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In flat bands, superconductivity can lead to surprising transport effects. The superfluid “mobility”, in the
form of the superfluid weight Ds, does not draw from the curvature of the band but has a purely band-
geometric origin. In a mean-field description, a nonzero Chern number or fragile topology sets a lower
bound forDs, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high
superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For
fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the
mean-field approximation remained, however, unclear. Here, we numerically use exact Monte Carlo
simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of
MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with
the interaction strength. Then, we investigate the robustness of the superconducting state to the addition of
trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the
topological bound beyond the mean-field regime and further stress the importance of fragile topology for
flat-band superconductivity.

DOI: 10.1103/PhysRevLett.126.027002

Whenever the single particle’s kinetic energy does not
depend on momentum, noninteracting electrons, if not in a
topological state, are strictly localized. Nevertheless, these
seemingly inert systems exhibit intriguing transport
phenomena in the presence of many-body effects. A
paradigmatic example is the onset of unconventional
superconductivity, where mobile coherent electron pairs
emerge from an insulating high-temperature state [1–12]
under the influence of strong electron-electron interactions.
The interest in this flat-band superconductivity surged after
its observation in magic-angle twisted bilayer graphene
(MATBG) [13]. Since then, signatures of zero-resistance
states have been reported in other flat-band van der Waals
systems such as twisted double-bilayer graphene [14–16],
twisted trilayer graphene [17], ABC–trilayer graphene [18],
and bilayer WSe2 [19].
Superconductivity arises from the interplay of two

different energy scales: the effective electron-electron
attractive interaction jUj and the bandwidthW. Avanishing
bandwidth maximizes the density of states n0ðϵFÞ at the
Fermi energy and the Bardeen-Cooper-Schrieffer (BCS)
theory predicts Tc;BCS ∝ jUjn0ðϵFÞ in the flat-band limit
jUj ≫ W [1–3]. While the BCS theory might seem
unsuitable to treat systems lacking a well-defined Fermi
surface, the BCS wave function turns out to be an exact
zero-temperature ground state for certain flat bands with
local attractive interactions [5,20]. Nevertheless, the val-
idity of the BCS theory at finite temperature is questionable
and one needs to be careful in exploring the strong-
coupling regime [21,22]. Moreover, while the BCS theory

captures the formation of electronic pairs, their phase
fluctuations are known to be crucial in two-dimensional
(2D) superconductors [23].
Phase coherence emerges via the Berezinskii-Kosterlitz-

Thouless (BKT) mechanism [24–26]. Within the BKT
theory, the fraction of electrons condensed into coherent
bound pairs is captured by the superfluid weight DsðTÞ.
The universal jump in this quantity determines the tran-
sition temperature Tc: Tc ¼ πD−

s =2, where D−
s is the

superfluid weight at the critical temperature approached
from below [27].
The Ginzburg-Landau theory for conventional super-

conductors predicts DsðT ¼ 0Þ ≈ e2ns=m
�, where ns is

the amplitude of the superconducting order parameter, and
m� is the effective band mass [28]. Exactly flat bands
have an infinite effective mass, m� ¼ ∞. Hence, a vanish-
ing bandwidth seems detrimental to phase coherence.
Therefore, one would expect phase fluctuations to
completely disrupt superconductivity in dispersionless
bands. However, this conclusion neglects other band
properties that are not captured by a simple effective mass
approximation.
The presence of a further contribution to the superfluid

weight is now well established in the mean-field approxi-
mation [5,20,29,30]. This additional term has a band-
geometric origin and is proportional to the Fubini-Study
metric of the occupied bands [20]. Lower bounds for
DsðT ¼ 0Þ have been formulated both for bands with a
nonzero Chern number [20] as well as for two bands
characterized by fragile topology [31].
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While the bound in terms of the Chern number and its
influence on the T ≠ 0 physics has been recently inves-
tigated numerically in the strong-coupling regime [21], no
such analysis has been performed for the case of fragile
topology. The latter is particularly relevant since the single-
particle nearly flat bands of MATBG have zero Chern
number but nontrivial fragile topology [32–37]. In the
current Letter, we fill this gap by studying a concrete flat-
band model with fragile topology via exact numerical
methods.
First, we review the concept of fragile topological bands

and introduce the concrete model used in this Letter. Then,
we compare the superfluid weight obtained from quantum
Monte Carlo simulations to the zero-temperature mean-
field topological bound. To further establish the importance
of fragile topology, we investigate the fate of the super-
conducting state under the addition of trivial bands. Finally,
we analyze the properties of the normal state above the
superconducting phase transition.
Fragile Bloch bands represent a flavor of symmetry

