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We develop a generic k · p open momentum space method for calculating the Hofstadter butterfly of both

continuum (moiré) models and tight-binding models, where the quasimomentum is directly substituted by the

Landau level (LL) operators. By taking a LL cutoff (and a reciprocal lattice cutoff for continuum models), one

obtains the Hofstadter butterfly with in-gap spectral flows. For continuum models such as the moiré model for

twisted bilayer graphene, our method gives a sparse Hamiltonian, making it much more efficient than existing

methods. The spectral flows in the Hofstadter gaps can be understood as edge states on a momentum space

boundary, from which one can determine the two integers (tν, sν) of a gap ν satisfying the Diophantine equation.

The spectral flows can also be removed to obtain a clear Hofstadter butterfly. While tν is known as the Chern

number, our theory identifies sν as a dual Chern number for the momentum space, which corresponds to a

quantized Lorentz susceptibility γxy = eBsν .
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Two-dimensional (2D) lattice electrons in large magnetic

fields are known to exhibit Hofstadter butterfly spectra [1].

Conventionally, the Hofstadter butterfly is calculated at ratio-

nal fluxes per unit cell ϕ = 2π p/q in a basis with translation

symmetry of q unit cells, where p and q are coprime integers.

The calculation often involves a complicated construction of

the matrix elements. In particular, for continuum k · p mod-

els obtained from plane-wave expansions such as the moiré

model for twisted bilayer graphene (TBG) [2–4], the Hofs-

tadter Hamiltonian matrix is infinite dimensional and dense

[5–10], which requires a large cutoff for the spectrum to

converge.

In contrast, the Landau levels (LLs) of a k · p Hamiltonian

at small magnetic fields can be calculated by simply substitut-

ing the quasimomentum k = (kx, ky) with ( a+a†
√

2ℓ
, a−a†

i
√

2ℓ
), where

a and a† are the LL lowering and raising operators, and ℓ is the

magnetic length [11]. In this Letter, we demonstrate that such

a substitution with a LL cutoff (and a reciprocal lattice cutoff

for continuum models) provides an efficient method for calcu-

lating the Hofstadter butterfly in large magnetic fields, which

greatly simplifies the Hamiltonian matrix elements [12]. In

particular, for continuum models, this method yields a sparse

Hamiltonian, whose spectrum can be efficiently calculated by

the shift-and-invert Lanczos method.

The method can be understood as an open momentum

space calculation, where the smaller of the momentum space

LL wave-function radius cutoff and reciprocal lattice radius

cutoff plays the role of a momentum space boundary. As a

result, the spectrum contains not only the Hofstadter butter-

fly, but also in-gap spectral flow levels [12,13] which can

be understood as “momentum space edge states.” We show

that the spectral flows of these edges allow us to determine

the two integers (tν, sν) in a Hofstadter gap ν satisfying the

Diophantine equation [14–16], where tν is the Chern number

of the gap. Moreover, we show that sν can be interpreted

as a dual Chern number for the momentum space, which

yields a quantized Lorentz susceptibility [Eq. (15)]. Further-

more, by identifying and removing the momentum space edge

states, one can obtain the Hofstadter butterfly without spec-

tral flows. We demonstrate our method for both continuum

models and tight-binding models in a 2D periodic lattice. We

shall denote the lattice Bravais vectors as d1 and d2, and the

reciprocal vectors as g1 and g2, which satisfy gi · d j = 2πδi j

(i, j = 1, 2).

Continuum models. At zero magnetic field, a continuum

model can be written in the real space basis |r, α〉 as [3–7,17]

Hαβ (r) = ǫαβ (−i∇) +
∑

j

V
αβ

j eiq
αβ

j ·r, (1)

where r = (x, y) is the real space position, −i∇ = −i(∂x, ∂y)

is the canonical momentum, and we assume there are M

intrinsic orbitals labeled by α, β. ǫαβ (−i∇) and V
αβ

j eiq
αβ

j ·r

are the electron kinetic term in free space and the periodic

lattice potential between orbitals β and α, respectively. If one

denotes Q ∈ g1Z + g2Z as the reciprocal lattice, and chooses

the momentum origin of orbital α at pα , one can define a

momentum lattice Qα = pα + Q for orbital α, and q
αβ

j in

Eq. (1) must be the difference Q′
α − Qβ between some sites

Q′
α and Qβ [see Supplemental Material (SM) [18] Sec. S2A].

