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We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge

insulator (FCHI) constructed by Gutzwiller projection of two noninteracting second-order topological insulators

with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize

the model states via the entanglement entropy and charge-spin fluctuations. We show that the FCHI possesses

fractional chiral hinge modes characterized by a central charge c = 1 and Luttinger parameter K = 1/2, like

the edge modes of a Laughlin 1/2 state. The bulk and surface topology is characterized by the topological

entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE,

we show that the gapped surfaces host an unconventional two-dimensional topological phase. In a clear departure

from the physics of a Laughlin 1/2 state, we find a TEE per surface compatible with (ln
√

2)/2, half that of

a Laughlin 1/2 state. This value cannot be obtained from topological quantum field theory for purely two-

dimensional systems. For the sake of completeness, we also investigate the topological degeneracy.

DOI: 10.1103/PhysRevB.103.L161110

I. INTRODUCTION

Strong interactions in condensed-matter systems can lead

to fascinating emergent phenomena. In two-dimensional (2D)

systems, strong interactions may lead to the emergence of

topological order (TO), such as that experimentally observed

in the fractional quantum Hall effect. Features of TO in two

dimensions include a nontrivial ground state degeneracy on

certain surfaces and the appearance of itinerant excitations

with fractional quantum numbers and braiding statistics. It

has long been an active field of study to extend this rich

physics to three-dimensional (3D) strongly interacting sys-

tems, where the emergent physics can be even more diverse,

including systems with fractonic excitations [1,2]. Whereas

many microscopic models based on interacting spin systems

have been proposed to exhibit TO in three dimensions, such as

the 3D toric code [3] and 3D Kitaev models [4–7], and there

are treatments of 3D fractional topological insulators using

effective field theory [8,9], there is a scarcity of electronic or

realistic examples that could be experimentally relevant.

Among the 3D electronic topological insulators (TIs), an

entirely new class was recently discovered: Certain TIs pro-

tected by crystalline symmetries, now dubbed higher-order

TIs [10–25], possess a much richer bulk-boundary correspon-

dence than conventional, or first-order, TIs. For example, a 3D

chiral hinge insulator (CHI) exists whose gapped surfaces are

connected by gapless chiral hinge modes [12]. Higher-order

TIs in two and three dimensions have been experimentally

observed in materials [26], mechanical [27], acoustic [28,29],

photonic [30–33], and electrical [34,35,38] systems. Two-

dimensional higher-order TIs have also been studied in the

strongly interacting regime [36,37].
In this Letter, we provide a first stepping stone in the

realization of a full-fledged electronic 3D fractional TI by
building a 3D fractional chiral hinge insulator (FCHI) model
wave function. Indeed, the hinge modes of the noninteracting
CHI are of the same nature as the edge modes of a Chern insu-
lator, two copies of which at fractional filling and with strong
interactions form a fractional Chern insulator (FCI) hosting
fractional quantum Hall physics [39–41]. Therefore, we may
speculate that under similar conditions the FCHI will also
display nontrivial topology with fractionalized excitations at
least at the hinges or surfaces.

Numerical computations and especially exact diagonaliza-

tions for interacting electronic systems in three dimensions are

notoriously difficult due to the spatial dimensionality. To par-

tially circumvent this challenge, we will rely on a model wave

function, a fruitful approach for TO, to capture the FCHI.

This approach has been extensively applied in the realm of

the fractional quantum Hall effect [42,43] and FCIs [44]. In

order to define the FCHI wave function, we will make use

of Gutzwiller projection, a systematic method to construct

interacting model wave functions starting from copies of non-

interacting ground states. Large-scale variational Monte Carlo
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(MC) simulations then allow us to analyze this wave function

for bigger system sizes than possible with other methods.

To probe the topological content of the wave function,

we will study the entanglement entropy (EE), which can be

evaluated in MC simulations [44–48] and follows an area

law with characteristic subleading corrections [49]. In two

dimensions there are logarithmic corrections for gapless edge

modes [50–52] which along with the constant topological

entanglement entropy (TEE) correction to the bulk area law

[53,54] provide information on the system’s topology. In three

dimensions, corrections to the bulk area law include the TEE

and possible size-dependent corrections for fractonic systems

and layered constructions [55–57]. In particular, we study

the hinge modes in an open system and show that they are

fractionalized excitations characterized by a central charge

c = 1 and Luttinger parameter K = 1/2, like the FCI edge

modes. Next, we study the TEE of the bulk system and that

of the gapped surfaces. Whereas our computations indicate a

vanishing bulk TEE, we show that the gapped surfaces host

a nontrivial two-dimensional topological phase with a TEE

per surface compatible with half that of a Laughlin 1/2 state.

