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Topological flat bands, such as the band in twisted bilayer graphene, are becoming a promising platform

to study topics such as correlation physics, superconductivity, and transport. In this Letter, we introduce a

generic approach to construct two-dimensional (2D) topological quasiflat bands from line graphs and split

graphs of bipartite lattices. A line graph or split graph of a bipartite lattice exhibits a set of flat bands and a

set of dispersive bands. The flat band connects to the dispersive bands through a degenerate state at some

momentum. We find that, with spin-orbit coupling (SOC), the flat band becomes quasiflat and gapped from

the dispersive bands. By studying a series of specific line graphs and split graphs of bipartite lattices,

we find that (i) if the flat band (without SOC) has inversion or C2 symmetry and is nondegenerate, then the

resulting quasiflat band must be topologically nontrivial, and (ii) if the flat band (without SOC) is

degenerate, then there exists a SOC potential such that the resulting quasiflat band is topologically

nontrivial. This generic mechanism serves as a paradigm for finding topological quasiflat bands in 2D

crystalline materials and metamaterials.

DOI: 10.1103/PhysRevLett.125.266403

Introduction.—New developments in the field of many-

body condensed matter physics, such as twisted bilayer

graphene (TBLG) [1–8], have underlined the importance of

flat bands in realizing superconductivity and magnetism. In

TBLG, a series of almost flat bands show a remarkable

series of superconducting and magnetic states [5,6,8–28]. It

is, however, known [29] that flat bands in Ginzburg-Landau

theory result in a vanishing superfluid weight and hence

no superconductivity. This is due to the fact that most flat

bands are localized, the flatness usually resulting from

atomiclike orbitals. It was recently argued that topology can

save a flat band’s superfluid weight: Chern bands support a

lower bound on the superfluid density [30], while a more

exotic type of topology, present in TBLG [31–33] that

exhibits zero Chern number, can also place a lower bound

on the superfluid weight [34–36]. Heuristically, topological

bands contain extended states, which participate in the

superconductivity [37–45]. As such, it is important to build

flat bands with topological properties.

In this Letter, we present one generic method of building

topological flat bands in crystals with spin-orbit coupling

(SOC). A large number of these so-obtained topological

flat bands are strong topological and exhibit the quantum

spin Hall (QSH) effect, and the others are spinful fragile

topological bands. Fragile topological flat bands also have

been found in SOC-free systems [46], based on line graphs

of nonbipartite lattices. It is well known that both line

and split graph lattices exhibit flat bands in their spectra

[47–53]. These bands are generally thought to be spanned

by localized states [47] or contain a delocalized state due to

a metallic band touch [54]. However, we find that, if certain

symmetries are maintained, the states in the flat band

cannot be localized and are topological. By adding spin-

orbit coupling to line and split graphs of bipartite lattices,

we gap the previously flat but gapless exact flat band into

an quasiflat band that is topological. This provides us with a

generic way to obtain flat bands with nontrivial topology.

Nontrivial flat bands in the kagome lattice.—A graph (X)
is bipartite if all of the vertices in the graph can be divided

into two sets, U and V, such that the edges in X always

connect a vertex in U to a vertex in V. The honeycomb

lattice is a well-known bipartite lattice with the two sets

of vertices being the two sublattices. A line graph LðXÞ of a
graph X, which we will refer to as the root graph, is

constructed by replacing each edge eX;i in X with a vertex

vLðXÞ;i and connecting vertex pairs vLðXÞ;i and vLðXÞ;j for

adjacent eX;i and eX;j. As schematically shown in Fig. 1(a),

the line graph of the honeycomb lattice is the kagome
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lattice. A split graph SðXÞ is constructed from a root graph

X by placing an additional vertex on each edge eX;i, as

exemplified in Figs. 3(a) and 3(b).

Additional details about the bipartite lattice, line graph,

and split graph are discussed in the Supplemental Material

[55]. Here we only list some basic properties of these

graphs [57,58]. We only consider 2D root graphs X whose

edges do not cross each other. For a bipartite lattice X with

m polygon faces per unit cell, we have the following

properties: (i) X is a bipartite lattice if and only if all the

polygons in X are even sided. (ii) The band structure of

LðXÞ consists of a set of dispersive bands plus an additional
set of flat bands at E ¼ −2t, where t is the hopping strength
between two adjacent vertices and will be set as −1 in this

Letter. The degeneracy of the flat bands of LðXÞ is D ¼ m.

(iii) Its split graph SðXÞ is always bipartite. (iv) There is a
set of flat bands with degeneracy D ¼ m at E ¼ 0 in the

energy spectrum of both SðXÞ and L½SðXÞ�. (v) The flat

bands of both LðXÞ, SðXÞ, and L½SðXÞ� always touch the

dispersive bands through a more highly degenerate state at

some high-symmetry momenta.