protected topological insulators (TIs), as these bands cannot
be represented by translationally and lattice temporal-
spatial symmetric, exponentially localized Wannier
functions. However, the addition of a trivial Bloch band
can resolve this obstruction, contrary to the stable TIs
[36,38–41]. In the case of MATBG, the protecting symmetry
isC2zT , whereC2z is a 180° rotation around the out-of-plane
axis ẑ, and T is the bosonic time-reversal symmetry that
acts as complex conjugation. For two occupied bands with
C2zT symmetry, it is possible to introduce a Z classification
based on the Euler class, e2, of real orientable bundles
[31,35,36,39,42]. In particular, Ref. [31] showed that, in the
mean-field approximation, a nontrivial Euler class provides a
lower bound on DsðT ¼ 0Þ. The geometric contribution to
the superfluid weight of MATBG has, since then, been
discussed further in [31,43,44].
To investigate the robustness of the bound for fragile

bands in the strong-coupling regime, we follow Ref. [21]
and consider an attractive Hubbard model which lends
itself to numerically exact auxiliary-field quantum
Monte Carlo simulations [45–47].
We focus on a particular 2D lattice model, known as

kagome-3 [48–50], which represents a minimal instance of
a flat-band system characterized by fragile topology. The
lattice, its basis vectors a1 ¼ ð1; 0Þ and a2 ¼ ð1=2;

ffiffiffi

3
p

=2Þ,
and the three inequivalent sublattices in the unit cell are
shown in Fig. 1(a). We study the Hamiltonian

H ¼ Hkin þHint; ð1Þ

Hkin ¼
X

i;j;σ

tijc
†
iσcjσ − μ

X

i

ðni↓ þ ni↑Þ; ð2Þ

Hint ¼ −jUj
X

i

�

ni↑ −
1

2

��

ni↓ −
1

2

�

; ð3Þ

where ciσ is the fermionic annihilation operator, and
niσ ¼ c†iσciσ counts the number of electrons on site i with
spin σ ¼ f↑;↓g. jUj is the electron-electron interaction
strength, μ the chemical potential, and tij the hopping
parameter between sites i and j. In the remainder, we set all
hopping terms to unity.
The single-particle physics encoded in Eq. (2) is par-

ticularly appealing. The spectrum of the model has two
degenerate flat bands at ϵðkÞ ¼ −2 and a third dispersive
band ϵðkÞ¼4þ2½cosk ·a1þcosk ·a2þcosk ·ða1−a2Þ�,
cf. Fig. 1(b). The smallest gap δ ¼ 3 between the dispersive
and flat bands is attained at the momentum point
K ¼ ð2π=3; 2π=

ffiffiffi

3
p

Þ [51]. Note that the model possesses
both spinful time-reversal symmetry and spin Sz conserva-
tion. These features allow us to study the topological
properties by computing the Wilson loop operators of each
spin sector independently [20,31,51]. As shown in
Fig. 1(c), the winding in the Wilson loop spectra of
the two flat bands establishes their topological nature with
a nontrivial Euler class je2j ¼ 1 protected by C2zT

[36,39,51]. The winding of the spectrum is removed by
the addition of a trivial band, as shown in Fig. 1(d),
confirming the presence of fragile topology. Thus, the

(a)

(c) (d) (e)

(b)

FIG. 1. (a) Kagome-3 lattice model with the unit-cell area
shaded in gray. The inset shows the details of one plaquette. The
red circle highlights the 1a Wyckoff position of the lattice, while
the yellow circle the 1bWyckoff position. Note that, although the
full point group of the model is p6mm, we refer to the real space
high-symmetry points of its subgroup p2 [51]. The basis vectors
a1 and a2 are represented by the green arrows. The three
inequivalent sublattices A, B, and C are also highlighted.
(b) Single-particle spectrum of the model along high-symmetry
lines of p6mm. The high-symmetry lines and the first Brillouin
zone (BZ) are shown in the inset. The flat bands at ϵ ¼ −2 are
doubly degenerate. (c) Wilson loop spectrum of the two flat bands
of the kagome-3 model. (d) Wilson loop spectrum of the three
lowest bands of the model with an additional s orbital at 1a
Wyckoff position. (e) Same as (d) but with an s orbital at 1b
Wyckoff position.
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topological properties of the kagome-3 flat bands are akin
to those of the single-particle bands of MATBG [32–37].
To compute DsðTÞ, we introduce an external electro-

magnetic field via its electromagnetic potentialA and Peierls
substitution: tij → tij exp½iA · ðri − rjÞ� ¼ tijðrÞ, where ri

is the position of the site i and r ¼ ri − rj. Then, we can
expand HðAÞ up to second order in A

