HI =
1

2�tot

∑

G

∑

q

Oq,GO−q,−G =
1

2

∫

r∈�tot

d2rO(r)2,

O(r) =
1

�tot

∑

G

∑

q

Oq,Gei(q+G)·r, (A27)

which is non-negative, with

Oq,G =
∑

k,m,n,η,s

√
V (G + q)M (η)

m,n(k, q + G)

×
(

ρ
η

k,q,m,n,s
−

1

2
δq,0δm,n

)
, O

†
q,G = O−q,−G,

(A28)

where ρ
η

k,q,m,n,s
= c

†
k+q,m,η,s

ck,n,η,s is the density operator in

band basis. Note that O(r) and O(r′) generically do not
commute and hence the Hamiltonian is not solvable. The
interaction can in general be rewritten as

HI =
1

2�tot

∑

G

[
∑

q

(Oq,G − AGNMδq,0)(O−q,−G − A−GNMδ−q,0) + 2A−GNMO0,G − A−GAGN2
M

]
, (A29)

where NM is the number of moiré unit cells and AG is some
arbitrarily chosen G dependent coefficient satisfying AG =
A∗

−G. Note that the first term in Eq. (A29) is nonnegative.
In Ref. [110], we found an important condition which can

show that eigenstates of HI are in fact ground states of HI .
If the q = 0 component of the matrix element in Eq. (A8)
M (η)

m,n(k, G) is not dependent on k for all G’s, i.e.,

flat metric condition: M (η)
m,n(k, G) = ξ (G)δm,n (A30)

then much more information about Eq. (A27) can be
obtained. This condition is always true for G = 0, for
which M (η)

m,n(k, 0) = δmn from wave-function normalization.
In Ref. [107], we have showed that, around the first magic
angle, M (η)

m,n(k, G) ≈ 0 for, |G| >
√

3kθ for i = 1, 2. Hence,
the condition Eq. (A30) is valid for all G with the exception
of G for which |G| =

√
3kθ . Hence, the condition is largely

valid, and the numerical analysis [111] confirms its validity
for a large part of the MBZ. In the below, we will always
specify when the condition Eq. (A30) is used. If the Eq. (A30)
is satisfied, one has O0,G proportional to the total electron
number N and the second term in Eq. (A29) is simply a
chemical potential term

µ =
1

NM�M

∑

G

A−G

√
V (G)

∑

k

M
(η)
+1,+1(k, G)

=
∑

G

A−G

√
V (G)ξ (G)/�M, (A31)

where �M = �tot/NM is the area of moiré unit cell. For a fixed
total number of electrons, N =

∑
k,m,η,s c

†
k,m,η,s

ck,m,η,s =
(ν + 4)NM is a constant, where ν is the filling fraction (num-
ber of doped electrons per moiré unit cell) relative to the
charge neutrality point, thus the ground state at finite filling
is solely determined by the first term which is non-negative.

a. Exact ground states in the first chiral-flat U(4) × U(4) limit

To build the excitations around a ground state, we review
the ground states found in Ref. [110] of the projected Hamil-
tonian (A27). We proved that in the Chern basis of Eq. (A20)
and Eq. (A18), diagonal in the valley index η, spin index s and
Chern band index eY , the projected Hamiltonian (A27) has as
eigenstates at integer filling ν the filled band wave functions
[without assuming condition Eq. (A30)]:

∣∣�ν+,ν−
ν

〉
=

∏

k

(
ν+∏

j1=1

d
†
k,+1,η j1

,s j1

ν−∏

j2=1

d
†
k,−1,η j2

,s j2

)
|0〉, (A32)

HI

∣∣�ν+,ν−
ν

〉
=

1

2�tot

∑

q,G

O−q,−GOq,G

∣∣�ν+,ν−
ν

〉

=
ν2

2�tot

∑

G

V (G)
(∑

k

α0(k, G)
)2∣∣�ν+,ν−

ν

〉
,

(A33)

where ν+ − ν− = νC is the total Chern number of the state,
and ν+ + ν− = ν + 4 is the total number of electrons per
moiré unit cell in the projected bands, with 0 � ν± � 4, k

running over the entire MBZ. The occupied spin/valley in-
dices {η j1 , s j1} and {η j2 , s j2} can be arbitrarily chosen. These
eigenstates of Eq. (A27) are moreover eigenstates of the Oq,G

operator in Eq. (A28) [110]:

Oq,G

∣∣�ν+,ν−
ν

〉
= δq,0AGNM

∣∣�ν+,ν−
ν

〉
;

AG =
√

V (G)

NM

∑

k

να0(k, G). (A34)

In Ref. [110], we found that the U(4) × U(4) irrep of this
multiplet is labeled by ([N

ν+
M ]4, [N

ν−
M ]4). For a fixed filling

factor ν, from Eq. (A33), we found [110] that the states with
different Chern number νC are all degenerate.

At charge neutrality ν = 0, the U(4) × U(4) multiplet of
eigenstate state |�ν+,ν−

0 〉 with Chern number νC = ν+ − ν− =
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0,±2,±4 has exactly zero energy and hence are exact degen-
erate ground states. At nonzero fillings ν, we cannot guarantee
that the ν 	= 0 eigenstates are ground states [without condition
Eq. (A30)].

Assuming the flat metric condition Eq. (A30), we showed
[110] that we can rewrite the interaction into the form
of Eq. (A29), with the coefficient AG = ν

√
V (G)ξ (G) in

Eq. (A34). By Eq. (A34), we showed that (Oq,G − AGNMδq,0)
annihilates |�ν+,ν−

ν 〉 for any νC = ν+ − ν− and thus all the
eigenstates |�ν+,ν−

ν 〉 with any Chern number νC = ν+ − ν−
are degenerate ground states at filling ν [110].

b. Exact ground states in the nonchiral-flat U(4) limit

Without chiral symmetry, with U(4) symmetry Eq. (A24),
Oq,G is no longer diagonal in any band basis (such as the
Chern basis). Nevertheless, Oq,G is still diagonal in η and s

and hence filling both m = ± bands, of any valley/spin is still
an exact, Chern number 0 eigenstates [110]:

|�ν〉 =
∏

k

(
(ν+4)/2∏

j=1

c
†
k,+,η j ,s j

c
†
k,−,η j ,s j

)
|0〉

=
∏

k

(
(ν+4)/2∏

j=1

d
†
k,+1,η j ,s j

d
†
k,−1,η j ,s j

)
|0〉, (A35)

for even fillings ν = 0,±2,±4, where {η j, s j} are
distinct valley-spin flavors which are fully occupied.
With M (η)

m,n(k, q + G) in Eq. (A11), we have the same
eigenvalue expression as in Eq. (A34), Oq,G|�ν〉 =
ν
√

V (G)δq,0

∑
k,m,η,s α0(k, G)|�ν〉. Along with any U(4)

rotation, it is an eigenstate of HI , without using condition
Eq. (A30). Moreover, for ν = 0, the state (A35) is always
a ground state with or without condition Eq. (A30) [110].
Furthermore if the condition Eq. (A30) is satisfied, by
choosing AG = ν

√
V (G)ξ (G) we have showed in Ref. [110]

that the states in Eq. (A35) are Chern number zero exact
ground states. The multiplet of states forms a U(4) irrep
[(2NM )(ν+4)/2]4 [110].

APPENDIX B: CHARGE COMMUTATION RELATIONS

In order to compute the charge 0, ±1, ±2 excitations, a se-
ries of commutators are needed. We provide their expressions
here.

1. The nonchiral case

In the nonchiral case of Eq. (A11), we have

[Oq,G, c
†
k,n,η,s

] =
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′, q + G)
[
ρ

η′

k′,q,m,n′,s′ , c
†
k,n,η,s

]

=
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′, q + G)c†
k′+q,m,η′,s′{ck′,n′,η′,s′ , c

†
k,n,η,s

}

=
∑

m

√
V (G + q)M (η)

m,n(k, q + G)c†
k+q,m,η,s

(B1)

and

[Oq,G, ck,n,η,s] =
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′, q + G)
[
ρ

η′

k′,q,m,n′,s′ , ck,n,η,s

]

= −
∑

k′,m,n′,η′,s′

√
V (G + q)M

(η)
m,n′ (k

′, q + G){c†
k′+q,m,η′,s′ , ck,n,η,s}ck′,n′,η′,s′

= −
∑

m

√
V (G + q)M (η)

n,m(k − q, q + G)ck−q,m,η,s

= −
∑

m

√
V (G + q)M (η)∗

m,n (k,−q − G)ck−q,m,η,s, (B2)

where we have used the property [109] M (η)∗
m,n (k,−q − G) = M (η)

n,m(k − q, q + G). From these basic equations, we further find

[O−q,−GOq,G, c
†
k,n,η,s

] = O−q,−G[Oq,G, c
†
k,n,η,s

] + [O−q,−G, c
†
k,n,η,s

]Oq,G

= O−q,−G

∑

m

√
V (G + q)M (η)

m,n(k, q + G)c†
k+q,m,η,s

+
∑

m

√
V (G + q)M (η)

m,n(k,−q − G)c†
k−q,m,η,s

Oq,G

=
∑

m′,m

V (G + q)M
(η)
m′,m(k + q,−q − G)M (η)

m,n(k, q + G)c†
k,m′,η,s

+
∑

m

√
V (G + q)M (η)

m,n(k, q + G)c†
k+q,m,η,s

O−q,−G

+
∑

m

√
V (G + q)M (η)

m,n(k,−q − G)c†
k−q,m,η,s

Oq,G (B3)
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and

[O−q,−GOq,G, ck,n,η,s]

= O−q,−G[Oq,G, ck,n,η,s] + [O−q,−G, ck,n,η,s]Oq,G

= −O−q,−G

∑

m

√
V (G + q)M (η)∗

m,n (k,−q + −G)ck+q,m,η,s −
∑

m

√
V (G + q)M (η)

m,n(k, q + G)ck+q,m,η,sOq,G

=
∑

m′,m

V (G + q)M
(η)∗
m′,m(k − q, q + G)M (η)∗

m,n (k,−q − G)ck,m′,η,s

−
∑

m

√
V (G + q)M (η)∗

m,n (k,−q − G)ck−q,m,η,sO−q,−G −
∑

m

√
V (G + q)M (η)∗

m,n (k, q + G)ck+q,m,η,sOq,G. (B4)

Using M
(η)
m′,m(k + q,−q − G) = M

(η)∗
m,m′ (k, q + G) and M

(η)∗
m′,m(k − q,+q + G) = M

(η)
m,m′ (k,−q − G), we have

[O−q,−GOq,G, c
†
k,n,η,s

] =
∑

m

P(η)
mn (k, q + G)c†

k,m,η,s
+

∑

m

√
V (G + q)M (η)

m,n(k, q + G)c†
k+q,m,η,s

O−q,−G

+
∑

m

√
V (G + q)M (η)

m,n(k,−q − G)c†
k−q,m,η,s

Oq,G,

[O−q,−GOq,G, ck,n,η,s] =
∑

m

P(η)∗
mn (k, q + G)ck,m,η,s −

∑

m

√
V (G + q)M (η)∗

m,n (k,−q − G)ck−q,m,η,sO−q,−G

−
∑

m

√
V (G + q)M (η)∗

m,n (k,+q + G)ck+q,m,η,sOq,G, (B5)

where we define the new matrix element P = V M†M, the convolution of the Coulomb potential and the form factor matrices

P(η)
mn (k, q + G) =

∑

m′

V (G + q)M
(η)∗
m′,m(k, q + G)M

(η)
m′,n(k, q + G) = V (G + q)(M (η)†M (η))mn(k, q + G). (B6)

These are the commutators needed to obtain the wave functions and energies of the excitations in the nonchiral limit.