The kagome lattice is the line graph of the honeycomb

lattice, which is a bipartite lattice, as depicted in Fig. 1(a).

There are three sublattices A, B and C in the kagome

lattice. The three atoms of these sublattices are located at

ð1
2
; 0Þ, ð0; 1

2
Þ, and ð1

2
; 1
2
Þ within each unit cell, respectively.

Here the coordinates are in units of the lattice vectors

a1 ¼ að1; 0Þ and a2 ¼ að−1;
ffiffiffi

3
p

Þ=2 with a being the

lattice parameter.

The tight-binding model of the spinless lattice reads

H0 ¼ t
X

hi;ji
ðc†i cj þ H:c:Þ; ð1Þ

where t ¼ −1 is the nearest-neighbor hopping, hi; ji
denotes nearest-neighbor pairs, and c†i is the creation

operator of an electron on lattice site i. One can diagonalize
the model in momentum space, and the explicit form of the

model Hamiltonian is then

H0ðkÞ ¼ −2

0

B

@

0 cos k3 cos k2

cos k3 0 cos k1

cos k2 cos k1 0

1

C

A
; ð2Þ

with ki ¼ k · ai=2 and a3 ¼ −a1 − a2.

The band structure of the kagome lattice is shown in

Fig. 1(b). The band structure consists of a single flat band

and two dispersive bands. The flat band touches one of the

dispersive bands at the Γ point.

The development of topological quantum chemistry

(TQC) [59–63] enables an efficient way to diagnose the

topological phases from the symmetry-data vector (defined

in the Supplemental Material [55]) of Bloch states at high-

symmetry momenta. From TQC, the symmetry-data vector

of any set of bands that cannot be decomposed into a linear

combination of elementary band representations (EBRs),

which are topologically equivalent with atomic orbitals

in terms of the symmetry-data vector, is topological [59].

In the present Letter, we analyze the topological properties

of the models in the language of TQC.

The model in Eq. (2) consists of spinless s orbitals

centered at the Wyckoff position 3f of the space group

P6=mmm (space group No. 191). The band representation

(BR) of the full set of bands in Fig. 1(b) is fΓþ
1
⊕ Γ

þ
5
;

K1 ⊕ K5;M
þ
1
⊕ M−

3
⊕ M−

4
g. The character table of each

irreducible representation (irrep) forming this BR is given

in the Supplemental Material [55]. From TQC, this BR is a

single EBR ðAgÞ3f↑G, which is induced from the Ag orbital

at the Wyckoff position 3f of the space group P6=mmm.

As shown in Fig. 1(b), the irrep of the flat band at the M

point is M−
3
with parity of −1. There is additionally a band

touching between the flat band and a dispersive band at Γ

with a two-dimensional (2D) irrep Γþ
5
, of which the parity

is þ2. In the presence of SOC, the 2D spinless irrep Γ
þ
5

splits into two 2D spinful irreps with parity of þ2. For

spinful systems with inversion symmetry, the Z2 topologi-

cal index ν is defined as ð−1Þν ¼
Q

2n;j P2n;j, where P2n;j is

the parity of the 2nth valence band at the jth time-reversal

invariant momentum (TRIM) [64]. As any perturbative

SOC does not change the parities of the bands at both Γ and

M points, once the band touching at the Γ point is gapped

by the symmetry-preserving SOC, one will always obtain

one topologically nontrivial quasiflat band with ν ¼ 1,

resulting in a QSH insulator.

To identify the topology of the kagome lattice with

SOC, we expand the basis of the model in Eq. (2) to

fA;B; C g ⊗ f↑;↓ g to include the spin degree of free-

dom. As schematically shown in Fig. 1(a), we take both the

(a) (b)
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1a

o

FIG. 1. (a) Schematic of the kagome lattice (black). One can

obtain the lattice by applying the line graph operation on the

honeycomb lattice (light gray). The light blue arrows indicate the

lattice vectors a1 and a2. The white, black, and gray dots represent

sites in the A, B, and C sublattices, respectively. Nearest-neighbor

(next-nearest-neighbor) SOC is introduced via hopping along the

gray (dashed gray) arrow direction with amplitude iλNN (iλNNN).
(b) The band structure for the kagome lattice without SOC. The

irreducible representations (irreps) of each band at the high-

symmetry points are shown. The superscript þ=− denotes the

parity.
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nearest-neighbor (NN) and the next-nearest-neighbor

(NNN) SOC with respective amplitudes iλNN and iλNNN
into account. Then, the spinful model of the kagome lattice

reads [65]

