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Twisted bilayer graphene. VI. An exact diagonalization study at nonzero integer filling

Fang Xie,1 Aditya Cowsik,1 Zhi-Da Song,1 Biao Lian,1 B. Andrei Bernevig,1 and Nicolas Regnault 1,2

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Laboratoire de Physique de l’Ecole normale superieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot,

Sorbonne Paris Cité, Paris, France

(Received 28 October 2020; accepted 16 April 2021; published 11 May 2021)

Using exact diagonalization, we study the projected Hamiltonian with the Coulomb interaction in the eight
flat bands of first magic angle twisted bilayer graphene. Employing the U(4) [U(4) × U(4)] symmetries in the
nonchiral (chiral) flat band limit, we reduced the Hilbert space to an extent that allows for study around ν =
±3, ±2, ±1 fillings. In the first chiral limit w0/w1 = 0, where w0 (w1) is the AA (AB) stacking hopping, we find
that the ground states at these fillings are extremely well-described by Slater determinants in a so-called Chern
basis, and the exactly solvable charge ±1 excitations found in Bernevig et al. [Phys. Rev. B 103, 205415 (2021)]
are the lowest charge excitations up to system sizes 8 × 8 (for restricted Hilbert space) in the chiral-flat limit. We
also find that the flat metric condition (FMC) used by Bernevig et al. [Phys. Rev. B 103, 205411 (2021)], Song
et al. [Phys. Rev. B 103, 205412 (2021)], Bernevig et al. [Phys. Rev. B 103, 205413 (2021)], Lian et al. [Phys.
Rev. B 103, 205414 (2021)], and Bernevig et al. [Phys. Rev. B 103, 205415 (2021)] for obtaining a series of
exact ground states and excitations holds in a large parameter space. For ν = −3, the ground state is the spin and
valley polarized Chern insulator with νC = ±1 at w0/w1 � 0.9 (0.3) with (without) FMC. At ν = −2, we can
only numerically access the valley polarized sector, and we find a spin ferromagnetic phase when w0/w1 � 0.5t

where t ∈ [0, 1] is the factor of rescaling of the actual TBG bandwidth, and a spin singlet phase otherwise,
confirming the perturbative calculation [Lian. et al., Phys. Rev. B 103, 205414 (2021), Bultinck et al., Phys. Rev.
X 10, 031034 (2020)]. The analytic FMC ground state is, however, predicted in the intervalley coherent sector
which we cannot access [Lian et al., Phys. Rev. B 103, 205414 (2021), Bultinck et al., Phys. Rev. X 10, 031034
(2020)]. For ν = −3 with/without FMC, when w0/w1 is large, the finite-size gap � to the neutral excitations
vanishes, leading to phase transitions. Further analysis of the ground state momentum sectors at ν = −3 suggests
a competition among (nematic) metal, momentum MM (π ) stripe and KM -CDW orders at large w0/w1.
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I. INTRODUCTION

The physics of the insulating states in twisted bilayer
graphene (TBG) at integer electron number per unit cell has
attracted considerable experimental and theoretical interest
[1–111]. Both scanning tunneling microscope [14,15,17–21]
and transport [2–8,10–13,22–26] experiments show correlated
insulators at integer fillings. Correlated Chern insulators orig-
inating at integer filling are also observed in either zero or
finite magnetic field [6,11], but most importantly even without
hBN substrate alignment [20–25]. In the latter case, the single-
particle picture predicts a gapless state at electron number
±3,±2,±1 and hence the insulating states have to follow
from many-body interactions.

The initial observations of the insulating states were fol-
lowed by the experimental discovery that these states might
exhibit Chern numbers. So far, a rather intriguing picture
of insulating states of Chern numbers ±(4 − |ν|), with or
without the presence of a magnetic field, at integer filling
ν ∈ (−4, 4) has been discovered in spectroscopic [20–25]
experiments. Superconductivity also appears in TBG samples,
mostly at finite doping away from integer fillings [3–5,8–
10] but also at or extremely close to integer fillings [7,8],
with or without enhanced screening by another graphene layer
[7–9].

Theoretically, the initial important insight in the physics
behind the many-body insulating states was the strong-
coupling projected Coulomb interaction in the two flat bands
of TBG obtained by Kang and Vafek [71]. By projecting
into a set of Wannier orbitals, they found a positive semidef-
inite Hamiltonian (PSDH), of an enhanced approximate U(4)
symmetry [71–73,109]. They then proceeded to show that
some of the insulating ground states (in their case the ν = ±2
filling from charge neutrality) of this model can be obtained
exactly. They also found one extended excitation of the model.
These represent exact results. The large unit cell, large num-
ber of orbitals per moiré unit cell, strong interactions and
topological obstruction [42–45,111] of maximally symmet-
ric Wannier orbitals make the numerical simulation of the
TBG many-body physics unusually difficult. For magic angle
TBG without hBN substrate alignment (where the Hamil-
tonian respects a C2zT symmetry), the theoretical efforts
so far have focused on the Hartree-Fock (HF) studies em-
ploying momentum/hybrid basis of the Bistritzer-Macdonald
(BM) continuum model [72,74,86–90], quantum Monte Carlo
(QMC) simulation [54,91,92], functional RG [93,94], and ED
[53,68] with non-maximally-symmetric Wannier orbitals, and
density matrix renormalization group (DMRG) simulation
with hybrid Wannier wave functions [80,81] or simplified
models [95,96]. The HF numerical calculations predicted
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various phases at integer fillings, including spin-valley po-
larized (Chern) insulators [74,87], intervalley coherent states
[72,89] and nematic semimetals [90]. The QMC studies pre-
dicted valley Hall insulator, intervalley coherent states or
Kekulé valence bond orders at charge neutrality [54,91,92],
and unconventional superconductivity at noninteger fillings
[94,97,98]. The recent DMRG studies using hybrid Wannier
basis [80,81] predicted Chern number ±1 insulator, C2zT

symmetric (C3z-breaking) nematic semimetal and C2zT sym-
metric stripe insulator at momentum π (in either direction) as
candidate ground states at ν = −3. At ν = −3, these studies
find that the ground state in the chiral limit is quantum anoma-
lous Hall (i.e., Chern insulator), and that in the nonchiral limit
the nematic or stripe order takes over around w0/w1 � 0.8
of the Bistritzer-MacDonald parameters. Besides, for TBG
with hBN alignment, which breaks C2z, the single-particle
bands form valley Chern bands, and exact diagonalizations
(ED) or DMRG have been performed only within single
valley-spin polarized Chern band [100–102], where fractional
Chern insulators are proposed. The particularization to only

within single valley-spin polarized Chern bands renders their
Hilbert space manageable, but potentially biases the sys-
tem as the time-reversal symmetry breaking is introduced
by hand.

Over the five previous parts [107–111] of our series of
six works on TBG, we have paved the way for employing
the momentum-space projected TBG Hamiltonian derived in
Ref. [109] which is of the PSDH Kang-Vafek type [71]. We
showed that all projected Coulomb Hamiltonians can be writ-
ten in this PSDH Kang-Vafek form [109], and that, due to
a particle-hole (PH) symmetry discovered in Ref. [43], they
generically exhibit an enlarged symmetry group U(4) for any

number of projected bands, for any parameter regime. For
projection into the lowest eight active bands (two per spin
per valley), this U(4) was previously discovered in Ref. [72];
in Ref. [109], we also related our U(4) to the inital one dis-
covered by Kang and Vafek [71]. In Ref. [108], we showed
the Bistritzer-MacDonald model with the PH symmetry is
always anomalous [108]—meaning it is incompatible with the
lattice, proving stable (not fragile) topology of this model. We
further discovered two chiral limits [108], in both of which
the symmetry is enhanced to a U(4) × U(4) symmetry (again
of any number of bands) in the exactly flat band (projected
Coulomb) model [109]. The U(4) × U(4) of the first chiral-
flat band limit in the lowest eight bands was first shown in
Ref. [72]. When kinetic energy is added to the chiral limit, the
symmetry is lowered to U(4).

In papers Refs. [110,111], we have found a series of
exact eigenstates of the PSDH Hamiltonians. Using a condi-
tion called the flat metric condition (FMC) [107] Eq. (13),
we have proved that some of these states form the exact

ground states at all integer fillings in the (first) chiral limit
[110], and at even fillings away from the chiral limit. Our
results, presented in the Chern basis defined in Ref. [109]
(see also definition in Refs. [40,72]) are the following: in
the (first) chiral-flat limit with relaxation parameter w0/w1 =
0 [with U(4) × U(4) symmetry], with the FMC Eq. (13),
the exact ground states at each integer filling ν (|ν| � 4)
relative to the charge neutral point (CNP) are obtained by
fully occupying any ν + 4 Chern bands (of either Chern

number ±1). This leads to exactly degenerate Chern insula-
tor ground states with total Chern number νC = 4 − |ν|, 2 −
|ν|, · · · , |ν| − 4. When tuned to the nonchiral-flat limit (with
U(4) symmetry [72,109]), we found [110] that the lowest pos-
sible Chern number is favored: all the even fillings ν = 0,±2
have Chern number 0 insulator exact U(4) ferromagnetic (FM)
ground states, while all the odd fillings ν = ±1,±3 have
Chern number ±1 insulator U(4) ferromagnetic (FM) per-
turbative ground states. Perturbing in another direction, we
obtain the (first) chiral-nonflat limit with a nonzero kinetic en-
ergy (with another U(4) symmetry [72,109]) where we find all
the different Chern number states at a fixed integer filling ν to
be degenerate up to second order in kinetic energy. Upon fur-
ther reducing to the nonchiral-nonflat case (with U(2)×U(2)
symmetry [72,109]), we showed [110] that in second order
perturbation, the U(4) ground states at all integer fillings ν

favor intervalley coherent states if the Chern number |νC | <

4 − |ν|, and favor valley polarized states if |νC | = 4 − |ν|.
At even fillings, this agrees with the K-IVC state proposed
in Ref. [72]. We note, however, that the possibility of other
ground states in various limits are not ruled out in Ref. [110].

In Ref. [111], we showed that exact expressions of the
charge ±1, ±2 and neutral excitation can be obtained for
the exact ground states we found in Ref. [111]. We pre-
dicted gaps, Goldstone stiffness, and the representations of
each of the excitations. The neutral excitation has an ex-
act zero mode, which we identify with the FM U(4)-spin
wave. While these excitations are above the ground state
for FMC, we could not prove that they are the lowest

charge excitations. The Goldstone branch, far away from k,
cannot be analytically proved to be the lowest excitation,
either.

In this paper, we present some of the first full Hilbert-space
unbiased exact diagonalization (ED) numerical calculations
on the TBG problem. Our purpose is threefold. First, we
address the question of the robustness of the FMC model
in the (first) chiral-flat limit for which exact (Chern) in-
sulator ground states and excitations at integer fillings
[71,103,110,111] can be obtained. Away from the FMC (ex-
cept for ν = 0), one cannot prove analytically that the exact
states found in Refs. [71,110] are the (only) ground states,
although they are still exact eigenstates. Hence we use ED
to show that they are still ground states and are unique in
the chiral-flat limit (for ν = −1 this is verified only within
nearly valley polarized Hilbert space due to computational
capability). Moreover, for the exact excited states (we here
focus on the charges ±1 and neutral excitations), even with the
FMC, we cannot prove that they are the lowest excitations. We
hence use ED to show that (up to potential finite size effects) at
all fillings ν = −3,−2,−1 these exact excited states are the
lowest, except for charge +1 excitations at ν = −1 without
FMC. We thus confirm the validity of the FMC for more
realistic parameters, which allows finite kinetic energy (t),
finite w0 and breaking (λ) of the FMC.

Second, we then check the validity of our analytic approx-
imations for the full w0/w1 and kinetic energy t range, to
obtain a phase diagram (with or without quantum number
constraints) for both ground states and excited states at ν =
−3,−2,−1 (note that ν and −ν are PH symmetric [109]).
In the process, we confirm the theoretical calculations that
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the kinetic energy has a minimal effect on the phase diagram,
as was also pointed out in Refs. [80,81]. At ν = −3, we find
the projected Coulomb Hamiltonian stabilizes the spin-valley
polarized Chern number ±1 insulator in a large range of
t ∈ [0, 1] for w0/w1 � 0.9 (w0/w1 � 0.3) when the FMC is
assumed (not assumed). At small w0/w1, this agrees with our
conclusions in [110] from the perturbation theory (where w0 is
treated perturbatively). At ν = −2, our computational power
is restricted in the fully valley polarized sector or the fully spin

polarized sector. In the fully valley polarized sector, we find
that the ground state with FMC is the U(4) FM state with zero
Chern number when w0/w1 � 0.5t , and the valley-polarized
spin-singlet state with zero Chern number when w0/w1 �
0.5t . Without FMC, the U(4) FM state is further restricted
within w0/w1 � 0.6. These findings are in agreement with our
exact/perturbation analysis in Ref. [110] for the nonchiral-flat
and chiral-nonflat limits (see a similar analysis in Ref. [72]).
In the fully spin polarized sector, we find the ground state in
the range w0/w1 � 1 when the FMC is assumed (or w0/w1 �
0.6 when the FMC is not assumed) agrees well with the
intervalley coherent states predicted at ν = −2 [72,110]. The
ground state energy in the fully spin polarized sector is lower
than that in the fully valley polarized sector. We also identify
that the lowest charge neutral excitations, for for both the ν =
−3 and ν = −2 states, as the Goldstone branches predicted in
Ref. [111].

Third, toward the isotropic limit, i.e., with w0/w1 being
increased above the phase boundaries, we observe phase tran-
sitions to different ground states. In particular, at ν = −3, the
phase transition at w0/w1 ∼ 0.9 with FMC goes into a new
state with zero momentum (relative to the Chern insulator
ground state at small w0/w1), while the phase transition at
w0/w1 ∼ 0.3 without FMC is at nonzero momentum close to
ŴM , MM , or KM points of the moiré Brillouin zone, depending
on system sizes, t and w0/w1. We thus conjecture the possible
competing orders include nematic, momentum π (MM) CDW
(stripe), or momentum KM CDW in this parameter range. The
nematic and MM CDW (stripe) orders was recently predicted
by DMRG to arise when w0/w1 � 0.8 in Refs. [80,81]; while
we conjecture KM CDW is another possibility, which was not
mentioned in previous works. The phase transition is due to
softening of collective modes at finite or zero momenta and
hence may break the translation symmetry. The momentum of
the translation breaking phase may depend on detailed model
parameters.

This paper is organized as follows. In Sec. II, we give
a short review of the TBG single-particle Hamiltonian, the
projected interacting Hamiltonian in the active bands and the
symmetries in the different limits. Section III is devoted to
the study of the integer filling factor ν = −3, in the chiral-
flat limit for the projected Hamiltonian with and without
the FMC, including the ground states, the charge and neu-
tral excitations. We also provide the phase diagrams in the
nonchiral-nonflat limit, with and without the FMC. In Sec. IV,
we perform a similar analysis for the filling factor ν = −2,
discussing in details the phase diagrams and the dominance
of the trivial insulating phase and its magnetic properties.
Finally, in Sec. V, we briefly consider the filling factor ν =
−1 in the chiral-flat limit, focusing mostly on the charge
excitations.

II. INTERACTING HAMILTONIAN FOR TBG

In this section, for completeness, we give a brief overview
of the TBG Hamiltonian with Coulomb interaction pro-
jected into the flat bands. The full details can be found in
Refs. [108–111].

A. TBG model

We start with the single-body Hamiltonian of TBG whose
low-energy physics is mostly dominated by states around
the two Dirac points K and K ′. By focusing on one valley
K , we further define vectors q j = C

j−1
3z (K− − K+), where

Kl is the momentum of the Dirac point K in layer l , and
|Kl | = 1.703 Å−1. The reciprocal vectors of the triangular
moiré lattice, denoted by Q0, are spanned by basis vectors
bM1 = q3 − q1 and bM2 = q3 − q2. Momenta lattices Q± =
Q0 ± q1 form a hexagonal lattice in momentum space, and
they stand for Dirac points of the top and bottom layers,
respectively. The single-particle Bistritzer-MacDonald (BM)
model [1] of the TBG Hamiltonian is

Ĥ0 =
∑

k∈MBZ

∑

Q,Q′∈Q±

∑

η,s,α,β

[

h
(η)
QQ′ (k)

]

αβ
c

†
k,Q,η,α,s

ck,Q′,η,β,s,

(1)
where MBZ stands for the moiré Brillouin zone, and the oper-
ator c

†
k,Q,η,α,s

creates an electron at valley η, on sublattice α, in
layer l = ℓ · η with spin s and momentum p = ηKη·ℓ + k − Q

if Q ∈ Qℓ. The kinetic Hamiltonian at valley η = + is given
by

h
(+)
QQ′ (k) = vF σ · (k − Q)δQ,Q′ +

∑

j=1,2,3

TjδQ−Q′,±q j
, (2)

where vF = 6104.5 meV Å is the Fermi velocity, and Tj are
the interlayer hopping matrices:

Tj = w0σ0 + w1

[

cos
2π ( j − 1)

3
σx + sin

2π ( j − 1)

3
σy

]

.

(3)
The parameters w0 and w1 stand for the interlayer hopping
strength at AA and AB stacking centers, respectively. In this
paper, we set w1 = 110 meV while w0 will be used (and
varied) as a parameter. The Hamiltonian at valley η = − can
be obtained by performing a C2z transformation in Eq. (2).

B. Interaction and projected Hamiltonian

The repulsive interaction between electrons is accurately
captured by the Coulomb interaction screened by the top and
bottom gates. The Fourier transformation of this interaction
reads

V (q) = πξ 2Uξ

tanh(ξq/2)

ξq/2
, (4)

where ξ ≈ 10 nm is the distance between the top and bot-
tom gates in typical TBG experiments, and Uξ = e2/ǫξ ≈
24 meV is the interaction strength for a dielectric constant
ǫ ∼ 6 [2,3,42]. The second quantized interacting Hamiltonian
is [109,110]

ĤI =
1

2�tot

∑

q∈MBZ

∑

G

V (q + G)δρq+Gδρ−q−G, (5)
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where

δρq+G =
∑

k,η,α,s,Q

(

c
†
k+q,Q−G,α,η,s

ck,Q,α,η,s −
1

2
δq,0δG,0

)

(6)

is the density at momentum q + G relative to the charge
neutral point. We neglect the electron-phonon interaction in
this study, although it should be considered in a complete
study as it is conjectured to be important [13,59,60,111,112]
for superconductivity.

The exponential complexity of the quantum many-body
simulations prevents a direct numerical treatment of the full
interacting Hamiltonian. Fortunately close to the (first) magic
angle, the bandwidth of the two flat bands around charge
neutral point (one valence band and one conduction band) is
smaller than the Coulomb interaction. We can then greatly
simplify the calculation by projecting the Hamiltonian onto
these two bands. By diagonalizing the Hamiltonian h(η)(k),
we obtain the dispersion relation ǫk,m,η and single-body wave
functions uQα,mη(k) of the flat bands. Here m = ±1 is the
band index. The projected kinetic energy term is

H0 =
∑

k∈MBZ

∑

η,s

∑

m=±1

ǫk,m,ηc
†
k,m,η,s

ck,m,η,s, (7)

where c
†
k,m,η,s

=
∑

Qα uQα,mη(k)c†
k,Q,η,α,s

is the electron cre-
ation operator in band basis. Note that we have dropped the
“hat” notation for the projected quantities such as the kinetic
Hamiltonian.

Similarly, we can write the projection of the interaction
term ĤI onto the flat bands

HI =
1

2�tot

∑

k∈MBZ

∑

G

V (q + G)δρq+Gδρ−q−G (8)

with δρq+G the density operator projected onto the flat bands
defined as

δρq+G =
∑

k,η,s

∑

m,n=±1

M (η)
mn (k, q + G)

×
(

c
†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δm,n

)

, (9)

M (η)
mn (k, q + G) =

∑

Qα

u∗
Q−G,α,mη(k + q)uQ,α,nη(k). (10)

The form factors (overlaps) M (η)
mn (k, q + G) depend on the

gauge choice of single-body wave functions. By choosing the
gauge properly (see Appendix A2), the form factors can all be
made real. We notice that Eq. (5) can be written as the sum-
mation of a normal-ordered two-body term and a quadratic
term. It can be shown that the quadratic term matches with
the “Hartree-Fock” contribution from the filled bands below
the flat bands [109] and is required in order to recover the
many-body charge-conjugation symmetry around the charge
neutral point (CNP) for the projected Hamiltonian. The effects
of the normal ordering and this “Hartree-Fock” contribution
are discussed in Appendix E.