2. The first chiral limit

In the first chiral limit, we can use the Chern band basis Eq. (A20), where the Oq,G is diagonal in the Chern basis. Its form
factors do not depend on the valley η and spin s:

Oq,G =
∑

k

∑

eY =±

√
V (G + q)MeY

(k, q + G)
∑

η,s

(
d

†
k+q,eY ,η,s

dk,eY ,η,s −
1

2
δq,0

)
. (B7)

In this limit, the commutators between Oq,G and the Chern number eY = ±1 band creation operators become simpler

[Oq,G, d
†
k,eY ,η,s

] =
√

V (G + q)MeY
(k, q + G)d†

k+q,eY ,η,s
(B8)

and

[Oq,G, dk,eY ,η,s] = −
√

V (G + q)M∗
eY

(k,−q − G)dk−q,eY ,η,s (B9)

leading to the commutators

[O−q,−GOq,G, d
†
k,eY ,η,s

] = PeY
(k, q + G)d†

k,m,η,s
+

√
V (G + q)(MeY

(k, q + G)d†
k+q,eY ,η,s

O−q,−G

+ MeY
(k,−q − G)d†

k−q,eY ,η,s
Oq,G),

[O−q,−GOq,G, dk,eY ,η,s] = P∗
eY

(k, q + G)dk,eY ,η,s −
√

V (G + q)(M∗
eY

(k,−q − G)dk−q,eY ,η,sO−q,−G

+ M∗
eY

(k, q + G)dk+q,eY ,η,sOq,G), (B10)

where P = V M†M, the convolution of the Coulomb potential and the form factor matrices, takes the chiral limit form

PeY
(k, q + G) = V (G + q)|MeY

(k, q + G)|2 = V (G + q)(α2
0 (k, q + G) + α2

2 (k, q + G) = P(k, q + G)), (B11)

where α0(k, q + G), α2(k, q + G) are the decomposition of the form factors in Eq. (A20). Notice in the Chern basis,
PeY

(k, q + G) does not depend on eY , so we just denote it as P(k, q + G). These are the commutators needed to obtain the
wave functions and energies of the excitations in the first chiral limit.
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APPENDIX C: CHARGE ±1 EXCITATIONS OF THE EXACT GROUND STATES

Remarkably, the existence of exact ground states and/or eigenstates Eqs. (A32) and (A35) allows for the presence of more
eigenstates. In fact, a part of the low energy spectrum can be computed with polynomial efficiency. In this Appendix, we give
the exact charge ±1 excitations on top of the exact (ground) states given in Ref. [110] and reviewed in Appendix A 3.

1. Exact charge +1 excitations in the nonchiral-flat U(4) limit

To look for the charge one excitations (adding an electron into the system), we sum the commutators in Eqs. (B3) and (B10)
over q, G and use the shifted Hamiltonian in Eq. (A29). For a generic exact eigenstate |�〉 at chemical potential µ satisfying
(Oq,G − AGNMδq,0)|�〉 = 0 for some coefficient AG, we find

[HI − µN, c
†
k,n,η,s

]|�〉 =
1

2�tot

∑

m

Rη
mn(k)c†

k,m,η,s
|�〉, (C1)

where N is the electron number operator, and the matrix

Rη
mn(k) =

∑

G

[(
∑

q,m′

V (G + q)M
(η)∗
m′,m(k, q + G)M

(η)
m′,n(k, q + G)

)
+ 2NMA−G

√
V (G)M (η)

m,n(k, G)

]
− µδmn

=
1

2�tot

∑

G

[(
∑

q

P(η)
mn (k, q + G)

)
+ 2NMA−G

√
V (G)M (η)

m,n(k, G)

]
− µδmn. (C2)

We hence see that, if |�〉 is one of the |�ν+,ν−
ν 〉 [Eq. (A32)]

or |�ν〉 (Eq. (A35)) eigenstates of HI , then c
†
k,m,η,s

|�〉 is also
an eigenstate of HI with eigenvalues obtained by diagonal-
izing the 2 × 2 matrix Rη

mn(k). In the case of TBG, this is a
2 × 2 matrix, hence the diagonalization can be done by hand,
providing a band of excitations. We note that, the expression
c

†
k,n,η,s

|�〉 = 0 may vanish and give no charge excitation, for
instance, if valley η and spin s is fully occupied. We now delve
more into the energies and eigenstates c

†
k,m,η,s

|�〉.
Due to the symmetry C2zP [Eq. (A10)], the M matrix

[Eq. (A11)] satisfies M (η)
m,n(k, q + G) = mnM

(−η)
−m,−n(k, q +

G). Correspondingly, the R matrix satisfies

Rη
m,n(k) = mnR

−η
−m,−n(k). (C3)

Since R+(k) and R−(k) are related by a unitary transforma-
tion, they must have the same spectrum.

a. Band of charge 1 excitation in the nonchiral-flat U(4) limit

In the nonchiral limit, the eigenstates |�ν〉 we found in
Ref. [110] (and re-written in Eq. (A35)) have only fully occu-
pied or fully empty valley η and spin s flavors. For TBG, this
means that both active bands m = ± are either full or empty
for each valley η and spin s. In this case we can only obtain
exact charge +1 excitation at even fillings, i.e.,ν = 0,±2. We
can consider two charge +1 states c

†
k,n,η,s

|�〉 (n = ±) at a
fixed k in a fully empty valley η and spin s. These two states
then form a closed subspace with a 2 × 2 subspace Hamil-
tonian Rη(k) defined by Eq. (C2). Diagonalizing the matrix
Rη(k) then gives the excitation eigenstates and excitation en-
ergies. It is worth noting that, due to Eq. (C3), the spectrum of
Rη(k) does not depend on η. Since the U(4) irrep of the ground
state is |�ν〉 is [(2NM )(ν+4)/2]4, the U(4) irrep of the charge 1
excited state is given by [(2NM )(ν+4)/2, 1]4. Furthermore, at
ν = 0, the state |�ν=0〉 in Eq. (A35) is the ground state of
the interaction Hamiltonian HI and hence c

†
k,n,η,s

|�ν=0〉 is the
charge excitation above the ground state. Note that this does

not assume the “flat metric condition” (A30) and is hence fully
generic.

If we further assume the flat band condition Eq. (A30), the
eigenstates |�ν〉 become exact ground states, and the chem-
ical potential is given by Eq. (A31). In this case, the 2 × 2
excitation sub-Hamiltonian Rη(k) takes a simpler form:

Rη
mn(k) =

∑

q,G

P(η)
mn (k, q + G)

=
∑

G,q,m′

V (G + q)M
(η)∗
m′,m(k, q + G)M

(η)
m′,n(k, q + G),

(C4)

which can be diagonalized to give the band excitation
eigenstates and energies above the ground state at each mo-
mentum k.

b. Spectrum properties of a generic charge 1 excitation

in the nonchiral-flat U(4) limit

The spectrum at every k is obtained from
diagonalizing the matrix Rη(k) =

∑
G,q V (G +

q)M (η)†(k, q + G)M (η)(k, q + G), which depends (up to
a convolution with the Coulomb potential), only on the
projected band wave functions. This is clearly a sum (over
q, G) of positive semidefinite matrices [remember that
V (G + q) > 0]. Hence Rη(k) is a positive semidefinite
matrix, whose eigenvalues are non-negative (expected, since
we proved that these are excitations above the ground state).
We now find conditions that these excitations are gapped,
i.e.,that the matrix Rη(k) is positive definite at each k. We
now show this by re-writing the Rη(k) as

Rη
mn(k) = (M (η)†(k)V M (η)(k))mn, (C5)

where now M (η)(k) is a matrix of (2NM · NG) × 2 ma-
trix (with 2 because we are projecting into the two active
TBG bands), where NM is number of moiré unit cells,
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NG is the number of plane waves (MBZs) taken into
consideration. In Ref. [107], we have showed that the
number of plane waves needed is very small: the matrix
elements fall off exponentially with |G| and any contribu-
tion above |G| =

√
3kθ is negligible. The matrix elements

read M
(η)
{mqG},n(k) = M (η)

m,n(k, q + G). V is a 2NM · NG ×

2NM · NG diagonal matrix with elements V{mqG},{m′q′G′} =
δm,m′δq,q′δG,G′V (q + G). Since V (q + G) � 0 and diagonal,

we can re-write Rη(k) = (
√

V Mη(k))†
√

V Mη(k), and its rank
is equal to Rank(

√
V Mη(k)) � 2. We show the rank has to be

2 (or in general the number of occupied bands), by the simple
argument

Rη
mn(k) =

∑

m

V (0)M
(η)
m′,m(k, 0)M (η)

m,n(k, 0) +
∑

{q,G}	={0,0}

∑

p,p′=1,2

M
(η)†
{pqG},m(k)V{pqG},{p′q′G′}M

(η)
{p′q′G′},n(k)

= V (0)δmn +
∑

{q,G}	={0,0}

∑

p,p′=1,2

M
(η)†
{pqG},m(k)V{pqG},{p′q′G′}M

(η)
{p′q′G′},n(k). (C6)

The second term is still a positive semidefinite matrix, while the first term is diagonal and has eigenvalues V (0)/2�tot. Hence by
Weyl’s theorem, the energies of the excited states are � V (0)/2�tot. In general, our discussion shows that the states c

†
k,n,η,s|�〉

are not degenerate to the ground state |�〉 (note that we did not prove these are the unique ground states). However, we cannot
exclude a gapless excitation.

c. Spectrum relation to the quantum distance and generic argument for the existence of a charge gap

In general, however, it seems that this method gives rise to finite gap charge 1 excitations. The largest gap happens in the
atomic limit or a material, where 〈um

k+q|un
k〉 = δmn, for which Rmn = δmn

∑
q,G V (q + G) = δmn�totV (r = 0). Since we know

that TBG is far away from an atomic limit—the bands being topological, we expect a reduction in this gap. However, we argue
that this type of charge excitation is always gapped. We perform a different decomposition of the matrix Rη

mn:

Rη
mn(k) =

∑

q

∑

p,p′=1,2

M
(η)†
{pq0},m(k)V{pq0},{p′q′0}M

(η)
{p′q′0},n(k) +

∑

{q,G}	={0,0}

∑

p,p′=1,2

M
(η)†
{pqG},m(k)V{pqG},{p′q′G′}M

(η)
{p′q′G′},n(k). (C7)

Since the second term is still a semi positive definite matrix by construction, the eigenvalues of Rη(k) will be greater or larger
than the eigenvalues of the first term. In fact, due to Ref. [107], we know that the eigenvalues of the second term are negligible
for |G| � 2|bM1|. Hence, using the math notation of A � B for A − B positive semidefinite, we have

Rη
mn(k) �

∑

q

∑

p,p′=1,2

M
(η)†
{pq0},m(k)V{pq0},{p′q′0}M

(η)
{p′q′0},n(k)

=
∑

q

V (q)M
(η)∗
m′,m(k, q)M

(η)
m′,n(k, q) =

∑

q

V (q)
(
δmn − G

mn
η (k, q)

)
. (C8)

We call Gmn(k, q) the generalized “quantum geometric tensor,” whose trace is the generalized Fubini-Study metric. The property
of the generalized quantum geometric tensor/Fubini study metric is that they become the conventional quantum geometric
tensor/Fubini study metric for small transfer momentum q. The tensor quantifies the distance between two eigenstates in
momentum space. The conventional quantum geometric tensor is defined as

G
mn
i j (k) =

N∑

a,b=1

∂ki
u∗

a,m(k)

(
δa,b −

noccupied∑

l

ua,l (k)u∗
b,l (k)

)
∂k j

ub,n(k), (C9)

in which m, n are energy band indices and i, j are spatial direction indices of noccupied orthonormal vectors um(k) in a N

dimensional Hilbert space, where k is some parameter. We can show that

M
(η)∗
m′,m(k, q) = δmn − G

mn
η (k, q) = M

(η)
m′,n(k, q) = δmn − qiq jG

mn
i j (k) + O(q2). (C10)

Generically, we expect [77] that the overlap between two functions at k and k + q to fall off as q increases, leaving a finite term
in Rη

mn(k), the electron gap, at every k.