Generically, one can always fix all pα = 0; however, in certain

models (e.g., the TBG model [2]) nonzero pα choices are

preferred.

One can transform the zero-magnetic-field Hamilto-

nian (1) into the momentum eigenbasis |k, Qα, α〉 =
∫

d2rei(k+Qα )·r|r, α〉, where k is in the first Brillouin

zone (BZ). The momentum space Hamiltonian under basis
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|k, Qα, α〉 then takes the form [2,18]

H
αβ

Q′
αQβ

(k) = ǫαβ (k + Qβ )δQ′
αQβ

+
∑

j

V
αβ

j δ
Q′

α ,Qβ+q
αβ

j
. (2)

When a uniform out-of-plane magnetic field B = Bẑ is

added, −i∇ in Eq. (1) is replaced by the kinematic momen-

tum � = −i∇ − A(r), where A(r) is the vector potential

satisfying ∂xAy − ∂yAx = B. The kinetic momentum satisfies

[�x,�y] = i/ℓ2, where ℓ = 1/
√

B is the magnetic length.

We also define the guiding center R = r − ℓ2ẑ × �, which

satisfies [Rx, Ry] = −iℓ2, and [R,�] = 0.

The usual Hofstadter method for continuum models em-

ploys the Landau basis defined by eigenstates of Rx and

�
2, which has complicated matrix elements [5–10]. Here,

we shall take a different basis, under which we prove the

nonzero-magnetic-field Hamiltonian can be simply obtained

by the zero-field momentum space Hamiltonian (2) with the

substitution of Eq. (5).

We define Rτ̂ = R · τ̂ as the guiding center along unit

vector τ̂, where we choose
τ̂·(ẑ×g1 )

τ̂·(ẑ×g2 )
irrational. We also define

a set of (linearly dependent) LL operators aQα
= ℓ√

2
[�x −

Qα,x − k0,x + i(�y − Qα,y − k0,y)] and their conjugates

a
†
Qα

associated with momentum sites Qα , where

k0 = (k0,x, k0,y ) is a freely chosen real vector which we

call the center momentum. We then construct an orthonormal

basis |λ, Qα, n, α〉 for orbital α and reciprocal site Qα by

requiring

Rτ̂ |λ, Qα, n, α〉 = [λ − ℓ2
τ̂ · (ẑ × Qα )]|λ, Qα, n, α〉,

a
†
Qα

aQα
|λ, Qα, n, α〉 = n|λ, Qα, n, α〉. (3)

Here, n � 0 is an integer LL number, while λ is a real number

chosen in the set λ + ℓ2
τ̂ · (ẑ × g1)Z + ℓ2

τ̂ · (ẑ × g2)Z repre-

senting the set, or abstractly, λ ∈ R/[ℓ2
τ̂ · (ẑ × g1)Z + ℓ2

τ̂ ·
(ẑ × g2)Z] (see SM [18] Sec. S2B). It can then be proved

that all the states |λ, Qα, n, α〉 form a complete basis for

the continuum model satisfying 〈λ, Qα, n, α|λ′, Q′
β , n′, β〉 =

δλλ′δQα ,Q′
β
δnn′δαβ .

The above basis |λ, Qα, n, α〉 is advantageous because the

nonzero-magnetic-field Hamiltonian is diagonal in λ and inde-

pendent of λ. In SM [18] Sec. S2B, we show the Hamiltonian

in a fixed λ subspace is

H
λ,αβ

Q′
αQβ

= ǫαβ (κ̂Qβ
+ k0 + Qβ )δQ′

αQβ
+

∑

j

VjδQ′
α ,Qβ+q

αβ

j
,

(4)

where we have defined κ̂Qα
= 1√

2ℓ
(aQα

+ a
†
Qα

,−iaQα
+ ia

†
Qα

).