We can also define another basis, the Chern band basis, by

d
†
k,eY ,η,s

=
c

†
k,1,η,s + ieY c

†
k,−1,η,s√

2
, eY = ±1. (11)

It was shown in Refs. [108,109] that, with a consistent gauge
choice, the band formed by the states d

†
k,eY ,η,s of all k with

fixed eY , η and s carries a Chern number eY = ±1. (See
Appendix A3 for a short review.) In this basis, the form
factors cannot been made all real. While this is generally
more computational and memory intensive, the chiral basis
greatly simplifies the identification of some strongly corre-
lated phases as discussed in Ref. [110] and summarized in the
following sections.

Since both the band structure and the single-body wave
functions depend on w0, the projected interacting Hamiltonian
also depends on w0. To probe the competition between the ki-
netic energy and the interaction, we introduce a dimensionless
parameter t to control the amplitude of the kinetic term. By
adding them together, the (tunable) Hamiltonian is

H (t,w0) = tH0(w0) + HI (w0). (12)

If we assume the form factors satisfy the flat metric cond-

tion (FMC) [107,110], namely:

M (η)
mn (k, G) = ξ (G)δmn, (13)

we will obtain a simplified Hamiltonian:

HFMC(t,w0) = tH0(w0) + HI,FMC(w0). (14)

where H0 is identical to that in Eq. (12) but the interaction
term HI,FMC is obtained from Eq. (8), discarding q = 0 in the
sum. This condition is identical to the flat metric condition,
which is proved in Appendix B1, thus the name HFMC. In
Ref. [107], it was proved to hold, with exponential accuracy,
for all G with |G| �= |bM |, and is hence a “weak approxima-
tion.” With this flat metric condition, for t = 0 and w0 = 0,
as well as away from the chiral flat limit, the ground state
and some low-energy excitations (both neutral and charged)
can be derived analytically [110,111]. In order to study the
connection between this partially solvable model and the full
fledged model without the FMC, we can use a linear interpo-
lation and the following Hamiltonian with three parameters:

H (t,w0, λ) = λ · H (t,w0) + (1 − λ) · HFMC(t,w0), (15)

where λ ∈ [0, 1] is the dimensionless interpolating parameter
(denoted from now on the FMC parameter). Thus H (t,w0, 0)
is just the FMC Hamiltonian while H (t,w0, 1) is the full inter-
acting TBG model, with kinetic energy multiplied by a factor
t and no approximations such as the flat metric condition.

C. Symmetries

The Hamiltonian Eq. (15) has several symmetries depend-
ing on the parameters values of t and w0 (irrespective of
the FMC parameter λ). These symmetries have been derived
and discussed in details in Ref. [109]. We here provide a
further examination of their numerical implementations in
Appendix B.

For generic values of w0 and t , the Hamiltonian
Eq. (15) has the spinless crystalline symmetries C2z, C3z,
C2x, a spinless time reversal symmetry T , and a unitary
particle-hole (PH) transformation P which satisfies {P, H0} =
[P, HI ] = 0. The combined symmetry C2zT P gives rise to
a many-body charge-conjugation symmetry Pc that satisfies
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Pc(H0 + HI )P−1
c = H0 + HI + const. (See Refs. [108,109]

for details, see also Appendix A1 for a review). Furthermore,
the Hamiltonian has a U(2)×U(2) symmetry, which corre-
sponds to the spin and charge rotation symmetries in each
valley.

We will review and work on two limits (along with their
combination) where this U(2)×U(2) symmetry is extended
into higher symmetries.

(1) The nonchiral-flat limit: In the absence of kinetic term,
i.e., t = 0 in Eq. (12), the Hamiltonian is solely given by in-
teraction HI , and exhibits a U(4) symmetry in the spin/valley
space due to the C2zP symmetry [72,109].

(2) The (first) chiral-nonflat limit: when w0 = 0, there is
a first unitary chiral transformation C satisfying {C, H0} =
[C, HI ] = 0. the Hamiltonian also exhibits a U(4) symmetry
in the spin/valley space [however, different from the U(4) in
the nonchiral-flat limit] due to the CC2zP symmetry, as was
shown in Refs. [72,109]. Note that in this paper, we will only
focus on the first chiral symmetry, but not the second chiral
limit (where w1 = 0, and which also exhibits an extended
symmetry) introduced in Ref. [109].

(3) The (first) chiral-flat limit: when both of the above
limits are reached, i.e., t = 0 and w0 = 0, the symmetry of the
Hamiltonian is further enhanced into a U(4) × U(4) symme-
try in the band/spin/valley space [72,109]. However, we note
that the U(4) in the nonchiral-flat (or the first chiral-nonflat)
limit is not one of the two tensor-produced U(4)’s in the
chiral-flat limit.

Due to these symmetries, in either the flat band limit or the
first chiral limit, the eigenstates of H (t,w0, λ) can be labeled
by irreducible representations (irreps) of the corresponding
U(4) symmetry group encoded in Young tableaux. For these
U(4) irreps, we use the notation [l1, l2, l3]4 where the positive
(or zero) integers l1 � l2 � l3 � 0 correspond to the number
of boxes in the first, second and third lines respectively (see
Ref. [110] for a review of Young tableaux notations). The inte-
gers are omitted when they are equal to zero. In particular, the
fundamental U(4) irrep is [1]4 (a Young tableau with one box),
and the identity U(4) irrep is [0]4 (an empty Young tableaux).
As shown in Ref. [109], in either of these two limits, each
electron occupies an irrep [1]4 of the corresponding U(4).
In many-body wave functions, two electrons antisymmetric
(symmetric) in spin-valley indices will be in the same column
(row) of a Young tableau of a U(4) irrep.

In the (first) chiral-flat limit where w0 = 0 and t = 0,
the eigenstates of H (t = 0,w0 = 0, λ) will fall into irreps
of the U(4) × U(4) group, which are given by the tensor
product of irreps of the two U(4)’s. We denote the U(4) ×
U(4) irreps by ([l1, l2, l3]4, [l ′

1, l ′
2, l ′

3]4), where [l1, l2, l3]4 and
[l ′

1, l ′
2, l ′

3]4 are the irreps of the two U(4)’s, respectively. In
particular, the Chern basis in Eq. (11), which are eigenba-
sis of the chiral symmetry C with eigenvalue eY , occupy
the single-electron U(4) × U(4) irrep ([1]4, [0]4) if eY = +1,
and irrep ([0]4, [1]4) if eY = −1. Besides, the C2zT sym-
metry of the Hamiltonian exchanges the two U(4)’s of the
U(4) × U(4) group. As a result, any energy level with an irrep
([l1, l2, l3]4, [l ′

1, l ′
2, l ′

3]4) will imply another energy level with
an irrep ([l ′

1, l ′
2, l ′

3]4, [l1, l2, l3]4) at the same energy (related by
C2zT ). Thus we will show only one of these two C2zT related
irreps in the various plots.

In U(2)×U(2), chiral-nonflat U(4) and flat nonchiral U(4)
cases, the electron numbers in each spin valley sectors Nη,s

are conserved. We use the eigenstates of these operators to
perform the ED calculation, due to the fact that the interacting
Hamiltonian will be block diagonal in this basis. We can also
recombine these good quantum numbers into a more conve-
nient form: N = N+,↑ + N−,↑ + N+,↓ + N−,↓, Nv = N+,↑ +
N+,↓ − N−,↑ − N−,↓, 2Sz,η=+ = N+,↑ − N+,↓, and 2Sz,η=− =
N−,↑ − N−,↓. We also define Sη=± as the total spin in each
valley η (the z-component of which are Sz,η=±). Moreover, at
chiral-flat limit, there are eight Cartan subalgebra operators
for U(4) × U(4) group. The total electron numbers in each
spin, valley and Chern band eY = ±1 are conserved sepa-
rately. A detailed discussion about the symmetry sectors can
be found in Appendix B.

An important discrete symmetry is the translation symme-
try of the moiré lattice, which corresponds to the conserved
total momentum. In order to perform numerical ED, we use
a discrete momentum lattice in the MBZ. By imposing pe-
riodic boundary condition, we choose the momentum lattice
given by

k =
k1

N1
bM1 +

k2

N2
bM2, (16)

where k1 = 0, 1, · · · , N1 − 1, and k2 = 0, 1, · · · N2 − 1. Thus
there are NM = N1N2 moiré unit cells in total. The conserved
total momentum components are defined as

K1 =

(

N
∑

i=1

k1i

)

mod N1, (17)

K2 =

(

N
∑

i=1

k2i

)

mod N2, (18)

in which k1i and k2i are the momentum components of ith
electron along bM1 and bM2, respectively, and N is the total
electron number. Some momentum sectors are related by dis-
crete symmetries. For example, C2z symmetry can transform
a sector with K1 and K2 into another sector with momentum
−K1 mod N1 and −K2 mod N2.

III. NUMERICAL RESULTS AT FILLING FACTOR ν = −3

In this paper, we define the filling factor ν as the number of
electrons per moiré unit cell relative to the filling of the charge
neutral point (CNP). Within the active bands (the lowest 2 flat
bands per spin per valley), we have −4 � ν � 4. When the
total electron number within the active bands is N , the filling
factor is defined by

ν =
N

NM

− 4 =
N

N1N2
− 4. (19)

Therefore the filling factor ν is equal to 0 at CNP, and it is an
integer if there are integer numbers of electrons in each moiré
unit cell. The charge-conjugation symmetry Pc [109] around
the CNP of our Hamiltonian implies that the energy spectra at
ν and −ν are identical (up to a chemical potential shift). We
can thus focus solely on ν � 0. Each moiré unit cell can host
at most eight electrons (two bands, two valley and two spin
degrees of freedom). The inherent exponential complexity of
the quantum many-body simulations restrain the system sizes
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that can be reached. As compared to other systems exhibiting
the same low-energy physics, the fractional quantum Hall
effect, or its lattice cousin the fractional Chern insulator, the
eightfold degree of freedom per unit cell puts an even more
severe cap on the maximal sizes: the closer ν is to 0, the
greater the limitation. In the rest of this section, we will focus
on simplest case, namely ν = −3. We note that our simula-
tions are unbiased: we work with the full Hilbert space of the
projected two orbitals (per spin per valley) of the flat active
bands at the first magic angle, connected by Dirac points. We
do not project further to smaller single-particle orbital spaces.

A. (First) chiral-flat limit

We start with the (first) chiral-flat limit. As derived in
Ref. [110], the FMC Hamiltonian H (0, 0, 0) ground state at
ν = −3 is exactly solvable and is built from the two follow-
ing Fock states of one filled band, carrying a Chern number
νC = ±1, respectively:

∣

∣�
1,0
ν=−3

〉

=
∏

k

d
†
k,+1,+,↑|0〉, νC = 1, (20)

∣

∣�
0,1
ν=−3

〉

=
∏

k

d
†
k,−1,+,↑|0〉, νC = −1. (21)

They are the fully band polarized states of the multi-
plets associated to the U(4) × U(4) irreps ([NM]4, [0]4) and
([0]4, [NM]4), respectively. Other states of these multiplets are
generated by successive application of the U(4) × U(4) gen-
erators onto these two Chern insulator states. These two irreps
are the ones with the most columns in their Young tableau
at this filling factor (having a multiplicity of d([NM ]4,[0]4 ) =
d([0]4,[NM ]4 ) = NM (NM + 1)(NM + 2)/6 states per irrep) and
form ferromagnetic multiplets for U(4) × U(4) [analogous
to the SU(2) spin ferromagnet]. In fact, there is only one
([NM]4, [0]4) irrep and one ([0]4, [NM]4) irrep that can be built
from the Hilbert space of N = NM electrons and NM moiré
unit cell at this filling factor, each being given in Eqs. (20)
and (21), respectively. As such, these two irreps, including
the two Chern states |�1,0

ν=−3〉 and |�0,1
ν=−3〉, are always exact

eigenstates of the Hamiltonian as long as the U(4) × U(4) is
preserved, in particular for any value of λ along the interpo-
lation Eq. (15). This does not imply that these states are the
ground states, with the exception of λ = 0 when the nature of
the ground state is known analytically; nor does it imply that,
if they are the ground states, they are unique ground states,
even at λ = 0. We now test these issues.

Without any further assumptions, we use ED to study
the spectrum of the FMC model H (0, 0, λ = 0) and full
TBG model H (0, 0, λ = 1) at chiral-flat limit. The re-
sults are shown in Fig. 1 for N = 8 on a N1 = 4,
N2 = 2 system. As explained in Sec. II C, we only
show one of the two irrep sectors related by the
C2zT symmetry. In both cases, we find that the irreps
of the ground states are ([8]4, [0]4) for both λ = 0 (as ex-
pected) and also for λ = 1. Since there is only one such
representation formed by N = NM electrons this means that
Eq. (21) are the exact wave functions at this filling ν = −3 in
the chiral flat limit, and they are Slater determinants.

We also show in Fig. 1 the charge neutral excitation with
the corresponding irreps for each momentum sector. By com-

FIG. 1. The spectrum of the ground state and some low-energy
neutral excitations at ν = −3 for the FMC model (a) and the full
TBG model (b) at the (first) chiral-flat limit, with the corresponding
U(4) × U(4) irreps. The spectrum is computed on a N1 = 4 and N2 =
2 lattice with a twisting angle of θ = 1.07◦. In both cases, the ground
state has a total momentum K1 = 0, K2 = 0, with irrep ([8]4, [0]4).

paring the spectrum of these two Hamiltonians, we find that
the energy gap between ground states and the first excited
state (at the system size we calculate, which may not be a gap
in the thermodynamic limit) at λ = 1 is noticeably smaller
than the gap of the FMC model. We also notice that the irreps
of the lowest states in most (but not all) momentum sectors are
identical between λ = 0 and λ = 1. There are level crossings
among the low but barely lowest energy excited states when
we change λ from 0 to 1 (see Appendix C3 and Fig. 24
therein).

The ED results hint that the irreps of most of the low-
energy states are close to the “fully Chern band polarized”
irreps. By close, we mean that the Young tableaux of these
irreps can be built by only moving a few boxes from the
Young tableaux of the ground state (including moving boxes
between Chern bands). This is also something that we observe
for a smaller size such as NM = 3 × 2 or a slightly bigger
one NM = 3 × 3 (albeit for NM = 3 × 3 we can only access
very few states per quantum number sector). Physically, this
means most of the low-energy excited state wave functions
differ from the ground state wave functions by only a few
electron-hole pairs (recall that each box correspond to an
electron).

For example, the lowest irreps of the charge neutral exci-
tations in each finite momentum of Fig. 1 are ([7, 1]4, [0]4),
([7]4, [1]4), or ([6, 2]4, [0]4), which differ from the ground
state irrep ([8]4, [0]4) by one, one, and two electron-hole
pair(s). A similar observation holds for the charge excitations:
a hole excitation N = NM − 1 or an electron excitation N =
NM + 1 (see Appendix C1 and Fig. 18 for NM = 4 × 2), which
indicate the charge ±1 excitations differ from the ground
state wave functions by only an electron (hole) plus a few
electron-hole pairs.

By feeding the model parameters and system sizes used
here into the scattering matrix method for exactly solvable
charge neutral excitations introduced in Ref. [111], we find
that the energies of the lowest exact charge neutral excitations
in Ref. [111] match those of the excited states with the irreps
([7, 1]4, [0]4) and ([7]4, [1]4) here to machine precision in
both Fig. 1 λ = 0, λ = 1. Since these lowest neutral exci-
tations are proved in Ref. [111] to be the Goldstone mode
branches, which connect to the gapless Goldstone modes
for sufficiently small momentum (not attainable in our finte-
size calculation), we identify the states ([7, 1]4, [0]4) and
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([7]4, [1]4) in Fig. 1 (which are one electron-hole pair from
the ground state) as the single Goldstone branch excitations.
They also have the correct representations for the Goldstone
branches (see Ref. [111]). However, the excited state with the
irrep ([6, 2]4, [0]4), which corresponds to two electron-hole
pairs, cannot be obtained from the scattering matrix method in
Ref. [111], which only applies to one electron-hole pair charge
neutral excitations.

It is therefore reasonable to expect that the wave functions
of the lowest few charge ±1 or neutral excitations will only
differ from the ground state wave functions (which occupy
the maximally symmetric irreps) by a few electron-hole pairs.
This hypothesis allows us to examine the low-energy excita-
tions of larger system sizes with ED. Therefore we focus on
these irreps and study the size effect of the low-energy charge
±1 excitations.

To do this, for charge +1 (−1) excitations, we perform
ED in sub-Hilbert space sectors which are at most one
electron-hole pair plus one electron (hole) different from the
ground states (i.e., the sub-Hilbert space of states c

†
i |�〉 and

c
†
i c

†
i′ci′′ |�〉 for charge +1 excitations of ground state |�〉). Fo-

cusing on these sectors allows us to reach larger system sizes,
which is important in order to validate our full calculations at
small sizes and to see the possible differences from the small
sizes towards the thermodynamic limit.

The energies of the charge +1 excitations for several
slightly depolarized irreps are shown in Fig. 2(a) for λ =
0 and Fig. 2(b) for λ = 1. More precisely, we provide the
lowest energy state in each irrep sector irrespective of its
total momentum (we provide a momentum-resolved discus-
sion in Appendix C1). For λ = 0, the overall lowest electron
excitations correspond to the irreps ([NM, 1]4, [0]4) and
([NM]4, [1]4), which in Ref. [111] was proved to be an exact
excitation, but not necessarily the lowest energy excitations
above the ground state (with or without the FMC). Physically,
the excitations can be understood as adding an electron in
a band with the same Chern number (for ([NM, 1]4, [0]4)),
or with the opposite Chern number (for ([NM]4, [1]4)) as
the filled band, generating exactly one state per total mo-
mentum depending on the additional electron’s momentum.
Similar to the discussion about the irrep ([NM]4, [0]4), the
sector of ([NM, 1]4, [0]4) (as well as ([NM]4, [1]4)) is of di-
mension one (up to the irrep multiplicity) once we fix the
total momentum. Thus it is always an exact eigenstate in
the chiral-flat limit, irrespective of λ. Note that ([NM]4, [1]4)
and ([NM, 1]4, [0]4) are degenerate in energy in the chiral-flat
limit, as shown in Ref. [111]. Our numerical results show that
for λ = 0 the charge excitations with irreps ([NM, 1]4, [0]4)
and ([NM]4, [1]4) are the lowest ones, irrespective of the sys-
tem size. For λ = 1, they only become the lowest electron
excitation when NM � 20. Note that this method focusing on
irreps close to the “fully Chern band polarized” irrep, allow us
to reach much larger sizes (up to 8×8 moiré unit cells). De-
spite the low-energy landscape being not as clearly separated
for λ = 1 compared to λ = 0, the two spectra are qualitatively
remarkably similar. For example, at NM = 64, the order of the
irreps with λ = 0 [Fig. 2(a)] are the same as the order of the
irreps with λ = 1 [Fig. 2(b)]. Remarkably, we see that in this
case, at λ = 1 (but not at λ = 0) small sizes are misleading,
as they would suggest the (first) chiral-flat limit has different

(a)

(b)

FIG. 2. Charge +1 (electron) excitation at ν = −3 (a) with the
FMC (λ = 0), and (b) without the FMC (λ = 1). The system size
is NM = N1 × N2. All energy levels have been shifted by the low-
est energy E0 in the charge +1 sub-Hilbert space sector of the
corresponding system size. The energies of the proposed ground
state at filling factor ν = −3 with one additional electron, along
with the states with have an additional U(4) × U(4) excitation have
been calculated. We use the notation “+” between two irreps, like
([NM , 1]4, [0]4) + ([NM ]4, [1]4), when these irreps always appear
with an exact degeneracy.

charge excitations than the simplified FMC Hamiltonian in
the (first) chiral-limit. However, by going to the largest sizes
possible, we show that they have, however, the same irreps
for lowest excited states, showing that the FMC is appropriate
in the (first) chiral limit. This similarity is even more acute
when considering the one hole excitations (see Fig. 3). Note
that, similar to ([NM, 1, 0]4, [0]4), ([NM − 1]4, [0]4) is also an
exact eigenstate in the chiral-flat limit. We find (see Fig. 3)
that it is the lowest energy hole excitation irrespective of the
system size.