2. Exact charge +1 excitations in the (first) chiral-flat U(4) × U(4) limit

For an eigenstate |�ν+,ν−
ν 〉 defined by Eq. (A32) in the (first) chiral-flat U(4) × U(4) limit, one has the coefficients M(k, q +

G) = ζ 0τ 0α0(k, q + G) + iζ yτ 0α2(k, q + G). Without condition Eq. (A30), the eigenstate |�ν+,ν−
ν 〉 (which is not necessarily

the ground state) satisfies Eq. (A34), which is equivalent to choosing NMAG = ν
√

V (G)
∑

k α0(k, G) for Eq. (C2). Using the
relation (A12), we can simplify the matrix Rη

mn(k) defined in Eq. (C2) as

Rη(k) = R0(k)ζ 0, (C11)
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where

R0(k) =
∑

G

[(
∑

q

V (G + q)[α0(k, q + G)2 + α2(k, q + G)2]

)
+ 2NMA−G

√
V (G)α0(k, G)

]
− µ. (C12)

Therefore Rη(k) is proportional to the identity matrix. Since the state |�ν+,ν−
ν 〉 is written in the Chern band basis defined in

Eq. (A18), it is more convenient to work in the Chern band basis. We then find the charge excitation eigenstates with the
corresponding excitation energy R

η

0 (k) given by

d
†
k,eY ,η,s

∣∣�ν+,ν−
ν

〉
,

[
HI − µN, d

†
k,eY ,η,s

]
|�〉 =

1

2�tot

R0(k)d†
k,eY ,η,s

|�〉, (C13)

provided the Chern band eY (=±1) at valley η and spin s is fully empty. With condition Eq. (A30) assumed, the states |�ν+,ν−
ν 〉

become ground states. At the same time, with the chemical potential is given by Eq. (A31), we can simplify the excitation energy
R0(k) into

R0(k) =
∑

G,q

V (G + q)[α0(k, q + G)2 + α2(k, q + G)2] =
∑

G,q

P(k, q + G) (C14)

independent on η, and with P(k, q + G) defined in Eq. (B11). Since the U(4) × U(4) irrep of the ground state is ([N
ν+
M ]4, [N

ν−
M ]4),

the U(4) × U(4) irrep of the charge 1 excited states with eY = 1 and eY = −1 are given by ([N
ν+
M , 1]4, [N

ν−
M ]4) and

([N
ν+
M ]4, [N

ν−
M , 1]4), respectively.

3. Charge −1 excitations

The charge −1 excitations are obtained in a similar manner as the charge +1 excitations. Charge −1 excitations can be
obtained by considering states ck,n,η,s|�〉 (n = ±) at a fixed k in a fully filled valley η and spin s. By the Hermitian conjugate of
Eq. (B3), we find similar to the charge 1 excitation,

[HI − µN, ck,n,η,s]|�〉 =
1

2�tot

∑

m

R̃η
mn(k)ck,m,η,s|�〉, (C15)

where N is the electron number operator, and the matrix

R̃η
mn(k) =

∑

G

[(
∑

q,m′

V (G + q)M
(η)∗
m′,m(k, q + G)M

(η)
m′,n(k, q + G)

)∗

− 2NMA−G

√
V (G)M (η)∗

m,n (k, G)

]
+ µδmn

=
∑

G

[(
∑

q

P(η)
nm (k, q + G)

)
− 2NMA−G

√
V (G)M (η)∗

m,n (k, G)

]
+ µδmn. (C16)

Note that R̃η
mn(k) differs from Eq. (C2) by a sign in the last two terms as well as by the complex conjugation of the first term.

Diagonalizing R̃η
mn(k) gives the charge −1 (hole) excitations. The chemical potential is the one given in Eq. (A31). In the (first)

chiral limit, R̃mnη becomes a two-by-two identity at each k and independent with η, i.e.,R̃η
mn = R̃0(k)δmn. The R0(k) function is

given by

R̃0(k) =
∑

G

[(
∑

q

V (G + q)[α0(k, q + G)2 + α2(k, q + G)2]

)
− 2NMA−G

√
V (G)α0(k, G)

]
+ µ. (C17)

If condition Eq. (A30) is satisfied, and µ is given in
Eq. (A31), the charge −1 excitations have identical dispersion
as that of the charge +1 excitations [Eq. (C2)]. If condition
Eq. (A30) is not satisfied and ν 	= 0, the charge +1 and −1
excitations will have different dispersions. The dispersions
will also depend on filling ν, since AG defined in Eq. (A34)
depends on ν.

Since U(4) irrep of the ground state |�ν〉 is [(2NM )(ν+4)/2]4,
in the nonchiral limit, the U(4) irrep of the charge −1 ex-
cited state is given by [(2NM )(ν+2)/2, 2NM − 1]4. Since the
U(4)× U(4) irrep of the ground state is ([N

ν+
M ]4, [N

ν−
M ]4),

the U(4) × U(4) irrep of the charge -1 excited states with

eY = 1 and eY = −1 are given by ([N
ν+−1
M , NM − 1]4, [N

ν−
M ]4)

and ([N
ν+
M ]4, [N

ν−−1
M , NM − 1]4), respectively. The com-

puted charge gaps for the TBG Hamiltonian are of
order 10 meV.

4. Charge ±1 excitation spectra for different parameters

Before we present the numerical results, let us first explain
how we choose the chemical potential in the cases without
assuming flat-metric condition. First, the sum of the lowest
charge +1 (�+) and charge −1 (�−) gaps do not depend
on the chemical potential since upon adding a −δµN term
the two gaps change by −δµ and δµ, respectively. Then we
choose the chemical potential such that �+ = �−. In a band
structure picture, �+ is the lowest conduction band energy
and −�− is the highest valence band energy. The condition
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FIG. 5. Exact charge +1 (blue) and −1 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot we have used

the parameters defined in Appendix A: vF = 5.944 eV Å, |K | = 1.703 Å−1, w1 = 110 meV, Uξ = 26 meV, and ξ = 10 nm. Note that the

excitation gap is largely reduced from the flat-condition limit.

�+ = �− simply means that the chemical potential locates at
the middle of conduction and valence bands.

In Figs. 5 and 6, the charge ±1 excitations are plotted
at different fillings and w0/w1’s for two different screening
lengths of the Coulomb interaction [Eq. (A7)], i.e.,ξ = 10 and
20 nm, respectively. The corresponding interaction strengths
are U10 nm = 26 meV and U20 nm = 13 meV. We have used
w1 = 110 meV in all the calculations and w0/w1 = 0, 0.4,
0.8 for ν = 0,−2 and w0/w1 = 0 for ν = −1,−3.

For ν = 0 and ξ = 10, 20 nm, the charge ±1 gaps are at
the ŴM momentum and are always larger than 10 meV for
different w0/w1’s. For ν = −2 and ξ = 20 nm, the charge
±1 gaps are always larger than 5 meV for different w0/w1’s.

For ν = −2 and ξ = 10 nm, the charge ±1 gaps are fi-
nite for w0/w1 = 0, 0.4 but become negative at w0/w1 = 0.8
[Fig. 5(c)]. We find that the gaps close around w0/w1 ≈ 0.75,
implying that, with ξ = 10 nm and the other parameters we
have used, the ground states in Eq. (8) become unstable for
w0/w1 ≈ 0.75.

The instability shown in Fig. 5(c) will lead to a metallic
phase at ν = −2 in the nonchiral-flat limit with strong chi-
ral symmetry breaking (w0/w1 = 0.8). In the band structure
picture, we can understand the charge +1 excitation as the
conduction band and the charge −1 excitation as the reverted
valence band. The negativities of both imply that the energy
of conduction band overlaps with the energy of valence band.
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FIG. 6. Exact charge +1 (blue) and −1 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot we set the

screening length as ξ = 20nm and accordingly the interaction strength as Uξ = 13meV. The other parameters are same as in Appendix A:

vF = 5.944 eV Å, |K | = 1.703 Å−1, and w1 = 110 meV.
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Since we have chosen to fully occupy the valence bands, the
ground state energy is not minimized in this case: One can
move one particle from the top of valence band to bottom of
conduction band to lower the energy. The ground state energy
will be minimized by redistributing electrons to occupy the
bands below the chemical potential. Due to the overlap be-
tween conduction and valence bands, the redistributed band
structure will have electron and hole pockets and hence is a
metallic state. In the resulted metallic phase at ν = −2, there
are two fully empty valley-spin sectors and two partially filled
valley-spin sectors. The partially filled sectors contribute to
the electron and hole pockets. This state is still invariant under
a U(2) subgroup within the fully empty valley-spin sectors.
Since U(4) and U(2) have 16 and 4 parameters, there will be
16−4

2
= 6 Goldstone modes.

APPENDIX D: CHARGE NEUTRAL EXCITATIONS AND

THE GOLDSTONE STIFFNESS

While the charge ±1 excitations can be obtained by diag-
onalizing a 2 × 2 matrix, we can obtain the charge neutral,
two-body excitations above the ground state. These can be

obtained by diagonalizing a 2NM × 2NM matrix, or a one-body

problem, despite the state having a thermodynamic number of
particles. Due to the fact that we know the exact eigenstates
(or ground states) of the system, building excitations of the
Hamiltonian on top of these eigenstates (or ground states)
becomes a problem of diagonalizing a basis formed only
from the excitations. We now obtain the charge neutral excita-
tions, show that they exhibit Goldstone modes with quadratic
dispersion—as required by U(4) [or U(4) × U(4)] ferromag-
netism, and obtain the stiffness of the Goldstone dispersion in
the first chiral limit.

1. Exact charge neutral excitations in

the nonchiral-flat U(4) limit

We choose a basis for the neutral excitations

c
†
k2,m2,η2,s2

ck1,m1,η1,s1
|�〉, (D1)

where |�〉 is any of the exact ground states and/or eigenstates
in Eqs. (A32) and (A35). The scattering matrix of this basis
can be solved as easily as a one-body problem, despite the
fact that Eqs. (A32) and (A35) hold a thermodynamic number
of particles. We first have to compute the commutators:

[
O−q,−GOq,G, c

†
k2,m2,η2,s2

ck1,m1,η1,s1

]
=

[
O−q,−GOq,G, c

†
k2,m2,η2,s2

]
ck1,m1,η1,s1

+ c
†
k2,m2,η2,s2

[
O−q,−GOq,G, ck1,m1,η1,s1

]
, (D2)

which, in detail reads
[
O−q,−GOq,G, c

†
k2,m2,η2,s2

ck1,m1,η1,s1

]

=
∑

m

P(η2 )
mm2

(k2, q + G)c†
k2,m,η2,s2

ck1,m1,η1,s1
+

∑

m

P(η1 )
m1m(k1,−q − G)c†

k2,m2,η2,s2
ck1,m,η1,s1

+
√

V (G + q)
∑

m

(
M (η2 )

m,m2
(k2, q + G)c†

k2+q,m,η2,s2
ck1,m1,η1,s1

O−q,−G + (q, G ↔ −q,−G)
)

−
√

V (G + q)
∑

m

(
M (η1 )∗

m,m1
(k1,−q − G)c†

k2,m2,η2,s2
ck1−q,m,η1,s1

O−q,−G + (q, G ↔ −q,−G)
)

−V (G + q)
∑

m,m′

(
M (η2 )

m,m2
(k2, q + G)M

(η1 )∗
m′,m1

(k1, q + G)c†
k2+q,m,η2,s2

ck1+q,m′,η1,s1
+ (q, G ↔ −q,−G)

)
(D3)

By rewriting k2 = k + p and k1 = k, we can write the scattering equation as

[
HI − µN, c

†
k+p,m2,η2,s2

ck,m1,η1,s1

]
|�〉 =

1

2�tot

∑

m,m′

∑

q

S
(η2,η1 )
mm′;m2m1

(k + q, k; p)c†
k+p+q,m,η2,s2

ck+q,m′,η1,s1
|�〉. (D4)

The |�〉 are the states |�ν〉 in Eq. (A35), and hence η1, s1 belong to the valley-spin flavor/s which are fully occupied, while
η2, s2 belong to the valley/spin flavor which are not occupied.

For a generic exact eigenstate |�〉 at chemical potential µ satisfying (Oq,G − AGNMδq,0)|�〉 = 0 for some coefficient AG, we
find that the scattering matrix reads

S
(η2,η1 )
m,m′;m2,m1

(k + q, k; p) = δq,0

(
δm,m2

R̃
η1

m′m1
(k) + δm′,m1

Rη2
mm2

(k + p)
)

− 2
∑

G

V (G + q)M (η2 )
m,m2

(k + p, q + G)M
(η1 )∗
m′,m1

(k, q + G),

where Rη
mn(k), R̃η

mn(k) are the ±1-excitation matrices in Eqs. (C2) and (C16). We see that the neutral energy is a sum of the two
single-particle energies [first row of Eq. (D5)] plus an interaction energy [second row of Eq. (D5)].