Without ambiguity, we can drop the subindex Qα

and simplify (aQα
, a

†
Qα

) as (a, a†), which acts as

a|λ, Qα, n, α〉 =
√

n|λ, Qα, n − 1, α〉 and a†|λ, Qα, n, α〉 =√
n + 1|λ, Qα, n + 1, α〉. The Hamiltonian (4) is then exactly

the zero-field Hamiltonian H
αβ

Q′
αQβ

(k) in Eq. (2) with the

substitution

kx →
a + a†

√
2ℓ

+ k0,x, ky →
a − a†

i
√

2ℓ
+ k0,y, (5)

as we claimed earlier. One then only need calculate the spec-

trum for a fixed λ. Different λ and λ′ subspaces have identical

FIG. 1. (a) When ϕ/2π < NQ/NL , the momentum space (the

shaded area) has a circular boundary of radius
√

2NL/ℓ. (b) When

ϕ/2π > NQ/NL , the momentum space boundary is the reciprocal

lattice boundary enclosing NQ BZs (the shaded area).

spectra, but have eigenstates differing by displacement λ − λ′

in the τ̂ direction (Rτ̂ eigenvalue).

To numerically calculate the spectrum of Hamiltonian (4),

one can fix a center momentum k0, take a LL cutoff n � NL,

and take a cutoff of reciprocal lattice Qα at a boundary en-

closing NQ BZs. This yields a Hamiltonian of size MNLNQ

for M intrinsic orbitals. If ǫ(k) only contains polynomials

up to �th power of k, and the number of q
αβ

j is finite,

〈λ, Q′
α, m, α|H |λ, Qβ , n, β〉 will be zero for |m − n| > � or

|Q′
α − Qβ | > max(|qαβ

j |), so the Hamiltonian H is a sparse

matrix. The low-energy eigenstates and spectrum can then be

efficiently calculated by the Lanczos algorithm.

The cutoffs NQ and NL, however, lead to spectral flows in

the Hofstadter gaps due to the absence of periodic boundary

conditions [12,13]. As an example, we calculate the Hofs-

tadter butterfly of the TBG continuum model defined on a

honeycomb momentum lattice Qα [2], which has a Dirac

kinetic term ǫ(k) = vF σ
∗ · k, and 2 × 2 hopping matrices Vj

between the nearest momentum sites, where σ
∗ = (σx,−σy )

are the Pauli matrices (SM [18] Sec. S3). Figure 2(a) shows

the TBG spectrum at twist angle θ = 2.2◦ versus the flux per

unit cell ϕ = B|d1 × d2|, where we take NQ = 37 and NL =
60. Besides the Hofstadter butterfly, one can see numerous

in-gap spectral flow levels.

The in-gap spectral flows are generically due to the pres-

ence of boundaries which host edge states [12,13]. Here, as

illustrated in Figs. 1(a) and 1(b), the cutoff NQ sets a bound-

ary of momentum radius

√

NQ�BZ

π
enclosing NQ BZs, where

�BZ = 4π2/|d1 × d2| is the BZ area, while the LL cutoff NL

yields a boundary

√

〈κ̂2
Qα

〉 �
√

2NL

ℓ
for κ̂Qα

in the Hamiltonian

(4). The smaller value of

√

NQ�BZ

π
and

√
2NL

ℓ
then serves as a

momentum space boundary radius for Hamiltonian (4) (SM

[18] Sec. S2C), which gives rise to edge states.

The momentum space edge state levels then generate the

spectral flows versus the magnetic field B. This can be un-

derstood from the Diophantine equation [14–16,18] satisfied

by the νth Hofstadter gap (ν ∈ Z) at ϕ = 2π p/q flux per

unit cell,

tν p + sνq = ν, (6)
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FIG. 2. (a) Hofstadter butterfly and spectral flow of θ = 2.2◦

TBG with NQ = 37 and NL = 60, and k0 at the Ŵ point. The horizon-

tal axis ϕ/2π is linearly plotted in [0,1], and deformed into 2 − 2π/ϕ

in [1, ∞]. (b) The Hofstadter butterfly after deleting the edge states

(with w = min{ℓ−1, 1.6
√

�BZ}, Pc = 0.5), and (tν, sν ) in the gaps.

