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Fragile topology in line-graph lattices with two, three, or four gapped flat bands
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The geometric properties of a lattice can have profound consequences on its band spectrum. For example,

symmetry constraints and geometric frustration can give rise to topologicially nontrivial and dispersionless

bands, respectively. Line-graph lattices are a perfect example of both of these features: Their lowest energy

bands are perfectly flat, and here we develop a formalism to connect some of their geometric properties with the

presence or absence of fragile topology in their flat bands. This theoretical work will enable experimental studies

of fragile topology in several types of line-graph lattices, most naturally suited to superconducting circuits.

DOI: 10.1103/PhysRevResearch.2.043414

I. INTRODUCTION

Fragile topology is a property of a set of “Wannier-

obstructed” gapped electronic bands whose Wannier obstruc-

tion can be resolved by adding select trivial bands [1–13]. This

Wannier obstruction refers to the inability to describe all states

in these bands by exponentially localized symmetric Wannier

functions, known as the atomic limit. “Extended” states are

then required, much like the edge states of topological insula-

tors [14–22]; crucially, however, the stable topology of these

materials differs from fragile topology because it is robust to

the addition of trivial bands. Additionally, the extended states

of fragile phases generally do not exist at the edge. Recent the-

oretical and experimental work has found that fragile phases

violate the bulk-boundary correspondence, but instead exhibit

gapless edges under “twisted” boundary conditions [23,24].

Moreover, the fragile topology of electronic states also man-

ifests itself in the contribution to the superfluid weight in

the superconducting phase [25–28] and the level crossings in

Hofstadter spectrum under magnetic field [29,30].
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Fragile topology can also be characterized under the theory

of topological quantum chemistry, which classifies topolog-

ical bands by classifying all possible atomic limits based

on crystallographic symmetries [1,31,32]. Under this theory,

atomic limits are described by elementary band representa-

tions (EBRs) [33–37]; while atomic bands can be written

purely as a sum of EBRs, fragile topological bands cannot

[2,3]. Instead, they can be written as sums and differences

of EBRs, such that the inclusion of trivial bands can render

the entire set of bands trivial. In this work, we mainly focus

on the so-called eigenvalue fragile states whose irreducible

representations (irreps) in momentum space cannot be written

as sums of EBRs.

Less recently, theoretical work has also predicted that

nearly flat bands with stable topology may give rise to

fractional quantum Hall states at high temperatures or zero

magnetic field [38–41]. However, to our knowledge no exact

flat bands with stable topology have been found in lattice

models. On the other hand, fragile topological bands can

be exactly flat, for example, in magic-angle twisted bilayer

graphene [42–47]. For exact flatness, then, fragile topological

bands provide an ideal platform for studies of strongly inter-

acting quantum phases [48]. Recent works [45,49–52] have

shown that the partially filled fragile-topological flat bands

in twisted bilayer graphene could form various correlated

insulating phases, including the Chern insulator phase, under

different parameters. It has also been shown that, remarkably,

the Chern insulator phase originates from the fragile topol-
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ogy, which allows a natural choice of the Chern band basis

[49,53–55].

Entire classes of lattices are known to have exactly flat

bands, for example, bipartite lattices with an unequal number

of vertices in each part [56] or certain types of “line-graph

lattices” [57]. However, apart from directly computing the

representation of specific flat-band systems, it is not generally

known whether these bands are topological and, if so, whether

the topology is stable or fragile.

Here we consider line-graph lattices of “regular” lattices,

defined by the attribute that every vertex has the same coor-

dination number. The band spectra of these lattices have flat

bands as their lowest energy bands. Although the topology of

these bands can be computed via topological quantum chem-

istry, this must be done on a case-by-case basis. We develop

a framework for analyzing the topology of line-graph-lattice

flat bands for entire families of lattices, drawing connections

between simple geometric attributes of the lattices and their

flat-band representations. With this framework, we identify

such families whose flat bands have fragile topology, as well

as families of line-graph lattices whose flat bands are topo-

logically trivial but that, after certain perturbations, can be

split into fragile topological flat bands and topologically triv-

ial dispersive bands. These results can inform experimental

simulations of line-graph lattices for studies of fragile topol-

ogy; in particular, these lattices are quite natural to simulate

with coplanar waveguide resonators in quantum circuits be-

cause the line-shaped resonators act as lattice vertices for

microwave photons, with tunneling between vertices made

possible through capacitive coupling at the resonator ends

[58].

