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Open momentum space method for the Hofstadter butterfly and the quantized Lorentz susceptibility
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We develop a generic k - p open momentum space method for calculating the Hofstadter butterfly of both
continuum (moir¢) models and tight-binding models, where the quasimomentum is directly substituted by the

Landau level (LL) operators. By taking a LL cutoff (and a reciprocal lattice cutoff for continuum models), one
obtains the Hofstadter butterfly with in-gap spectral flows. For continuum models such as the moiré model for
twisted bilayer graphene, our method gives a sparse Hamiltonian, making it much more efficient than existing
methods. The spectral flows in the Hofstadter gaps can be understood as edge states on a momentum space
boundary, from which one can determine the two integers (z,, s,) of a gap v satisfying the Diophantine equation.
The spectral flows can also be removed to obtain a clear Hofstadter butterfly. While #, is known as the Chern
number, our theory identifies s, as a dual Chern number for the momentum space, which corresponds to a

quantized Lorentz susceptibility yy, = eBs,,.
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Two-dimensional (2D) lattice electrons in large magnetic
fields are known to exhibit Hofstadter butterfly spectra [1].
Conventionally, the Hofstadter butterfly is calculated at ratio-
nal fluxes per unit cell ¢ = 27 p/q in a basis with translation
symmetry of g unit cells, where p and g are coprime integers.
The calculation often involves a complicated construction of
the matrix elements. In particular, for continuum k - p mod-
els obtained from plane-wave expansions such as the moiré
model for twisted bilayer graphene (TBG) [2—4], the Hofs-
tadter Hamiltonian matrix is infinite dimensional and dense
[5-10], which requires a large cutoff for the spectrum to
converge.

In contrast, the Landau levels (LLs) of a k - p Hamiltonian
at small magnetic fields can be calculated by simply substitut-
ing the quasimomentum k = (k,, k,) with “}2”2, i’[—;;), where
aand a' are the LL lowering and raising operators, and £ is the
magnetic length [11]. In this Letter, we demonstrate that such
a substitution with a LL cutoff (and a reciprocal lattice cutoff
for continuum models) provides an efficient method for calcu-
lating the Hofstadter butterfly in large magnetic fields, which
greatly simplifies the Hamiltonian matrix elements [12]. In
particular, for continuum models, this method yields a sparse
Hamiltonian, whose spectrum can be efficiently calculated by
the shift-and-invert Lanczos method.

The method can be understood as an open momentum
space calculation, where the smaller of the momentum space
LL wave-function radius cutoff and reciprocal lattice radius
cutoff plays the role of a momentum space boundary. As a
result, the spectrum contains not only the Hofstadter butter-
fly, but also in-gap spectral flow levels [12,13] which can
be understood as “momentum space edge states.” We show
that the spectral flows of these edges allow us to determine
the two integers (,, s,) in a Hofstadter gap v satisfying the
Diophantine equation [14—16], where ¢, is the Chern number
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of the gap. Moreover, we show that s, can be interpreted
as a dual Chern number for the momentum space, which
yields a quantized Lorentz susceptibility [Eq. (15)]. Further-
more, by identifying and removing the momentum space edge
states, one can obtain the Hofstadter butterfly without spec-
tral flows. We demonstrate our method for both continuum
models and tight-binding models in a 2D periodic lattice. We
shall denote the lattice Bravais vectors as d; and d,, and the
reciprocal vectors as g; and g,, which satisfy g; -d; = 27;;
i, j=172).

Continuum models. At zero magnetic field, a continuum
model can be written in the real space basis |r, o) as [3-7,17]

H ) = e (—iv) + J Vet
J

where r = (x, y) is the real space position, —iV = —i(dy, d))
is the canonical momentum, and we assume there are M
intrinsic orbitals labeled by «, B. €*#(—iV) and V;”ﬂ L
are the electron kinetic term in free space and the periodic
lattice potential between orbitals 8 and «, respectively. If one
denotes Q € g,Z + g,7Z as the reciprocal lattice, and chooses
the momentum origin of orbital ¢ at p,, one can define a
momentum lattice Q, = p, + Q for orbital «, and quﬂ in
Eq. (1) must be the difference Q] — Qg between some sites
Q,, and Qg [see Supplemental Material (SM) [18] Sec. S2A].
Generically, one can always fix all p, = 0; however, in certain
models (e.g., the TBG model [2]) nonzero p, choices are
preferred.