The exact expression of the PH excitation spectrum allows for the determination of the Goldstone stiffness. The Goldstone of
the U(4) and U(4) × U(4) ferromagnetic ground states is part of the spectrum of the neutral excitation Eq. (D4), and is the state
at small momentum p = k1 − k2. We will solve this in the simpler, chiral limit, but it can be obtained in the general, nonchiral
limit Eq. (D4).
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2. Exact charge neutral excitations in the (first) chiral-flat U(4) × U(4) limit

We now consider the charge neutral excited states reachable by creating one electron-hole pair with total momentum p on
the chiral-flat limit eigenstate |�ν+,ν−

ν 〉. Assume the valley-spin flavor {η1, s1} has Chern band basis eY 1 fully occupied and the
valley-spin flavor {η2, s2} Chern band basis eY 2 fully empty. We consider the Hilbert space of the following sets of states of
momentum quantum number p

∣∣k + p, k, eY 1, eY 2, η2, η1, s2, s1, �
ν+,ν−
ν

〉
= d

†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
, (D5)

The Oq,G operators in the chiral limit have the simple, diagonal expression of Eq. (B7), which leads to the scattering equation.

[
HI − µN, d

†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1

]
|�〉 =

1

2�tot

∑

q

SeY 2;eY 1
(k + q, k; p)d†

k+p+q,eY 2,η2,s2
dk+q,eY 1,η1,s1

|�〉. (D6)

The |�〉 are the states |�ν+,ν−
ν 〉 in Eq. (A32), and hence eY 1, η1, and s1 belong to the valley-spin flavor/s which are fully

occupied, while eY 2, η2, and s2 belong to the valley/spin flavor which are not occupied. The scattering matrix in the chiral limit
does not depend on η1, η2:

SeY 2;eY 1
(k + q, k; p) = δq,0(R0(k + p) + R̃0(k)) − 2

∑

G

V (G + q)MeY 2
(k + p, q + G)M∗

eY 1
(k, q + G), (D7)

where MeY
(k, q + G) is given in Eq. (A20) and R

η

0 (k) is given in Eq. (C12).
If condition Eq. (A30) is satisfied, the eigenstates |�ν+,ν−

ν 〉 are the ground states, and hence the states Eq. (D6) are the neutral
excitations on top of the ground states. Without the condition Eq. (A30), only ν = 0 states are guaranteed to be the ground states,
although the others are still eigenstates. With condition Eq. (A30), we have

SeY 2;eY 1
(k + q, k; p) = δq,0

∑

G,q′

V (G + q′)[α0(k, q′ + G)2 + α2(k, q′ + G)2 + α0(k + p, q′ + G)2 + α2(k + p, q′ + G)2]

− 2
∑

G

V (G + q)(α0(k + p, q + G) + ieY 2α2(k + p, q + G))(α0(k, q + G) − ieY 1α2(k, q + G)).

(D8)

Solving Eq. (D6) provides us with the expression for the neutral excitations at momentum p on top of the TBG ground states.

3. Goldstone mode in the first chiral limit and the Goldstone stiffness

We show that the Goldstone mode of the ferromagnetic ground states are included in the neutral excitations of Eq. (D6) and
we obtain their dispersion relation, in terms of the quantum geometry factors of the TBG. We are able to analytically obtain the
Goldstone mode if the condition Eq. (A30) holds. We first show the presence of an exact zero eigenstate of Eq. (D6).

a. Exact zero energy neutral mode eigenstate

We now show that Eq. (D6) has an exact zero energy eigenstate. In order to see this, we remark that the p = 0, eY 1 = eY 2

state Eq. (D8) has a scattering matrix

SeY ;eY
(k + q, k; 0) = 2δq,0

∑

G,q′

V (G + q′)[α0(k, q′ + G)2 + α2(k, q′ + G)2]

− 2
∑

G

V (G + q)(α0(k, q + G)2 + α2(k, q + G)2), (D9)

whose elements in every row sums to zero (irrespective of η1,2, s1,2):
∑

q

SeY ;eY
(k + q, k; 0) = 0. (D10)

This guarantees that the rank of the scattering matrix is not maximal, and that there is at least one zero energy eigenstate, with
equal amplitude on every |k, k, eY , eY , η2, η1, s2, s1, �

ν+,ν−
ν 〉

|eY , eY , η2, η1, s2, s1〉 =
∑

q

d
†
k+q,eY ,η2,s2

dk+q,eY ,η1,s1

∣∣�ν+,ν−
ν

〉
, (HI − µN )|eY , eY , η2, η1, s2, s1〉 = 0. (D11)

A U(4) × U(4) multiplet of this state is also at zero energy. Moreover, the scattering matrix SeY ;eY
(k + q, k; 0) is posi-

tive semidefinite (as it should, since these eigenvalues are energies of excitations on top of the ground states). For the
matrix SeY ;eY

(k + q, k; 0), we prove that its negative, −SeY ;eY
(k + q, k; 0), has only nonpositive eigenvalues, and hence

SeY ;eY
(k + q, k; 0) has only non-negative eigenvalues. For −SeY ;eY

(k + q, k; 0), the diagonal elements −SeY ;eY
(k, k; 0) are

nonpositive, while the off-diagonal elements −SeY ;eY
(k + q, k; 0) (q 	= 0) are non-negative. Hence by the Gershgorin circle
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theorem, all eigenvalues lie in at least one of the Gershgorin disks (which, due to the fact that the matrix is Hermitian, are
intervals) centered at −SeY ;eY

(k, k; 0) and with radius −
∑

q 	=0 SeY ;eY
(k + q, k; 0). These intervals are

[
−SeY ;eY

(k, k; 0) +
∑

q 	=0

SeY ;eY
(k + q, k; 0),−SeY ;eY

(k, k; 0) −
∑

q 	=0

SeY ;eY
(k + q, k; 0)

]
=

[
2

∑

q 	=0

SeY ;eY
(k + q, k; 0), 0

]
.

(D12)

Since
∑

q 	=0 SeY ;eY
(k + q, k; 0) � 0, ∀k, all eigenvalues of −SeY ;eY

(k + q, k; 0) are nonpositive, and hence all eigenvalues of
SeY ;eY

(k + q, k; 0) are non-negative.

b. Goldstone stiffness

Since the p = 0 state has zero energy, for small p, there will be low-energy states in the neutral continuum. By using the
p = 0 states in Eq. (D11), one can compute their dispersion. First, we write the Hamiltonian matrix elements acting on the two
particle states

〈
k′ + p, k′, e′

Y 1, e′
Y 2, η

′
2, η

′
1, s′

2, s′
1, �

ν+,ν−
ν

∣∣HI

∣∣k + p, k, eY 1, eY 2, η2, η1, s2, s1, �
ν+,ν−
ν

〉

= δe′
Y 1,e

′
Y 2,η

′
2,η

′
1,s

′
2,s1;eY 1,eY 2,η2,η1,s2,s1

1

2�tot

(δk′,kSeY 2;eY 1
(k, k; p)) − SeY 2;eY 1

(k′, k; p)). (D13)

Hence, for small p, the energy of the Goldstone mode is given by the expectation value

EGoldstone(p) =
∑

k,k′

〈
k′ + p, k′, eY , eY , η2, η1, s2, s1, �

ν+,ν−
ν

∣∣HI

∣∣k + p, k, eY , eY , η1, η1, s2, s1, �
ν+,ν−
ν

〉

=
1

2�tot

∑

k

(
SeY ;eY

(k, k; p) −
∑

q

SeY ;eY
(k + q, k; p)

)
. (D14)

As expected for the Goldstone of a ferromagnet, the linear term in p vanishes; by using αa(k, q + G) = αa(−k,−q −
G) for a = 0, 2 of Eq. (A13), we find can prove that the linear terms vanish exactly. To second order in p, we find the Goldtone
stiffness

EGoldstone(p) =
1

2
mi j pi p j, (D15)

mi j =
1

2�tot

∑

k,q,G

V (G + q)
[
α0(k, q + G)∂ki

∂k j
α0(k, q + G) + α2(k, q + G)∂ki

∂k j
α2(k, q + G)

+ 2∂ki
α0(k, q + G)∂k j

α0(k, q + G) + 2∂ki
α2(k, q + G)∂k j

α2(k, q + G)
]
. (D16)

4. Charge neutral excitation spectra for different parameters

In Figs. 7 and 8, the charge neutral excitations are plotted
at different fillings and w0/w1’s for two different screening
lengths of the Coulomb interaction [Eq. (A7)], i.e.,ξ = 10 and
20 nm, respectively. The corresponding interaction strengths
are U10 nm = 26 meV and U20 nm = 13 meV. We have used
w1 = 110 meV in all the calculations and w0/w1 = 0, 0.4,
and 0.8 for ν = 0, −2 and w0/w1 = 0 for ν = −1, −3.

For the parameters we used, the ν = 0 states with w0/w1 =
0, 0.4, 0.8 and ν = −1, −3 states with w0 = 0 have non-
negative excitations and hence are stable. The ν = −2 states
with w0/w1 = 0, 0.4, and 0.8 are also stable for ξ = 20 nm.
However, the ν = −2 states for ξ = 10 nm become unstable
at w0/w1 = 0.8 [Fig. 7(c)]. The instability can be understood
from the instability of the charge ±1 excitations shown in
Fig. 5(c). From Fig. 5(c), we can see that the charge +1
excitation is negative at some momenta between ŴM and KM

and the charge −1 excitation is negative at ŴM . Combin-
ing a pair of these negative particle and hole one obtains
a negative charge neutral excitation. As discussed in the

end of Appendix C 4, this instability will lead to a metallic
phase.

For the stable ground states, where the spectrum is non-
negative, the charge neutral spectrum consists of a particle-
hole continuum (the blue area in Figs. 7 and 8) and a set of
gapped collective modes. In Figs. 7 and 8, we only plot the
eigenvalues of the scattering matrix. In practice, the existence
and degeneracy of an excitation mode also depend on the oc-
cupied U(4) flavors [and U(4) × U(4) flavors in the first chiral
limit] of the ground state, as discussed in Appendix III A.
In particular, the number of Goldstone modes for different
ground states are given in Tables II and I. In general, the
states |�ν+,ν−

ν 〉 [Eq. (10)] in the (first) chiral-flat U(4) ×
U(4) limit with ν = 0,±2 and ν+ = ν− = ν+4

2
(such that

it has vanishing Chern number) has more Goldstone modes
than the state |�ν〉 [Eq. (8)] with the same filling ν. From
w0/w1 = 0.4 to w0/w1 = 0 for the states at ν = 0, −2, we
can clearly see in Figs. 7 and 8 that a collective mode is soften
and become Goldstone mode, consistent with the theoretical
analysis.
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FIG. 7. Exact charge neutral excitations with θ = 1.05◦. The flat metric condition is not imposed. In this plot we have used the parameters

defined in Appendix A: vF = 5.944 eV Å, |K| = 1.703 Å−1, w1 = 110 meV, Uξ = 26 meV, and ξ = 10 nm.

APPENDIX E: CHARGE ±2 EXCITATIONS AND

CONDITIONS ON COOPER PAIR INSTABILITY

The charge ±1 excitations can be obtained by diagonaliz-
ing a 2 × 2 matrix; the charge neutral above the ground state
can be obtained by diagonalizing a 2NM × 2NM matrix, or a
one-body problem, despite the state having a thermodynamic
number of particles, due to the fact that we know the exact
eigenstates (or ground states) of the system. We now show that

the charge +2 excitations can also be obtained by diagonaliz-
ing a 2NM × 2NM matrix. The conditions for which Cooper
pairing occurs are also obtained.