B. Phase diagrams in the nonchiral-nonflat cases

1. All symmetry sectors

We have provided evidence that the Chern insulator ground
state (and its charge excitations) is robust in the (first) chiral-
flat limit, which represent analytical results for the FMC λ =
0 model [110], even when we relax the flat metric condition
Eq. (14) towards the chiral-flat Hamiltonian λ = 1 Eq. (12).
Next, we study the robustness of the insulating phase with
more realistic values for t and w0. By adding kinetic energy
(t > 0), or by moving away from the first chiral limit (w0 >
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(a)

(b)

FIG. 3. Charge −1 (hole) excitations at ν = −3 with λ = 0
(a) and λ = 1 (b). NM = N1 × N2. All energies have been shifted
by the lowest energy E0 among all calculated states in the charge
−1 sub-Hilbert space sector at the corresponding system size. The
lowest hole excitation’s representation is clearly ([NM − 1]4, [0]4),
with the system size only affecting the gap to the second excited
state. This validates our results on relatively small lattice sizes for
the hole excitations. Indeed the strong similarity between the plots
supports the use of the FMC model for hole excitations as a simpli-
fied approximation to the (first) chiral-limit Hamiltonian.

0), we break the U(4) × U(4) symmetry according to the
discussion of Sec. II C. Therefore the electron numbers in each
Chern band basis eY = ±1 are not conserved, and the Chern
insulating wave functions are no longer exact eigenstates of
the Hamiltonian (irrespective of λ).

The perturbation in t and w0 will split the chiral-flat
U(4) × U(4) ground state multiplet (manifold) ([NM]4, [0]4)
and ([0]4, [NM]4) into a series of either U(4) irreps (in
the nonchiral-flat limit or in the chiral-nonflat limit) or
U(2)×U(2) irreps (in the most generic case of nonchiral-
nonflat limit). We denote the energy of the lowest (highest)
states of the chiral-flat ground state manifold after splitting as
E0,NM

(E0,NM
+ δ), thus δ � 0 characterizes the energy spread

of the U(4) × U(4) multiplet (δ = 0 in the chiral-flat limit).
For perturbations not too strong, we expect the ground states
to be the lowest states with energy E0,NM

from the chiral-
flat manifold ([NM]4, [0]4) and ([0]4, [NM ]4) after splitting.
However, as the perturbations grow, phase transitions to other
phases may happen, which may be due to either the soften-
ing of neutral excitations (gapped Goldstone modes, other
higher energy excitations, etc) at zero momentum (e.g., 1st

order transition to another translationaly invariant insulator)
or at finite momenta (e.g., into translation breaking phases),
or the vanishing of Goldstone mode stiffness (e.g., into a
metallic phase). To examine this possibility, we also calculate
the energy difference � = E ′

1,NM
− E0,NM

which we call the
finite size gap, where E ′

1,NM
is the energy of the lowest NM

electron state (irrespective of its total momentum) not adia-
batically connected to the chiral-flat multiplet ([NM]4, [0]4)
and ([0]4, [NM]4). Due to the finite system size, the low-
est Goldstone branch energy near zero momentum (which
have quadratic dispersions [111]) are expected to have an
energy m|bM1|2/2NM , where m is the Goldstone mode stiff-
ness, computed in Ref. [111]. Therefore we expect either
� ∼ m|bM1|2/2NM if the energy level E ′

1,NM
is near zero

momentum (which is not attainable with our finite size calcu-
lations), or � to be determined by certain finite momentum
softened neutral excitations E ′

1,NM
—for example, finite mo-

mentum Goldstone branches gone soft. Therefore a vanishing
finite size gap � in our calculation would imply either van-
ishing Goldstone stiffness or softening of some other neutral
excited states (possibly part of the finite momentum goldstone
branch) and hence the possible transition to other ground
states.

First, we have computed the phase diagrams for λ = 0 and
λ = 1 with respect to w0 and t covering all the symmetry
sectors for a rather small system size 3 × 2, as shown in
Fig. 4. We immediately see that the FMC model has a larger
finite size gap � over a wider parameter range than the full
TBG model [Figs. 4(a) and 4(f)]. As we have discussed, a
vanishing � hints an unstable ground state and thus a possible
phase transition. For the FMC model, this transition happens
at around w0/w1 ≃ 0.9, where � becomes vanishingly small
which is at zero momentum (Fig. 23), implying possible first
order or nematic transition into other zero-momentum phases.
Meanwhile, for the model with λ = 1, this transition hap-
pens at a much smaller w0/w1 ≃ 0.3 at nonzero momentum
(Fig. 23), implying a softening of Goldstone stiffness or some
collective modes at finite momenta, which may drive the
system into metallic or translation breaking phases. This is
qualitatively in support of the nematic metal or stripe phases
at ν = −3 with relatively large w0/w1 found in recent DMRG
simulations [80,81]. In Appendix C3, Tables V–VIII further
shows the ground state momentum (relative to the ground state
in the chiral-flat limit which is Chern number ±1 insulator as
shown in Sec. IIIB2 and Ref. [110]) for various parameters
at ν = −3, where we observe that for λ = 1, w0/w1 � 0.3
or λ = 0, w0/w1 � 0.9, the ground state momenta occur near
ŴM , MM , or KM at different system sizes/parameters, which
suggest possible competing nematic, stripe or momentum KM

CDW orders. The ground state manifold spread δ, shown in
Figs. 4(b) and 4(g), are always small in both cases when
compared with the finite size gap �. In particular, for larger
lattices that we will discuss in the next section (see Sec. IIIB2
and Appendix C2), we notice: for 3 × 3, 4 × 3, and 5 × 3
moiré lattice with the FMC, there grounds state changes
from the Chern insulator to another type of ground state
at w0/w1 � 0.9 but does not change momentum sector. For
λ = 1, without the FMC condition, the situation is more com-
plicated. On a 3 × 3 lattice, the Chern insulator is a ground
state at ŴM up to w0/w1 � 0.3. For 0.3 � w0/w1 � 0.8, the
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FIG. 4. The phase diagrams at filling ν = −3 evaluated on 3 × 2 lattice with all symmetry sectors considered. We assume λ = 0 in [(a)–(e)]
and λ = 1 in [(f)–(j)]. In (a) and (f), � is the finite size gap between the excited states and the lowest energy in the ground manifold. In (b) and
(g), δ is the spread of the ground state manifold after we move away from chiral-flat limit. Subfigures (c) and (h) demonstrate the Nv values
in the entire phase diagram. Subfigures (d), (e) and (i), (j) show the biggest possible spin quantum numbers S1 and S2 in valleys η = + and
η = − of the lowest energy state, respectively. Due to the C2z symmetry, the spectra of Nv and −Nv are identical, therefore we only show the
positive value. Note that the system is always spin and valley polarized in the Chern insulator phase.

ground state changes momentum to KM , indicating a CDW.
For 0.8 � w0/w1 � 1 the ground state momentum changes
again to (1,0), close to the ŴM point, indicating a possible
nematic transition. We note that the 3 × 3 lattice does not
have a mometnum mesh that touches the MM point. For 4 × 3
sites, the Chern ground state, stable for 0 � w0/w1 � 0.4 is
at momentum (2,0)—or the MM point, due to the finite size of
the system. Since we know that in the infinite size limit, the
Chern insulating states will be at zero momentum, we measure
all the momenta from that of the Chern insulator ground state.
The system then has a phase transition at w0/w1 ≈ 0.6 to a
CDW with momentum MM , while for larger ratios, it seems to
favor lower momenta ground states, probably towards zero.

We also notice that the effect of the kinetic term con-
trolled by t is relatively smaller than w0/w1, as predicted by
Ref. [110]. Remarkably, we did not observe a vanishing finite
size gap for any t < 1 in both λ = 0 and λ = 1 cases.

Focusing on the properties of the absolute lowest energy
state, we compute the valley polarization defined as the ratio
between Nv , the difference of the electrons numbers in valley
+ and − (a conserved quantity), and the total number of
electrons. The valley polarization is shown in Figs. 4(c) and
4(h). First we see that for w0/w1 � 0.3, the splitting of the
symmetry broken U(4) × U(4) ground state favors the fully
valley polarized states for both λ = 0 and λ = 1 cases. This
is in agreement with our perturbation calculations at ν = −3
in [110]. For λ = 0, this is actually valid over the whole
phase diagram. However, for λ = 1, the system undergoes
many level crossing involving different valley polarizations if
w0/w1 goes beyond 0.3. In Figs. 4(d), 4(e) and 4(i), 4(j) we
also provide the total spin in each valley Sη=+ and Sη=− for
the absolute lowest energy state with Nv � 0. (Due to the C2z

symmetry, the spectra of Nv and −Nv are identical therefore
only non-negative Nv values are shown.). While the FMC
model, the absolute lowest energy state is spin and valley

fully polarized irrespective of the values of t ∈ [0, 1] and
w0/w1 ∈ [0, 1], the full TBG model display a more diverse
spin polarization once the Chern insulator phase is washed
out. Due to the small system size, a strong conclusion about
the physics in this region would be too speculative.

2. Fully polarized sectors

To reach bigger system sizes in the nonchiral (w0 > 0) and
nonflat (t > 0) limit, we can focus on a specific symmetry sec-
tor of U(2)×U(2): the fully valley and spin polarized sector.
As we discussed previously, the assumption that the ground
state is the valley and spin polarized sector would break down
for λ = 1 when the system transitions away for the Chern
insulator phase at around w0/w1 ≃ 0.3. More precisely, by
focusing on one symmetry sector, one might miss phase tran-
sitions in other sectors. Hence any phase boundary obtained
by focusing on one symmetry sector only can over-estimate
the stability regime of the phase - a phase transition might
have already happened in a different symmetry sector. Still, it
provides some valuable insight on the system size influence on
the many-body spectrum. In Fig. 5, we present phase diagrams
for a N1 = 4, N2 = 3 system in the fully valley and spin
polarized sector. Starting with the gap [Figs. 5(a) and 5(d)]
and spread [Figs. 5(b) and 5(e)], we see that, for λ = 1, the
results of the fully polarized calculation barely changes when
compared with the phase diagrams from the full symmetry
sector calculation in Fig. 4 (just a slightly higher transition
value around w0/w1 ≃ 0.4). In this symmetry sector, the gap
� between the Chern insulator ground state for λ = 0 and
the next energy level starts considerably diminishing only at a
much larger value w0/w1 ≃ 0.9 than in the full spectrum.

We observe that the transition away from the Chern insu-
lator phase mostly occurs by a level crossing with states at
finite momentum (i.e., a total momentum not invariant under
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FIG. 5. The phase diagram at filling ν = −3 on 4 × 3 lattice in spin and valley polarized symmetry sectors with λ = 0 and λ = 1. The
finite size gap [(a) and (d)], the spread between the two lowest states [(b) and (e)] and the overlap between the two lowest states and Chern
insulator states [(c) and (f)] are shown by color. We choose λ = 0 in (a)–(c) and λ = 1 in (d)–(f). The white regions are beyond the Chern
insulator phase, in which the overlap between the ED ground states and Chern insulator states is zero. Note that the overlap scale starts at 0.6.
Overall, the overlap is never smaller than 0.9 in above 80% of the area in the Chern insulator phase.

C2z) for λ = 1, as opposed to λ = 0, where it never changes
momentum. As long as the system is in the Chern insulator
phase, the splitting between the two Chern states νC = ±1 is
barely noticeable. Note that on momentum lattice with C3z

symmetry (such as the similar phase diagrams on a 3 × 3
and 5 × 3 lattices provided in Appendix C3) the Chern states
νC = ±1 are also C3z eigenstates with different eigenvalues,
are thus exactly degenerate.

Besides computing the many-body finite size gap and
spread, we can also rely on wavefunction overlaps to quantify
how close the ground state is from a Chern insulator state.
As discussed in Appendix A3, the Chern band basis, suit-
able for this task, is well-defined for each given value of w0

[108]. The corresponding Chern insulator wave functions are
given by

∣

∣�±1
ν=−3(w0)

〉

=
∏

k

d
†
k,eY =±1,+,↑|0〉. (22)

Note that these Fock states at w0 > 0 are different from the
Fock states Eqs. (20) and (21) in the chiral-flat limit w0 =
0, since the single-particle wave functions are different for
different w0. Although they have the same expression with
Eqs. (20) and (21), the operators that create the state are the
Chern basis in the nonchiral limit.

By ED, we obtain the wave functions of the two lowest
states in the spin and valley fully polarized sector as a function
of t , w0, and λ |ψ j

ED(t,w0, λ)〉 with j = 1, 2 the index of
the two lowest states. We define the overlap between the two
lowest states in the ED spin and valley fully polarized sector
and the Chern insulator states by

Overlap =
1

2

2
∑

j=1

∑

νC=±1

∣

∣

〈

�
νC

ν=−3(w0)|ψ j

ED(t,w0, λ)
〉∣

∣

2
. (23)

This overlap is unity when the two states |ψ j

ED(t,w0, λ)〉 span
the same subspace generated by Eq. (22). In Figs. 5(c) and
5(f), we provide the overlap as a function of w0 and t with
(λ = 0) and without (λ = 1) the FMC. In the regions where
the Chern insulator description is expected to be good, we
obtain an overlap on the order of 0.9 or higher which drops
quickly only in the vicinity of the transition. This high overlap
shows that the Chern insulator states are, to a good approxi-
mation, close to noninteracting Slater determinants.

To provide a more complete picture, we have also com-
puted the phase diagram as a function of λ and t with w0 = 0
and the phase diagram as a function of λ and w0 with t = 0
in Appendix C3. The interpolation shows that the transition
point of w0/w1 decreases smoothly when λ > 0.5.

IV. NUMERICAL RESULTS AT FILLING FACTOR ν = −2

A. Chiral-flat limit

In Ref. [110], it is proved that in the chiral-flat limit, at
ν = −2, and with the FMC that the following Chern insulator
states of Chern number νC are ground states:

∣

∣�
1,1
ν=−2

〉

=
∏

k

d
†
k,+1,+,↑d

†
k,−1,+,↑|0〉, νC = 0, (24)

∣

∣�
2,0
ν=−2

〉

=
∏

k

d
†
k,+1,+,↑d

†
k,+1,+,↓|0〉, νC = 2, (25)

∣

∣�
0,2
ν=−2

〉

=
∏

k

d
†
k,−1,+,↑d

†
k,−1,+,↓|0〉, νC = −2, (26)

all of which are degenerate. All the U(4) × U(4) rotations
of these states give the ground state manifold. We note that
without the FMC, these states are still eigenstates of the
Hamiltonian; even with FMC, additional ground states are
not excluded. The multiplet of the νC = 0 state |�1,1

ν=−2〉 is
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([6]4, [6]4) + ([6, 6]4, [0]4)

([6, 1]4, [5]4) + ([6, 5]4, [1]4)

([5, 1]4, [6]4) + ([6, 5, 1]4, [0]4)

FIG. 6. The low-energy spectrum and the corresponding irreps
at ν = −2 filling on 3 × 2 lattice at chiral-flat limit with λ = 1. The
twisting angle is θ = 1.1014◦. We use the notation “+” between two
irreps if the states with these two irreps have the same energy.

spin and valley polarized in each U(4) sector (i.e., Chern
basis eY sector). The other two states |�2,0

ν=−2〉, |�
0,2
ν=−2〉 with

Chern numbers νC = ±2 have all electrons occupying one
Chern basis sector; within the occupied Chern basis sector,
they can be either a spin polarized valley singlet, or a valley
polarized spin singlet. The U(4) × U(4) irreps of these states
are ([NM]4, [NM]4) for νC = 0, ([NM, NM ]4, [0]4) for νC = 2
and ([0]4, [NM , NM]4) for νC = −2. Given their irreps and
conserved charges, these 3 wave functions are the only ones
that can be built from the Hilbert space of N = 2NM electrons
and NM moiré unit cells (similar to the ν = −3 situation where
the irrep ([NM]4, [0]4) was unique in the Hilbert space of
N = NM electrons and NM moiré unit cells). Thus the states
of Eqs. (24)–(26) are always eigenstates of the Hamiltonian in
the chiral-flat limit, but are not guaranteed to be ground states
unless the FMC is satisfied.

In Fig. 6, we show the low-energy spectrum for the full
TBG model (λ = 1) on a 3 × 2 lattice in the (first) chiral-
flat limit confirms, as predicted, the ground state manifold is
made of the irreps ([6, 6]4, [0]4), ([0]4, [6, 6]4) (not shown
here) and ([6]4, [6]4). This confirms that, in the first chi-
ral limit, the FMC - the condition under which we can
prove that eigenstates Eq. (26) are in fact ground states, is a
good approximation and no other ground states are present.
Similar to the ν = −3 case, the charge neutral excitation
irreps, including ([6, 1]4, [5]4), ([5, 1]4, [6]4), ([6, 5]4, [1]4)
and ([6, 5, 1]4, [0]4), can be interpreted as moving one elec-
tron from the fully-filled Chern insulator ground state to other
energy bands (i.e., creating one electron-hole pair), and are
thus close (as defined in Sec. III A) to the irreps of the ground
state manifold.

Reference [111] introduced neutral and charge excitations
on top of the eigenstates Eq. (26). The excitations are eigen-
states of the TBG Hamiltonian, but analytically one cannot
prove that they are the lowest energy eigenstates, even with
the FMC satisfied. Based on the fact that the irreps of the
low-energy excitations should be (and are in the analytic
model) close to the irreps of the Chern insulator ground state,
we study the charge ±1 excitations for both the FMC model
and the full interacting TBG model in chiral-flat limit in
the sub-Hilbert space of states which differ from the ground

(a)

(b)

FIG. 7. Charge +1 (electron) excitation at ν = −2 with (a) λ =
0 and (b) 1. All energies have been shifted by the lowest en-
ergy E0 at the corresponding system size. Again after NM ≈ 16
the system settles towards its thermodynamic properties with the
([NM , NM , 1]4, [0]4), ([NM , 1]4, [NM ]4), ([NM , NM ]4, [1]4) as the ir-
reps of the lowest state. In this the λ = 0 and λ = 1 plots agree
though the gap is much greater for the λ = 0 case. We use the
notation “+” between irreps when they always appear with an exact
degeneracy.

states in Eqs. (24)–(26) by at most one electron (hole) plus
one electron-hole pair (similar to what we did for ν = −3).
The results are given in Fig. 7 for the charge +1 excita-
tion and Fig. 8 for the charge −1 excitation, respectively.
The charge +1 excitation with irreps ([NM, NM , 1]4, [0]4) and
([NM, 1]4, [NM ]4) are favored energetically for both λ = 0 and
λ = 1 cases, even on rather small lattice sizes (as opposed
to the charge excitations at ν = −3, which stabilize at large
sizes NM � 20). Similarly, for the hole excitations, the state
with irrep ([NM, NM − 1]4, [0]4) and ([NM]4, [NM − 1]4) have
the lowest energies for all the system sizes we studied. No-
tice that spectra at λ = 0 and λ = 1 in both Fig. 7 (charge
+1 excitation) and Fig. 8 (charge −1 excitation) contain the
same energy order of the irreps in the spectra, showing that
the FMC (λ = 0) and the first chiral-flat limit without the
FMC condition (λ = 1) have the same qualitative spectra. In
particular, these lowest charge excitations we found here are
exactly the analytic charge excitations obtained in Ref. [111].
For example, in Fig. 8 (charge −1 excitation), the state with
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(a)

(b)

FIG. 8. Charge −1 (hole) excitations at ν = −2 with (a) λ = 0
and (b) 1. Again, all energies have been shifted by the lowest en-
ergy E0 at the corresponding system size. As is typical for the hole
excitations there is not a strong size effect and the ground state is
the irreps ([NM , NM − 1]4, [0]4) and ([NM ]4, [NM − 1]4) for with or
without the FMC. We use the notation “+” between irreps when they
always appear with an exact degeneracy.

irrep ([NM, NM − 1]4, [0]4), identical to the analytic charge
excitations in Ref. [111], are the lowest.

B. Phase diagrams in the nonchiral-nonflat case

Due to the large number of electrons, the dimensions of the
symmetry sectors at ν = −2 are much bigger than at ν = −3
(see Appendix B and Table II). Therefore we limit our phase
diagram calculation to either valley or spin polarized sectors
on a 3 × 2 lattice.