One can transform the zero-magnetic-field Hamilto-
nian (1) into the momentum eigenbasis |k, Qg, o) =
[ dPre®tQ)T|r o), where k is in the first Brillouin
zone (BZ). The momentum space Hamiltonian under basis
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Ik, Qg, ) then takes the form [2,18]

Hglo, () = €/ (K + Qp)dg,0, + ) V" 8g, g uqpr-
j

When a uniform out-of-plane magnetic field B = B2 is
added, —iV in Eq. (1) is replaced by the kinematic momen-
tum IT = —iV — A(r), where A(r) is the vector potential
satisfying d,A, — 9,A, = B. The kinetic momentum satisfies
[T, IT,] = i/ﬁz, where £ = 1/\/§ is the magnetic length.
We also define the guiding center R = r — ¢?2 x II, which
satisfies [R,, Ry] = —if?, and [R, II] = 0.

The usual Hofstadter method for continuum models em-
ploys the Landau basis defined by eigenstates of R, and
IT%, which has complicated matrix elements [5-10]. Here,
we shall take a different basis, under which we prove the
nonzero-magnetic-field Hamiltonian can be simply obtained
by the zero-field momentum space Hamiltonian (2) with the
substitution of Eq. (5).

We define R; = R -7 as the guiding center along unit
vector T, where we choose ::g—ig irrational. We also define
a set of (linearly dependent) LL operators aq, = %[Hx —
Qu.x — kox +i(Ily — Qyy — ko)l and their conjugates
aaa associated with momentum sites Q,, where
ko = (ko x, ko,y) is a freely chosen real vector which we
call the center momentum. We then construct an orthonormal
basis |A, Qg, 1, @) for orbital o and reciprocal site Q, by
requiring

Rel%, Qo n @) = [h — 2% - (2 X Qu)1IA, Qu. 1, @),
ay, aq, | Q. n, @) = n|x, Qu. 1, a). 3)

Here, n > 0 1is an integer LL number, while X is a real number
chosen in the set A + €% - (2 x g,)Z + €*% - (2 x g,)Z repre-
senting the set, or abstractly, A € R/[£%% - (2 x g,)Z + €% -
(zZ x g,)Z] (see SM [18] Sec. S2B). It can then be proved
that all the states |A, Qu, n, @) form a complete basis for
the continuum model satisfying (A, Qq, 1, ®|2/, Q}s, n,pB)=
SA,\rSQmQ}ﬁnanaﬂ.

The above basis |1, Qq, 1, &) is advantageous because the
nonzero-magnetic-field Hamiltonian is diagonal in A and inde-
pendent of A. In SM [18] Sec. S2B, we show the Hamiltonian
in a fixed A subspace is

A, A
Hoﬁz = " (kq, + ko + Qp)dg,q, + ) Vidq,.Qp+aet
j

“

where we have defined kq, = ﬁ(‘lQa + aaa, —iaq, + ia(gd ).
Without ambiguity, we can drop the subindex Q,
and simplify (aq,, a&,) as (a,a’), which acts as
alk, Qu,n, ) = /1A, Qu,n — 1,a) and a'|r, Qq,n, a) =
vn+ 1A, Qy, n+ 1, a). The Hamiltonian (4) is then exactly
the zero-field Hamiltonian Hgf Qs (k) in Eq. (2) with the
substitution
a+a' a—a'

ky — el +koyx, Kk — el + ko,y, 5)
as we claimed earlier. One then only need calculate the spec-
trum for a fixed A. Different A and A" subspaces have identical

[K|=/2NL/¢

Ax=27tNL/¢ 2

FIG. 1. (a) When ¢/2m < Np/N;, the momentum space (the
shaded area) has a circular boundary of radius /2N, /£. (b) When
¢/2mw > Ng/N,, the momentum space boundary is the reciprocal
lattice boundary enclosing Ny BZs (the shaded area).

spectra, but have eigenstates differing by displacement A — A’
in the 7 direction (R; eigenvalue).

To numerically calculate the spectrum of Hamiltonian (4),
one can fix a center momentum K, take a LL cutoff n < Ny,
and take a cutoff of reciprocal lattice Q, at a boundary en-
closing Ng BZs. This yields a Hamiltonian of size MN; Ny
for M intrinsic orbitals. If €(k) only contains polynomials
up to Ath power of k, and the number of q?‘ﬂ is finite,
(A, Q. m,a|H|A, Qg, n, B) will be zero for [m —n| > A or
1Q, — Qpl > max(|qj.’ﬂ|), so the Hamiltonian H is a sparse
matrix. The low-energy eigenstates and spectrum can then be
efficiently calculated by the Lanczos algorithm.