A line graph L(X ) can be formed from any graph X (which

we will refer to as the root graph) by placing a vertex vL(X ),i

on each edge eX,i of X and connecting vertices vL(X ),i and

vL(X ), j if their corresponding edges eX,i and eX, j are adjacent,

i.e., share a common vertex. We then define the tight-binding

Hamiltonian

Ĥ =
∑

〈i, j〉

â
†
i â j + â

†
j âi, (1)

where the sum is taken over all adjacent vertices vL(x),i and

vL(X ), j , representing amplitude-1 hopping of spinless bosons

âi between adjacent vertices in the line graph.

There are several properties of line graphs, discussed

further in Appendix A of the Supplemental Material with

examples [59], that are relevant to this work:

LG1 If X is a periodic lattice, L(X ) is as well.

LG2 Any symmetries of X are inherited by L(X ); i.e., the

space group of X is the same as that of L(X ).

LG3 As a consequence of the line-graph construction,

every vertex vX,i of the root graph gives rise to a “complete

subgraph” in the line graph, where a complete subgraph is

defined as a subset of k vertices and binomial coefficient(
k

2

)
edges for which all pairs of vertices are connected by

one of the edges (i.e., “fully connected”). In these complete

subgraphs, k will be equal to the coordination number of vX,i.

LG4 Consider a sequence of vertices of the root

graph (vX,1, vX,2, . . . , vX,n+1), where vX,1 = vX,n+1 but all

other vertices are distinct. Take the sequence of edges

(eX,1, eX,2, . . . eX,n) of X where the edge eX,i connects vertices

vX,i and vX,i+1. These vertices and edges form a “cycle” of

the graph. As a consequence of the line-graph construction,

every cycle of X gives rise to a cycle of equal length (number

of edges) of L(X ). These cycles of L(X ) are “chordless,”

meaning that no two vertices of the cycle are connected by

an edge that does not belong in the cycle.

For regular root-graph lattices X with n vertices per unit

cell, each with coordination number (degree) d , we have ad-

ditionally the following:

LG5 Given energies EX of X , its corresponding line-graph

lattice L(X ) has energies EL(X ) = {EX + d − 2,−2}, with one

or more flat bands at −2.

LG6 The degeneracy D of the flat band at −2 is given by

D = n(d − 2)/2.

LG7 If X is nonbipartite, then the flat band(s) at −2 for

L(X ) will be gapped from the other bands.

Finally, if X (under periodic boundary conditions) can be

embedded on a torus such that none of its edges cross each

other, then we define the faces of X to be regions bounded by

edges and containing no edges or vertices. Because X is on a

torus, the coordination number d and number of vertices n per

unit cell then determine the number of faces is per unit cell to

be equal to the band degeneracy D:

LG8 The number of faces per unit cell of X is also given

by n(d − 2)/2.

We consider line-graph lattices of nonbipartite toroidal reg-

ular root-graph lattices, with flat-band degeneracy 1 < D � 4.

These lattices have C2, C3, or C6 symmetry, and can be further

split into families based on their coordination number and the

number of faces per unit cell that are bounded by an even

number of edges (“even-sided faces”). We find that lattices

in the same family have the same representation of the asso-

ciated flat bands. More specifically, these three characteristics

define which graph-element type—vertex, edge, or face—is

located at each maximal Wyckoff position of the root-graph

lattice unit cell. Maximal Wyckoff positions in a space group

are the high-symmetry points in real space with the little

groups—under which they are invariant—as maximal sub-

groups of the space group. Each element type (vertex, edge,

or face) then determines the so-called real-space invariants

(RSIs) of the flat band at each maximal Wyckoff position,

from which the representation and topology follow [23]. Fur-

thermore, for D = 3 and D = 4 flat bands we consider various

perturbations to reduce the degeneracy and identify a class of

perturbations that produces fragile topological flat bands.

In discussing our framework, we will use two elucidating

examples, shown in Fig. 1; additional examples are included

in Appendix F of the Supplemental Material [59]. For example

1, we take the line graph of the triangle lattice, which has co-

ordination number 6, zero even-sided faces, and C6 symmetry.