1. Valley polarized phase diagrams

We first consider the valley polarized sectors, setting η =
+. We subduce the U(4) × U(4) irreps built from the three
Chern insulator states of Eqs. (24)–(26) into U(2)×U(2) ir-
reps; some of the subduced irreps will appear in the fully
valley polarized sectors η = + [those with no particle in the
second U(2)]. In the valley + polarized sectors, we only have
one conserved total spin, the total spin Sη=+ of valley +. The
total spin for the valley polarized Chern insulator states with
νC = ±2 can only be Sη=+ = 0, as they correspond to filling
one valley, both spins, with the same Chern number. How-
ever, the states with Chern number νC = 0 can have different
spin quantum numbers Sη=+ = 0, 1, . . . , N/2. To summarize,
close to the chiral-flat limit in the valley polarized sector we

expect to see 3 Sη=+ = 0 states (one νC = 0, one νC = +2
and one νC = −2), and a set of spin multiplets with Sη=+ =
1, . . . , N/2 and Chern number νC = 0.

Similar to Sec. III B for ν = −3, we now consider the
phase diagrams as a function of w0 and t for both the FMC
model λ = 0 and for the full TBG model λ = 1. The results
are provided in Fig. 9. Figures 9(a) and 9(f) show the finite
size charge neutral gap � while Figs. 9(b) and 9(g) give the
spread δ (both defined in Sec. III B). Again, for stable ground
state, the Goldstone branches will have a gap ∼m|bM1|2/2NM

for finite systems. Hence � → 0 implies either the vanishing
of Goldstone stiffness (m → 0) or softening of some collec-
tive modes (including possibly finite momentum Goldstone
branches) at finite momenta, leading to an instability of the
ground state. The ground states manifold that we have consid-
ered here consists of all the Chern states discussed above: 3
Sη=+ = 0 states (one νC = 0, one νC = +2 and one νC = −2)
and a N/2 spin multiplet with Sη=+ = 1, . . . , N/2 and νC = 0.
Interestingly the FMC model λ = 0 does not differ much from
the full TBG λ = 1 model. In particular, and as opposed to
ν = −3, the full Chern insulator phase for λ = 0 and λ = 1
disappears roughly at the same value of w0/w1 (w0/w1 ≃ 0.5
for λ = 0 and w0/w1 ≃ 0.4 for λ = 1). t increases the spread
δ, and reduces the finite-size gap � but is never able to close
the later. Since we are considering here only the valley polar-
ized sector, the values of the parameters for which the finite
size gap closes are thus only the upper bounds of what a fully
unpolarized calculation would give.

The behavior of the splitting of ground state manifold
made of |�2,0

−2 〉, |�1,1
−2 〉, |�0,2

−2 〉 at ν = −2 is also different
from the splitting at ν = −3. At ν = −2, the spread δ (the
energy difference between highest and lowest states of the
Chern number 0,±2 chiral-flat ground states after splitting)
is overall larger than that the ν = −3 case, except along a line
w0/w1 ≈ 0.5t [see Figs. 9(b) and 9(g)]. To probe this region
in more detail, we have computed the spin quantum number
Sη=+ of the absolute ground state in valley fully polarized
sectors, which can be found in Figs. 9(c) and 9(h). These plots
show that the insulating phase in the valley polarized sector
can be separated into two phases with different magnetic or-
ders. The region dominated by the nonchiral-flat limit prefers
the largest possible spin polarization (ferromagnetic), while
the region dominated by the chiral-nonflat limit favors the spin
singlet.

The phase boundary between the ferromagnetic phase and
spin singlet phase can be seen clearly in both Figs. 9(c) and
9(h). This boundary matches well with the low spread δ line
w0/w1 ≈ 0.5t in Figs. 9(b) and 9(g). Our numerical results
validate the exact/perturbative approach in Ref. [110], where
it is shown that ν = −2 in the nonchiral-flat limit prefers
to fully occupy one spin-valley flavor (thus is a spin-valley
ferromagnet), while in the chiral-nonflat limit it prefers to
half-occupy two different spin-valley flavors (thus spin singlet
when valley is polarized). We also note that in the nonchiral-
nonflat case, it is proposed by earlier HF studies [89,90]
as well as perturbation theory [72,110] that an intervalley-
coherent state may be the ground state. Such a state, however,
which has valley quantum number Nv = 0, demands a Hilbert
space dimension of ED far beyond our computational power,
thus will not be discussed here.
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FIG. 9. The phase diagrams at ν = −2 on 3 × 2 lattice with λ = 0 and 1. The calculation is done in valley polarized symmetry sectors.
At the chiral-flat limit, the ground state contains νC = 0 and νC = ±2 Chern insulator states, and these states will split into multiple states
with different total spins when moving away from chiral-flat limit. The finite size gap � shown in subfigures (a) and (f) is defined by the
distance between the lowest charge neutral excitation energy and the lowest energy in the ground state manifold, and the split δ in subfigures
(b) and (g) is the separation between the highest and the lowest state in the ground state manifold. We also show the spin quantum number
Sη=+ of the lowest state in the ground state manifold in (c) and (h). Note that in the ferromagnetic region we also provide the gap �′ in
(d) and (i), which measures the energy difference between the Sη=+ = 6 ground state and the state above it. This ground state always has a
total momentum K1 = K2 = 0 except in the white region of (i). The overlap between the ground state manifold states and the Chern insulator
states with νC = ±2 in (e) and (j) is above 80% in the entire phase, which indicates that the two νC = ±2 states are in these low-energy states.

As we have mentioned earlier, the Chern insulator states
Eqs. (24)–(26) with νC = ±2 always have zero spin in valley
polarized sectors, therefore the ground state in the ferromag-
netic phase can only carry zero Chern number. However,
both the states with νC = 0 and νC = ±2 can have zero spin.
Thus, we use the wave-function overlap to probe the Chern
number of the preferred ground state in the valley-polarized
spin singlet phase near the chiral-nonflat limit In the valley
polarized sectors, the wave functions of Chern insulator states
with νC = ±2 are

∣

∣�±2
ν=−2(w0)

〉

=
∏

k

d
†
k,±1,+1,↑d

†
k,±1,+1,↓|0〉. (27)

We focus on the low-energy states with spin z component
Sz,η=+ = 0 and full valley polarization. The ground state man-
ifold has nine states in this symmetry sector on 3 × 2 lattice:
two of them are the Chern insulator states with νC = ±2 and
the other seven are the spin z-component zero states of the
total spin Sη=+ = 0, 1, . . . , 6 phases. We can obtain the exact
wave functions of the low-energy states in the valley polarized
sector with given values of t,w0 and λ by performing ED. We
call these states |ψ j

ED(t,w0, λ)〉, and the wavefunction overlap
between the two Chern insulator states and the lowest n states
can be defined as shown:

Overlapn =
1

2

∑

νC=±2

n
∑

j=1

∣

∣

〈

�
νC

ν=−2(w0)|ψ j

ED(t,w0, λ)
〉∣

∣

2
. (28)

This overlap measures whether the Chern insulator Fock states
in Eq. (27) are close to the lowest n states obtained by numer-
ical calculation. If the overlap is equal to one, the two Chern
insulator states must be inside the Hilbert space spanned by

these n wave functions. When we choose n = 2, we focus
on the two lowest energy states, and the largest overlap away
from chiral-flat limit in the insulating phases is around 3.7%.
This result indicates the lowest two states in ground state
manifold (all the states in) after splitting are never the nonzero
Chern number states when either near the nonchiral-flat limit
or near the chiral-nonflat limit. We also study the wavefunc-
tion overlap when n = 9. The results are shown in Figs. 9(e)
and 9(j). This overlap is above 80% at almost everywhere
in the insulating phase, which confirms that there are states
carrying nonzero Chern numbers in the ground state manifold,
although they are not favored energetically by a nonchiral-
nonflat Hamiltonian in valley polarized sector.

Another overlap that we can easily evaluate is the over-
lap between the ferromagnetic state (the spin z-component
Sz,η=+ = 6 state with total spin Sη=+ = 6, and Chern num-
ber 0) of the ground state manifold in numerical calculation
and the ferromagnetic Fock state one can write down at w0

[analogous to Eq. (27)]. Since there is only one such a state
with the given quantum numbers in the whole Hilbert space,
if we see that the absolute ground state has this total spin, we
are guarantee that the overlap is 100% [i.e., the red regions
in Figs. 9(c) and 9(h)]. For sake of completeness, we provide
the finite size gap �′ above the ferromagnetic state when it
becomes the system ground state (�′ is defined as the energy
difference between the ferromagnetic ground state and the
next level either in or not in the ground state manifold, see
Figs. 9(d) and 9(i).

Interestingly, for the FMC model, once the ground state
manifold at chiral-flat band limit (corresponding to the states
in Eqs. (24)–(26) and other states related by U (4) × U (4)
symmetry operations) has been washed out [for w0/w1 > 0.5,
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FIG. 10. The valley polarized spectrum on 3 × 2 lattice at filling
factor ν = −2. We choose t = 0, w0/w1 = 0.2 for (a) and t = 0.5,
w0 = 0 for (b), with λ = 1. We use blue dashes to label the states
with total momentum (K1, K2) = (0, 0). The insets zoom out to un-
veil the first state (in red) not belonging to the ground state manifold.
The system prefers a spin singlet ground state if we add some band
dispersion, and it prefers a ferromagnetic ground state if we move
away from the chiral limit. When both t and w0 are turned on, the
competition will lead to a phase transition within the valley polarized
sectors.

where states of other U(4) × U(4) irreps move down and the
finite size gap � is smaller than δ, see Fig. 9(a)], a substantial
gap of at least 3 meV above the ferromagnetic state ap-
pears, indicating that the system has become a Chern νC = 0
insulator.

To illustrate more clearly the dominance of the νC = 0
insulating phase and the ferromagnetic/spin singlet phases we
show in Figs. 10(a) and 10(b), typical cases of the ground state
manifold splitting in each phase. With nonchiral-flat limit
[Fig. 10(a)], the states with largest total spin are favored. For
chiral-nonflat limit, the spin singlet state is favored. In both
cases, the two states with Sη=+ = 0 and νC = ±2 are part of
the ground state manifold but they are never the lowest energy
states. Similar to our analysis for the ν = −3 case (Appendix
C3), we also studied the interpolation phase diagram between
λ = 0 and λ = 1 (see Appendix D and Fig. 30). All the quan-
tities that we probed show rather smooth dependence on λ.

2. Spin polarized phase diagrams

We now turn to the spin polarized sector, setting s = ↑.
When the system has U(4) × U(4) symmetry at chiral flat
band limit, the valley polarized and valley coherent states are
degenerate. As predicted in Refs. [42,72,89,110], the ground
state will be an inter valley coherent state if both t and w0 are
nonzero. However in finite size exact diagonalization where
no spontaneous symmetry breaking can occur, the states we
obtained are always eigenstates of the valley polarization Nv .
We start from the expression of the inter valley coherent state
provided in Ref. [110]

∣

∣�K−IVC
ν=−2

〉

=
∏

k ∈ MBZ
eY = ±1

(

e
−iγ

2 d
†
k,eY ,+,↑ + e

iγ

2 eY d
†
k,eY ,−,↑

)

√
2

|0〉,

(29)

where γ is an angle free parameter. This state can be decom-
posed as

∣

∣�K−IVC
ν=−2

〉

=
NM
∑

Nv=−NM

exp
(

−
iγ Nv

2

)

NNv
|ψK−IVC(Nv )〉, (30)
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FIG. 11. The spin polarized energy spectrum of 3 × 2 lattice
at ν = −2 filling with t = 0.5, w0/w1 = 0.2 and λ = 1. The states
labeled by red symbol are the states carrying a Chern number νC =
±2. In each Nv sector, the lowest energy states are indicated by
blue symbols, and their overlaps with the model states |ψK−IVC(Nv )〉
are written next to each level. We can see that the wave functions
obtained from the ED have large overlaps over 90%.

in which NNv
is a normalization factor and |ψK−IVC(Nv )〉 is the

normalized component in the Nv symmetry sector. Note that
all the γ dependence is encoded in the phase factors. In order
to determine whether this state is a good approximation, we
compute the overlap between the lowest energy state in each
Nv sector obtained by ED, and the model state wave function
|φK−IVC

Nv

〉, namely,

Overlap(Nv ) =
∣

∣

〈

ψED(Nv )|ψK−IVC
VC (Nv )

〉∣

∣

2
. (31)

As an example, we consider the spin polarized Hamiltonian
at t = 0.5, w0/w1 = 0.2, i.e., away from the chiral flat limit,
and λ = 1. The low-energy spectrum and overlaps are given in
Fig. 11. There we show that the ED low-energy states in each
Nv sectors agree well with the model states |ψK−IVC(Nv )〉,
with overlaps above 90%.

To probe how the intervalley coherent wave-function
approximation depends on kinetic energy and nonchiral con-
tributions, we calculate the overlap in Nv = 0 sector as a
function of t and w0 with and without the FMC in Fig. 12. As
can be seen in Fig. 11, focusing on the Nv = 0 sector captures
the worst case scenario for the overlap. Our numerical results
show that the spin polarized ground states always have a

FIG. 12. The phase diagrams at ν = −2 filling calculated on 3 ×
2 lattice in the spin polarized sector without (a) and with (b) the flat
metric condition. The color code represents the overlap between the
ED ground state at NV = 0 and the model state |ψK−IVC(Nv = 0)〉.
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decent overlap >80% with the model state |ψK−IVC(0)〉 in
most of the phase diagram if λ = 0. Similarly, if λ = 1, the
overlap between the ED ground state and the K-IVC state
is close to unity when w0/w1 � 0.6. This result implies that
the ground state obtained by ED can be well approximated
by the K-IVC Slater determinant model state. However, we
note that the overlap drops around chiral nonflat limit, and is
smaller than 70% when w0 = 0. This steams from the higher
symmetry (the chiral-nonflat U(4) symmetry [72,109]) in the
chiral nonflat limit, which no longer pins the ground state to
be intervalley coherent. We provide a detailed explanation in
Appendix D 1. From the higher symmetry in the chiral-nonflat
limit, we also build a valley SU(2) singlet model state, which
has a large overlap >75% with the ED ground states in the
chiral-nonflat limit (see Fig. 30).

When t > 0 and w0 > 0, we generically find the ground
state energy in the fully spin polarized sector is lower than
that in the fully valley polarized sector (with or without FMC).
This agrees with the predictions in Refs. [72,110] that the
ν = −2 ground state is an intervalley coherent insulator (for
small w0/w1 without FMC). As an example, at t = 1 and
w0/w1 = 0.3, the ground state in the fully spin polarized sec-
tor is 0.275 meV/electron lower than that in the fully valley
polarized sector, in agreement with the perturbation theory
estimations in Refs. [72,110].

V. NUMERICAL RESULTS AT FILLING FACTOR ν = −1

Due to the huge Hilbert space dimensions at filling factor
ν = −1 (see Appendix B and Table III therein), we solely
focus on the (first) chiral-flat limit with U(4) × U(4) symme-
try. Just like the other integer filling factors, the FMC model
has Chern insulator states as exact ground states [110]. At
ν = −1, the Chern insulating ground states of the FMC model
are:

∣

∣�
2,1
ν=−1

〉

=
∏

k

d
†
k,+1,+,↑d

†
k,−1,+,↑d

†
k,+1,+,↓|0〉, νC = 1, (32)

∣

∣�
1,2
ν=−1

〉

=
∏

k

d
†
k,+1,+,↑d

†
k,−1,+,↑d

†
k,−1,+,↓|0〉, νC = −1,

(33)
∣

∣�
3,0
ν=−1

〉

=
∏

k

d
†
k,+1,+,↑d

†
k,+1,+,↓d

†
k,+1,−,↑|0〉, νC = 3, (34)

∣

∣�
0,3
ν=−1

〉

=
∏

k

d
†
k,−1,+,↑d

†
k,−1,+,↓d

†
k,−1,−,↑|0〉, νC = −3.

(35)

The above four states belong to the U(4) × U(4) irreps
([NM, NM ]4, [NM]4) (νC = 1), ([NM]4, [NM , NM]4) (νC = −1),
([NM, NM , NM ]4, [0]4) (νC = 3) and ([0]4, [NM , NM , NM ]4)
(νC = −3). For the same reasons that we have mentioned in
Secs. III A and IV A, these states are the only states which can
form these irreps and conserved charges up to U(4) × U(4)
transformations, and consequently they must be eigenstates
in the (first) chiral-flat limit, but not necessarily the ground
states away from the FMC model λ = 0. In this respect, they
are similar to the ν = −3 states, which are also not eigenstates
away from the chiral limit; they are unlike the ν = −2 states,
which remain eigenstates in the nonchiral limit.

0 4 8 12 16
NeY =1 − NeY =−1

0

10

20

30

E
−

E
0

(m
eV

)

FIG. 13. The low-lying states on 3 × 2 lattice at the chiral-flat
limit λ = 1 with filling factors ν = −1 (N = 18). We only calcu-
lated the spectra of symmetry sectors whose dimension is below
106 irrespective of their quantum numbers (at least two states per
sector). The spectrum is plotted versus the Chern band polarization,
where NeY

is the electron numbers in the band with Chern number eY

(thanks to the C2zT symmetry, we only consider NeY =+1 − NeY =−1 �

0). The states labeled by red dashes are the Slater determinants,
which corresponds to the exact Chern insulator states with νC = 1
(at NeY =+1 − NeY =−1 = NM = 6) or νC = 3 (at NeY =+1 − NeY =−1 =
3NM = 18).

The spectrum for the valley polarized and some slightly de-
polarized symmetry sectors at this filling factor can be found
in Fig. 13. Here we only consider the full TBG model λ = 1.
In the Chern band basis, these Chern insulator states defined
in Eqs. (32)–(35) are in symmetry sectors of dimension one.
Therefore we can easily find them by the quantum numbers.
The energy spectrum plot shows that these states have the
same energy value, although they carry different Chern num-
bers. Among the symmetry sectors we have studied in Fig. 13,
these Chern insulator states have the lowest energy, which
support the validity of FMC model with nonzero λ.

Focusing on the irreps close to those of the ground state
manifold of states in Eqs. (32)–(35), we can study the energy
of charge excitations. The results are displayed in Fig. 14
(for the charge +1 excitation) and Fig. 15 (for the charge
−1 excitation). The charge +1 excitation with the lowest
energy has the degenerate irreps ([NM, NM , NM , 1]4, [0]4),
([NM, NM , 1]4, [NM]4), ([NM, NM ]4, [NM , 1]4), and ([NM, NM ,

NM]4, [1]4) for the FMC model, while the model with
λ = 1 prefers ([NM, NM , NM − 1, 2]4, [0]4), ([NM, NM −
1, 2]4, [NM]4), and ([NM, NM ]4, [NM − 1, 2]4) when the
system size gets bigger. On the charge −1 excitation side, both
the FMC model and λ = 1 model favor the excitation with
irreps ([NM, NM , NM − 1]4, [0]4), ([NM, NM − 1]4, [NM]4),
and ([NM, NM]4, [NM − 1]4) irrespective of the system sizes
we choose. These results are closer to those of ν = −3 (with
odd Chern numbers) rather than those of ν = −2 (with even
Chern numbers): the difference for the lowest charge +1
excitation between the two models might be a more important
size effect at ν = −1 than ν = −3 (we can only reach up to
7 × 7 for ν = −1, while we were able to go up to 8 × 8 for
ν = −3 to have the finite size effect under control).
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(a)

(b)

FIG. 14. Charge +1 (electron) excitation at ν = −1 for the FMC
model λ = 0 (a) and the full model λ = 1 (b). NM = N1 × N2. All en-
ergies have been shifted by the lowest energy E0 of the corresponding
to the given system size. Here we can see a difference between the
Hamiltonian with and without FMC in that the irreducible represen-
tation of the lowest calculated state differs among the two conditions.
We use the notation “+” between irreps when they always appear
with an exact degeneracy.

Finally, we address the question of the filling factor ν = 0.
This is by far the most demanding case (see Appendix B
and Table IV therein). On the other hand, this is also the
filling factor where properties can be derived analytically as
discussed in Refs. [110,111] even beyond the various limits.
For that reason, ν = 0 will not be discussed in this article
(with the exception of Appendix E).