For completeness, we then study the linear independence of

different interacting wave functions obtained by changing the

boundary conditions for the underlying fermions.

II. MODEL WAVE FUNCTION

We consider an interacting model wave function obtained

by Gutzwiller projection of the ground state of a noninter-

acting 3D second-order TI with chiral hinge modes. The

CHI model is described by a local Hamiltonian for spinless

fermions with four sites per unit cell [12] [see Fig. 1(a) for a

sketch of the model]. The ground state |ψ〉 of the CHI model

lies at filling ν = 1/2 of the lattice. With open boundary

conditions (OBC) in the x and y directions, each of the four

hinges of the CHI parallel to the z axis supports a single chiral

mode localized at the hinge. Each hinge mode corresponds to

a free bosonic mode with central charge c = 1 and Luttinger

parameter K = 1 akin to the edge modes of a Chern insulator

[58]. Since the CHI model is noninteracting, it does not have

TO or a nontrivial ground state degeneracy with periodic

boundary conditions (PBC).

In order to define the interacting model wave function |�〉,
we take two copies |ψs〉 of the ground state of the CHI model

at half filling, to which we assign different values s ∈ {↑,↓}
of a spinlike degree of freedom. The interacting wave function

is obtained as the Gutzwiller projection

|�〉 = PG[|ψ↑〉 ⊗ |ψ↓〉] (1)

of the product of the two noninteracting wave functions. With

n̂s,i denoting the particle number operator for fermions of spin

s on the lattice site i, the Gutzwiller projection operator is

expressed as

PG =
∏

i

(1 − n̂↑,in̂↓,i ). (2)

It forbids simultaneous occupancy of any lattice site i by both

a particle with spin ↑ and a particle with spin ↓. Therefore,

it simulates the effect of a very large on-site Hubbard interac-

tion. Since each copy of the ground state of the CHI model has

FIG. 1. (a) Local real-space model for a 3D second-order TI

with chiral hinge states. The Hamiltonian is defined on a cubic

lattice with a unit cell of four sites lying in the xy plane. In this

plane, sites in the same unit cell are connected by a nearest-neighbor

hopping M marked by black lines (−M for dashed black lines). In

the xy plane, sites in adjacent unit cells are connected by a nearest-

neighbor hopping �1 marked by violet lines (−�1 for dashed violet

lines). In the z direction, adjacent unit cells are connected by a real

next-nearest-neighbor hopping −�2/2 marked by light blue lines

(�2/2 for dashed light blue lines). In addition, there is a purely

imaginary nearest-neighbor hopping between adjacent unit cells in

the z direction with a value of −i�2/2 in the direction of the green

arrows. We study the model for parameter values M = �1 = �2 =
1, where the correlation length is close to its minimal value [58].

(b) Three-dimensional system with OBC and Nx, Ny unit cells in the

x, y directions and periodic boundaries and Nz sites in the z direction.

The subsystem ANx ,Ny,Nz,A
consists of Nx, Ny unit cells in the x, y

directions and Nz,A unit cells in the z direction.

a filling νψ↑ = νψ↓ = 1/2, the Gutzwiller projection enforces

that the interacting wave function lies at filling ν� = 1/2 with

exactly one particle per lattice site (each lattice site having a

spin degree of freedom which can take two values). Hence,

charge fluctuations are completely frozen, and the only rele-

vant degree of freedom in the interacting wave function is the

spin s.

III. CHARACTERIZATION OF HINGE MODES

With OBC in the x and y directions, the interacting model

wave function |�〉 is expected to possess one gapless chiral

mode at each of the four hinges parallel to the z axis, inherited

from the hinge modes of the noninteracting CHI. Like the

edge modes of chiral topologically ordered phases in two

dimensions, we expect the hinge modes of |�〉 to be described

by a chiral conformal field theory (CFT). Moreover, since |�〉
is interacting, we expect its hinge CFT to be possibly different

from the trivial free-boson CFT describing the hinge modes of

the noninteracting CHI.