The cutoffs Ny and Ny, however, lead to spectral flows in
the Hofstadter gaps due to the absence of periodic boundary
conditions [12,13]. As an example, we calculate the Hofs-
tadter butterfly of the TBG continuum model defined on a
honeycomb momentum lattice Q, [2], which has a Dirac
kinetic term e(k) = vpo™ -k, and 2 x 2 hopping matrices V;
between the nearest momentum sites, where 0* = (o, —0y)
are the Pauli matrices (SM [18] Sec. S3). Figure 2(a) shows
the TBG spectrum at twist angle 8 = 2.2° versus the flux per
unit cell ¢ = Bld; x d;|, where we take Ny = 37 and N; =
60. Besides the Hofstadter butterfly, one can see numerous
in-gap spectral flow levels.

The in-gap spectral flows are generically due to the pres-
ence of boundaries which host edge states [12,13]. Here, as
illustrated in Figs. 1(a) and 1(b), the cutoff Ny sets a bound-

ary of momentum radius / NQJ?BZ enclosing Ny BZs, where
Qpz = 4n?/|d, x d,| is the BZ area, while the LL cutoff N;

yields a boundary ,/ (fcén) < @

for k¢, in the Hamiltonian

(4). The smaller value of @ and @

momentum space boundary radius for Hamiltonian (4) (SM
[18] Sec. S2C), which gives rise to edge states.

The momentum space edge state levels then generate the
spectral flows versus the magnetic field B. This can be un-
derstood from the Diophantine equation [14—16,18] satisfied
by the vth Hofstadter gap (v € Z) at ¢ = 2nwp/q flux per
unit cell,

then serves as a

tLp+s,g =, (6)

L161405-2



OPEN MOMENTUM SPACE METHOD FOR THE HOFSTADTER ...

PHYSICAL REVIEW B 103, L161405 (2021)

/5///{{{///////////”//////‘_

Q) 1) —

FIG. 2. (a) Hofstadter butterfly and spectral flow of 6 =2.2°
TBG with Ny = 37 and N, = 60, and k at the I" point. The horizon-
tal axis ¢/2m is linearly plotted in [0,1], and deformed into 2 — 27 /¢
in [1, oo]. (b) The Hofstadter butterfly after deleting the edge states
(with w = min{£~!, 1.64/Qpz}, P. = 0.5), and (¢, s,) in the gaps.
(c) Zoom-in plot in the regime ¢/2mw < Ny/Ny. (d) Zoom-in plot in
the regime ¢ /2w > Ny/Ny.

where (1, s,) are two integer quantum numbers characterizing
the gap. 7, is the Chern number of the gap, while s, is referred
to as the electromechanical quantum number in Ref. [5]. It is
often rewritten as

£
2
where p = v/q is the number of occupied bulk states per unit
cell in the gap [18-20]. Here, it is more useful to rewrite it in
a dual form

tl) +SU=p’ (7)

2
lp+Su?=)0K7 (8)

where px = 2w p/¢ = v/p. In SM [18] Sec. S2F, we show
that pg gives the number of occupied bulk states per BZ in
the gap for the Hamiltonian (4) at a fixed A. Furthermore, in
Eq. (16), we show that s, plays the role of a dual Chern num-
ber for the momentum space. Equation (8) then determines
the in-gap spectral flows [Fig. 2(a)] in two different regimes
as follows.

In the first regime ¢/2m < Np/N;, the momentum space
boundary is a circle enclosing a ¢-dependent area Ax =
2Ny /€2 centered at kg [Fig. 1(a)]. In a gap, the total num-
ber of occupied states in the momentum area Ag is Ny =
ox Ak /87 = N px@/27w = Npp. Therefore, by Eq. (8)
we have

NI( = Np(typ/27 + 50). 9

In a bulk gap, the number of occupied states Nx can only
change by pumping edge states into (out of) the bulk. There-
fore, the edge states necessarily produce in-gap spectral flows,
where the rate of flowing levels is dNx/d(¢/2m) = Nit,

by Eq. (9). Figure 2(c) shows a gap in this regime, where
the midgap line (dashed line) crosses 16 levels as ¢/27
increases from 0.25 to 0.5, and N, = 60. The flow rate
is then dNk/d(¢/2m) =16/(0.5 — 0.25) = 64, so we can
identify the Chern number of the gap as the integer clos-
est to NL_ldNK/d(<p/2n) = 1.07, namely, ¢, = 1. Further, at
@/2m = 0.5, we counted there are Nx = 32 levels from zero
energy to the midgap energy [for TBG, Nx = 0 is at zero
energy (SM [18] Sec. S2G)], so we find the gap has s, =
Nk /Ny — t,9/2m = 0 from Eq. (9).