1. Charge +2 excitations in the nonchiral-flat U(4) limit

We choose a basis for the neutral excitations

c
†
k2,m2,η2,s2

c
†
k1,m1,η1,s1

|�〉 (E1)
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FIG. 8. Exact charge neutral excitations with θ = 1.05◦. The flat metric condition is not imposed. In this plot, we use the screening length

ξ = 20 nm and Uξ = 13 meV accordingly. The other parameters are same as in Appendix A, i.e.,vF = 5.944 eV Å, |K| = 1.703 Å−1, and

w1 = 110 meV.
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where |ψ〉 is any of the exact ground states/eigenstates Eqs. (A32) and (A35). The scattering matrix of these basis can be solved
as easily as a one-body problem. We first have to compute the commutators:

[
O−q,−GOq,G, c

†
k2,m2,η2,s2

c
†
k1,m1,η1,s1

]
=

[
O−q,−GOq,G, c

†
k2,m2,η2,s2

]
c

†
k1,m1,η1,s1

+ c
†
k2,m2,η2,s2

[
O−q,−GOq,G, c

†
k1,m1,η1,s1

]
, (E2)

which in detail reads

[
O−q,−GOq,G, c

†
k2,m2,η2,s2

c
†
k1,m1,η1,s1

]

=
∑

m

P(η2 )
mm2

(k2, q + G)c†
k2,m,η2,s2

c
†
k1,m1,η1,s1

+
∑

m

P(η1 )
mm1

(k1, q + G)c†
k2,m2,η2,s2

c
†
k1,m,η1,s1

+
√

V (G + q)
∑

m

(
M (η2 )

m,m2
(k2, q + G)c†

k2+q,m,η2,s2
c

†
k1,m1,η1,s1

O−q,−G + (q, G ↔ −q,−G)
)

+
√

V (G + q)
∑

m

(
M (η1 )

m,m1
(k1, q + G)c†

k2,m2,η2,s2
c

†
k1+q,m,η1,s1

O−q,−G + (q, G ↔ −q,−G)
)

+V (G + q)
∑

m,m′

(
M (η2 )

m,m2
(k2, q + G)M

(η1 )
m′,m1

(k1,−q − G)c†
k2+q,m,η2,s2

c
†
k1−q,m′,η1,s1

+ (q, G ↔ −q,−G)
)
. (E3)

By rewriting k2 = k + p and k1 = −k, we can write the scattering equation as

[
HI − µN, c

†
k+p,m2,η2,s2

c
†
−k,m1,η1,s1

]
|�〉 =

1

2�tot

∑

m,m′

∑

q

T
(η2,η1 )

mm′;m2m1
(k + q, k; p)c†

k+p+q,m,η2,s2
c

†
−k−q,m′,η1,s1

|�〉, (E4)

The |�〉 are the states |�ν〉 in Eq. (A35), and hence η1, s1, η2, and s2 belong to the valley/spin flavor which are not occupied.
For a generic exact eigenstate |�〉 at chemical potential µ satisfying (Oq,G − AGNMδq,0)|�〉 = 0 for some coefficient AG, we

find that the T
(η2,η1 )

m2,m;m1m′ (k1, k2; q) matrix reads

T
(η2,η1 )

mm′;m2m1
(k + q, k; p) = δq,0

(
δm,m2

R
η1

m′m1
(−k) + δm′,m1

Rη2
mm2

(k + p)
)

+ 2
∑

G

V (G + q)M (η2 )
m,m2

(k + p, q + G)M
(η1 )
m′,m1

(−k,−q − G), (E5)

where Rη
mn(k), Rη

mn(k) are the +1 excitation matrices in Eqs. (C2) and (C16). We see that the charge +2 energy is a sum of the
two single-particle energies [first row of Eq. (D5)] plus an interaction energy [second row of Eq. (D5)]. The exact expression of
the charge +2 excitation spectrum allows for the determination of the Cooper pair binding energy (if any).

2. Charge +2 excitations in the (first) chiral-flat U(4) × U(4) limit

We now consider the charge +2 excited states reachable by creating two electron pair with total momentum p on the chiral-flat
limit eigenstate |�ν+,ν−

ν 〉. Assume the valley-spin flavor {η1,2, s1,2} has Chern band basis eY 1, eY 2 fully empty. We consider the
Hilbert space of the following sets of states of momentum quantum number p (k2 = −k1 + p, k1 = k):

∣∣k + p,−k, eY 1, eY 2, η2, η1, s2, s1, �
ν+,ν−
ν

〉
= d

†
k+p,eY 2,η2,s2

d
†
−k,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
, (E6)

The Oq,G operators in the chiral limit have the simple, diagonal expression of Eq. (B7), which leads to the scattering equation

[
HI − µN, d

†
k+p,eY 2,η2,s2

d
†
−k,eY 1,η1,s1

]
|�〉 =

1

2�tot

∑

q

TeY 2;eY 1
(k + q, k; p)d†

k+p+q,eY 2,η2,s2
d

†
−k−q,eY 1,η1,s1

|�〉. (E7)

The |�〉 are the states |�ν+,ν−
ν 〉 in Eq. (A32), and hence eY 1, η1, s1, eY 2, η2, s2 belong to the valley/spin flavor which are not

occupied. The scattering matrix in the first chiral limit does not depend on η1, η2

TeY 2;eY 1
(k + q, k; p) = δq,0(R0(k + p) + R0(−k)) + 2

∑

G

V (G + q)MeY 2
(k + p, q + G)MeY 1

(−k,−q − G), (E8)

where MeY
(k, q + G) is given in Eq. (A20) and R

η

0 (k) is given in Eq. (C12).
If condition Eq. (A30) is satisfied, the eigenstates |�ν+,ν−

ν 〉 are the ground states, and hence the states Eq. (E7) are the neutral
excitations on top of the ground states. Without Eq. (A30), only ν = 0 states are guaranteed to be the ground states, although the
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others are still eigenstates. With condition Eq. (A30), we have

TeY 2;eY 1
(k + q, k; p) = δq,0

∑

G,q

V (G + q)[α0(k, q + G)2 + α2(k, q + G)2 + α0(k + p, q + G)2 + α2(k + p, q + G)2]

+ 2
∑

G

V (G + q)(α0(k + p, q + G) + ieY 2α2(k + p, q + G))(α0(k, q + G) + ieY 1α2(k, q + G)),

(E9)

where we have used the α0,2(k, q + G) = α0,2(−k,−q − G). Solving Eq. (E7) provides us with the expression for the charge
+2 excitations at momentum p on top of the TBG ground states.

3. Absence of Cooper pairing in the projected Coulomb Hamiltonian

In Sec. V B, we have derived the sufficient conditions for the existence [Eq. (37)] and absence [Eq. (38)] of Cooper pairing
binding energies. Now we prove that, in the projected Coulomb Hamiltonian with time-reversal symmetry T and the combined

symmetry PC2zT , where P is the unitary PH symmetry [43,108], T
(η2,η1 )′′

m,m′;m2,m1
(k + q, k; p) is guaranteed to be positive semidefinite.

Thus the condition (38) for the absence of Cooper pairing binding energy is always satisfied. We write T
(η2,η1 )′′

m,m′;m2,m1
(k + q, k; p),

which is defined as the third term in Eq. (E5), as

T
(η2,η1 )′′

m,m′;m2,m1
(k + q, k; p) = 2

∑

G

V (G + q)M (η2 )
mm2

(k + p, q + G)M
(η1 )
m′m1

(−k,−q − G). (E10)

We first consider the case η2 = −η1 = η. Due to the time-reversal symmetry T |un,η(−k)〉 = |un,−η(k)〉 in the gauge Eq. (A10)
[109], where |un,η(k)〉 is the 2NQ × 1 vector uQ,α;nη(k) in Eq. (A3), and the definition of the M matrix (Eq. (A8)), we have

M (η)
mn (k, q + G) = 〈um,η(k + q + G)|un,η(k)〉 = 〈Tum,−η(−k − q − G)|Tun,−η(−k)〉

= 〈un,−η(−k)|um,−η(−k − q − G)〉 = 〈um,−η(−k − q − G)|un,−η(−k)〉∗ = M (−η)
mn (−k,−q − G). (E11)

Thus we can rewrite T
(η,−η)′′

m,m′;m2,m1
(k + q, k; p) as

T
(η,−η)′′

m,m′;m2,m1
(k + q, k; p) = 2

∑

G

V (G + q)M (η)
mm2

(k + p, q + G)M
(η)∗
m′m1

(k, q + G). (E12)

We consider the expectation value of T (η,−η)′′(k + q, k; p) on a complex function φm2,m1
(k):

〈T ′′〉ηφ (p) =
∑

k1,k2

∑

mm′m2m2

φ∗
mm′ (k2)T (η,−η)′′(k2, k1; p)φm2,m1

(k1)

= 2
∑

k1,k2,G

V (k2 + G − k1)φ∗
mm′ (k2)〈umη(k2 + p + G)|um2η(k1 + p)〉φm2,m1

(k1)〈um1
(k1)|um′η(k2 + G)〉. (E13)

Using Eq. (A4), we have 〈um1
(k)|um′η(k + q + G)〉 = 〈um1

(k + G′)|um′η(k + q + G + G′)〉 and hence

〈T ′′〉ηφ (p) =
2

NG

∑

k1,k2,G1,G2

∑

mm′m2m1

V (k2 + G2 − k1 − G1)

× φ∗
mm′ (k2)〈umη(k2 + p + G2)|um2η(k1 + p + G1)〉φm2,m1

(k1)〈um1
(k1 + G1)|um′η(k2 + G2)〉. (E14)

We then define the matrix

W (k1 + G1) =
∑

m2m1

|um2η(k1 + p + G1)〉φm2,m1
(k1)〈um1

(k1 + G1)| (E15)

such that 〈T ′′〉ηφ (p) can be written as

〈T ′′〉ηφ (p) =
2

NG

∑

k1,k2,G1,G2

Tr[W †(k2 + G2)W (k1 + G1)]V (k2 + G2 − k1 − G1)

=
2

NG

∑

ab

∑

k1,k2,G1,G2

W ∗
ab(k2 + G2)Wab(k1 + G1)V (k2 + G2 − k1 − G1), (E16)
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where a and b are the indices of the matrix W (k + G). For each term with given a and b in Eq. (E16), we can view the summation
over k1, k2, G1, and G2 as W

†
ab

VWab, where now Wab(k + G) is viewed as a vector with the index k + G. Since V (k2 + G2 −
k1 − G1) is a positive semidefinite matrix, W

†
ab

VWab must be non-negative, and hence 〈T ′′〉ηφ (p) � 0 for arbitrary φ. Therefore

T
(η,−η)′′

m,m′;m2,m1
(k + q, k; p) is positive semidefinite at every p.

Then we prove that T
(η2,η1 )′′

m,m′;m2,m1
(k + q, k; p) with η2 = η1 = η is also positive semidefinite. Due to the symmetry

PC2zT |un,η(k)〉 = n|u−n,η(−k)〉 in the gauge Eq. (A10) [109] and the definition of the M matrix [Eq. (A8)], we have

M (η)
mn (k, q + G) = 〈um,η(k + q + G)|un,η(k)〉 = nm〈PC2zTu−m,η(−k − q − G)|PC2zTu−n,η(−k)〉

= nm〈u−n,η(−k)|u−m,η(−k − q − G)〉 = nmM
(η)∗
−m,−n(−k,−q − G). (E17)

Thus we can rewrite T
(η,η)′′

m,m′;m2,m1
(k + q, k; p) as

T
(η,η)′′

m,m′;m2,m1
(k + q, k; p) = 2

∑

G

V (G + q)M (η)
mm2

(k + p, q + G)m′m1M
(η)∗
−m′,−m1

(k, q + G). (E18)

Repeating the calculations starting from Eq. (E13), one can show that T
(η,η)′′

m,m′;m2,m1
(k + q, k; p) must be positive semidefinite. The

only difference with the above proof is that the definition of the W matrix becomes

W (k1 + G1) =
∑

m2m1

|um2η(k1 + p + G1)〉φm2,m1
(k1)〈u−m1

(k1 + G1)|m1. (E19)

4. Charge −2 excitations

Based on the above, the charge −2 excitations are trivial to obtain. We do not give the details, but just the expression for the
scattering elements

[HI − µN, ck+p,m2,η2,s2
c−k,m1,η1,s1

]|�〉 =
1

2�tot

∑

m,m′

∑

q

T̃
(η2,η1 )

mm′;m2m1
(k + q, k; p)ck+p+q,m,η2,s2

c−k−q,m′,η1,s1
|�〉, (E20)

The |�〉 are the states |�ν〉 in Eq. (A35), and hence η1, s1, η2, and s2 belong to the valley/spin flavor which are not occupied.
For a generic exact eigenstate |�〉 at chemical potential µ satisfying (Oq,G − AGNMδq,0)|�〉 = 0 for some coefficient AG, we

find that the T̃
(η2,η1 )

m2,m;m1m′ (k1, k2; q) matrix reads

T̃
(η2,η1 )

mm′;m2m1
(k + q, k; p) = δq,0

(
δm,m2

R̃
η1

m′m1
(−k) + δm′,m1

R̃η2
mm2

(k + p)
)

+ 2
∑

G

V (G + q)M (η2 )∗
m,m2

(k + p, q + G)M
(η1 )∗
m′,m1

(−k,−q − G), (E21)

where R̃η
mn(k) are the −1 excitation matrices in Eq. (C16). We see that the charge −2 energy is a sum of the two single-particle

energies [first row of Eq. (E21)] plus an interaction energy [second row of Eq. (E21)]. In particular, for the chiral limit, the
scattering matrix elements are identical to those of charge +2, i.e.,Eq. (E9).