(c) Zoom-in plot in the regime ϕ/2π < NQ/NL . (d) Zoom-in plot in

the regime ϕ/2π > NQ/NL .

where (tν, sν ) are two integer quantum numbers characterizing

the gap. tν is the Chern number of the gap, while sν is referred

to as the electromechanical quantum number in Ref. [5]. It is

often rewritten as

tν
ϕ

2π
+ sν = ρ, (7)

where ρ = ν/q is the number of occupied bulk states per unit

cell in the gap [18–20]. Here, it is more useful to rewrite it in

a dual form

tν + sν

2π

ϕ
= ρK , (8)

where ρK = 2πρ/ϕ = ν/p. In SM [18] Sec. S2F, we show

that ρK gives the number of occupied bulk states per BZ in

the gap for the Hamiltonian (4) at a fixed λ. Furthermore, in

Eq. (16), we show that sν plays the role of a dual Chern num-

ber for the momentum space. Equation (8) then determines

the in-gap spectral flows [Fig. 2(a)] in two different regimes

as follows.

In the first regime ϕ/2π < NQ/NL, the momentum space

boundary is a circle enclosing a ϕ-dependent area AK =
2πNL/ℓ2 centered at k0 [Fig. 1(a)]. In a gap, the total num-

ber of occupied states in the momentum area AK is NK =
ρKAK/�BZ = NLρKϕ/2π = NLρ. Therefore, by Eq. (8)

we have

NK = NL(tνϕ/2π + sν ). (9)

In a bulk gap, the number of occupied states NK can only

change by pumping edge states into (out of) the bulk. There-

fore, the edge states necessarily produce in-gap spectral flows,

where the rate of flowing levels is dNK/d (ϕ/2π ) = NLtν

by Eq. (9). Figure 2(c) shows a gap in this regime, where

the midgap line (dashed line) crosses 16 levels as ϕ/2π

increases from 0.25 to 0.5, and NL = 60. The flow rate

is then dNK/d (ϕ/2π ) = 16/(0.5 − 0.25) = 64, so we can

identify the Chern number of the gap as the integer clos-

est to N−1
L dNK/d (ϕ/2π ) = 1.07, namely, tν = 1. Further, at

ϕ/2π = 0.5, we counted there are NK = 32 levels from zero

energy to the midgap energy [for TBG, NK = 0 is at zero

energy (SM [18] Sec. S2G)], so we find the gap has sν =
NK/NL − tνϕ/2π = 0 from Eq. (9).

In the second regime ϕ/2π > NQ/NL, the momentum

space boundary is given by cutoff NQ, which encloses a ϕ

independent area AK = NQ�BZ [Fig. 1(b)]. The number of

occupied states NK = ρKAK/�BZ in momentum area AK in

a gap is then

NK = NQ(tν + 2πsν/ϕ). (10)

This yields a spectral flow rate dNK/d (2π/ϕ) = NQsν . Be-

sides, for TBG which has a Dirac kinetic term, there are 2NQ

horizontal levels at ϕ/2π > NQ/NL in Fig. 2(a), which are

spurious zero modes due to LL cutoff NL (see SM [18] Sec.

S3). These spurious levels should be excluded when counting

NK . Figure 2(d) shows a gap in this regime, where the midgap

line crosses six levels (excluding the spurious modes) as 2π/ϕ

decreases from 2/3 to 1/2, and NQ = 37. The flow rate is

then dNK/d (2π/ϕ) = 6/(2/3 − 1/2) = 36, thus sν can be

identified as the integer closest to N−1
Q dNK/d (2π/ϕ) = 0.97,

namely, sν = 1. Further, we counted there are NK = 55 levels

(excluding the spurious modes) between the midgap and zero

energy at 2π/ϕ = 1/2, thus the gap has a Chern number

tν = NK/NQ − 2πsν/ϕ = 1 from Eq. (10).