In order to characterize the chiral hinge modes, we adapt

the methods that were previously employed for 2D chiral

phases [51,52,59] to the 3D setting: We study the second

Rényi entropy S(2) and spin fluctuations of |�〉, in focus-

ing on the critical contributions stemming from the physical

hinges. We evaluate these observables for the interacting wave

function |�〉 in large-scale MC simulations using the SWAP-

operator technique [60] with sign-problem refinement [58,61].

We consider the geometry sketched in Fig. 1(b): a total

system with Nx × Ny × Nz unit cells, OBC in the xy plane,

and PBC in the z direction to ensure that the only gapless

excitations are the four hinge states. We consider a series of
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FIG. 2. Second Rényi entropy and spin fluctuations of the inter-

acting model wave function |�〉 for a series of subsystems ANx ,Ny,Nz,A

[58]. We plot MC data obtained for two different systems sizes

2 × 2 × 20 (in blue) and 3 × 2 × 20 (in orange). (a) Scaling of the

second Rényi entropy, fit to the prediction of Eq. (3). (b) Scaling of

the spin fluctuations, fit to the prediction of Eq. (6).

subsystems ANx,Ny,Nz,A
with Nx, Ny unit cells in the x, y direc-

tions and Nz,A ∈ {1, . . . , Nz − 1} unit cells in the z direction,

marked in red in Fig. 1(b). ANx,Ny,Nz,A
bisect each of four

physical hinge modes into a part of length Nz,A contained in

ANx,Ny,Nz,A
and the remaining part outside of the subsystem.

Hence, we expect that the EE and spin fluctuations with re-

spect to ANx,Ny,Nz,A
will contain signatures from the hinges.

Specifically, if the hinge modes are described by a chiral

CFT with central charge c, the second Rényi entropy S(2) of

|�〉 with respect to ANx,Ny,Nz,A
for different Nz,A at fixed Nx

and Ny is expected to scale as

S
(2)
ANx ,Ny ,Nz,A

(Nz,A) = α + 4 × S
(2)
crit(Nz,A; Nz ). (3)

Here, α is a constant independent of Nz,A. It includes the

area law contributions from the virtual surfaces at z = 0, Nz,A

which scale proportional to NxNy and are therefore indepen-

dent of Nz,A in the thermodynamic limit, and any potential

corner contributions. In Eq. (3),

S
(2)
crit(Nz,A; Nz ) =

c

8
ln

[

Nz

π
sin

(

πNz,A

Nz

)]

(4)

is the second Rényi entropy of a periodic one-dimensional

chiral critical mode with central charge c and total system size

Nz restricted to a single interval of length Nz,A [50]. The factor

of 4 in Eq. (3) takes into account the four hinge modes, which

contribute equally to the EE.

The scaling of the second Rényi entropy of |�〉 as com-

puted from MC is shown in Fig. 2(a) for two different system

sizes, 2 × 2 × 20 and 3 × 2 × 20. For computational reasons,

we choose Nx and Ny to be much smaller than Nz [58].

Due to the short correlation length of the CHI, equal to one

lattice spacing [58], we may expect that the characteristic

parameters approach their thermodynamic limit even for small

Nx, Ny. The logarithmic scaling from the hinge states is clearly

visible, and numerical values for c and α can be extracted

by fitting the data to Eq. (3). The numerical value for the

central charge is c = 1.19 ± 0.07 for 2 × 2 × 20 and c =
1.03 ± 0.14 for 3 × 2 × 20. This provides strong evidence

that the hinge modes of the interacting model wave function

|�〉 are described by a chiral free-boson CFT with central

charge c = 1.

Free-boson CFTs with c = 1 are characterized by their

Luttinger parameter K . For such Luttinger liquids, the vari-

ance of the U(1) current integrated over a subsystem scales

proportionally to the EE, where the proportionality constant

allows the extraction of K [59]. Since charge fluctuations are

completely frozen in the wave function |�〉, the relevant U(1)

symmetry stems from the spin degree of freedom, and we need

to consider the fluctuations of the number MA of particles with

spin ↑ in a subsystem A. Concretely, we consider the variance

Var
(

MANx ,Ny ,Nz,A

)

≡
〈

M2
ANx ,Ny ,Nz,A

〉

−
〈

MANx ,Ny ,Nz,A

〉2
, (5)

which is expected to scale as [59]

Var
(

MANx ,Ny ,Nz,A

)

= 2
K

π2
ln

[

Nz

π
sin

(

πNz,A

Nz

)]

+ α′ (6)

with the Luttinger parameter K and a constant α′ independent

of Nz,A.