VI. CONCLUSION

We performed an ED study of the phases of first magic
angle TBG with Coulomb interactions at integer fillings. We
employ the momentum space interacting Hamiltonian pro-
jected into the lowest eight flat bands (two per spin and per
valley) of the BM continuum model [1,107], which is shown
to have a positive semidefinite interaction Hamiltonian (anal-
ogous to that found by Kang and Vafek [71]) and is explicitly
gauge fixed in Ref. [109]. For integer fillings ν = −3,−2,−1
(relative to the CNP), we explore the ground states and
excitations in the parameter space of w0/w1 ∈ [0, 1] (the ra-
tio between AA and AB stacking hoppings), single-particle
bandwidth t ∈ [0, 1] (dimensionless, t = 1 corresponds to the
bandwidth of the BM model), and a parameter λ ∈ [0, 1]
which interpolates the Hamiltonian between having the FMC

(a)

(b)

FIG. 15. Charge −1 (hole) excitations at ν = −1 with (a) λ = 0
and (b) 1. All energies have been shifted by the lowest energy E0 at
the corresponding system size. The irreps of the lowest charge −1
excitations are ([NM , NM , NM − 1]4, [0]4), ([NM , NM ], [NM − 1]4),
([NM , NM , NM − 1]4, [0]4), and ([NM , NM , −1]4, [NM ]4) for both the
λ = 0 and λ = 1 models and for all system sizes we have checked.
We use the notation “+” between irreps when they always appear
with an exact degeneracy.

Eq. (13) (λ = 0) and realistic parameters without the FMC
(λ = 1). As shown in Ref. [110], the FMC is a weak condition
that allows us to analytically find exact ground states (but
potentially not all) at integer fillings ν. In particular, for any
λ, the Hamiltonian enjoys a U(4) × U(4) symmetry in the
first chiral-flat limit (w0 = 0, t = 0), and have a reduced U(4)
symmetry in either the nonchiral-flat limit (w0 > 0, t = 0) or
the chiral-nonflat limit (w0 = 0, t > 0) (which are different
U(4)’s), as revealed in Refs. [71–73,109]. We therefore also
study the U(4) × U(4) or U(4) irreps of the ground states and
excitations in these limits. The symmetry of the Hamiltonian
reduces into U(2)×U(2) in the physical chiral-nonflat case.

For ν = −3, our calculations show the ground state is
uniquely the spin and valley polarized Chern insulator with
νC = ±1 when w0/w1 � 0.9 with the FMC (λ = 0), and
when w0/w1 � 0.3 without the FMC (λ = 1). The phase has
almost no dependence on the bandwidth t ∈ [0, 1]. This con-
clusion is independent of the system size (up to the maximal
size 5 × 3), and is in agreement with our conclusion in [110]
from analytical perturbation calculations. In the chiral-flat
limit, such a Chern insulator with Chern number ν = ±1
becomes an analytical exact ground state [110]. By restricting
to sub-Hilbert spaces close to the ground state, we numerically
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verified that the exactly solvable charge ±1 excitations found
in Ref. [111] are the lowest charge excitations up to a sys-
tem size 8 × 8 in the chiral-flat limit, with or without the
FMC. When w0/w1 � 0.9 with the FMC (λ = 0) or when
w0/w1 � 0.3 without the FMC (λ = 1), the finite-size gap
� to the charge neutral excitations vanishes (due to either a
vanishing Goldstone stiffness or a softening of other neutral
excited states), which leads us to conjecture a phase tran-
sition into metallic or translation breaking phases in these
parameter ranges. This qualitatively agrees with the recent
DMRG studies for ν = −3 [72,80], which found a transition
from Chern insulator to nematic semimetal or stripe phase
near w0/w1 = 0.8. Our further analysis of the ground state
momentum sectors suggests a competition between among
(nematic) metal, MM (π momentum) stripe and KM-CDW
orders in the large w0/w1 regime.

We also examined the phase diagram at ν = −2 in the fully
valley polarized sector with all electrons in one valley, or the
fully spin polarized sector with all electrons in spin up, in a
3 × 2 momentum lattice. We find the following results when
the FMC holds (λ = 0), or when the FMC is absent (λ = 1)
and w0/w1 � 0.6: (1) in the fully valley polarized sector, we
find a spin ferromagnetic phase when w0/w1 � 0.5t , and a
spin singlet phase when w0/w1 � 0.5t , both of which have
Chern number 0. (2) In the fully spin polarized sector, we
find the intervalley coherent state is always favored, which
is always lower in energy than the ground state in the fully
valley polarized sector. This agrees with the exact and pertur-
bation analysis in Ref. [110] (see a similar analysis without
FMC in Ref. [72]), where it is shown that with the FMC,
the nonchiral-flat limit has a U(4) ferromagnetic exact ground
state, while the chiral-nonflat limit prefers half-occupying dif-
ferent spin-valley flavors [up to further U(4) rotations], which
together favors an intervalley coherent ground state in the
nonchiral-nonflat case. Importantly, while other ground states
cannot be excluded in Ref. [110] at filling ν = −2 (with the
FMC), we showed here the Chern number 0 state at ν = −2 is
the unique ground state in the chiral-nonflat and nonchiral-flat
limits. When the FMC is absent (λ = 1), we find the ground
state changes for w0/w1 � 0.6, which indicates a possible
phase transition (into metallic phases, etc). Moreover, in the
chiral-flat limit, we show that the exact charge ±1 excita-
tions found in Ref. [111] are the lowest charge excitations
at ν = −2 with or without the FMC (in restricted Hilbert
spaces up to system size 6 × 6). Lastly, we note that it is
shown by perturbation theory [72,110] that ν = −2 may favor
an intervalley coherent ground state with valley polarization
Nv = 0. The investigation of such a state is, however, beyond
our computational ability due to the enormous Hilbert space
dimension needed, and we leave it to future studies.

The last filling we explored is ν = −1, where we are lim-
ited to the study of the chiral-flat limit [where a U(4) × U(4)
symmetry emerge] in nearly valley polarized sectors due to
limitation of Hilbert space dimensions. While the Chern num-
ber νC = ±1,±3 insulators are proved to be ground states at
ν = −1 with FMC in Ref. [110] but not necessarily the only
ground states, our numerical result does not find any other
states which have lower energy than these Chern insulator
states in symmetry sectors whose dimension is not larger than
106, and therefore the Chern number νC = ±1,±3 states are

likely to be the only ground states. Furthermore, we show that
the exact charge excitations given in Ref. [111] are the lowest
charge excitations at ν = −1 except for charge +1 excitations
without FMC (in restricted Hilbert spaces of up to system size
7 × 7).

Our work verified the validity of the exact/perturbative
ground states and charge excitations at nonzero integer fillings
in our earlier studies [110,111], and has proved the utility of
enhanced U(4) and U(4) × U(4) symmetries in various limits
[71–73,109] useful for identifying the phases in magic angle
TBG. Beyond the regime where our analytic states are ground
states, our work further suggests the possible existence of C3z

and/or translation breaking new phases at large w0/w1, which
we will investigate in the future.

ACKNOWLEDGMENTS

We thank Michael Zaletel, Allan MacDonald, Christophe
Mora, and Oskar Vafek for fruitful discussions. This work
was supported by the DOE Grant No. DE-SC0016239, the
Schmidt Fund for Innovative Research, Simons Investigator
Grant No. 404513, and the Packard Foundation. Further sup-
port was provided by the NSF-EAGER No. DMR 1643312,
NSF-MRSEC No. DMR-1420541 and DMR-2011750, ONR
No. N00014-20-1-2303, Gordon and Betty Moore Founda-
tion through Grant GBMF8685 towards the Princeton theory
program, BSF Israel US foundation No. 2018226, and the
Princeton Global Network Funds. B.L. acknowledge the sup-
port of Princeton Center for Theoretical Science at Princeton
University in the early stage of this work. N.R. was also
supported by Grant No. ANR-16-CE30-0025.

APPENDIX A: PROJECTED MANY-BODY

HAMILTONIAN OF TBG

In this Appendix, we briefly review the definition and
symmetries of the noninteracting Hamiltonian of TBG, which
was first introduced in Ref. [1]. We then derive the projected
interacting Hamiltonian matrix elements in terms of single-
particle wave functions. We also discuss two gauge choices
which are beneficial for numerical study. Our notations are
identical to the paper Ref. [109], which also provides more
detailed derivation and discussion.

1. Single-particle Hamiltonian

We first define the creation operator c
†
p,α,s,l

, where p is the
electron momentum measured from single layer graphene ŴM

point, α = A, B is the graphene sublattice, s = ↑,↓ is the elec-
tron spin and l = ±1 refers to the layer index. The low-energy
physics in TBG is mostly dominated by states around the two
Dirac points K and K ′. By focusing on one valley K , we define
vectors q j = C

j−1
3z (K− − K+), where Kl is the momentum

of the Dirac point K in layer l , and |Kl | = 1.703 Å−1. The
reciprocal vectors of the moiré lattice, denoted by Q0, are
spanned by basis vectors bM1 = q3 − q1 and bM2 = q3 − q2.
The momenta lattices Q± = Q0 ± q1 form a hexagonal lat-
tice in momentum space, and they stand for Dirac points of
the top and bottom layers, respectively. For convenience, we
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introduce the electron operators:

c
†
k,Q,η,α,s

= c
†
ηKη·ℓ+k−Q,α,s,η·ℓ if Q ∈ Qℓ. (A1)

Therefore the second quantized noninteracting Hamiltonian of
TBG can be written as

Ĥ0 =
∑

k∈MBZ

∑

Q,Q′∈Q±

∑

η,s,α,β

[

h
(η)
QQ′ (k)

]

αβ
c

†
k,Q,η,α,s

ck,Q′,η,β,s,

(A2)
where MBZ stands for moiré Brillouin zone, and the “first
quantized” single-body Hamiltonian of TBG with valley η =
+1 is given by the following equation Ref. [1]:

h
(+1)
QQ′ (k) = vF σ · (k − Q)δQ,Q′

+
∑

j=1,2,3

(

TjδQ−Q′,q j
+ T

†
j δQ−Q′,−q j

)

,

h
(−1)
QQ′ (k) = vF σ

∗ · (k − Q)δQ,Q′

+
∑

j=1,2,3

(

σxTjσxδQ−Q′,−q j
+ σxT

†
j σxδQ−Q′,q j

)

,

(A3)

where σ = (σx, σy), σ
∗ = (−σx, σy), with σ0,x,y,z being the

2×2 identity and Pauli matrices, vF = 6104.5 meV Å is the
Fermi velocity of single layer graphene, and w = 110 meV is
the strength of interlayer hopping. Interlayer hopping matrices
Tj are given by

Tj = w0σ0 + w1

[

cos

(

2π ( j − 1)

3

)

σx

+ sin

(

2π ( j − 1)

3

)

σy

]

. (A4)

The parameters w0 and w1 represents the relative strength of
interlayer hopping at the AA and AB stacking centers in TBG.
In the original BM model [1], both of the two parameters
w0 = w1 = 110 meV. It has been shown that in reality the
value of w0/w1 is smaller than 1 [52]. In this article we set
w1 = 110 meV and use w0 as a tunable parameter.

The single-body Hamitonian at valley η = −1 is given
by h

(−)
Q,Q′ (k) = σxh

(+)
−Q,−Q′ (−k)σx. It can be shown that

the single valley Hamiltonian is invariant under the crystalline
transformations C2zT , C3z, C2x and a unitary particle hole
transformation P. These symmetries are represented by the
following matrices:

DQα,Q′β (C2zT ) = (σx )α,βδQ,Q′ , (A5)

DQ,Q′ (C3z ) = ei 2π
3 σzδQ,C3zQ′ , (A6)

DQ,Q′ (C2x ) = σxδQ,C2xQ′ , (A7)

DQα,Q′β (P) = ζQδQ,−Q′δα,β, (A8)

where ζQ = ±1 for Q ∈ Q±. It can be shown that these rep-
resentation matrices satisfy the following relations:

h(η)(k) = D†(C2zT )h(η)∗(k)D(C2zT ), (A9)

h(η)(k) = D†(C3z )h(η)(C3zk)D(C3z ), (A10)

h(η)(k) = D†(C2x )h(η)(C2xk)D(C2x ), (A11)

h(η)(k) = −D†(P)h(η)(−k)D(P). (A12)

Furthermore, at the first chiral limit w0 = 0, the single-body
Hamiltonian Eq. (A3) has only σx and σy. Therefore the chi-
ral symmetry C can be defined, and its representation D(C)
satisfies the following equations:

DQα,Q′β (C) = (σz )αβδQ,Q′ , (A13)

{

D(C), h(η)(k)
}

= 0. (A14)

The symmetries discussed in the previous paragraph do
not change the valley quantum number. Another symmetry
C2z, which is represented by DQα,Q′β (C2z ) =x )αβδQ,−Q′ , trans-
forms the single-body Hamiltonian in Eq. (A3) to the other
valley:

DQα,Q′β (C2z ) =(σx )α,βδQ,−Q′ (A15)

h(η)(k) =D†(C2z )h(−η)(−k)D(C2z ). (A16)

The symmetries C2z, C2zT, and P (and C at the chiral limit)
will be used to fix the gauge choices when deriving the matrix
elements of projected interacting Hamiltonian.

By diagonalizing the single-body Hamiltonian, we can ob-
tain the band structure εk,m,η and single-body wave functions
u

(η)
Qα,m

(k) of TBG:
∑

Q′β

h
(η)
Qα,Q′β (k)uQ′β,mη(k) = ǫk,m,ηuQα,mη(k). (A17)

Here m is the band index. Thus the noninteracting Hamilto-
nian can be brought to the following form:

Ĥ0 =
∑

k∈MBZ

∑

η,s

∑

m �=0

ǫk,m,ηc
†
k,m,η,s

ck,m,η,s, (A18)

where the electron operators in the energy band basis c
†
k,m,η,s

are defined as follows:

c
†
k,m,η,s

=
∑

Qα

uQα,mη(k)c†
k,Q,η,α,s

, (A19)

c
†
k,Q,η,α,s =

∑

m

u∗
Q,α,mη(k)c†

k,m,η,s. (A20)

As shown in the earlier studies of Bistritzer and MacDon-
ald [1], there are two flat bands whose band width can be
smaller than 10 meV for each valley and spin. Projecting
into the two flat bands around charge neutral point labeled by
m = ±1, we obtain the kinetic term of the Hamiltonian in the
main text:

H0 =
∑

k∈MBZ

∑

m=±1

∑

η,s

ǫk,m,ηc
†
k,m,η,s

ck,m,η,s. (A21)

In the following section, we will derive the interacting Hamil-
tonian projected onto these flat bands.

2. Projected coulomb interaction and real gauge fixing

We assume that the interaction between the electrons is the
screened Coulomb potential, whose Fourier transformation is
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given by

V (q) = πξ 2Uξ

tanh(ξq/2)

ξq/2
. (A22)

Here ξ = 10 nm is the distance between the metal gates, and Uξ = e2/4πǫξ ≈ 24 meV is the strength of the interaction. Before
projected into the flat bands, the two body interacting Hamiltonian has the following form:

ĤI =
1

2�tot

∑

q,G

V (q + G)δρq+Gδρ−q−G, (A23)

where �tot is the total area of the moiré lattice, and the relative electron density δρq+G is given by

δρq+G =
∑

k∈MBZ

∑

η,s

∑

Q∈Q±

∑

α

(

c
†
k+q,Q−G,α,η,s

ck,Q,α,η,s −
1

2
δq,0δG,0

)

. (A24)

We use Eq. (A20) to rewrite the density operator in the energy band basis:

δρq+G =
∑

k∈MBZ

∑

η,s

∑

Q∈Q±

∑

α

(

∑

m,n

u∗
Q−G,αmη(k + q)uQ,αnη(k)c†

k+q,m,η,s
ck,n,η,s −

1

2
δq,0δG,0

)

=
∑

k∈MBZ

∑

η,s

∑

m,n





∑

Q∈Q±

∑

α

u∗
Q−G,αmη(k + q)uQ,αnη(k)





(

c
†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δm,n

)

, (A25)

where we use the following unitarity condition of single-body wave functions to get the second line from the first line:
∑

m

u∗
Q−G,αmη(k)uQ,αmη(k) = δG,0. (A26)

Then we can obtain the projected density operator around the first magic angle by only keeping m, n = ±1 terms. For
convenience, we define the form factor (overlap) matrix

M (η)
mn (k, q + G) =

∑

Q∈Q±

∑

α

u∗
Q−G,αmη(k + q)uQ,αnη(k), (A27)

and the projected density operator will have the following form:

δρq+G =
∑

k∈MBZ

∑

η,s

∑

m,n=±1

M (η)
mn (k, q + G)

(

c
†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δm,n

)

. (A28)

Consequently, the projected two body Hamiltonian can be written as

HI =
1

2�tot

∑

k,k′,q∈MBZ

∑

ηη′ss′

∑

mn;m′n′

U
(ηη′ )
mn;m′n′ (q; k, k′)

(

c
†
k+q,m,η,s

ck,n,η,s −
1

2
δq,0δm,n

)(

c
†
k′−q,m′,η′,s′ck,n′,η′,s′ −

1

2
δq,0δm′,n′

)

, (A29)

U
(ηη′ )
mn;m′n′ (q; k, k′) =

∑

G∈Q0

V (q + G)M (η)
mn (k, q + G)M (η′ )

m′n′ (k′,−q − G). (A30)

This is the projected interacting Hamiltonian appeared in
Eq. (5) in the main text.

All the matrix elements in the interacting Hamiltonian
U

(ηη′ )
mn;m′n′ (q; k, k′) can be obtained from single-particle wave

functions, no matter which gauge is chosen. However, care-
fully choosing a specific gauge is highly beneficial for
analyzing the symmetry and for the numerical calculation. We
choose the phase of the wave function at a given k by fixing
the sewing matrices of C2zT and C2zP. Once we have obtained
the wave functions u

(η)
Qα,m

(k) of valley η and band m, we first
fix the sewing matrix of C2zT symmetry. If the two flat bands
are nondegenerate at momentum k, then C2zT symmetry will
give us a phase:

∑

Q′β

DQα,Q′β (C2zT )u∗
Q′,βmη(k) = eiϕk uQ,αηm(k). (A31)

By doing the following gauge transformation, the phase factor
in Eq. (A31) will disappear:

uQ,αmη(k) → ei
ϕk
2 uQ,αmη(k). (A32)

If the flat bands are degenerate at this momentum, then in gen-
eral the wave functions will transform under C2zT as shown:

∑

Q′β

DQα,Q′β (C2zT )u∗
Q′,βmη(k) =

∑

n

uQ,αηn(k)BC2zT
nm (k),

(A33)
where the sewing matrix of C2zT symmetry BC2zT (k) is de-
fined by

BC2zT
nm (k) =

∑

Qα

u∗
Q,αηmDQα,Q′β (C2zT )u∗

Q′,βηm(k). (A34)
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For this case, we can apply a unitary gauge transformation
Onm(k) ∈ U (2) to the wave function:

uQ,αmη →
∑

n

uQ,αnηOnm(k), (A35)

which satisfies

BC2zT
nm (k) =

∑

m′

Onm′ (k)Omm′ (k). (A36)

The wave function after we apply this gauge transformation
will also have B

C2zT
nm (k) = δnm. After fixing the sewing matrix

of C2zT at every point in moiré Brillouin zone (MBZ), we can
prove that all form factors satisfy

M (η)
mn (k, q + G) = M (η)∗

mn (k, q + G), (A37)

which means that all the matrix elements in the many-body
Hamiltonian are real.

However, when fixing the C2zT gauge, we still have some
arbitrariness. At nondegenerate points, the gauge transfor-
mation with an extra minus sign ei

ϕk
2 → −ei

ϕk
2 also satisfies

the gauge fixing condition. Similarly, at degenerate points,
Eq. (A36) can also be satisfied by the gauge transforma-
tion with an extra O′(k) ∈ O(2) transformation O(k) →
O(k)O′(k). The additional freedom is not an important issue
if we keep using the real Hamiltonians. But it requires more
careful attention when we use the Chern band basis, as we will
discuss in Appendix A 3.

We can also use C2zP to fix the relative phases between
the two valleys. The associated transformation C2zP is repre-
sented by DQα,Q′β (C2zP), and it satisfies

DQα,Q′β (C2zP) = (σx )αβζQδQ,Q′ , (A38)

D†(C2zP)h(η)(k)D(C2zP) = −h(−η)(k). (A39)

That means the transformation C2zP will flip the valley and
band index, but keep the momentum of the state unchanged.
Therefore this symmetry can be used for generating the single-
body wave functions at valley η = −1 from wave functions at
η = +1.

In summary, the gauge choice of single body wave func-
tions can be determined by following these steps.