We note that models with a Dirac kinetic term ǫ(k) =
vF σ

∗ · k would have NK = 0 defined at half filling (zero en-

ergy for TBG), while models with a lower-bounded kinetic

term [e.g., ǫ(k) = k2/2m0] would have NK = 0 below the

lowest band (SM [18] Sec. S2G). More generically, if a gap

persists below and above ϕ/2π = NQ/NL, one can identify

tν and sν separately from the spectral flow rates at small

and large ϕ, after which one can obtain NK of the gap from

Eq. (9) or (10).

The edge states and spurious modes can be easily removed

from the spectrum. We define a boundary projector Pκb,w onto

basis |λ, Qα, n, α〉 with n > (κb − w)2ℓ2/2 for some w > 0,

where κb ≈ min {
√

2NL

ℓ
,

√

NQ�BZ

π
} is the radius of momentum

space boundary. We can then identify the eigenstates with

〈Pκb,w〉 > Pc above a certain value Pc ∈ [0, 1] as momentum

space edge states within distance w to the boundary, and

delete them to obtain a bulk Hofstadter spectrum. For exam-

ple, Fig. 2(b) is obtained by setting w = min{ℓ−1, 1.6
√

�BZ}
and Pc = 0.5.

Tight-binding models. The substitution (5) can also be em-

ployed to calculate the Hofstadter butterfly of tight-binding

models. Given the position uα of each Wannier orbital α in a

unit cell in the continuum space, we denote orbital α at posi-

tion D + uα as |D, α〉, where D ∈ d1Z + d2Z is the lattice

vector. The Hamiltonian under Peierls substitution [21–23]

then takes the form

H =
∑

j,α,β

t
αβ

j TD j+uα−uβ
, (11)

L161405-3



LIAN, XIE, AND BERNEVIG PHYSICAL REVIEW B 103, L161405 (2021)

where D j ∈ d1Z + d2Z, t
αβ

j is the hopping from |D, β〉 to

|D + D j, α〉, and

TD j+uα−uβ
=

∑

D

e
i
∫

cαβ
A(r)·dr|D + D j, α〉〈D, β| (12)

is the translation operator, with cαβ being the straight line

segment from D + uβ to D + D j + uα . At zero magnetic field,

the Hamiltonian can be transformed into the momentum space

basis |k, α〉 =
∑

D eik·(D+uα )|D, α〉 as

Hαβ (k) =
∑

j

t
αβ

j e−ik·(D j+uα−uβ ). (13)

At nonzero magnetic field, we define a basis as |λ, n, α〉 =
∑

D |D, α〉〈D + uα, α|λ, 0, n, α〉, where |D + uα, α〉 is the

continuum space position eigenstate at position r = D + uα ,

|λ, 0, n, α〉 is the state defined in Eq. (3) in the contin-

uum space at reciprocal site 0, and λ ∈ R/[ℓ2
τ̂ · (ẑ × g1)Z +

ℓ2
τ̂ · (ẑ × g2)Z]. One can then show that |λ, n, α〉 forms

a complete orthonormal basis of Hamiltonian (11) satis-

fying 〈λ′, n′, β|λ, n, α〉 = δλλ′δn′nδβα (SM [18] Sec. S4A).

Furthermore, TD j+uα−uβ
is diagonal in λ and takes the λ

independent form

T
λ,αβ

D j+uα−uβ
= e−i(κ̂+k0 )·(D j+uα−uβ ) (14)

in a fixed λ subspace between basis |λ, n, β〉 and |λ, n′, α〉,
where κ̂ = 1√

2ℓ
(a + a†,−ia + ia†), with a|λ, n, α〉 =

√
n|λ, n − 1, α〉 and a†|λ, n, α〉 =

√
n + 1|λ, n + 1, α〉

(SM [18] Sec. S4A). Therefore, the nonzero-magnetic-field

tight-binding Hamiltonian (11) in a fixed λ is given by

the zero-field momentum space Hamiltonian (13) with

substitution (5). For nonstandard Peierls substitutions

along nonstraight cαβ paths, e−i(κ̂+k0 )·(D j+uα−uβ ) in Eq. (14)

becomes the path-ordered integral Pe
−i

∫

cαβ
(κ̂+k0 )·dr

(SM [18]

Sec. S4B).