The scaling of the spin fluctuations in the wave function

|�〉 as computed from MC is shown in Fig. 2(b) for two

different system sizes, 2 × 2 × 20 and 3 × 2 × 20. Remark-

ably, even for these small sizes, the numerical value for K

extracted by fitting the data to Eq. (6) is K = 0.49 ± 0.02

for 2 × 2 × 20 and K = 0.49 ± 0.03 for 3 × 2 × 20. This

provides strong evidence that the Luttinger parameter for

the chiral hinge modes of the interacting higher-order TI is

K = 1/2, similar to the edge modes of a FCI.

IV. TOPOLOGICAL DEGENERACY AND TOPOLOGICAL

ENTANGLEMENT ENTROPY

In two dimensions, fractionalized excitations such as those

of the edge modes of an FCI are an indication of bulk TO.

Above, we showed that the FCHI has fractional hinge modes.

It is therefore natural to investigate whether it also possesses

nontrivial topology in the bulk and on the surfaces. Two-

dimensional topologically ordered systems are characterized

by a nonzero TEE and a nontrivial topological degeneracy on

surfaces with a genus greater than zero. In three dimensions,

TEE and topological degeneracy remain important signatures

of nontrivial topology. We now study these signatures for the

FCHI model.

a. Topological entanglement entropy. In order to compute

the TEE of the FCHI, we use the Kitaev-Preskill construction

[53] extended to 3D systems [55]. As sketched in Fig. 3(a),

the system is divided into four regions, A, B, C, and D, which

are translation invariant in the z direction and whose cross

sections with the xy plane form the pattern required for the

usual 2D Kitaev-Preskill cut. The EE of these regions and

their unions can be collected into the linear combination

−γ = S
(2)
ABC

− S
(2)
AB

− S
(2)
BC

− S
(2)
AC

+ S
(2)
A

+ S
(2)
B

+ S
(2)
C

, (7)

which cancels all contributions from the virtual surfaces and

hinges. The remaining quantity, denoted γ , could contain two

contributions, γ = γ3D + Nzγ2D. The constant γ3D is the 3D

TEE [55]. γ2DNz would occur for layered constructions of 2D
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FIG. 3. (a) Subsystems A, B, C, and D for the extraction of the

bulk TEE using a Kitaev-Preskill cut. Note that the subsystems are

translation invariant in the z direction. (b) Scaling of the eigenvalues

λi with i = 0, . . . , 7 of the overlap matrix O of the FCHI on the

isotropic three-torus with N × N × N unit cells.

topological orders perpendicular to the z direction with 2D

TEE γ2D [55] or in some fractonic systems [1,2].

We have computed γ for the FCHI on the three-torus in

large-scale variational MC computations. For the geometry

sketched in Fig. 3(a), we were able to study the FCHI with 3 ×
3 × 2 unit cells, for which we found γ = −0.08 ± 0.04, and

with 3 × 3 × 3 unit cells, for which we found γ = −0.06 ±
0.11. In both cases, the subsystem A is of size 1 × 2 × Nz unit

cells, and the subsystems B and C are of size 1 × 1 × Nz unit

cells [62]. Because of the intrinsic anisotropy of the FCHI,

we also considered a second geometry obtained by rotating

the subsystems in Fig. 3(a) along the y axis such that they

are translation invariant in the x direction while leaving the

insulator unchanged. Here, we computed γ for a system of

2 × 3 × 5 unit cells [63] and found γ = −0.009 ± 0.102. All

these values are consistent with γ = 0 (up to small finite-size

effects for 3 × 3 × 2) irrespective of the orientation of the cut.

We stress that γ is several orders of magnitude smaller than

any of the EEs appearing in Eq. (7), excluding the existence

of both a nonvanishing 3D TEE γ3D and a nonzero γ2D.

Since we have not been able to find any clear signature

of a true nontrivial bulk topology, we now probe the nature

of the gapped surfaces perpendicular to the x direction [64].