HðkÞ ¼ H0ðkÞ ⊗ σ0 þ ½HNNðkÞ þHNNNðkÞ� ⊗ σz; ð3Þ

with

HNNðkÞ ¼ i2λNN

0

B

@

0 -cosk3 cos k2

-cosk3 0 − cos k1

cos k2 − cos k1 0

1

C

A
ð4Þ

and

HNNNðkÞ ¼ i2λNNN

0

B

@

0 -cosk0
1

cos k0
2

-cosk0
1

0 − cos k0
3

cos k0
2

− cos k0
3

0

1

C

A
; ð5Þ

where k0i ¼ kj − kkði ≠ j ≠ kÞ.
In the presence of NN or NNN SOC, the band touch

at the Γ point will be removed, as shown in Figs. 2(a)

and 2(b). Although the upper flat band becomes

weakly dispersive, we can regard it as quasiflat when

the amplitude of SOC is much smaller than t, as seen in

Figs. 2(a) and 2(b), which is the case experimentally [66].

With SOC, the BR of the entire set of bands of kagome

lattice is fΓ̄7⊕ Γ̄8⊕ Γ̄9;M̄5⊕2M̄6;K̄7⊕ K̄8⊕ K̄9g, which
is an EBR ðĒgÞ3f↑G induced from the Ēg orbital at the

Wyckoff position 3f of the double space group P6=mmm.

Originating from the irrep pairs Γ̄7 and Γ̄8 switching

partners in energy, the symmetry-data vector of the quasi-

flat band must be fΓ̄7; M̄6; K̄9g or fΓ̄8; M̄6; K̄9g. One can

get fΓ̄7; M̄6; K̄9g (fΓ̄8; M̄6; K̄9g) by introducing NN (NNN)

SOC, as shown in Figs. 2(a) and 2(b), respectively. Within

the TQC theory, it is well known that, if some sets of bands

separated by a band gap, and the symmetry-data vector of

these sets of bands can be summed to a single EBR, then

each set of bands possesses nontrivial topology. In both NN

and NNN SOC added cases, the symmetry-data vector of

the flat bands is not a linear combination of EBRs where all

coefficients are positive integers. Thus, the quasiflat band is

inevitably topologically nontrivial when either NN or NNN

SOC is added. To verify the topology, one can obtain ν ¼ 1

from the parities of four TRIM points:þ1 at the Γ point and

−1 at three M points.

Apart from the symmetry-data vector and the Z2 index ν,

nontrivial topology of the flat bands can also be diagnosed

from the Wilson loop method and the edge-state calcu-

lation. As shown in Fig. 2(c), an odd winding number of the

Wilson loop can be found, indicating ν ¼ 1. By setting

the strength of NN SOC as λNN ¼ 0.1t, we also perform

the edge-state calculation of the kagome lattice with a finite

size along the x direction. As shown in Fig. 2(d), the

presence of a gapless edge state between the flat band and

dispersive band reflects the nontrivial topology of the flat

band. In fact, for the lower dispersive band, we also have

ν ¼ 1. Hence, there is another gapless state between the

two dispersive bands.

(a) (b)

(c) (d)

FIG. 2. (a),(b) Energy spectrum of the kagome lattice with

(a) λNN ¼ 0.1t, λNNN ¼ 0; (b) λNNN ¼ −0.1t, λNN ¼ 0. The irreps

are given, with numbers in brackets indicating the character of

inversion symmetry. (c) The Wilson loop of the upper flat band

with parameters λNN ¼ 0.1t, λNNN ¼ 0. (d) The band structure of

the kagome lattice with finite size along the x direction.

(a)

(c)

(b)

(d)

FIG. 3. (a) Schematic of the square lattice. (b) The split graph of

square lattice Sð4Þ. This lattice is also known as Lieb lattice.

Placing a vertex (black square) at the middle of each edge in

square lattice, and considering these vertices together with the

vertices and edges of square lattice, we form the split graph Sð4Þ.
(c) The line graph of Sð4Þ. The arrows in gray indicate that the

amplitude of the considered SOC is iλ when the spin-up electrons
hop in this direction. (d) The structure of Sð4Þ without SOC. The
irreps of each band at the high-symmetry points are shown. The

superscript þ=− denotes the parity.
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Nontrivial flat bands in the line graph of the Sð4Þ
lattice.—In this section, we introduce the flat bands in line

graphs of another kind of bipartite lattice, i.e., the split

graphs SðXÞ of bipartite lattice X. As an example, the

square lattice, its split graph Sð4Þ, and the line graph of

Sð4Þ are shown in Figs. 3(a)–3(c), respectively.