(1) Use the Hamiltonian for valley η = +1 to obtain the
wave functions uQ,αn+(k) on a given momentum lattice in the
first moiré Brillouin zone.

(2) Perform gauge transformations discussed in Eq. (A32)
and Eq. (A35) to fix the C2zT sewing matrix to be the identity.

(3) Use C2zP transformation to get the wave functions in
valley η = −1:

uQ,αn−(k) = n ·
∑

Q′β

DQα,Q′β (C2zP)uQ′,β,−n,+(k). (A40)

For momentum k beyond the first MBZ, we can use the
embedding matrix to shift k back into the first MBZ:

uQ,αmη(k + G) = uQ−G,αmη(k). (A41)

The interacting Hamiltonian Eq. (A29) can also be reorga-
nized into the summation of a normal-ordered two body term
and a quadratic term:

HI =
1

2�tot

∑

k,k′,q∈MBZ

∑

ηη′ss′

∑

mn;m′n′

U
(ηη′ )
mn;m′n′ (q; k, k′)c†

k+q,m,η,s
c

†
k′−q,m′,η′,s′ck,n′,η′,s′ck,n,η,s +

∑

k,m,n,η,s

EHF
k,m,n,η,sc

†
k,m,η,s

ck,n,η,s, (A42)

EHF
k,m,n,η,s =

1

2�tot

(

∑

q,n′

U
(ηη)
mn′;n′n(q; k − q, k) − 2

∑

k′,η′,m′

U
(ηη′ )
mn;m′m′ (0; k, k′)

)

. (A43)

In fact, it is shown in Ref. [109] that Eq. (A43) matches
the “Hartree-Fock” effects from the filled bands below the
flat bands. The interacting Hamiltonian before the projection
into flat bands commutes with Pc, which is a many-body
charge-conjugation transformation. This transformation can
transform a state at filling factor ν to −ν. Therefore it
is reasonable to have a projected Hamiltonian which satis-
fies this symmetry. Neither the normal-ordered four-fermion
Hamiltonian nor the quadratic terms are invariant under this
transformation, but their summation satisfies Pc symmetry.
Thus the quadratic term can help the interacting Hamiltonian
preserve the charge-conjugation symmetry, which is sup-
ported by experiments. The effect of the quadratic term will
be studied numerically.

Finally, we comment on the summation over Q± in
Eq. (A27). Numerically, we have to choose a finite Q± lat-
tice. The effect of this finite truncation has been discussed in
details in Ref. [107], especially on the form factor matrix.
Here, we will provide another quantitative evidence of the

exponential convergence with the truncation, focusing on the
energy of the Chern insulator states. The lattice Q± is given
by m1q1 + m2q2 + m3q3 where m1 + m2 + m3 = ±1. We in-
troduce the cutoff by the following constraint max(mi ) �
Nshell. The Q± lattice with Nshell = 1 is identical to (A1 +
B1) in Fig. 4(a) of Ref. [107], and Nshell = 2 is identical
to (A1 + B1 + A2 + B2). In order to show how the many-
body energy converges with this cutoff, we evaluated the
energy of some Chern insulator states with different cutoff
and different lattice sizes at chiral-flat band limit without
FMC. The results for the relative error on the energy can
be found in Fig. 16. From these, we can find that the lattice
shown in Fig. 4 a of Ref. [107] is already enough to get
the ground state energy with a relative error lower than 1%,
and Nshell = 6 is enough for convergence at machine accu-
racy. Note that all the numerical calculations presented in this
article have been performed with a large number of shells
(Nshell = 12), guaranteeing the convergence of our results with
Nshell.
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FIG. 16. The convergence of the energy of Chern insulator states with different number of momentum shells Nshell on different lattice mesh
sizes N1 = N2. We use the chiral-flat band limit without FMC (i.e., λ = 1). The filling factors and Chern numbers are ν = −3, νC = 1 in (a),
ν = −2, νC = 2 in (b), and ν = −2, νC = 0 in (c). We choose Nshell equal to 12 as a reference point. The vertical axis shows the relative
difference of ground state energy using log scale. A relative difference below 10−14 is shown as 10−14 in order to eliminate the fluctuation
due to numerical precision. Data with different numbers of shells are labeled by different colors. The Q± lattice with Nshell = 1 is identical
to (A1 + B1)in Fig. 4(a) of Ref. [107], and Nshell = 2 is identical to (A1 + B1 + A2 + B2). From the results provided here, we can see that
with only shell number equals 2, the numerical error is already smaller than 1% for any of the three Chern insulator states. We also find that
Nshell = 6 is already enough for convergence to machine precision (double accuracy).

3. Chern band basis

In last section, we derived the projected interacting Hamil-
tonian, and by C2zT gauge fixing, we find a basis in which the
Hamiltonian matrix elements can be all real. Here we present
another single particle basis d

†
k,eY ,η,s

where each band carries
a nonzero Chern number eY (see Ref. [108] for proof):

d
†
k,eY ,η,s

=
c

†
k,1,η,s

+ ieY c
†
k,−1,η,s√

2
, eY = ±1, (A44)

Here the gauge of electron operators under energy band ba-
sis c

†
k,n,η,s

is fixed following the prescription in last section.
However, the arbitrary sign at nondegenerate points, and the
arbitrary O(2) transformations at degenerate points can lead
to an ambiguity in the definition of d

†
k,eY ,η,s

. There are several
possibilities.

(1) At nondegenerate points, if we only flip one of the sign
of c

†
k,±1,η,s

, then the two d† operators are swapped.
(2) At nondegenerate points, if the signs of both operators

c
†
k,±1,η,s

are flipped, the d
†
k,eY ,η,s

operators will acquire an extra
minus sign, but they are not swapped.

(3) At degenerate points k, if we apply a transformation
O′(k) ∈ SO(2) to the energy band basis, then both the d

†
k,eY ,η,s

Chern operators will acquire a phase factor without swapping.
(4) At degenerate points k, we can also apply a gauge trans-

formation O′(k) ∈ O(2) with det O′(k) = −1 to the energy
band basis. This transformation can be decomposed into the
product of an SO(2) transformation followed by ζz, which is
the Pauli z matrix applied to the energy band indices. The
SO(2) transformation will not swap the two d

†
k,eY ,η,s

operators,

but ζz transformation will add a minus sign to c
†
k,−1,η,s

. Thus

the two d
†
k,eY ,η,s

will be swapped after this transformation.
In conclusion, no matter whether k is at a degenerate point

or not, the arbitrary sign or O(2) transformation can only
either swap the two d

†
k,eY ,η,s

, or simply multiply the operators
by a phase factor.

In order to find a well-defined Chern band basis, which
carries a nonzero Chern number, we can use the continuous
condition (A46). Similar to Eq. (A44), the wave functions of

the Chern basis have the following form:

u′
Q,αeY η(k) =

uQ,α1η(k) + ieY uQ,α,−1η(k)
√

2
. (A45)

The ambiguity can be fixed by a continuous condition:

lim
q→0

∣

∣

∣

∣

∣

∑

Qα

u′⋆
QαeY η(k + q)u′

Qαe′
Y η(k)

∣

∣

∣

∣

∣

= δeY ,e′
Y
, (A46)

and the single-body wave functions can be obtained by fol-
lowing these steps.

(1) Similar to the first step when using real basis, we start
with the Chern band basis in valley η = +1. We solve the
single-body wave functions uQ,αm+(k0) at some point in the
MBZ k = k0, with the C2zT sewing matrix fixed.

(2) We move to another point k1 in momentum space,
which is close to k0. We solve the single-body wave functions
uQ,αm+(k1) at this momentum and we fix its C2zT sewing ma-
trix. Next we calculate the Chern band basis wave functions
at k0 and k1 with eY = 1, using Eq. (A45), and we check
the inner product of these two wave functions. If the absolute
value of the inner product is close to 1, this means the Chern
band wave functions with eY = 1 at k0 and k1 are continuous;
if the absolute value of the inner product is close to zero,
this means the gauge choice swapped the two Chern basis at
k1. By flipping the sign of uQ,α,−1η(k1), we can swap them
back, and get the Chern basis wave function, which is still
continuous.

(3) Next we move to another point k2, which is close to k1.
By similar methods, we can make sure that the Chern basis
we obtained for k2 is continuously connected with that at k1.

(4) Step by step, we finally obtain the well-defined contin-
uous Chern basis wave functions for the momentum lattice we
need in the first MBZ with η = 1.

(5) Using the C2zP transformation, we can obtain the
Chern basis wave functions in valley η = −1, as discussed
in Eq. (A40).

(6) For momentum k beyond the first MBZ, we can use the
embedding matrix to shift k back into the first MBZ.
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FIG. 17. The Wilson loops of Chern basis in TBG at twisting angle θ = 1.07◦ for two different values of w0. (a) w0 = 0 and (b) w0/w1 =
0.8.

To check that the Chern basis states carry the proper Chern
number, we also calculate the corresponding Wilson loops as
depicted in Fig. 17. The Wilson loops with opposite eY wind
in opposite directions, with winding number equal to ±1.

The major benefit of using Chern band basis is the simple
expression for the wave function of Chern insulator states:
they can be written as a single Fock state. The disadvantage is
that the kinetic energy Hamiltonian will no longer be diago-
nal. Moreover, the Hamiltonian in the Chern basis is complex,
which will be more computing intensive and memory consum-
ing.

4. Momentum space lattice

For numerical calculations, the momentum space has to
be discretized. By imposing periodic boundary condition, the
momenta in the first moiré Brillouin zone of a N1 × N2 lattice
will be

MBZ =
{

k =
k1

N1
bM1 +

k2

N2
bM2

∣

∣

∣
0� k1 < N1; 0� k2 < N2

}

.

(A47)

Here k1 and k2 are integers, and the momentum lattice MBZ
used for ED calculations is more coarse-grained than the
lattice we use to do the continuous gauge fixing in Appendix
A 3. The total area of the moiré lattice, which appears in the
prefactor of the interacting Hamiltonian, can be written as

�tot = N1N2�c =
2π2N1N2

3
√

3|Kl |2 sin2 θ
2

, (A48)

in which �c is the area of each moiré unit cell, Kl is the
momentum of the Dirac point in single layer graphene, and
θ is the twist angle of TBG. Therefore, once the twist angle θ

and the momentum lattice in MBZ is fixed, we can obtain all
the matrix elements of the interacting Hamiltonian.

APPENDIX B: IMPLEMENTATION OF THE TUNABLE

HAMILTONIAN AND ITS SYMMETRY SECTORS

1. Fock basis and the tunable Hamiltonian

To perform the ED, we define a many-body basis. We use
the Fock states formed by the real basis defined in Appendix
A 2. Each of these states can be labeled by a group of in-
tegers {nk,m,η,s}. These integers nk,m,η,s = 0, 1 represent the

occupation number for each single-body state c
†
k,m,η,s

:

|{nk,m,η,s}〉 =
∏

k,m,η,s

(c†
k,m,η,s

)nk,m,η,s |0〉. (B1)

And as we mentioned in Appendix A 2, the many-body
Hamiltonian will be real in this basis. Similarly, we can also
use the Fock states formed by the Chern band basis defined in
Eq. (A44):

|{nk,eY ,η,s}〉 =
∏

k,eY ,η,s

(d†
k,eY ,η,s)nk,eY ,η,s |0〉 (B2)

We can use the Chern basis not only in the chiral-flat limit
where we have a larger U (4) × U (4) symmetry but also for
nonzero w0, t . Even though the matrix elements are not real
in this basis, it allows us to easily determine whether a state is
a Chern-polarized state or not.

We now introduce the tunable Hamiltonian. The many-
body Hamiltonian has two terms, the kinetic term Eq. (A21)
and the two-body interacting term Eq. (A29). Both the kinetic
term and the two body interacting term depend on the single-
body parameter w0. We also add a parameter t to control the
amplitude of the kinetic term. Therefore the Hamiltonian with
these two parameters is given by

H (t,w0) = tH0(w0) + HI (w0). (B3)

The flat metric condition introduced in Ref. [109] allows
to derive several exact results for the interacting Hamiltonian,
such as the analytical expression of the ground state and
excitations at certain integer filling factors in the chiral-flat
limit. It is defined by the following equation [107,109,110]:

M (η)
mn (k, G) = ξ (G)δm,n. (B4)

By implementing this condition, the interacting Hamiltonian
can be written as

HI,FMC =
1

2�tot

∑

q �=0

∑

G

V (q + G)δρq+Gδρ−q−G

+
1

2�tot

∑

k,k′

∑

G

∑

ηη′;ss′

V (G)ξ (G)ξ (−G)

×
(

c
†
k,m,η,sck,m,η,s −

1

2

)(

c
†
k′,m′,η′,s′ck′,m′,η′,s′ −

1

2

)

.

(B5)
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TABLE I. The largest Hilbert space dimensions for the given momentum mesh N1 × N2 at filling factor ν = −3. The Hilbert space
dimensions are given for the U(2)×U(2) [or equivalently the U(4) symmetry since only the Cartan subalgebra is implemented] and for the
U(4) × U(4) symmetry. For each system size, we focus on the quantum number sector (momentum sector and Cartan subalgebra eigenvalues,
without any Weyl chamber symmetry) that gives the largest dimension. The first column is the size of the momentum lattice. The second
column is the dimension of the Hilbert space with the U(2)×U(2) symmetry when both the valley or spin are polarized. The third column is
the Hilbert space dimension with the U(2)×U(2) symmetry when either the valley or spin is polarized with the other degree of freedom as
close to unpolarized as possible. The fourth column is the Hilbert space dimension when neither are polarized. Specifically this sector happens
when we divide the electrons as evenly as possible across the valleys (one valley having an extra electron for odd total numbers of electrons)
and then have the smallest positive or zero Sz possible in each valley. The fifth column is the Hilbert space dimension for the largest sector
assuming U(4) × U(4) symmetry.

N1 × N2 Valley and spin polarized Valley or spin polarized Fully unpolarized U(4) × U(4)

2 × 2 22 208 1 024 64
3 × 2 160 8 072 104 544 7 776
4 × 2 1 638 414 352 25 921 536 2 097 152
3 × 3 5 420 2 913 120 324 729 648 19 131 876
5 × 2 18 504 24 037 408 4 691 556 000 202 500 000
4 × 3 225 440 1 509 677 768 1 398 494 577 664 32 788 343 808
5 × 3 10 341 208 794 358 981 000 5 570 885 004 520 500 140 710 042 265 625
4 × 4 37 569 990 6 914 665 302 288 104 510 217 063 043 072 2 687 385 603 145 728

Now we focus on the second term. It is equal to

1

2�tot

∑

G

V (G)ξ (G)ξ (−G)
∑

k,k′

∑

ηη′;ss′

(

Nk,m,η,s −
1

2

)

×
(

Nk′,m′,η′,s′ −
1

2

)

(B6)

=
1

2�tot

∑

G

V (G)ξ (G)ξ (−G)

(

∑

k

∑

η;s

(

Nk,m,η,s −
1

2

)

)2

(B7)

=
1

2�tot

∑

G

V (G)ξ (G)ξ (−G)(N − 2NM )2. (B8)

This term only depends on the total particle number N , and
different choices of ξ (G) can only shift the whole spectrum by
a N dependent constant. Since we are mostly focusing on the
spectrum with a fixed total electron number, we will neglect
this term. This is equivalent to removing all the terms with
q = 0 from Eq. (A29). We denote the interacting Hamiltonian
satisfying FMC as HI,FMC(w0), and therefore we have

HFMC(t,w0) = tH0(w0) + HI,FMC(w0). (B9)

It is worth studying how this FMC model HFMC(t,w0) is
related with the exact Hamiltonian. Thus we can define a
linear interpolation between H and HFMC:

H (t,w0, λ) = λ · H (t,w0) + (1 − λ) · HFMC(t,w0). (B10)

2. Symmetry sectors

When both t and w0 are nonzero—called the nonchiral-
nonflat limit, the Hamiltonian has U(2)×U(2) symmetry,
because of the spin rotation symmetry and charge con-
servation in both valleys. If t = 0 and w0 �= 0, called the
nonchiral-flat limit, the system has U(4) symmetry. Similarly,
if t �= 0 and w0 = 0, called the chiral-nonflat limit, the Hamil-
tonian also has U(4) symmetry with different generators from
the t = 0 and w0 �= 0 nonchiral-flat case. In all these cases,
there are four Cartan subalgebra operators, which are the

electron numbers per spin and valley. For our Fock basis, these
quantum numbers have the following form:

Nη,s =
∑

k∈MBZ

∑

m=±1

nk,m,η,s, η = ±1, s =↑,↓ . (B11)

The total momentum is also conserved due to the transla-
tion symmetry. On a discrete momentum lattice defined in
Eq. (A47), the total momentum K1 and K2 read

K1 =

(

∑

k,m,η,s

k1nk,m,η,s

)

mod N1, k1 = 0, 1, · · · , N1 − 1,

(B12)

K2 =

(

∑

k,m,η,s

k2nk,m,η,s

)

mod N2, k2 = 0, 1, · · · , N2 − 1.

(B13)

The four quantum numbers Nη,s, together with the total
momentum components K1 and K2, are the good quantum
numbers we use for ED. The Hamiltonian is block diagonal in
this basis, and each block can be labeled by these six quantum
numbers, which we call symmetry sectors. Similarly, every
many-body eigenstate can also be labeled by these quantum
numbers.

The sizes of symmetry sectors at different system sizes and
fillings are given in Tables I–IV. Since the Hilbert space sizes
grow superexponentially in the system size for almost all the
sectors we first focus on cases with higher symmetry like the
chiral-flat limit, and then try and extend these results to
the nonchiral-nonflat case, or both situations. At the chiral-flat
limit, the symmetry is promoted to U(4) × U(4) [72,109].
There are hence 8 Cartan subalgebra operators. It can be
shown that the form factors M

(η)
eY ,e′

Y

(k, q + G) are diagonal in
the Chern band basis. Thus the electron numbers in each spin,
valley and band are conserved separately:

NeY ,η,s =
∑

k∈MBZ

nk,eY ,η,s, eY = ±1, η = ±1, s =↑,↓ .

(B14)
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TABLE II. The largest Hilbert space dimensions for the given momentum mesh N1 × N2 at filling factor ν = −2. The Hilbert space
dimensions are given for the U(2)×U(2) [or equivalently the U(4) symmetry since only the Cartan subalgebra is implemented] and for the
U(4) × U(4) symmetry. For each system size, we focus on the quantum number sector (momentum sector and Cartan subalgebra eigenvalues,
without any Weyl chamber symmetry) that gives the largest dimension. The first column is the size of the momentum lattice. The second
column is the dimension of the Hilbert space with the U(2)×U(2) symmetry when both the valley or spin are polarized. This is always one
because there are only two sites per spin, valley, and momentum and they are both filled. The third column is the Hilbert space dimension
with the U(2)×U(2) symmetry when either the valley or spin is polarized with the other degree of freedom as close to unpolarized as possible.
The fourth column is the Hilbert space dimension when neither are polarized. Specifically this sector happens when we divide the electrons as
evenly as possible across the valleys (one valley having an extra electron for odd total numbers of electrons) and then have the smallest positive
or zero Sz possible in each valley. The fifth column is the Hilbert space dimension for the largest sector assuming U(4) × U(4) symmetry.

N1 × N2 Valley and spin polarized Valley or spin polarized Fully unpolarized U(4) × U(4)

2 × 2 1 1 252 153 856 16 384
3 × 2 1 142 376 390 426 752 10 935 000
4 × 2 1 20 706 468 1 371 499 450 624 47 225 274 368
3 × 3 1 262 656 400 76 376 413 209 600 1 706 597 351 424
5 × 2 1 3 413 484 320 5 777 966 756 796 928 85 030 560 000 000
4 × 3 1 609 371 711 400 27 349 372 590 948 391 040 457 298 946 133 344 256

Together with the total momentum components K1 and K2,
we have ten good quantum numbers for the Hamiltonian
H (0, 0, λ).

Besides the Cartan subalgebra operators, we also have
other symmetries which can be used to reduce the intensive-
ness of calculation. Because of these symmetries, symmetry
sectors with different quantum numbers will have identical
spectra.

(1) When both t and w0 are nonzero, the spectra will not
be changed if Nη,↑ and Nη,↓ are swapped, because of the
U(2)×U(2) symmetry.

(2) When t = 0, w0 �= 0 or t �= 0, w0 = 0, any permutation
of the four quantum numbers Nη,s will not change the spectra,
due to the U(4) symmetry.