HðAÞ ¼ H þ j
p
μAμ þ

1

2
TμνAμAν; ð4Þ

where jpμ is the paramagnetic current operator and TμνAν is
the diamagnetic one. These operators are defined as

j
p
μ ¼

X

ij;σ

∂tijðrÞ
∂rμ

c†iσcjσ; ð5Þ

and

Tμν ¼
X

ij;σ

∂2tijðrÞ
∂rμ∂rν

c†iσcjσ: ð6Þ

The superfluid weight characterizes the zero-frequency, long-
wavelength response to the external field, jμ ¼ Ds;μνAν. It is
given by

Ds;μν ¼
1

4
½hTμνi − Λμνðkk ¼ 0; k⊥ → 0; iωm ¼ 0Þ�; ð7Þ

where kkð⊥Þ is the momentum component parallel
(perpendicular) toA, and h·i represents the expectation value
over the many-body ground state of Eq. (1) at temperature T.
Here, Λμνðk;ωÞ is the current-current correlator

Λμνðk; iωmÞ ¼
Z

β

0

dτeiωmτh½jpμ ðk; τÞ; jpν ð−k; 0Þ�i; ð8Þ

with ωm ¼ 2πmT, m ∈ Z, and β ¼ 1=kBT the inverse
temperature. In the reminder, we consider Ds ¼ Ds;xx and
a gauge potential A ¼ Ax̂.

The quantum Monte Carlo simulations grant access to
the superfluid weight DsðTÞ in the strong-coupling regime
at finite temperature [51]. We perform simulations in the
grand canonical ensemble, where the chemical potential μ
controls the filling ν of the system. We carefully tune μðTÞ
to ensure ν ¼ 1=3, i.e., two electrons per unit cell and half-
filling of the flat bands. We focus on a range of Hubbard
interactions jUj < δ, where δ is the energy gap between the
flat bands and the dispersive one.
First, we consider jUj ¼ 2 and lattices of different sizes

L × L, with L ¼ 4, 6, 8. Since each unit cell contains three
inequivalent sublattices and we consider spinful electrons,
the number of orbitals in these systems is 96, 216, 384,
respectively. In Fig. 2(a), we present the results of this
analysis. The transition temperature Tc=jUj ≈ 0.02 is given
by the universal jump in the superfluid weight DsðTÞ [27]
and shows little dependence on the system’s size.
Next, we investigate the relation between Tc and jUj.

Since the Hubbard interaction is the only energy scale of
the problem, we expect a linear relation between Tc and
jUj: Tc ∝ jUj [20]. This observation is confirmed by the
plot of DsðT=jUjÞ=jUj with jUj ¼ 1, 1.5, 2 for a 6 × 6

system. The three curves lie on top of each other and
confirm Tc=jUj ≈ 0.02, cf. Fig. 2(b). These findings
parallel those for flat Chern bands in the strong-coupling
regime [21] and substantiate the onset of superconductivity
in the exactly flat bands of the kagome-3 lattice.
The addition of trivial bands to a fragile topological

insulator can remove the obstruction to an atomic limit and
might impact the strength of the superconducting order.
Therefore, we carefully assess the fate of superconductivity
when further bands are considered.
To investigate the Wannierizability under the addition of

trivial bands, we resort to an analysis of the symmetry
eigenvalues of C2z [51]. This approach allows us to
consider two different scenarios. First, we couple an extra
s orbital at the 1aWyckoff position [red circle in Fig. 1(a)]
to all adjacent sites. This additional orbital gives rise to an

(a) (b) (c)

FIG. 2. Superfluid weight DsðTÞ for the attractive Hubbard model with interaction strength jUj. The crossing of Ds with the dashed
line 2T=π indicates the BKT transition, where the superconducting transition occurs. (a) Different system sizes L × L, with L ¼ 4, 6, 8
and jUj ¼ 2. The arrow on the y axis represents the mean-field topological lower bound for DsðT ¼ 0Þ [51]. (b) Different interaction
strengths jUj ¼ 1, 1.5, 2 in a 6 × 6 system. In both (a) and (b) the kagome-3 model is considered. (c) Results for the four-band models
for jUj ¼ 2 and L ¼ 6. The trivial model has an additional s orbital at Wyckoff position 1a, cf. Fig. 1(a). The model with fragile
topology has an additional s orbital at Wyckoff position 1b, instead, cf. Fig. 1(a).
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A1a band that trivializes the flat bands of the original model,
see [51] for a detailed analysis. A fine-tuning of the on site
energy of the added site results in a four-band model with
three exactly flat bands for arbitrary hopping strength to the
additional site. Second, we add a s orbital at 1b Wyckoff
position [yellow circle in Fig. 1(a)]. Note that we always
consider only the subgroup p2 of the full point group
p6mm of the original kagome-3 model [51]. This addi-
tional orbital gives rise to an A1b band that does not remove
the obstruction to an atomic limit. The nontrivial topology
is now protected by C2z rather than C2zT [51]. In this
second case, it is not possible to achieve three exactly
flat bands with finite range hopping. However, the
addition of longer range hopping allows us to obtain
three bands with W=δ ≈ 0.03 and a coupling strength to
the addition site comparable to the first case. The different
topological properties of these models can be read off the
respective Wilson loop spectra [65] of Figs. 1(d)–1(e):
winding spectrum for the topological case, gapped for the
trivial one.
In the Monte Carlo simulations of these four-band