Since the vertical hinges host fractionalized one-dimensional

modes like those of an FCI, we may speculate that the vertical

surfaces host some nontrivial TO [65]. To characterize it, we

compute γ according to Eq. (7) for the geometry obtained

by rotating the subsystems in Fig. 3(a) as described above,

OBC in the x direction, and PBC in the y and z directions. We

have performed this computation for a system with 2 × 3 × 5

unit cells and found γ = 0.31 ± 0.16 [66]. Since the same

computation with PBC in x yields a vanishing result for γ

as discussed above, this nonzero value is due entirely to the

two surfaces at x = 0 and x = Nx − 1 and confirms that the

vertical surfaces host a nontrivial 2D TO. Indeed, each surface

contributes with γ 2D
FCHI = γ /2 to the TEE. The value of γ 2D

FCHI

is consistent with (ln
√

2)/2, a clear departure from the TEE

of a single 2D FCI in the Laughlin 1/2 phase.

b. Topological degeneracy. In order to study the topologi-

cal degeneracy of the FCHI we closely follow a well-known

approach established for 2D projected wave functions such as

the FCI. On the 2D torus, one defines four interacting wave

functions by choosing PBC or antiperiodic boundary condi-

tions (APBC) for the underlying fermions in each direction

of the torus. For the FCI, these four states yield two linearly

independent wave functions, as expected in the phase of the

Laughlin wave function with filling ν = 1/2 [58].

For the FCHI, we consider eight independent ansatz states

on the 3D torus obtained by Gutzwiller projection of the

noninteracting CHI wave function with PBC or APBC in

each direction. The ground state degeneracy is then given

by the rank of an eight-dimensional overlap matrix O con-

taining the normalized overlaps of these ansatz states [58].

Note that the topological degeneracy could, in principle, be

larger than 8. In such a case, the rank of the overlap matrix

considered here would still be, at most, 8, and our approach

would fail to measure the full ground state degeneracy.

We have studied the topological degeneracy of the FCHI

on isotropic three-tori with N × N × N unit cells up to N = 4

using variational MC simulations [58]. The results are shown

in Fig. 3(b). For these system sizes, we observe a separation

of the eigenvalues of the overlap matrix O into a group of

two larger eigenvalues and a group of six smaller eigenvalues.

However, there is no clear trend indicating that the former

would converge to a finite value and the latter to zero in the

thermodynamic limit. The finite-size effects due to the numer-

ical limitation to small system sizes therefore do not allow

us to draw clear conclusions about the asymptotic topological

degeneracy from these results.

Since we have observed a nontrivial surface topology from

the TEE, we want to investigate whether these modes con-

tribute a topological degeneracy. For that purpose, we have

also studied the degeneracy of the FCHI with OBC in the

x direction, meaning each surface mode is defined on a 2D

torus. In this geometry, four ansatz states are generated by

changing the boundary conditions for the underlying CHI in

the two periodic directions. We have found behavior very

similar to the full-PBC case, namely, two larger eigenvalues

but no clear evidence of a reduction of the bulk degeneracy

in the thermodynamic limit [58]. Finally, we mention that

we have also analyzed the topological degeneracy for very

anisotropic three-tori with Nz much larger than Nx = Ny. An

extensive discussion is given in the Supplemental Material

[58].

V. DISCUSSION AND CONCLUSION

We have studied a model wave function for a 3D chiral

hinge insulator with strong interactions at fractional band

filling using extensive MC simulations. By studying the EE

and spin fluctuations in an open geometry, we showed that

the hinges host fractional gapless modes which have the same

characterization as the edge modes of an FCI in the Laugh-

lin 1/2 phase. We have also studied the system’s topology

through the topological degeneracy and the TEE. While the

results for the topological degeneracy remain inconclusive due

to the small number of numerically accessible system sizes,

our results point to the absence of a bulk TEE. However, we

found clear signatures of a nontrivial 2D topological order on

the vertical surfaces. Interestingly, the TEE contribution per

surface is consistent with γ 2D
FCHI = (ln

√
2)/2, in other words
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half of the TEE of an FCI. This result cannot be explained

using a quantum dimension since a TEE of (ln
√

2)/2 would

correspond to a total quantum dimension 21/4, whereas any

nontrivial total quantum dimension has to be larger than or

equal to
√

2. This suggests the emergence of a highly uncon-

ventional surface topology that cannot be realized in a strictly

2D system, with a nontrivial relation to the hinge modes

[65]. In this Letter, we have restricted our analysis to the

gapped surfaces and their gapless edges. It would be highly

interesting, but very numerically challenging, to consider the

top and bottom surfaces, which host single Dirac cones in the

noninteracting CHI. Their fate in the interacting system is yet

unknown and beyond the scope of the present work, but it

should be the focus of further study.
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