(3) When both t and w0 are zero, any permutation of the
four quantum numbers Nη,eY =1,s, or any permutation of the
four quantum numbers Nη,eY =−1,s will not change the spectra.
Moreover, because of the C2zT symmetry, the spectra will also
be unchanged if we swap Nη,eY =1,s and Nη,eY =−1,s.

Using these properties, we can compute the spectra of
only a fraction of all the symmetry sectors, called the Weyl
chamber. We choose a minimal subset of sectors which will
allow us to generate all the sectors using these symmetry
operations. Furthermore, if some sectors are invariant under
a commuting subgroup of these operations, we can even split
the symmetry sector into smaller blocks, which are labeled by
the eigenvalues of these operators.

We only implemented the Cartan subalgebra operators in-
stead of the full U(2)×U(2), U(4) or U(4) × U(4), due to the
difficulty of implementing these symmetries along with mo-
mentum conservation. Although the eigenstates we obtained
in our Fock basis are not labeled by their irreps (as we have
not implemented the full group, but rather only its Cartan
subalgebra), it is still possible to investigate the irrep of a
degenerate state by studying the degeneracy and the quantum
numbers associated with the Cartan subalgebra operators. In
particular each irrep corresponds to a unique set of symmetry
sectors and degenearacies in these sectors. Therefore we may

TABLE III. The largest Hilbert space dimensions for the given momentum mesh N1 × N2 at filling factor ν = −1. The Hilbert space
dimensions are given for the U(2)×U(2) (or equivalently the U(4) symmetry since only the Cartan subalgebra is implemented) and for the
U(4) × U(4) symmetry. For each system size, we focus on the quantum number sector (momentum sector and Cartan subalgebra eigenvalues,
without any Weyl chamber symmetry) that gives the largest dimension. The first column is the size of the momentum lattice. For this filling
factor the system cannot be both spin and valley polarized. The second column is the Hilbert space dimension with the U(2)×U(2) symmetry
when either the valley or spin is polarized with the other degree of freedom as close to unpolarized as possible. The third column is the Hilbert
space dimension when neither are polarized. Specifically this sector happens when we divide the electrons as evenly as possible across the
valleys (one valley having an extra electron for odd total numbers of electrons) and then have the smallest positive or zero Sz possible in each
valley. The fourth column is the Hilbert space dimension for the largest sector assuming U(4) × U(4) symmetry.

N1 × N2 Spin or valley polarized Fully unpolarized U(4) × U(4)

2 × 2 208 2 458 624 82 944
3 × 2 8 072 25 615 893 600 759 375 000
4 × 2 414 352 514 051 077 736 448 12 089 663 946 752
3 × 3 2 913 120 66 480 357 719 752 704 929 534 591 655 936
5 × 2 24 037 408 9 535 902 166 979 136 000 123 503 214 240 000 000
4 × 3 1 509 677 768 N/A N/A
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TABLE IV. The largest Hilbert space dimensions for the given momentum mesh N1 × N2 at filling factor ν = 0. The Hilbert space
dimensions are given for the U(2)×U(2) (or equivalently the U(4) symmetry since only the Cartan subalgebra is implemented) and for the
U(4) × U(4) symmetry. For each system size, we focus on the quantum number sector (momentum sector and Cartan subalgebra eigenvalues,
without any Weyl chamber symmetry) that gives the largest dimension. The first column is the size of the momentum lattice. For this filling
factor the system cannot be both spin and valley polarized. The second column is the Hilbert space dimension with the U(2)×U(2) symmetry
when either the valley or spin is polarized. This is always one since there are at most 4 sites per spin or per valley and they are all filled. The
fourth column is the Hilbert space dimension for the largest sector assuming U(4) × U(4) symmetry.

N1 × N2 One sector polarized Neither sectors polarized Largest with U (4) × U (4)

2 × 2 1 6 003 472 420 096
3 × 2 1 121 488 936 800 4 266 666 752
4 × 2 1 3 429 447 839 205 648 72 060 013 129 984
3 × 3 1 620 893 779 148 960 000 7 058 653 305 387 264
5 × 2 1 116 518 317 397 535 713 856 1 626 313 721 561 225 728
4 × 3 1 4 456 005 538 295 087 455 458 144 44 278 665 537 370 662 050 560

determine the irrep(s) of a degenerate set of states by looking
at their degeneracies in the various symmetry sectors (a simple
example would be, with SU(2) symmetry, having 4 states in
Sz = 3 and 6 states in Sz = 2 sectors; then we would know that
6 − 4 = 2 total spin S = 2 states would exist in the spectrum,
despite not having diagonalized the full S2 operator). If we
knew the irreps of our states, we would be able to determine
the degeneracies of symmetry-related states—this process can
be uniquely inverted to recover the irreps from the degenerate
states. Alternatively if we want to focus on a particular irrep,
and there is a Cartan symmetry sector in which it is the only
irrep, we may just calculate the spectrum in that sector.

For sake of completeness, we provide the largest Hilbert
space dimensions that are involved for the ED calculations
depending on the momentum mesh size, the symmetries and
the filling factor: ν = −3 (Table I), ν = −2 (Table II), ν = −1
(Table III), and ν = 0 (Table IV).

APPENDIX C: NUMERICAL RESULTS FOR ν = −3

In this Appendix, we provide additional numerical results
for the filling factor ν = −3. In particular, we address the
low-energy excitation dispersion and the phase diagrams with
respect to interpolating parameter λ in the three limits dis-
cussed in Sec. II C.

1. Charge and neutral excitations from ED

In addition to the data discussed in Sec. III A, we provide a
momentum-resolved discussion of the neutral and charge ex-
citations at ν = −3 and compare the results with and without
the FMC.

First we consider the full (all sectors) diagonalization on a
N1 × N2 = 4 × 2 lattice presented in Fig. 18 and then move
on to larger system size, but restricted to some irreps, cal-
culations. Figs. 18(a) and 18(d) show the charge excitations

FIG. 18. The low lying spectrum of N = 7, 8 and 9 on 4 × 2 lattice at twisting angle θ = 1.1014◦, for the FMC model [(a)–(c)] and the
full model [(d)–(f)] at chiral-flat limit. The corresponding U (4) × U (4) irreps for each momentum sector are also shown in the plot. Note that
in (c), we use the notation ([8, 1]4, [0]4) + ([8]4, [1]4) for energy levels where the two irreps are always exactly degenerate.
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(a)

(c) (d)

(b)

FIG. 19. Energy as a function of momentum (k = k1
N1

bM1 + k2
N2

bM2) for charge −1 (hole) excitation at a filling of ν = −3 in the chiral-flat
limit. The energies are relative to E0, the minimum energy over all calculated irreps in Fig. 3 and momentum sectors for the respective λ = 0, 1.
(a) and (b) are the dispersions of a hole in an otherwise filled Chern band at λ = 0 and λ = 1, respectively. Notice the remarkable similarity
(up to scaling) with and without the FMC. The U (4) excitations on top of the hole excitations shown in (c) and (d) have qualitatively similar
spectra, especially for the low-lying momentum states. The largest difference occurring at the ŴM point.

without and with the FMC for a charge −1 (hole) excitation.
The lowest excitation is the ([7]4, [0]4) irrep at the ŴM point
for λ = 0 and also for λ = 1, the Hamiltonian in the chiral-flat
limit, H (0, 0, λ). This unbiased calculation without the FMC
Eq. (B4) confirms that the charge −1 excitations analytically
derived in Ref. [111], which includes a single hole but not n

holes plus n − 1 particles, e.g., two holes plus one particle, are
indeed the lowest charge −1 excitations.

We see that the charge −1 excitations at nonzero mo-
mentum are equivalent to the analytic ones ([7]4, [0]4)
for H (0, 0, 0) [see Fig. 18(a)] at momentum (k1, k2) =
(1, 0), (3, 0). At different momenta, other charged hole exci-
tations, of different irreps from the analytic eigenstates (which
still have to be exact eigenstates—the plot only shows the
lowest charge excitation per momentum sector), exhibit lower
energy. The ŴM-point charge excitation ([7]4, [0]4) is the low-
est [it is plotted at zero energy in Fig. 18(a) due to an energy
substraction], which confirms the analytic result [111] that the
smallest gap of the charge −1 excitations in the chiral-flat
limit with the FMC Eq. (B4) is at the ŴM point. For ν = −3,
without the FMC, the analytic spectrum of the hole excitation
also shows minimal gap at the ŴM point. See Figs. 5(d) and

6(d) in Ref. [111]. Figure 18(d) confirms that the analytic
excitation remains the lowest excitation at the ŴM point in the
chiral-flat limit without FMC.

Moving on to the neutral excitations we see again that
the unbiased calculation performed in Figs. 18(b) and 18(e)
supports that the electron-hole pair excitations from analytic
calculation [111] are the lowest charge neutral excitations.
The ground state is the ([8]4, [0]4) irrep with or without
the FMC. We see that the first neutral excitation is the
([7, 1]4, [0]4) irrep which is solely an excitation in one Chern
band for both with and without the FMC. Remarkably, these
excited states are actually part of the Goldstone branch ana-
lytically computed in Ref. [111]. The gap between the ground
state and the finite momentum excitations is a finite-size gap,
due to the fact that the momentum (1,0) and above on a 4 × 2
lattice is actually a large momentum relative to the thermody-
namic limit, which explains the finite gap at this momentum
between the Goldstone branch and the ground state. It is
remarkable that we can identify the analytic Goldstone branch
in the ED results on small lattices and away from the FMC.

Finally the single electron charge excitation shown in
Figs. 18(c) and 18(f) is quite different between the λ = 0 and
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(a)

(c) (d)

(b)

FIG. 20. Energy as a function of momentum k = k1
N1

bM1 + k2
N2

bM2 on the 6 × 6 lattice for a single electron excitation at ν = −3 in the
chiral-flat limit. The energies are relative to E0, the minimum energy over all calculated irreps in Fig. 2 and momentum sectors for the
respective λ = 0 and 1. (a) and (b) are the dispersions of an additional electron (charge +1) on top of a filled Chern band without (a) and
with (b) the FMC respectively. These plots show a distinct difference with the minimum energy at λ = 0 located at k = Ŵ − M, whereas the
minimum for λ = 1 is located at k = KM , the Dirac point of the moiré Billouin zone. Figures (c) and (d) are the dispersions of an additional
U(4) excitation on top of adding an additional electron.

TABLE V. Momentum sectors relative to the Chern insulator state momentum, for the two lowest energy states (not related by C2z) on
a 3×3 at ν = −3 and λ = 0 (top first lowest energy state, bottom second energy states). The system is fully spin and valley polarized. Ch
indicates the Chern insulators states.

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

w0 = 0.0 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.1 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.2 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.3 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.4 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.5 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.6 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.7 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.8 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.9
(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

w0 = 1.0
(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)
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FIG. 21. The phase diagram at filling ν = −3 on 5 × 3 lattice in spin and valley polarized symmetry sectors with λ = 0 and λ = 1. The
finite size gap [(a) and( d)], the spread between the two lowest states [(b) and (e)] and the overlap between the two lowest states and Chern
insulator states [(c) and (f)] are shown by color. We choose λ = 0 in (a)–(c) and λ = 1 in (d)–(f). The white regions are beyond the Chern
insulator phase, in which the overlap between the ED ground states and Chern insulator states is zero. Note that the overlap scale starts at 0.25.
Overall, the overlap is never smaller than 0.85 in above 85% of the area in the Chern insulator phase.

1 in the chiral-flat limit. The FMC Hamiltonian, H (0, 0, 0),
exhibits the analytic eigenstates as the excited states, while
the chiral-flat band Hamiltonian, H (0, 0, 1), exhibits a lowest
charge excitation which is a different irrep—([7, 2]4, [0]4)—
than the analytic calculation. However, this irrep represents a

wave function that is obtained by dressing the analytic charge
excitation with a single particle-hole pair, and we hence call
it “close in irrep space” to the analytic excitation. Overall the
results of this type of full diagonalization, which show that
the lowest excitations in the system are close in irrep space

FIG. 22. The phase diagrams (ν = −3) in t ∼ w0 planes with λ = 0 and 1 on 3 × 3 lattice. The quantities shown in these plots are defined
in Sec. III B2.
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TABLE VI. Momentum sectors relative to the Chern insulator state momentum, for the two lowest energy states (not related by C2z) on
a 3×3 at ν = −3 and λ = 1 (top first lowest energy state, bottom second energy states). The system is fully spin and valley polarized. Ch
indicates the Chern insulators states.

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

w0 = 0.0 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.1 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.2 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.3
(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.4
(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

(1, 1)
(0, 0)

w0 = 0.5
(1, 1)
(1, 2)

(1, 1)
(1, 0)

(1, 1)
(1, 0)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

w0 = 0.6
(1, 1)
(1, 2)

(1, 1)
(1, 0)

(1, 1)
(1, 0)

(1, 1)
(1, 0)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

(1, 1)
(1, 2)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

w0 = 0.7
(1, 1)
(1, 2)

(1, 1)
(1, 2)

(1, 1)
(1, 2)

(1, 1)
(1, 2)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(1, 2)

(1, 1)
(1, 2)

w0 = 0.8
(1, 1)
(1, 0)

(1, 1)
(1, 2)

(1, 1)
(1, 2)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

(1, 1)
(0, 1)

w0 = 0.9
(1, 0)
(1, 2)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

(1, 0)
(1, 2)

(1, 0)
(1, 2)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

w0 = 1.0
(1, 2)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

(1, 0)
(0, 1)

(1, 0)
(1, 2)

to the ground state validates our decision to restrict to the
excitation sectors of irreps near the ground states of fully filled
Chern band. This provides access to larger system as we can
focus on a single symmetry sector.

The band of charge +1 excitations of H (0, 0, 1) turns out
to be rather flat in this problem, which seems also consis-
tent with the analytic calculation of the low-energy charged
eigenstates of H (0, 0, 0) without FMC. See Figs. 5 and 6 in
Ref. [111]. However, based on Fig. 2, the size of the 4 × 2
lattice is too small to see that the excited states are the same
for the both models—for λ = 1, the charge excitations with ir-
rep ([NM, 1]4, [0]4) and ([NM]4, [1]4) only become the lowest
electron excitation when NM � 20.

We further analyze the properties of the electron and
hole excitations. By focusing on several representation
sectors—for example, not only the analytic hole exci-
tation [111] ([NM − 1]4, [0]4) but also another excitation
([NM − 2, 1]4, [0]4), close in irrep space to the analytic hole
excitation—we are now able to compute their spectra in
much larger system sizes, including 6 × 6 sites. Figure 19
contains the hole excitations of the aforementioned repre-
sentations at ν = −3. We see that, up to a rescaling, their
energy dispersions are similar for both ([NM − 1]4, [0]4)
([NM − 2, 1]4, [0]4) irreps, with one deviation: the largest -
and almost unique difference occurs at the ŴM point for the
([NM − 2, 1]4, [0]4) irrep.

TABLE VII. Momentum sectors relative to the Chern insulator state momentum, for the two lowest energy states (not related by C2z) on
a 4×3 at ν = −3 and λ = 0 (top first lowest energy state, bottom second energy states). The system is fully spin and valley polarized. Ch
indicates the Chern insulators states.

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

w0 = 0.0 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.1 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.2 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.3 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.4 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.5 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.6 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.7 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.8 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.9
(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

w0 = 1.0
(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)
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TABLE VIII. Momentum sectors relative to the Chern insulator state momentum, for the two lowest energy states (not related by C2z) on
a 4×3 at ν = −3 and λ = 1 (top first lowest energy state, bottom second energy states). The system is fully spin and valley polarized. Ch
indicates the Chern insulators states.

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

w0 = 0.0 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.1 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.2 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.3 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.4
(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

w0 = 0.5
(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

(1, 1)
(2, 0)

w0 = 0.6
(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

w0 = 0.7
(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

w0 = 0.8
(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

(2, 0)
(1, 1)

w0 = 0.9
(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(2, 0)

(1, 2)
(2, 0)

w0 = 1.0
(1, 0)
(1, 2)

(1, 0)
(1, 2)

(1, 0)
(1, 2)

(1, 2)
(1, 0)

(1, 2)
(1, 0)

(1, 2)
(0, 1)

(1, 2)
(0, 1)

(1, 2)
(0, 1)

(1, 2)
(0, 1)

(1, 2)
(0, 1)

(1, 2)
(0, 1)

On the other hand the charge excitation plots shown in
Fig. 20 show a distinct difference with and without the FMC.
We also analyze two irreps of charge +1 excitations: the irrep
of the analytic charge excitation [111] ([NM, 1]4, [0]4) but also
another excitation ([NM − 1, 2]4, [0]4), close in irrep space to
the analytic hole excitation. We see large differences between
λ = 0 and 1. In particular the lowest charge excitation is at
finite momentum (near the moiré Dirac point KM) without
the FMC λ = 1 while it is at zero momentum with the FMC
λ = 0. Remarkably, this is exactly what the analytic excitation
in Ref. [111] exhibits with both FMC (see Fig. 1 of Ref. [111])
and without the FMC (see Figs. 5(d) and 6(d) of Ref. [111]).

2. Additional system sizes

In the main text Sec. IIIB2, we have presented the phase
diagrams of the spin and valley polarized sectors on 4 × 3
lattice in the nonchiral-nonflat case with λ = 0 and 1.

In this section, we present the phase diagrams on a smaller
lattice 3 × 3 and a larger lattice 5 × 3. The results for the 5 ×
3 lattice shown in Fig. 21 are almost identical to the 4 × 3
results of Fig. 5. We only provide them as an illustration of
the small finite size effects. Note that the momentum mesh for
5 × 3 includes neither MM nor the two Dirac points.

Despite being smaller, the 3 × 3 lattice MBZ contains the
two Dirac points. Moreover, this lattice also satisfies the C3z

TABLE IX. Momentum sectors relative to the Chern insulator state momentum, for the two lowest energy states (not related by C2z) on
a 5×3 at ν = −3 and λ = 0 (top first lowest energy state, bottom second energy states). The system is fully spin and valley polarized. Ch
indicates the Chern insulators states.

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

w0 = 0.0 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.1 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.2 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.3 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.4 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.5 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.6 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.7 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.8 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.9
(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

w0 = 1.0
(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(0, 0)
(0, 0)
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TABLE X. Momentum sectors relative to the Chern insulator state momentum, for the two lowest energy states (not related by C2z) on
a 5×3 at ν = −3 and λ = 1 (top first lowest energy state, bottom second energy states). The system is fully spin and valley polarized. Ch
indicates the Chern insulators states.

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9 t = 1.0

w0 = 0.0 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.1 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.2 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch
w0 = 0.3 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

w0 = 0.4
(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

w0 = 0.5
(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

w0 = 0.6
(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

w0 = 0.7
(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

w0 = 0.8
(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

(2, 1)
(1, 1)

w0 = 0.9
(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

(1, 2)
(2, 1)

w0 = 1.0
(1, 0)
(2, 0)

(1, 0)
(2, 0)

(1, 0)
(2, 0)

(1, 0)
(2, 0)

(1, 0)
(2, 0)

(1, 0)
(2, 0)

(1, 0)
(0, 1)

(0, 0)
(0, 0)

(0, 0)
(0, 0)

(1, 0)
(1, 2)

(0, 0)
(0, 0)

rotation symmetry, which is absent in the many of the system
sizes we have discussed in the main text. We provide the
same quantities as those defined in Sec. III B: the Goldstone
branch finite momentum energy within the spin and valley
polarized sectors, the spread between the two lowest lying
states and the overlap between the ground state manifold wave
functions and the Chern insulator wave functions, which are
defined in Eq. (22). The results are shown in Fig. 22. These
phase diagrams are, overall, similar to Fig. 5, which is calcu-

lated on 4 × 3 lattice. The phase transition point of the FMC
model (λ = 0)is at around w0/w1 ≃ 0.9, while for (λ = 1)
it is around w0/w1 ≃ 0.3 for small t and w0/w1 ≃ 0.4 for
large t .