5. Charge ±2 excitation spectra for different parameters

In Figs. 9 and 10, the charge ±2 excitations are plotted at different fillings and w0/w1’s for two different screening lengths of
the Coulomb interaction (Eq. (A7)), i.e.,ξ = 10 and 20 nm, respectively. The corresponding interaction strengths are U10 nm =
26 meV and U20 nm = 13 meV. We have used w1 = 110 meV in all the calculations and w0/w1 = 0, 0.4, and 0.8 for ν = 0, −2
and w0/w1 = 0 for ν = −1, −3.

The charge +2 (−2) spectrum consists of a two-particle (two-hole) continuum [the blue (red) area in Figs. 9 and 10] and a set
of gapped charge +2 (−2) collective modes. The energies in the two-particle (hole) continuum are just sums of two charge +1
(−1) excitation energies. Note that all the charge +2 (−2) collective modes appear above the two-particle (two-hole) continuum,
implying the absence of Cooper pairing binding energy, as proved in Sec. V B.

APPENDIX F: APPROXIMATE CHARGE ±1 AND NEUTRAL EXITATIONS AT ODD FILLINGS

IN THE NONCHIRAL-FLAT U(4) LIMIT

1. Approximate charge +1 excitations at odd fillings in the nonchiral-flat U(4) limit

In the nonchiral-flat limit, the states |�ν+,ν−
ν 〉 at odd fillings ν = ±1, ±3 are no longer exact eigenstates of the Hamiltonian.

However, in Ref. [110], we have shown that the states |�1,0
−3 〉 [or its U(4) rotations] and |�2,1

−1 〉 [or its U(4) rotations] are the
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FIG. 9. Exact charge +2 (blue) and −2 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot we have used

the parameters defined in Appendix A: vF = 5.944 eV Å, |K | = 1.703 Å−1, w1 = 110 meV, Uξ = 26 meV, and ξ = 10 nm.

lowest states at fillings ν = −3,−1 to the first-order perturbation of the (first) chiral symmetry breaking. In this section, we
derive the approximate charge 1 excitations above these perturbative lowest states.

Since these states have fully occupied Chern bands, it is convenient to work in the Chern band basis. We write the Oq,G

operator as a sum of a (first) chiral preserving term

O0
q,G =

∑

k,eY ,η,s

√
V (q + G)M (η)

eY ,eY
(k, q + G)

(
d

†
k+q,eY ,η,s

dk,eY ,η,s −
1

2
δq,0

)

=
∑

k,eY ,η,s

√
V (q + G)MeY

(k, q + G)

(
d

†
k+q,eY ,η,s

dk,eY ,η,s −
1

2
δq,0

)
(F1)
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FIG. 10. Exact charge +2 (blue) and −2 (red) excitations at θ = 1.05◦. The flat metric condition is not imposed. In this plot, we use

the screening length ξ = 20 nm and the interaction strength Uξ = 13 meV accordingly. The other parameters are same as in Appendix A:

vF = 5.944 eV Å, |K | = 1.703 Å−1, and w1 = 110 meV.

and a chiral breaking term

O1
q,G =

∑

k,eY ,η,s

√
V (q + G)M

(η)
−eY ,eY

(k, q + G)d†
k+q,−eY ,η,sdk,eY ,η,s,

=
∑

k,eY ,η,s

√
V (q + G)ηFeY

(k, q + G)d†
k+q,−eY ,η,sdk,eY ,η,s, (F2)

where the M matrix M
(η)

e′
Y ,eY

and the factors MeY
and FeY

are defined in Eqs. (A20) and (A21). We assume the initial state as

d
†
k,eY ,η,s

|�ν+,ν−
ν 〉. Acting the Hamiltonian on the initial state, we obtain two terms: [HI − µN, d

†
k,eY ,η,s

]|�ν+,ν−
ν 〉 and d

†
k,eY ,η,s

(HI −
µN )|�ν+,ν−

ν 〉. In the (first) chiral-flat limit, the second term is simply E0d
†
k,eY ,η,s

|�ν+,ν−
ν 〉 with E0 being the ground state energy.
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However, the second term also involve excited states when the (first) chiral symmetry is broken. To be specific, we have

d
†
k,eY ,η,s

HI

∣∣�ν+,ν−
ν

〉
=

1

2�tot

∑

q,G

d
†
k,eY ,η,s

(
O0

−q,−G + O1
−q,−G

)(
O0

q,G + O1
q,G

)∣∣�ν+,ν−
ν

〉

=
1

2�tot

∑

q,G

d
†
k,eY ,η,s

(
δq,0A−GAGN2

M + O1
−q,−GO0

q,G + O0
−q,−GO1

q,G + O1
−q,−GO1

q,G

)∣∣�ν+,ν−
ν

〉
. (F3)

The first term on the right-hand side will give the unperturbed ground state energy E0, whereas the other three terms yield
excited states. Now we approximate it by projecting it into the Hilbert space with a single-particle excitation. Notice that d

†
k,eY ,η,s

generates a particle in an empty Chern band and the O1 operator, by definition, generates particles in the empty Chern bands and
holes in occupied Chern bands. Thus the terms d

†
k,eY ,η,sO

1
−q,−GO0

q,G and d
†
k,eY ,η,sO

0
−q,−GO1

q,G will at least generate two particles

plus one hole. Hence they do not contribute to the projected equation. Now we consider the term d
†
k,eY ,η,s

O1
−q,−GO1

q,G

d
†
k,eY ,η,s

O1
−q,−GO1

q,G =
∑

k1,k2

∑

eY 1,eY 2

∑

η1s1η2s2

V (q + G)η1F (η1 )
eY 1

(k1,−q − G)η2F (η2 )
eY 2

(k2, q + G)

× d
†
k,eY ,η,s

d
†
k1−q,−eY 1,η1,s1

dk1,eY 1,η1,s1
d

†
k2+q,−eY 2,η2,s2

dk2,eY 2,η2,s2
. (F4)

According to the Wick’s theorem, we have

d
†
k,eY ,η,sd

†
k1−q,−eY 1,η1,s1

dk1,eY 1,η1,s1
d

†
k2+q,−eY 2,η2,s2

dk2,eY 2,η2,s2

=: d
†
k,eY ,η,s

d
†
k1−q,−eY 1,η1,s1

dk1,eY 1,η1,s1
d

†
k2+q,−eY 2,η2,s2

dk2,eY 2,η2,s2
: + · · ·

+
〈
�ν+,ν−

ν

∣∣d†
k,eY ,η,s

dk1,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉〈
�ν+,ν−

ν

∣∣d†
k1−q,−eY 1,η1,s1

dk2,eY 2,η2,s2

∣∣�ν+,ν−
ν

〉
d

†
k2+q,−eY 2,η2,s2

−
〈
�ν+,ν−

ν

∣∣d†
k,eY ,η,s

dk2,eY 2,η2,s2

∣∣�ν+,ν−
ν

〉〈
�ν+,ν−

ν

∣∣dk1,eY 1,η1,s1
d

†
k2+q,−eY 2,η2,s2

∣∣�ν+,ν−
ν

〉
d

†
k1−q,−eY 1,η1,s1

+
〈
�ν+,ν−

ν

∣∣d†
k1−q,−eY 1,η1,s1

dk2,eY 2,η2,s2

∣∣�ν+,ν−
ν

〉〈
�ν+,ν−

ν

∣∣dk1,eY 1,η1,s1
d

†
k2+q,−eY 2,η2,s2

∣∣�ν+,ν−
ν

〉
d

†
k,eY ,η,s

. (F5)

Here : A := A represents the normal ordered form of the operator A with respect to |�ν+,ν−
ν 〉, where the operators that annihilate

|�ν+,ν−
ν 〉 is ordered on the right-hand side of the operators that do not. The second term (“· · · ”) represent the normal ordered

terms with one contraction. The first (second) term either annihilate |�ν+,ν−
ν 〉 or generate three (two) particles plus two (one)

holes. We hence will omit them. The third and fourth terms must vanish since we require the flavor {eY , η, s} to be empty and
hence 〈�ν+,ν−

ν |d†
k,eY ,η,s

= 0. The last term is the Fock energy correction to the ground state energy. Therefore we conclude

d
†
k,eY ,η,sHI

∣∣�ν+,ν−
ν

〉
≈ (E0 + �E0)d†

k,eY ,η,s

∣∣�ν+,ν−
ν

〉
, (F6)

where E0 is the unperturbed ground state energy and �E0 is the Fock energy correct.
The excitation energy is hence given by the spectrum of [HI − µN, d

†
k,eY ,η,s

]. Following the calculation in Appendix B, we
obtain

[O−q,−GOq,G, d
†
k,eY ,η,s

] = V (q + G)P
η

e′
Y ,eY

(k, q + G)d†
k,e′

Y ,η,s

+
√

V (G + q)
(
M

(η)

e′
Y ,eY

(k, q + G)d†
k+q,e′

Y ,η,s
O−q,−G + M

(η)

e′
Y ,eY

(k,−q − G)d†
k−q,e′

Y ,η,s
Oq,G

)
, (F7)

where

P
η

e′
Y ,eY

(k, q + G) =
∑

e′′
Y

M
(η)∗
e′′

Y ,e′
Y

(k, q + G)M
(η)

e′′
Y ,eY

(k, q + G). (F8)

Acting the commutator of the interaction Hamiltonian and d
†
k,eY ,η,s

on the state |�ν+,ν−
ν 〉, we have

[
HI − µN, d

†
k,eY ,η,s

]∣∣�ν+,ν−
ν

〉
=

1

2�tot

∑

q,G,e′
Y

(
V (q + G)P

η

e′
Y ,eY

(k, q + G)d†
k,e′

Y ,η,s

+ 2
√

V (G + q)M
(η)

e′
Y ,eY

(k, q + G)d†
k+q,e′

Y ,η,s
O−q,−G

)∣∣�ν+,ν−
ν

〉
− µd

†
k,eY ,η,s

∣∣�ν+,ν−
ν

〉
. (F9)

In the (first) chiral limit, where O−q,−G|�ν+,ν−
ν 〉 = δq,0A−GNM |�ν+,ν−

ν 〉, the right-hand side of the above equation only has one

particle excitations. However, when the (first) chiral symmetry is broken, d
†
k,eY ,η,s

O−q,−G|�ν+,ν−
ν 〉 will yield excitations with two

205415-30



TWISTED BILAYER GRAPHENE. V. EXACT ANALYTIC … PHYSICAL REVIEW B 103, 205415 (2021)

particles plus one hole

d
†
k+q,e′

Y ,η,s
O−q,−G

∣∣�ν+,ν−
ν

〉
= d

†
k+q,e′

Y ,η,s

(
O0

−q,−G + O1
−q,−G

)∣∣�ν+,ν−
ν

〉
= δq,0A−GNMd

†
k,e′

Y ,η,s

∣∣�ν+,ν−
ν

〉

+
∑

k′,e′′
Y ,η′,s′

√
V (q + G)η′Fe′′

Y
(k′,−q − G)d†

k+q,e′
Y ,η,s

d
†
k′−q,−e′′

Y ,η′,s′dk′,e′′
Y ,η′,s′

∣∣�ν+,ν−
ν

〉
(F10)

We now approximate the right-hand side by projecting it into the one particle Hilbert space: We only keep the term satisfying
k′ = k + q, e′′

Y = e′
Y , η′ = η, and s′ = s:

d
†
k+q,e′

Y ,η,s
O−q,−G

∣∣�ν+,ν−
ν

〉
≈ δq,0A−GNMd

†
k,e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
−

√
V (q + G)ηFe′

Y
(k + q,−q − G)ne′

Y ,η,sd
†
k,−e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
, (F11)

where ne′
Y ,η,s equals to 1 if the flavor {e′

Y , η, s} is occupied and equals to 0 otherwise. If e′
Y in the second term equals to eY , then

there must be ne′
Y ,η,s = 0 because we require {eY , η, s} to be empty such that d

†
k,eY ,η,s

|�ν+,ν−
ν 〉 is nonvanishing. Hence we only

need to keep the e′
Y = −eY in the second term. Then we can rewrite the second term in Eq. (F9) as

∑

e′
Y

M
(η)

e′
Y ,eY

(k, q + G)d†
k+q,e′

Y ,η,s
O−q,−G

∣∣�ν+,ν−
ν

〉

≈
∑

e′
Y

δq,0A−GNMM
(η)

e′
Y ,eY

(k, G)d†
k,e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
−

√
V (q + G)M

η
−eY ,eY

(k, q + G)

×ηF−eY
(k + q,−q − G)n−eY ,η,sd

†
k,eY ,η,s

∣∣�ν+,ν−
ν

〉

≈
∑

e′
Y

δq,0A−GNMM
(η)

e′
Y ,eY

(k, G)d†
k,e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
− n−eY ,η,s

√
V (q + G)

∣∣FeY
(k, q + G)

∣∣2
d†

eY ,η,s

∣∣�ν+,ν−
ν

〉
. (F12)

Here we have made use of Eqs. (A21) and (A12). With the above approximation, we can write the excitation equation as

[
HI − µN, d

†
k,eY ,η,s

]∣∣�ν+,ν−
ν

〉
≈

∑

e′
Y

R
η,s

e′
Y ,eY

d
†
k,e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
, (F13)

where

R
η,s

e′
Y ,eY

=
1

2�tot

∑

q,G

(
V (q + G)P

η

e′
Y ,eY

(k, q + G) + 2δq,0

√
V (G)A−GNMM

(η)

e′
Y ,eY

(k, G)

− 2δe′
Y ,eY

n−eY ,η,sV (q + G)|FeY
(k, q + G)|2

)
− µδe′

Y ,eY
. (F14)

Notice that both eY and e′
Y are limited to empty Chern bands in the valley-spin flavor η, s.