models, we tune μ to achieve a filling ν ¼ 3=8. This value
corresponds to the half-filling of the lower three bands,
where we intend to study the influence of fragile topology
on the superconducting behavior. The evolution of the
superfluid weight as a function of temperature confirms the
important role played by fragile topology, as can be seen in
Fig. 2(c). In the topologically trivial model, DsðTÞ remains
zero down to temperatures below the critical temperature of
the original three-band model. On the other hand, the model
with fragile topology protected by C2z symmetry behaves
similarly to the kagome-3 model.
For completeness, we now turn our attention to the

physics above the superconducting transition in the
kagome-3 lattice. First, we study the spin susceptibility

χS ¼
1

L2

Z

β

0

dτhSzðτÞSzð0Þi; ð9Þ

with Sz ¼ P

i ðc†i↑ci↑ − c†i↓ci↓Þ [51]. As shown in Fig. 3(a),
it reaches a maximum at TS=jUj ≈ 0.17. This result points
to the onset of singlet formation already above Tc [66].
Next, we investigate the single-particle density of

states [51,67]

NðϵFÞ ¼
β

πL2

X

α

Z

BZ
dkhcαkðβ=2Þc†αkð0Þi; ð10Þ

where α is the sublattice index. NðϵFÞ peaks at temperature
TN=jUj ≈ 0.09 and drops toward zero at lower tempera-
tures, cf. Fig. 3(b). The temperature range Tc < T < TN ,
where the opening of a gap reduces the density of states
before the system turns superconducting, is associated
with a pseudogap regime characterized by strong phase

fluctuations [68]. Note that, for T < TN, the spin suscep-
tibility χS also gets significantly suppressed.
Our results establish the importance of nontrivial fragile

topology for the onset of superconductivity in flat bands. In
summary, the signatures of a single-particle gap above the
critical temperature are typical for attractive Hubbard
models in the strong-coupling regime [67]. Moreover,
the linear scaling with jUj of the characteristic temperatures
Tc, TS, and TN shown in Fig. 3(c) is a generic feature of flat
band physics for jUj < δ [3,21]. In particular, the pseu-
dogap temperature scales linearly with jUj regardless of
whether it is identified with TS [66] or TN. Beyond these
results, it was recently shown that band topology can play a
crucial role in the strength of superconductivity [21,22].
While the authors of Ref. [21] considered the case of a
Chern number, in our Letter, the topological invariant
ensuring a high critical temperature is a fragile one relevant
for a broad class of time reversal invariant systems. In
particular, we prove how this new protecting mechanism is
robust beyond the mean-field approximation of Ref. [31]
but has important consequences for the fate of the super-
conducting state under the addition of trivial bands.
Especially in two-dimensional systems, such additional
bands naturally arise in tunnel-coupled heterostructures.
This direct link between fragility and an observable
quantity is an important step forward in our understanding

(a)

(b)

(c)

FIG. 3. (a) Spin susceptibility χS as a function of temperature T
for the Hubbard model on the kagome-3 lattice with jUj ¼ 2 and
L ¼ 6. (b) Single-particle density of states NðϵFÞ as a function of
temperature T for the same model. The shaded areas correspond
to the superconducting state in dark orange, the range below χS
peaks in yellow and that below the peak of NðϵFÞ in blue.
(c) Scaling of the critical temperatures Tc, TS, and TN as a
function of the interaction strength jUj. All these quantities show
a linear scaling.
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of fragile topological insulators which have only a handful
of known experimental signatures [32,33,69–72]. Despite
the infancy of this field, there is evidence that a myriad of
materials and engineered structures possess this peculiar
topology [73–76], calling for further studies of interactions
in fragile bands [41,71,77].
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