In the second regime ¢/2mw > Ny/N;, the momentum
space boundary is given by cutoff Ny, which encloses a ¢
independent area Ax = NpQpz [Fig. 1(b)]. The number of
occupied states Nx = pxAx/S2pz in momentum area Ay in
a gap is then

Nx = No(t, + 275, /9). (10)

This yields a spectral flow rate dNk/d (27 /@) = Nps,. Be-
sides, for TBG which has a Dirac kinetic term, there are 2Ny
horizontal levels at ¢ /2w > Np/N; in Fig. 2(a), which are
spurious zero modes due to LL cutoff N;, (see SM [18] Sec.
S3). These spurious levels should be excluded when counting
Nk. Figure 2(d) shows a gap in this regime, where the midgap
line crosses six levels (excluding the spurious modes) as 27 /¢
decreases from 2/3 to 1/2, and Ny = 37. The flow rate is
then dNx/d(27 /p) = 6/(2/3 —1/2) = 36, thus s, can be
identified as the integer closest to NQ_ldNK/d(ij /o) =0.97,
namely, s, = 1. Further, we counted there are Nx = 55 levels
(excluding the spurious modes) between the midgap and zero
energy at 2w /¢ = 1/2, thus the gap has a Chern number
t, = Nx/Ng — 2ms, /¢ = 1 from Eq. (10).

We note that models with a Dirac kinetic term €(k) =
vro* - k would have Ny = 0 defined at half filling (zero en-
ergy for TBG), while models with a lower-bounded kinetic
term [e.g., (k) = k%/2mg] would have Nx = 0 below the
lowest band (SM [18] Sec. S2G). More generically, if a gap
persists below and above ¢ /27 = Ny/N;, one can identify
t, and s, separately from the spectral flow rates at small
and large ¢, after which one can obtain Nk of the gap from
Eq. (9) or (10).

The edge states and spurious modes can be easily removed
from the spectrum. We define a boundary projector P, ,, onto
basis |A, Qq, 1, &) with n > (k;, — w)*£2/2 for some w > 0,

where «;, ~ min {—VZL,M,

space boundary. We can then identify the eigenstates with
(P, w) > P. above a certain value P, € [0, 1] as momentum
space edge states within distance w to the boundary, and
delete them to obtain a bulk Hofstadter spectrum. For exam-
ple, Fig. 2(b) is obtained by setting w = min{£~", 1.64/Qpz}
and P. = 0.5.

Tight-binding models. The substitution (5) can also be em-
ployed to calculate the Hofstadter butterfly of tight-binding
models. Given the position u, of each Wannier orbital « in a
unit cell in the continuum space, we denote orbital « at posi-
tion D +u, as |D, «), where D € d|7Z +d,7Z is the lattice
vector. The Hamiltonian under Peierls substitution [21-23]
then takes the form

H= 1T, u,uy. (1)
Jjsa.B

NoSz 1y - .
~=%} is the radius of momentum
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where D; € d\Z + d,Z, t}xﬁ is the hopping from |D, B) to
|ID +Dj, c), and

if A(r)-d
T sy = 3¢ 0 D LD a)D, Bl (12)
D

is the translation operator, with c¢,g being the straight line
segment from D + ug to D + D; + u,. At zero magnetic field,
the Hamiltonian can be transformed into the momentum space
basis |k, @) = Y, e* P |D, o) as

HP (k) =) 1P ety (13)
J

At nonzero magnetic field, we define a basis as |, n, o) =
> pID,a)(D +uy, o), 0,n, ), where |D+uy, o) is the
continuum space position eigenstate at position r = D + u,,
[A,0,n,«a) is the state defined in Eq. (3) in the contin-
uum space at reciprocal site 0, and A € R/[£>% - (2 x g,)Z +
0232 X g,)Z]. One can then show that |A,n, «) forms
a complete orthonormal basis of Hamiltonian (11) satis-
fying (M, n/, BlA, n, o) = 830 8wndpa (SM [18] Sec. S4A).
Furthermore, Tp,14,-u, is diagonal in A and takes the A
independent form

Aap _ ,—i(k+Kko)-(Dj+us—ug)
Dj+u,—ug — € o ! (14)

in a fixed A subspace between basis |A, n, 8) and |, #/, &),
where Kk = ﬁ(d +a', —ia+ia"), with alx, n,a) =

Jnlan—1,a) and  dflana)=vn+ 1 n+1, )
(SM [18] Sec. S4A). Therefore, the nonzero-magnetic-field
tight-binding Hamiltonian (11) in a fixed A is given by
the zero-field momentum space Hamiltonian (13) with
substitution (5). For nonstandard Peierls substitutions
along nonstraight cep paths, e ¢tk @j+ua=us) jn Eq. (14)

i), , (k+ko)dr (SM [18]

becomes the path-ordered integral Pe
Sec. S4B).