Let us first consider the charge +1 excitation at ν = −3. Without loss of generality, we assume the occupied flavor is
{+1,↑,+1}. For the excitation in the half-filled valley-spin sector ({+1,↑}), the eY and e′

Y indices in R
η,s

e′
Y ,eY

are limited for the

empty Chern band (−1). In this case the R matrix is one-by-one with n−eY ,η,s = 1. For the excitation in the other (fully empty)
valley-spin sectors, the eY and e′

Y indices can be either 1 or −1. Hence the R matrix is a two-by-two matrix with n−eY ,η,s = 0.
The calculation for ν = −1 is similar. Due to Ref. [110], the perturbative ground state in the nonchiral-flat limit at ν = −1 is
|�2,1

−1 〉 [or its U(4) rotations]. There is a fully occupied valley-spin sector and a half-filled valley-spin sector. In the half-filled
valley-spin sector, R is one-by-one with n−eY ,η,s = 1, and in the empty valley-spin sectors, R is two-by-two with n−eY ,η,s = 0.
The approximate charge +1 excitations are shown in Fig. 11.

2. Approximate charge −1 excitations at odd fillings in the nonchiral-flat limit

In the nonchiral-flat limit, the states |�ν+,ν−
ν 〉 at odd fillings ν = ±1, ±3 are no longer exact eigenstates of the Hamiltonian.

However, in Ref. [110] we have shown that the states |�1,0
−3 〉 [or its U(4) rotations] and |�2,1

−1 〉 [or its U(4) rotations] are the lowest
states at fillings ν = −3,−1 to the first-order perturbation of the (first) chiral symmetry breaking. Using the same method as in
Appendix F 1, in this section, we derive the approximate charge −1 excitations above these perturbative lowest states.

For the same reason in Appendix F 1, the spectrum of excitation is given by the eigenvalues of [HI − µN, dk,eY ,η,s]. Following
the calculation in Appendix F 1, we have

[
HI − µN, dk,eY ,η,s

]∣∣�ν+,ν−
ν

〉
=

1

2�tot

∑

q,G,e′
Y

(
V (q + G)P

η∗
e′

Y ,eY
(k, q + G)dk,e′

Y ,η,s

− 2
√

V (G + q)M
(η)∗
e′

Y ,eY
(k, q + G)dk+q,e′

Y ,η,sOq,G

)∣∣�ν+,ν−
ν

〉
+ µdk,eY ,η,s

∣∣�ν+,ν−
ν

〉
, (F15)
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FIG. 11. Approximate charge +1 (blue) and −1 (red) excitations at θ = 1.05◦ at odd fillings in the nonchiral-flat limit. The dashed bands

are the excitations in the half-filled valley-spin sectors. The solid blue (red) bands are the +1 (−1) excitations in the fully empty (occupied)

valley-spin sectors. The flat metric condition is not imposed. In this plot we set the screening length as ξ = 10 nm and accordingly the

interaction strength as Uξ = 13 meV. The other parameters are same as in Appendix A: vF = 5.944 eV Å, |K | = 1.703 Å−1, and w1 =
110 meV.

where Pη is defined in Eq. (F8). When the (first) chiral symmetry is broken, the term dk+q,e′
Y ,η,sOq,G|�ν+,ν−

ν 〉 yields excitations
with two holes plus one particle

dk+q,e′
Y ,η,sOq,G

∣∣�ν+,ν−
ν

〉

= dk+q,e′
Y ,η,s

(
O0

q,G + O1
q,G

)∣∣�ν+,ν−
ν

〉

= δq,0AGNMdk,e′
Y ,η,s

∣∣�ν+,ν−
ν

〉
+

∑

k′,e′′
Y ,η′,s′

√
V (q + G)η′Fe′′

Y
(k′, q + G)dk+q,e′

Y ,η,sd
†
k′+q,−e′′

Y ,η′,s′dk′,e′′
Y ,η′,s′

∣∣�ν+,ν−
ν

〉
. (F16)

We now approximate the right-hand side by projecting it into the one hole Hilbert space: We only keep the term satisfying
k′ = k, e′′

Y = −e′
Y , η′ = η, and s′ = s:

dk+q,e′
Y ,η,sOq,G

∣∣�ν+,ν−
ν

〉
=dk+q,e′

Y ,η,s

(
O0

q,G + O1
q,G

)∣∣�ν+,ν−
ν

〉

=δq,0AGNMdk,e′
Y ,η,s

∣∣�ν+,ν−
ν

〉
+

√
V (q + G)ηF−e′

Y
(k, q + G)

(
1 − ne′

Y ,η,s

)
dk,−e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
, (F17)

where ne′
Y ,η,s equals to 1 if the flavor {e′

Y , η, s} is occupied and equals to 0 otherwise. If e′
Y in the second term equals to eY , then

there must be ne′
Y ,η,s = 1 because we require {eY , η, s} to be occupied such that dk,eY ,η,s|�ν+,ν−

ν 〉 is nonvanishing. Hence we only
need to keep the e′

Y = −eY in the second term. Then we can rewrite the second term in Eq. (F15) as
∑

e′
Y

M
(η)∗
e′

Y ,eY

(
k, q + G)dk+q,e′

Y ,η,sOq,G

)∣∣�ν+,ν−
ν

〉

=
∑

e′
Y

δq,0AGNMM
(η)∗
e′

Y ,eY
(k, G)dk,e′

Y ,η,s

∣∣�ν+,ν−
ν

〉
+

(
1 − n−eY ,η,s

)√
V (q + G)

∣∣FeY
(k, q + G)

∣∣2
dk,eY ,η,s

∣∣�ν+,ν−
ν

〉
. (F18)

Here we have made use of Eqs. (A21) and (A12). With the above approximation, we can write the excitation equation as

[
HI − µN, dk,eY ,η,s

]∣∣�ν+,ν−
ν

〉
≈

∑

e′
Y

R̃
η,s

e′
Y ,eY

dk,e′
Y ,η,s

∣∣�ν+,ν−
ν

〉
, (F19)

where

R̃
η,s

e′
Y ,eY

=
1

2�tot

∑

q,G

(
V (q + G)P

η∗
e′

Y ,eY
(k, q + G) − 2δq,0

√
V (G)AGNMM

(η)∗
e′

Y ,eY
(k, G)

− 2δe′
Y ,eY

(1 − n−eY ,η,s)V (q + G)|FeY
(k, q + G)|2

)
+ µδe′

Y ,eY
. (F20)

Notice that both eY and e′
Y are limited to fully filled Chern bands in the valley-spin flavor η, s.

Let us first consider the charge −1 excitation at ν = −3. Without loss of generality, we assume the occupied flavor is
{+1,↑,+1}. For the excitation in the half-filled valley-spin sector ({+1,↑}), the eY and e′

Y indices in R̃
η,s

e′
Y ,eY

are limited for

the occupied Chern band (+1). In this case the R̃ matrix is one-by-one with n−eY ,η,s = 0. And there is no hole excitation in the
other (fully empty) valley-spin sectors. The calculation for ν = −1 is similar. Due to Ref. [110], the perturbative ground state in
the nonchiral-flat limit at ν = −1 is |�2,1

−1 〉 (or its U(4) rotations). There is a fully occupied valley-spin sector and a half-filled

valley-spin sector. In the half-filled valley-spin sector R̃ is one-by-one with n−eY ,η,s = 0 and in the fully occupied valley-spin

sector R̃ is two-by-two with n−eY ,η,s = 1. The approximate charge −1 excitations are shown in Fig. 11.
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3. Approximate charge neutral excitations at odd fillings in the nonchiral-flat U(4) limit

In the nonchiral-flat limit, the states |�ν+,ν−
ν 〉 at odd fillings ν = ±1,±3 are no longer exact eigenstates of the Hamiltonian.

However, in Ref. [110], we have shown that the states |�1,0
−3 〉 (or its U(4) rotations) and |�2,1

−1 〉 (or its U(4) rotations] are the
lowest states at fillings ν = −3,−1 to the first-order perturbation of the (first) chiral symmetry breaking. In this section, we
derive the approximate charge neutral excitations above these perturbative lowest states.

Since these states have fully occupied Chern bands, it is convenient to work in the Chern band basis. Following the calculations
in Appendix D 1, we have

[
HI − µN, d

†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1

]∣∣�ν+,ν−
ν

〉

=
1

2�tot

∑

q,G


∑

eY

Pη2
eY ,eY 2

(k + p, q + G)d†
k+p,eY ,η2,s2

dk,eY 1,η1,s1
+

∑

e′
Y

P
η1∗
e′

Y ,eY 1
(k, q + G)d†

k+p,eY 2,η2,s2
dk,e′

Y ,η1,s1

+ 2
√

V (G + q)
∑

eY

M (η2 )
eY ,eY 2

(k + p, q + G)d†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
O−q,−G

− 2
√

V (G + q)
∑

e′
Y

M
(η1 )∗
e′

Y ,eY 1
(k,−q − G)d†

k+p,eY 2,η2,s2
dk−q,e′

Y ,η1,s1
O−q,−G

− 2V (G + q)
∑

eY ,e′
Y

M (η2 )
eY ,eY 2

(k + p, q + G)M
(η1 )∗
e′

Y ,eY 1
(k, q + G)d†

k+p+q,eY ,η2,s2
dk+q,e′

Y ,η1,s1


∣∣�ν+,ν−

ν

〉
. (F21)

In the (first) chiral limit, where O−q,−G|�ν+,ν−
ν 〉 = δq,0A−GNM |�ν+,ν−

ν 〉, the right-hand side of the above equation only involve
excitations with one pair of a particle and a hole. However, when the (first) chiral symmetry is broken, O−q,−G|�ν+,ν−

ν 〉 will yield
additional particle-hole excitations:

d
†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
O−q,−G

∣∣�ν+,ν−
ν

〉
= d

†
k+p+q,eY ,η2,s2

dk,m1,η1,s1

(
O0

−q,−G + O1
−q,−G

)∣∣�ν+,ν−
ν

〉

= δq,0A−GNMd
†
k+p,eY ,η2,s2

dk,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
+

∑

k′′,e′′
Y ,η′′,s′′

√
V (q + G)η′′Fe′′

Y
(k′′,−q − G)

× d
†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉
. (F22)

We approximate the above equation by projecting it into the Hilbert space of excitations with only one pair of particle and hole.
According to the Wick’s theorem, we have

d
†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′

=: d
†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′ :

+
〈
�ν+,ν−

ν

∣∣d†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′

+
〈
�ν+,ν−

ν

∣∣d†
k+p+q,eY ,η2,s2

dk′′,e′′
Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉
dk,eY 1,η1,s1

d
†
k′′−q,−e′′

Y ,η′′,s′′

+
〈
�ν+,ν−

ν

∣∣dk,eY 1,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉
d

†
k+p+q,eY ,η2,s2

dk′′,e′′
Y ,η′′,s′′

−
〈
�ν+,ν−

ν

∣∣dk,eY 1,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉〈
�ν+,ν−

ν

∣∣d†
k+p+q,eY ,η2,s2

dk′′,e′′
Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉
. (F23)