The spread between the two lowest states which carry
Chern number νC = ±1 in the spin and valley polarized sec-
tors, however, is completely different from other system sizes.
The δ plots in Figs. 22(b) and 22(e) are quite small when
compared with Figs. 5(b) and 5(e). In fact, these two lowest

FIG. 23. The energy spectra at filling factor ν = −3 on a 3 × 3 lattice in the nonchiral-flat limit and in the spin and valley polarized
sectors. The upper panel (a)–(c) shows the spectra for λ = 0, i.e., with FMC, and the lower panel (d)–(f) shows the spectra for λ = 1. The
three different values of w0/w1, namely, w0/w1 = 0.0, 0.5, and 0.9, have been selected to be representative of the different total momenta of
the ground states. Note that for readability, the energy scales differs from one plot to another.
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FIG. 24. The energy spectrum in the chiral-flat limit on 4 × 2 lattice with different λ values at filling factor ν = −3. Each total momentum
is shown in different subfigures. The U(4) × U(4) irreps of some low lying states are labeled by their color. The plots with momentum
K = (3, 0) and K = (3, 1) are identical to the spectrum of K = (1, 0) and K = (1, 1) due to C2z symmetry, and therefore we are ignored.
Because only several lowest eigenvalues are solved for each symmetry sector, the spectra above the red dashed line are incomplete. The spectra
with momentum K = (0, 1) and K = (2, 1) are identical because of the C2x symmetry.

states with νC = ±1 are degenerate within machine precision
(separated by roughly 10−11 meV). This is because when
the momentum lattice preserves C3z symmetry (3 × 3 here):
a Chern insulator state with Chern number νC = ±1 have
C3z eigenvalues ei±2π/3 [113], respectively, and are related by
time-reversal T . These two states then form an irreducible
representation of T and C3z, thus are exactly degenerate (even
for finite sizes). For generic momentum lattices (such as 5 × 3
or 4 × 3 discussed in this paper), C3z symmetry is broken,
and the Chern numbers νC = ±1 are only related by time-
reversal T . For finite system sizes, they will split into bonding
and anti-bonding states which are eigenstates of T (which
is the reason for the finite spread δ when lattice is not C3z

symmetric). However, in the thermodynamic limit, νC = ±1
spontaneously break time-reversal symmetry T , thus become
degenerate when system size tends to infinity.

The wave-function overlap shown in Figs. 22(c) and 22(f),
is above 0.85 in the Chern insulator phase for both λ = 0 and
λ = 1 models. The similarity between the phase diagrams on
5 × 3 and 3 × 3 lattices in fully polarized sectors, and on 3 ×

2 lattice in all symmetry sectors, hints that the system size
does not affect the insulating phase ground state significantly.

For sake of completeness, we also provides tables giving
the momenta of the lowest energy states for each point of the
phase diagrams. For 3×3, Table V is for λ = 0 and Table VI
is for λ = 1. Similarly, we give such momentum tables for
the 4 × 3 system (Tables VII and VIII for λ = 0 and λ = 1,
respectively), and the momentum tables for the 5 × 3 system
discussed in Sec. IIIB 2 (Tables XI and X for λ = 0 and
λ = 1, respectively). To exemplify these tables, we also have
plotted representative momentum resolved energy spectra in
Fig. 23 for the 3×3 system in the nonchiral-flat limit for λ = 0
[Figs. 23(a)–23(c)] and for λ = 1 [Figs. 23(d)–23(f)].

3. Phase diagrams and spectra for the λ interpolation

The phase diagrams and energy spectra of the four
limits, i.e., chiral-flat, chiral-nonflat, nonchiral-flat, nonchiral-
nonflat, shown in the main text Sec. III are obtained for either
λ = 0 or λ = 1. While the λ = 0 and 1 calculations give the

FIG. 25. Phase diagrams at ν = −3 on 3 × 2 lattice in the chiral-nonflat limit [(a) and (b)] and nonchiral-flat limit [(c) and (d)], considering
all the symmetry sectors. In (a) and (c), we show the finite size gap �, and in (b) and (d), we show the spread δ as defined in Sec. III B.
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FIG. 26. Phase diagrams at ν = −3 on 4 × 3 lattice in the chiral-nonflat limit [(a)–(c)] and nonchiral-flat limit [(c)–(e)] and in the spin and
valley polarized sector. Here we show the finite size gap �, the spread δ, and the overlap between the two lowest states and the Chern insulator
state wave functions. The quantities shown here are defined in Sec. IIIB 2.

same irreps of the ground state and the lowest excitations
(over all momenta), they do have some differences in ex-
citations at some momentum, and differences in the critical
values of phase transitions. For example, at chiral-flat limit,
the irreps of second lowest charge neutral excitations are dif-
ferent (Fig. 1), and the transition point of w0/w1 are changed
(Fig. 4). In this section, we provide some spectrum and phase

diagrams for the λ interpolation to illustrate how the FMC
model is connected with the full TBG model.

First we study how the low-energy spectra at ν = −3 on
a 4 × 2 lattice change with λ at chiral-flat limit. The irreps
of low-lying states shown in Fig. 1 a and b are clearly not
identical. For example, the irrep of the lowest state at mo-
mentum K1 = 2, K2 = 0 changes from ([6, 2]4, [0]4) at λ = 0

FIG. 27. Phase diagrams at ν = −3 on 3 × 3 lattice in the chiral-nonflat limit [(a)–(c)] and nonchiral-flat limit [(c)–(e)] and in the spin and
valley polarized sector. Similar to Fig. 26, we show the finite size gap �, the spread δ and the wave-function overlap.
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FIG. 28. The low-energy spectrum on 3 × 2 lattice with t =
1, w0 = 0, and λ = 1 in the spin polarized sector. The low-energy
states form U (2) multiplets with L = 0, 1, . . . , NM and the ground
state is a U(2) singlet state. The two states with Chern number
ν = ±2 are also shown in the figure represented by a red symbol.

to ([7]4, [1]4) at λ = 1. In Fig. 24, we present some low-
energy states with their irreps for each momentum sector
with various values of λ. Although the ground state irrep is
not changing, we can clearly see the level crossings between
excited states. In Fig. 24(c), we can see the level crossing
between ([7]4, [1]4) state and ([6, 2]4, [0]4) state. Meanwhile,
an unchanged irrep cannot exclude the possibility of a level
crossing, because some irreps can appear multiple times in the
whole spectrum at a given filling factor, and same representa-
tions can have avoided crossings. As shown in Fig. 24(d), the
irrep of the lowest energy state with total momentum K1 = 0,
K2 = 1 is ([7]4, [1]4) for any 0 � λ � 1. However, we can
also notice an avoided level crossing at around λ ≃ 0.5.

We also studied the phase diagram with all symmetry
sectors on 3 × 2 lattice at the (first) chiral limit with various
values of λ and t , and at flat band limit with various values of
λ and w0. The finite size gap and the ground state manifold
spread can be found in Fig. 25. Not surprisingly, a larger
λ leads to a significant reduction of the finite size gap �,
which implies instabilities of the ground states, as discussed
in Sec. III, and therefore we have a decreasing w0/w1 phase
transition value for increasing λ.

By focusing on the spin and valley polarized sectors, we are
able to study the phase diagrams on system sizes larger than
3 × 2. Figures 26 and 27 are the phase diagrams calculated
on 4 × 3 and 3 × 3 lattices, respectively. (Note that the corre-
sponding 5 × 3 phase diagrams have been omitted due to their
similarities with the 4 × 3 ones.) On both the system sizes,
we find that the transition point of w0/w1 reduces from ≃ 0.9
to ≃0.3 or 0.4 when λ > 0.5. This shift of phase boundary
due to finite λ is similar to that on the 3 × 2 lattice shown
Figs. 25(c) and 25(d). This also hints that the area of Chern
insulator phase in the phase diagram is not strongly affected
by the system size. We also observe the spread between the
two lowest energy states on 3 × 3 lattice is indeed small for λ

values between 0 and 1. This is due to the complex C3z eigen-
values of the two ground states, which are only well defined on
the 3 × 3 lattice but not the 4 × 3 and 3 × 2 lattices, and the
time reversal symmetry makes the two states degenerate. Now

we show that the two ground states must have complex C3z

eigenvalues. Starting from the w0 = 0, t = 0 ground states,
which are Slater states |�1,0

−3 〉, |�0,1
−3 〉 defined in Eqs. (20) and

(21), the C3z eigenvalues of the ground states will not change
with w0 and t before they reach the phase boundaries. Thus
the C3 eigenvalues within the phase boundary are same as
those of |�1,0

−3 〉, |�0,1
−3 〉. Due to the relation between Chern

number νC and the C3 eigenvalue ξ for a Slater state [113],
i.e., ξ = e−i 2π

3 νC , we know the C3z eigenvalues of |�1,0
−3 〉 and

|�0,1
−3 〉 must be complex, since they have νC = 1 and νC = −1,

respectively.

APPENDIX D: NUMERICAL RESULTS FOR ν = −2

1. Spin polarized sector

In Sec. IVB2, we discussed the valley coherent ground
state in the nonchiral nonflat case in the spin polarized sector.
We notice that the overlap between the inter valley coherent
model state wave function and the ED ground state wave
function in the chiral nonflat limit is smaller than the overlap
when w0 �= 0. Because of the larger symmetry in the chiral
limit, we need to consider another model state. As discussed in
Ref. [110] (see also Ref. [72]), the perturbation theory shows
that the following state is preferred in the chiral limit:

∣

∣�chiral
ν=−2(ϕ, γ )

〉

=
∏

k

(

e− iγ

2 d
†
k,+1,+,↑ cos

ϕ

2
+ e

iγ

2 d
†
k,+1,−,↑ sin

ϕ

2

)

×
(

e− iγ

2 d
†
k,−1,+,↑ sin

ϕ

2
+ e

iγ

2 d
†
k,−1,−,↑ cos

ϕ

2

)

|0〉. (D1)

However, this state is a symmetry breaking state, which de-
pends on two angle parameters ϕ and γ , and is not the
eigenstate of the Cartan subalgebras. Thus it cannot be ob-
tained by exact diagonalization. The Hamiltonian in the spin
polarized sector in the chiral limit has a U (2) symmetry in
valley space. Thus the low-energy spectrum exhibits SU(2)
multiplets, as observed in Fig. 28. Among these multiplets,
the lowest one is an SU(2) singlet. Therefore we expand
the model state wave function |�chiral

ν=−2(ϕ, γ )〉 on spherical
harmonics Y m

L (ϕ, γ ):

∣

∣�chiral
ν=−2(ϕ, γ )

〉

=
NM
∑

L=0

L
∑

Nv/2=−L

NL,Nv
Y

Nv/2
L (ϕ, γ )|ψchiral(L, Nv )〉,

(D2)

∣

∣ψchiral(L, Nv )
〉

∝
∫ 2π

0
dγ

∫ π

0
dϕ sin ϕ

[

Y
Nv

2
L (ϕ, γ )

]∗

×
∣

∣�chiral
ν=−2(ϕ, γ )

〉

, (D3)

in which NL,Nv
are normalization factors and the components

|ψchiral(L, Nv )〉 with quantum numbers L and Nv are normal-
ized wave functions. Both these normalization factors and
components are independent of the two angles ϕ and γ . L

is thus the valley SU(2) “angular momentum.” Similar to the
inter valley coherent model states, we define the overlap be-
tween the numerical ground state and the valley SU(2) singlet
model state (L = 0, Nv = 0) as

Overlap = |〈ψchiral(L = 0, Nv = 0)|ψED〉|2. (D4)
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FIG. 29. The phase diagrams at ν = −2 filling on 3 × 2 lattice in the spin polarized sector with FMC (a) and without FMC (b). The color
code represents the overlap defined in Eq. (D4). It can be shown that the overlap is close to 1 only when w0 is close to zero, where the system
in the spin polarized sector has a valley SU(2) symmetry.

We provide the overlap for each value of t and w0 in Fig. 29.
It can be seen clearly that this model state agrees well with the
ED ground state when w0 ≈ 0.

2. Valley polarized sector

In Sec. IVB1, we have explored the phase diagram in the
nonchiral-nonflat limit at filling factor ν = −2 in the val-
ley polarized sector. Those diagrams were obtained for the
λ = 0 (the FMC model) and λ = 1 (the full TBG model).
In this Appendix, we will provide the valley polarized phase
diagrams for the λ interpolation in either nonchiral-flat limit
or the chiral-nonflat limit.

These phase diagrams are shown in Fig. 30. As we have
seen in Sec. IV B and Fig. 9, the kinetic energy controlled by
t barely affects the Chern insulator. Unsurprisingly, we find
the same feature in the chiral-nonflat limit [see Figs. 30(a) to
30(d)]. The difference between the transition value of w0/w1

for λ = 0 and λ = 1 is small (w0/w1 ≃ 0.5 and w0/w1 ≃ 0.4
respectively). In these phase diagrams in the nonchiral-flat
limit [Figs. 30(e) to 30(h)], the phase boundary barely depends
on λ as expected.

More interestingly, Figs. 30(c) and 30(g) provide the total
spin quantum number Sη=+ for the valley η = +. They val-
idate again the analytical results (exact/perturbative) about
the magnetic order in Ref. [110]: when valley fully polar-
ized, the system favors the ferromagnetic phase (where a
single spin-valley flavor has two bands fully occupied) in the
nonchiral-flat limit, and favors the spin-singlet (where each of
the two spins in the occupied valley is half-occupied) in the
chiral-nonflat limit.

APPENDIX E: EFFECT OF NORMAL ORDERING

AND PARTICLE-HOLE SYMMETRY

In this Appendix, we will compare the Hamiltonian Eq. (8)
exhibiting particle-hole symmetric around the CNP and its
normal ordered counterpart. The relation between these two
Hamiltonians was discussed in Ref. [109]. Here we will
briefly analytically review this relation, followed by a more
detailed numerical comparison. The two body interacting
Hamiltonian in Eq. (8) can be also written as the following

FIG. 30. Phase diagrams at ν = −2 on 3 × 2 lattice in the chiral-nonflat limit [(a)–(d)] and the nonchiral-flat limit [(e)–(h)] and valley
polarized sectors. These phase diagrams are function of the interpolating parameter λ. In each limit, we provide the finite size gap � [(a) and
(e)], the spread δ [(b) and (f)], the total spin Sη=+ in valley η = + and the overlap. The definitions of these quantities can be found in Sec. IV B.
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FIG. 31. The spectrum for the full TBG model in the (first) chiral-flat limit at ν = −3 filling on a 4 × 4 lattice at twisting angle θ = 1.1014◦

in the spin and valley fully polarized sectors. We use the normal-order Hamiltonian, which does not have Hartree-Fock terms, in (a), and the
particle-hole symmetric Hamiltonian, which has the Hartree-Fock terms, in (b). It can be shown that the charge neutral gap tends to be smaller
when we take the Hartree-Fock terms into consideration.

FIG. 32. The energy spectra and irreps of low-energy states on 3 × 2 lattice at ν = −2 filling with �HI with (a) and without (b) �HI . Here
we consider the full TBG model in the chiral-flat limit and the twisting angle is θ = 1.1014◦ [note that (a) is just Fig. 6]. In this example, we
see that the �HI term has no effect on the low-energy irreps, and has almost no effect on the energies themselves.

FIG. 33. The energy spectra and irreps of the FMC model [(a)–(c)] and full TBG model [(d)–(f)] on a 4 × 2 lattice with total electron
number N = 7, 8, and 9 corresponding to the charge −1, 0, and +1 excitations, respectively. Contrary to Fig. 18, the quadratic term �HI has
been discarded (other parameters are identical). We use the notation “+” between irreps when they always appear with an exact degeneracy.
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FIG. 34. The low-energy spectrum of symmetry sectors with
a dimension smaller than 106 at filling factor ν = −1 (N = 18)
for the full TBG model on a NM = 3 × 2 lattice in the chiral-flat
limit. The spectrum is plotted versus the polarization of the Chern
bands NeY =+1 − NeY =−1 (NeY

is the number of particles in bands
with Chern number eY ), irrespective of the other quantum numbers.
Due to the C2zT symmetry, we only consider NeY =+1 − NeY =−1 �

0. The quadratic term �HI is not considered. Red dashes are the
Slater determinants which carry Chern numbers νC = 3 (at NeY =+1 −
NeY =−1 = 3NM ) and νC = 1 (at NeY =+1 − NeY =−1 = NM ). It should be
compared to Fig. 13. In particular, the Chern state νC = 1 is no longer
the lowest energy state in its own Chern band polarization.

form:

HI = Hnorm
I + �H (1) + �H (2) + const., (E1)

where Hnorm
I is a normal-ordered term and �H

(1)
I and �H

(2)
I

are quadratic terms of fermion operators. The total quadratic
term

�HI = �H
(1)
I + �H

(2)
I , (E2)

was proved to be, in Ref. [109], equal to the Hartree-Fock
term from the filled bands below the flat bands (�H

(1)
I being

the Hartree potential and �H
(2)
I the Fock potential). With the

term �HI , the projected many-body Hamiltonian preserves

FIG. 35. The low-energy spectra of symmetry sectors with a dimension smaller than 106 at filling factor ν = 0 (N = 24) for the full TBG
model on a NM = 3 × 2 lattice in chiral flat band limit. In (a), we considered the term �HI , and in (b), �HI is discarded. Similar to Figs. 13
and 34, the spectra are plotted vs the polarization of the Chern bands, and only NeY =1 − NeY =−1 � 0 are shown due to C2zT symmetry. Red
dashes are the Chern insulator states with Chern number νC = 0 (at NeY =1 − NeY =−1 = 0), νC = 2 (at NeY =1 − NeY =−1 = 2NM ), and νC = 4 (at
NeY =1 − NeY =−1 = 4NM ). At this filling factor and in the absence of �HI , the Chern insulator states are not the ground states. In particular, the
Chern states νC = 0 and 2 are no longer the lowest energy states in their own Chern band polarization.

the charge-conjugation symmetry around the CNP, a symme-
try that is present for the unprojected Hamiltonian irrespective
of the normal ordering. The situation is similar to the frac-
tional quantum Hall effect and its lattice cousin, the fractional
Chern insulator. For the former, using or not the normal or-
dering only differs by a chemical potential, preserving the
particle-hole symmetry for the Hamiltonian projected in a
Landau level. For the later, the difference between the normal
ordered and the non-normal ordered Hamiltonian is a momen-
tum dependent one-body term akin to a dispersion relation,
spoiling the particle-hole symmetry for the band projected
Hamiltonian [114,115].

We now present the numerical results which show the
effect of �HI and how it affects the energy spectrum. We start
with the spin and valley polarized sectors on a 4 × 4 lattice in
the chiral-flat limit at filling factor ν = −3. The spectrum of
the normal-ordered Hamiltonian and the full Hamiltonian at
the (first) chiral-flat limit are shown in Figs. 31(a) and 31(b),
respectively. Although the ground state is identical in both
cases, the low-energy spectrum is globally compressed with
�HI . We observe the same trend at filling factor ν = −2. By
performing ED in all symmetry sectors this time, we obtain
the low-energy states with their irreps. They are shown in
Fig. 32 with and without �HI [note that Fig. 32(a) is the
same as in Fig. 6 and is just here for convenience]. Once
again we observe that the spectrum is not strongly affected.
The irreps of the low-lying states are not changed, while the
Goldstone branch finite momentum energy is slightly larger
without �HI .

More interestingly, we also calculated the spectrum of the
low-energy states and their irreps of the FMC model and full
TBG Hamiltonian at chiral-flat limit, on 4 × 2 lattice with
electron number N = 7, 8, 9, without �HI . The results are
shown in Fig. 33 and should be compared to the results in
Fig. 18 where �HI was included. In the normal ordered cal-
culations, the charge +1 excitations and charge −1 excitations
are no longer symmetric even when λ = 0. The irreps of these
excitations are also no longer the same. Interestingly, we also
notice that the dispersion of the charge +1 excitation is flat
when λ = 0 in the absence of �HI .
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We have also considered the filling factor ν = −1 with-
out �HI . A spectrum summarizing the symmetry sectors
whose dimensions are smaller than 106 is shown in Fig. 34.
It should be compared to Fig. 13. Like in Sec. V, we use
red dashes to label these Chern insulator states. If �HI is
absent, we find that there exist states with energy lower
than the Chern insulator states νC = ±3 and ±1. Although
the calculation does not consider all the possible symmetry
sectors, we can already claim that the ground state irrep

cannot be ([NM, NM , NM ]4, [0]4) or ([NM, NM]4, [NM]4). In-
deed, these irreps can only be built from the Chern insulator
states, which have already been shown to be excited states.
Performing a similar calculation at ν = 0 in Fig. 35, we
reach exactly to the same conclusion, i.e., the Chern insu-
lator states νC = ±4, ±2, and 0 are no longer the ground
states once �HI is discarded. These two examples illustrate
the potential dramatic impact of �HI on the low-energy
properties.
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