The Hofstadter butterfly can then be numerically calculated

with a LL cutoff, namely, n � NL. Figures 3(a) and 3(b) show

the spectrum of the square lattice tight-binding model H (k) =
− cos kx − cos ky [1] with cutoffs NL = 100 and NL = 500,

respectively, where we set k0 = 0. The spectrum exhibits both

the Hofstadter butterfly and the spectral flows, which can

again be understood as momentum space edge states. Since

tight-binding models have no cutoff in the reciprocal lattice,

the momentum space boundary is always at radius κb =
√

2NL

ℓ

given by NL, and the spectral flows always satisfy Eq. (9).

One can define a boundary projector Pκb,w onto basis

|λ, n, α〉 with n > (κb − w)2ℓ2/2 for certain w > 0, and iden-

tify the eigenstates with 〈Pκb,w〉 > Pc for some Pc ∈ [0, 1] as

momentum space edge states. Figures 3(c) and 3(d) show

the probability of a typical edge state and bulk state versus

LL number n, respectively. By deleting the edge states, one

can obtain a high-quality Hofstadter butterfly without spectral

flows, as shown in Fig. 3(e) (where w = 3.5ℓ−1
√

ϕ + 0.5 and

Pc = 0.5).

Quantized Lorentz susceptibility. The Chern number tν is

known to give a quantized Hall conductance via the Kubo for-

mula σxy = i∂ω

∫

dω′〈Gω+ω′ ĵxGω′ ĵy〉|ω→0
= tν

e2

h
[10], where

Gω is the Green’s function at energy ω, and ĵ = ( ĵx, ĵy) is the

FIG. 3. The Hofstadter spectrum for tight-binding model

H (k) = − cos kx − cos ky with k0 = 0 and LL cutoff (a) NL = 100

and (b) NL = 500. (c) Probability distribution of a typical momentum

space edge state in (b) vs LL number n. (d) Probability distribution

of a typical bulk state in (b). (e) The Hofstadter butterfly obtained by

deleting the edge states in (b) (with w = 3.5ℓ−1
√

ϕ + 0.5, Pc = 0.5),

which looks identical to that obtained by usual methods.

uniform current operator. The duality between Eqs. (7) and (8)

suggests that sν behaves as a dual Chern number for the mo-

mentum space, thus sν should also give a quantized response.

Indeed, by noting that the natural momentum space dual of

the current operator ĵ is the force operator F̂ = eB × dR
dt

=
(F̂x, F̂y ), we find sν leads to a quantized Lorentz susceptibility

(SM [18] Sec. S6)

γxy = −i
∂

∂ω

∫

dω′〈Gω+ω′ F̂xGω′ F̂y〉
∣

∣

∣

∣

ω→0

= eBsν . (15)

It yields a Lorentz force per unit cell Fx = γxyvy on the system

when the lattice is moving at velocity vy. Furthermore, a for-

mula similar to the Thouless–Kohmoto–Nightingale–den Nijs

formula [10] at flux per unit cell ϕ = 2π p/q can be derived

for sν (SM [18] Sec. S6B2),

sν = −i
∑

n∈occ

∫

d∈�M

d2d

2π
ẑ · 〈∂dwn,d | × |∂dwn,d〉, (16)

where �M is a torus with periods d1 and d2/p serving as a

“dual magnetic BZ,” |wn,d〉 = eiℓ−2 (ẑ×R)·d |ψn,ℓ−2 ẑ×d〉 (see the

explicit form in SM [18] Sec. S6C) is defined using the Bloch

eigenstates |ψn,k〉 of band n, and n runs over all occupied

bands.

Discussion. It is worth noting that the cutoffs in our method

affect the resolution but not the shape of the Hofstadter

butterfly. Our method greatly simplifies the matrix element

construction compared to usual methods [1,5], and require

neither rational flux per unit cell nor large magnetic unit

cells, making it easy to calculate the Hofstadter spectra of

complicated models [12,24–26]. Moreover, it leads to a sparse

Hamiltonian for continuum models. At small magnetic fields,

our method reduces to the LL calculations of k · p Hamilto-

nians expanded at center momentum k0. The large magnetic

field spectrum is insensitive to the choice of k0.
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