Here : A : represents the normal ordered form of the operator A with respect to |�ν+,ν−
ν 〉, where all the creation operators of

occupied states and annihilation operators of empty states are on the right-hand side of the creation operators of empty states
and annihilation operators of occupied states. The first (normal ordered) term is nonvanishing when acted on |�ν+,ν−

ν 〉 if the two
creation operators are of empty states and the two annihilation operators are of occupied states. However, we will omit this term
because it yields two particle-hole pairs. Since we require dk,eY 1,η1,s1

to be occupied such that the initial state is nonvanishing,
there must be 〈�ν+,ν−

ν |dk,eY 1,η1,s1
= 0 and hence the last two terms in the above equation vanish. Then we obtain

d
†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′

≈ δp+q,0δeY ,eY 1
δη2,η1

δs2,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′ − δk+p+q,k′′δeY ,e′′

Y
δη2,η′′δs2,s′′neY ,η2,s2

d
†
k+p,−eY ,η,s

dk,eY 1,η1,s1
, (F24)

where neY ,η,s equals to 1 if the flavor {eY , η, s} is occupied and equals to 0 otherwise. Here we have made use of

{d†
k+p,−eY ,η,s

, dk,eY 1,η1,s1
} = 0, which is because {eY 1, η1, s1} is required to be occupied and {−eY , η, s} is required to be empty
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and hence {eY 1, η1, s1} 	= {−eY , η, s}. Then we obtain

d
†
k+p+q,eY ,η2,s2

dk,eY 1,η1,s1
O−q,−G

∣∣�ν+,ν−
ν

〉

≈ δq,0A−GNMd
†
k+p,eY ,η2,s2

dk,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
−

√
V (q + G)η2FeY

(k + p + q,−q − G)neY ,η2,s2
d

†
k+p,−eY ,η,s

dk,eY 1,η1,s1

+ δp+q,0δeY ,eY 1
δη2,η1

δs2,s1

∑

k′′,e′′
Y ,η′′,s′′

√
V (q + G)η′′Fe′′

Y
(k′′,−q − G)d†

k′′−q,−e′′
Y ,η′′,s′′dk′′,e′′

Y ,η′′,s′′ . (F25)

Similarly, we have

d
†
k+p,eY 2,η2,s2

dk−q,e′
Y ,η1,s1

d
†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′

≈
〈
�ν+,ν−

ν

∣∣d†
k+p,eY 2,η2,s2

dk−q,e′
Y ,η1,s1

∣∣�ν+,ν−
ν

〉
d

†
k′′−q,−e′′

Y ,η′′,s′′dk′′,e′′
Y ,η′′,s′′

+
〈
�ν+,ν−

ν

∣∣d†
k+p,eY 2,η2,s2

dk′′,e′′
Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉
dk−q,e′

Y ,η1,s1
d

†
k′′−q,−e′′

Y ,η′′,s′′

+
〈
�ν+,ν−

ν

∣∣dk−q,e′
Y ,η1,s1

d
†
k′′−q,−e′′

Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉
d

†
k+p,eY 2,η2,s2

dk′′,e′′
Y ,η′′,s′′

−
〈
�ν+,ν−

ν

∣∣dk−q,e′
Y ,η1,s1

d
†
k′′−q,−e′′

Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉〈
�ν+,ν−

ν

∣∣d†
k+p,eY 2,η2,s2

dk′′,e′′
Y ,η′′,s′′

∣∣�ν+,ν−
ν

〉

≈ δk,k′′δe′
Y ,−e′′

Y
δη1,η′′δs1,s′′ (1 − ne′

Y ,η1,s1
)d†

k+p,eY 2,η2,s2
dk′′,e′′

Y ,η′′,s′′ , (F26)

where we have made use of 〈�ν+,ν−
ν |d†

k+p,eY 2,η2,s2
= 0, and hence

d
†
k+p,eY 2,η2,s2

dk−q,e′
Y ,η1,s1

O−q,−G

∣∣�ν+,ν−
ν

〉

≈ δq,0A−GNMd
†
k+p,eY ,η2,s2

dk,eY 1,η1,s1

∣∣�ν+,ν−
ν

〉
+

√
V (q + G)η1F−eY 1

(k,−q − G)(1 − ne′
Y ,η1,s1

)d†
k+p,eY 2,η,s

dk,−e′
Y ,η1,s1

. (F27)

Substituting Eqs. (F25) and (F27) into Eq. (F21), we obtain

[
HI − µN, d

†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1

]∣∣�ν+,ν−
ν

〉

≈


∑

eY

Rη2,s2
eY ,eY 2

(k + p)d†
k+p,eY ,η2,s2

dk,eY 1,η1,s1
+

∑

e′
Y

R̃
η1,s1∗
e′

Y ,eY 1
(k)d†

k+p,eY 2,η2,s2
dk,e′

Y ,η1,s1


∣∣�ν+,ν−

ν

〉

−
1

�tot

∑

q,G

V (G + q)
∑

eY ,e′
Y

M (η2 )
eY ,eY 2

(k + p, q + G)M
(η1 )∗
e′

Y ,eY 1
(k, q + G)d†

k+p+q,eY ,η2,s2
dk+q,e′

Y ,η1,s1

∣∣�ν+,ν−
ν

〉

+
δη2η1

δs2,s1

�tot

∑

G

∑

k′′e′′
Y η′′s′′

V (−p + G)M (η2 )
eY 1,eY 2

(k + p,−p + G)η′′Fe′′
Y
(k′′, p − G)d†

k′′+p,−e′′
Y ,η′′,s′′dk′′,e′′

Y ,η′′,s′′
∣∣�ν+,ν−

ν

〉
, (F28)

where Rη2,s2 and R̃η1,s1 are given by Eqs. (F14) and (F20), respectively. The last term is nonzero only if {eY 1, η1, s1} is occupied
and {eY 2, η2, s2} is empty, which, provided η2 = η1 and s2 = s1, also implies eY 1 must equal to −eY 2. Thus we can rewrite the
last term as

δeY 2,−eY 1
δη2η1

δs2,s1

�tot

∑

G

∑

k′′eY ηs

V (−p + G)η2FeY 2
(k + p,−p + G)ηF−eY

(k′′, p − G)d†
k′′+p,eY ,η,sdk′′,−eY ,η,s

∣∣�ν+,ν−
ν

〉

=
δeY 2,−eY 1

δη2η1
δs2,s1

�tot

∑

G

∑

k′′eY ηs

V (−p + G)η2FeY 2
(k, p − G)ηF ∗

eY
(k′′, p − G)d†

k′′+p,eY ,η,s
dk′′,−eY ,η,s

∣∣�ν+,ν−
ν

〉
, (F29)

where we have made use of Eqs. (A21) and (A12). Therefore we can write the scattering equation as

[
HI − µN, d

†
k+p,eY 2,η2,s2

dk,eY 1,η1,s1

]∣∣�ν+,ν−
ν

〉

≈
∑

η,s,η′,s′

∑

eY ,e′
Y

∑

q

S
η,s,η′,s′;η2,s2,η1,s1

eY ,e′
Y ;eY 2,eY 1

(k + q, k; p)d†
k+q+p,eY ,η,s

dk+q,e′
Y ,η′,s′

∣∣�ν+,ν−
ν

〉
, (F30)
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FIG. 12. Approximate charge neutral excitations at θ = 1.05◦ at odd fillings in the nonchiral-flat limit. The flat metric condition is not

imposed. Blue, red, black, and green bands are in the empty-half, half-half, empty-filled, and half-filled sectors, respectively. (See the text for

the definition of sectors.) In this plot, we set the screening length as ξ = 10 nm and accordingly the interaction strength as Uξ = 13 meV. The

other parameters are same as in Appendix A: vF = 5.944 eV Å, |K | = 1.703 Å−1, and w1 = 110 meV.

where the scattering matrix is

S
η,s,η′,s′;η2,s2,η1,s1

eY ,e′
Y ;eY 2,eY 1

(k + q, k; p) = δη,η2
δs,s2

δη′,η1
δs′,s1

(
δq,0

(
Rη2,s2

eY ,eY 2
(k + p)δe′

Y ,eY 1
+ δeY ,eY 2

R̃
η1,s1

e′
Y ,eY 1

(k)
)

−
1

�tot

∑

G

V (G + q)M (η2 )
eY ,eY 2

(k + p, q + G)M
(η1 )∗
e′

Y ,eY 1
(k, q + G)

)

+ δeY 2,−eY 1
δη2η1

δs2,s1
δeY ,−e′

Y
δηη′δss′

1

�tot

∑

G

V (−p + G)ηF ∗
eY

(k + q, p − G)η2FeY 2
(k, p − G).

(F31)

The last term is nonzero if both the {η2, s2} and {η, s} valley-spin flavors are half filled. It couples all the half filled valley-spin
flavors, which are independent in the (first) chiral-flat limit, to each other.

According to [110], in the nonchiral-flat limit the state �
1,0
−3 (or its U(4) rotations) is still the perturbative ground state at

ν = −3. Without loss of generality, we assume the occupied flavor is {+1,↑,+1}. Then we can divide the neutral excitations
into the following sectors.

(1) The half-half sector, where η2 = η1 = +1, s2 = s1 = ↑. The delta functions in the first term of Eq. (F31) require η =
η′ = +1, s = s′ = ↑. The delta functions in the second term require η = η′ and s = s′. Since d†

η,s,eY
and dη′,s′,e′

Y
must belong to

empty and occupied bands, there must also be η = η′ = +1, s = s′ = ↑ in the second term. Then it follows that eY = eY 2 = −1,
e′

Y = eY 1 = +1. At given k, p, q, the S matrix is a one-by-one matrix.
(2) The empty-half sector, where {η2, s2} is an empty valley-spin sector and {η1, s1} is a half-filled valley-spin sector. The

second term of Eq. (F31) vanish due to the delta function δη2η1
δs2s1

. The delta functions in the first term require η = η2, s = s2,
η′ = η1, and s′ = s1. It follows that e′

Y = eY 1 = +1 and eY , eY 2 take values in ±1. At given k, p, and q, the S matrix is a
two-by-two matrix.

According to Ref. [110], in the nonchiral-flat limit the state �
2,1
−1 [or its U(4) rotations] is still the perturbative ground state at

ν = −1. There is a fully occupied valley-spin sector and a half filled valley-spin sector. Without loss of generality, we assume
the occupied flavors as {+1,↑,+1}, {+1,↑,−1}, and {+1,↓,+1}. Then we can divide the neutral excitations into the following
sectors.

(1) The half-half sector, where η2 = η1 = +1, s2 = s1 = ↓. The delta functions in the first term of Eq. (F31) require η =
η′ = +1 and s = s′ = ↓. The delta functions in the second term require η = η′ and s = s′. Since d†

η,s,eY
and dη′,s′,e′

Y
must belong

to empty and occupied bands, there must also be η = η′ = +1, s = s′ = ↓ (the half filled valley-spin sector) in the second term.
Then it follows that eY = eY 2 = −1, e′

Y = eY 1 = +1. At given k, p, q, the S matrix is a one-by-one matrix.
(2) The empty-half sector, where {η2, s2} is an empty valley-spin sector and {η1, s1} is a half-filled valley-spin sector. The

second term of Eq. (F31) vanish due to the delta function δη2η1
δs2s1

. The delta functions in the first term require η = η2, s = s2,
η′ = η1, and s′ = s1. It follows that e′

Y = eY 1 = +1 and eY , eY 2 take values in ±1. At given k, p, and q, the S matrix is a
two-by-two matrix.

(3) The half-occupied sector, where {η2, s2} is the half filled valley-spin sector {+1,↓} and {η1, s1} is the fully occupied
valley-spin sector {+1,↑}. The second term of Eq. (F31) vanish due to the delta function δη2η1

δs2s1
. The delta functions in the

first term require η = η2, s = s2, η′ = η1, and s′ = s1. It follows that e′
Y , eY 1 take values in ±1 and eY = eY 2 = −1. At given

k, p, and q, the S matrix is a two-by-two matrix.
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(4) The empty-occupied sector, where {η2, s2} is an empty valley-spin sector and {η1, s1} is the fully occupied valley-spin
sector {+1,↑}. The second term of Eq. (F31) vanish due to the delta function δη2η1

δs2s1
. The delta functions in the first term

require η = η2, s = s2, η′ = η1, s′ = s1. It follows that e′
Y , eY 1, eY , and eY 2 all take values in ±1. At given k, p, and q, the S

matrix is a four-by-four matrix.
The numerical results are shown in Fig. 12.
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