The Hofstadter butterfly can then be numerically calculated
with a LL cutoff, namely, n < N,. Figures 3(a) and 3(b) show
the spectrum of the square lattice tight-binding model H (k) =
—cosk, — cosk, [1] with cutoffs Ny = 100 and N; = 500,
respectively, where we set kg = 0. The spectrum exhibits both
the Hofstadter butterfly and the spectral flows, which can
again be understood as momentum space edge states. Since
tight-binding models have no cutoff in the reciprocal lattice,
the momentum space boundary is always at radius x;, = o2N
given by N;, and the spectral flows always satisfy Eq. (9).

One can define a boundary projector P, onto basis
|A, n, @) withn > (k,, — w)>£?/2 for certain w > 0, and iden-
tify the eigenstates with (P, ,,) > P. for some P. € [0, 1] as
momentum space edge states. Figures 3(c) and 3(d) show
the probability of a typical edge state and bulk state versus
LL number n, respectively. By deleting the edge states, one
can obtain a high-quality Hofstadter butterfly without spectral
flows, as shown in Fig. 3(e) (where w = 3.5¢7'\/p + 0.5 and
P. =0.5).

Quantized Lorentz susceptibility. The Chern number ¢, is
known to give a quantized Hall conductance via the Kubo for-

mula oy, = id, [ d0' (Gorar JxGur ), o = tv§ [10], where
G,, is the Green’s function at energy w, and J = (Jy, jv) is the

/21
(c)
vl edge state
0.1
0
0 100 200 300 400 500
n
[wI?
(d) 005 bulk state

00 100 200 300 400 500
n

FIG. 3. The Hofstadter spectrum for tight-binding model
H(k) = —cos k, — cosk, with kg = 0 and LL cutoff (a) N, = 100
and (b) N, = 500. (c) Probability distribution of a typical momentum
space edge state in (b) vs LL number n. (d) Probability distribution
of a typical bulk state in (b). (e) The Hofstadter butterfly obtained by
deleting the edge states in (b) (with w = 3.5¢7'/¢ + 0.5, P, = 0.5),
which looks identical to that obtained by usual methods.

uniform current operator. The duality between Eqgs. (7) and (8)
suggests that s, behaves as a dual Chern number for the mo-
mentum space, thus s, should also give a quantized response.
Indeed, by noting that the natural momentum space dual of
the current operator J is the force operator F = B x % =
(F,, F}), we find s, leads to a quantized Lorentz susceptibility
(SM [18] Sec. S6)

Yey = —ii / de (Gorw Fc Gy F) =eBs,. (15)

: Jw om0

It yields a Lorentz force per unit cell F; = y;,v, on the system
when the lattice is moving at velocity v,. Furthermore, a for-
mula similar to the Thouless—Kohmoto—Nightingale—den Nijs
formula [10] at flux per unit cell ¢ = 27 p/q can be derived
for s, (SM [18] Sec. S6B2),

: /l i Z ( | | w ) (16)
v 1 Z - () Wy X 8 n 5
E y ) 'd Wn,d 'd Wn,d

neocc

where €2, is a torus with periods d, and d,/p serving as a
“dual magnetic BZ,” |w,q4) = " @R |y 1 4) (see the
explicit form in SM [18] Sec. S6C) is defined using the Bloch
eigenstates [, ) of band n, and n runs over all occupied
bands.

Discussion. It is worth noting that the cutoffs in our method
affect the resolution but not the shape of the Hofstadter
butterfly. Our method greatly simplifies the matrix element
construction compared to usual methods [1,5], and require
neither rational flux per unit cell nor large magnetic unit
cells, making it easy to calculate the Hofstadter spectra of
complicated models [12,24-26]. Moreover, it leads to a sparse
Hamiltonian for continuum models. At small magnetic fields,
our method reduces to the LL calculations of k - p Hamilto-
nians expanded at center momentum k. The large magnetic
field spectrum is insensitive to the choice of K.
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