According to the basic properties, line graphs of SðXÞ
possess gapless flat bands at E ¼ 0 and E ¼ 2, as shown in

Fig. 3(d). The BR of the full set of bands is a linear

combination of several EBRs in space group P4=mmm,

ðA1gÞ1a↑Gþ ðB1gÞ1a↑Gþ ðEuÞ1a↑G. The symmetry-data

vector of the upper three bands is fΓ−
5
⊕ Γ

þ
2
;M−

5
⊕ Mþ

2
;

Xþ
1
⊕ X−

3
⊕ X−

4
g, which is also a linear combination of

EBRs ðB1gÞ1a↑Gþ ðEuÞ1a↑G. Both M−
5
and Γ

−
5
are 2D

irreps with parity −2. In contrast, both Mþ
2
and Γþ

2
are 1D

irreps with parity þ1. As a result, as shown in Fig. 3(d),

both of the flat bands at E ¼ 0 and E ¼ 2 have opposite

parities at the M and Γ points. Thus, when the band touch

is removed by introducing a symmetry-preserving SOC,

the Z2 index becomes ν ¼ 1 for each of the flat bands,

indicating a strong topological phase.

Upon adding NN SOC with strength 0.1t, as shown

in Fig. 4(a), both of the band touches at the Γ and M points

are simultaneously gapped by the SOC. The Wilson loop

calculations of the quasiflat bands at E ¼ 2 and E ¼ 0 are

shown in Figs. 4(b) and 4(c), where the topologically

nontrivial phase is indicated by an odd winding number of

the Wilson loop.

Discussion and conclusion.—We find that, with SOC,

the quasiflat bands in the kagome lattice and L½Sð4Þ�
lattices are topologically nontrivial. In both cases, the

degenerate point forms a 2D band representation with

character of the inversion symmetry equal to 2 or −2. Since

the space groups of these lattices are overgroups of P2=m,

where no band degeneracy is enforced by symmetry, there

is always one inversion-symmetry-maintained SOC that

can remove the band touch and leave a set of gapped

quasiflat bands. With nonzero Z2 index, these gapped

quasiflat bands must be topologically nontrivial. We also

explore the line graph of square lattice Lð4Þ and the line

graph of the split lattice of the honeycomb lattice L½Sð6Þ�;

see Sec. III in the Supplemental Material for details [55].

Similar to that of the kagome and L½Sð4Þ� lattices, the band
touches in the Lð4Þ and L½Sð6Þ� lattices form 2D irreps.

Quasiflat bands result from adding SOC, and they are also

topologically nontrivial with Z2 index ν ¼ 1. According to

the basic properties (ii) and (iv), the degeneracy of the flat

bandsD in SðXÞ and LðXÞ is well defined by the number of

polygons per unit cell of bipartite root graph X. Apart from
line graphs, which contain only one flat band (without

SOC), one can design lattices with any fold degenerated flat

bands as desired. The existence of degenerated flat bands is

reported in photonic metacrystal [67]. Here, we provide a

generic way to get degenerated flat bands in electronic

materials. Such root graph lattices, including the octagon-

square lattice and the hexagon-square lattice, which possess

flat bands with D ¼ 2, are studied in Sec. IV of the

Supplemental Material [55]. With the nearest-neighbor

SOC taken into consideration, we find the resulting set

of quasiflat bands are also topologically nontrivial.

Split graphs of bipartite lattices comprise an entire class

of lattices with flat bands. In contrast to the flat bands of the

line graph lattices considered, the flat bands in these split

graphs are at E ¼ 0. We discuss the topological properties

of these flat bands Sec. V of the Supplemental Material

[55], where we find strong topological states. The finding

of topological flat bands in split graph of bipartite lattice

inspires us to extend our work to all bipartite lattices that

keep jnU − nV j > 0 [55], where nU and nV are the numbers

of vertices in U and V, respectively. The flat band in dice

lattice, a prominent example of such bipartite lattice, is

discussed in detail in Sec. VI of the Supplemental Material

[55], where the fragile topological state is found.

In summary, following the TQC theory, we investigate

the topological properties of flat bands in line graphs and

split graphs of bipartite lattices with symmetry-allowed

SOC. For the line graph of X, there is a set of flat bands at
E ¼ 2, which becomes topologically nontrivial once the

band touch is removed. For the line graph of SðXÞ, there are
two sets of flat bands, one each at E ¼ 0 and E ¼ 2. Both

of these sets of flat bands become topologically nontrivial

when SOC is added. Finally, for split graphs of bipartite

lattices, we find that adding Rashba SOC results in

quasiflatbands that are strong topological. Since the sym-

metry-data vector of the quasiflat bands in our examples

cannot be written purely as a sum of EBRs, at least one of

the states in these quasiflat bands must be delocalized, in

stark contrast to those of the flat bands in Ginzburg-Landau

theory. Our results provide a generic way to obtain flat

bands with nontrivial topology, as a path to explore

strongly interacting systems.
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