It also has one vertex and two faces per unit cell; therefore, the

corresponding line-graph lattice has a D = 2-fold degeneracy

of its flat bands at energy −2. For example 2, we take the line

graph of the heptagon-heptagon-pentagon-pentagon lattice

with Mx and My mirror symmetries as shown in Fig. 1. This

root-graph lattice has coordination number 3, zero even-sided

faces, and C2 symmetry. It also has eight vertices and four

faces per unit cell; therefore, the corresponding line-graph

lattice has a D = 4-fold degeneracy of its flat bands at −2.
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FIG. 1. The two examples of line-graph lattices described in the

main text. Example 1 begins with the triangle lattice as its root

graph, and example 2 begins with the heptagon-heptagon-pentagon-

pentagon lattice with Mx and My mirror symmetries. Upon taking the

line graph of these root-graph lattices, the band spectra shift upward

in energy (by d − 2) and flat bands are created at −2. Unit cells are

outlined in gray, lattice vertices in a two-unit-cell by two-unit-cell

region (outlined in blue) are drawn as gray circles, and the maximal

Wyckoff positions of one unit cell are drawn as red circles.

II. FROM ROOT-GRAPH LATTICE PROPERTIES

TO GRAPH ELEMENT AT EACH MAXIMAL

WYCKOFF POSITION

Maximal Wyckoff positions are labeled by a number ac-

cording to their multiplicity and a letter defining their position

(see top row of Table I). They play a large role in the construc-

tion of EBRs. Previous works have considered which maximal

TABLE I. For the maximal Wyckoff positions associated with a

given point-group symmetry, depicted in the header row, we predict

how many of them have vertices (v), edges (e), or faces (f) of the

root-graph lattice at these positions based on the lattice’s flat-band

degeneracy D, coordination number d , and number of even-sided

faces per unit cell. For example, the root-graph lattice of example

2 has C2 symmetry, D = 4, zero even faces, and d odd, so the table

indicates that its four maximal Wyckoff positions should be occupied

by edges; indeed, as seen in Fig. 1, this is the case. We note that for

the C3- and C6-symmetric lattices, we find a single lattice geometry

for each cell in the table, drawn in Fig. S8 of the Supplemental

Material [59]. Cells corresponding to examples 1 and 2 are in blue.

C2 C3 C6

1a, 1b, 1c, 1d 1a, 1b, 1c 1a 2b 3c

D = 2 2f, 1v 1v 1f 1e

D = 3 d odd 1f, 3e 1f 1f 1e

d even 1f, 2e, 1v 1f 1f 1v

D = 4 0 even faces

d odd 4e 1f, 2v

d even 4e OR 2e, 2v

2 even faces 2f, 2e

Wyckoff positions are occupied by lattice vertices (atomic

orbitals) to define EBRs [1,31,32,35–37]. However, here we

consider all graph elements of the lattice and whether maximal

Wyckoff positions are occupied by vertices, edges, or faces

of the root-graph lattice. In general, the lattices we consider

contain many vertices on nonmaximal Wyckoff positions as

well. As the first step in determining the properties under

symmetry of the line-graph lattice flat band, we show the

relationship between the root-graph lattice properties and the

graph element at each maximal Wyckoff position.

The maximal Wyckoff positions for our two examples are

highlighted in Fig. 1 as red circles. Example 1 has C6 sym-

metry and its maximal Wyckoff positions are the 1a, 2b, and

3c positions, defined in Table I. In its root-graph lattice (the

triangle lattice), at the 1a position sits a vertex, at 2b is a face,

and at 3c is an edge. As for example 2, its maximal Wyckoff

positions are the 1a, 1b, 1c, and 1d positions (Table I) result-

ing from its C2 symmetry. In its root-graph lattice, at all four

are edges.

More generally, we find a relationship between how many

of each graph-element type are at a root-graph lattice’s maxi-

mal Wyckoff positions, and the lattice’s coordination number,

number of even-sided faces, and symmetry. These correspon-

dences are listed in Table I, with cells pertaining to examples

1 and 2 colored in blue. Several patterns emerge across these

root-graph lattices, stated and proved in Appendix C of the

Supplemental Material [59].

From the line-graph construction and properties LG2, LG3,

and LG4 of line graphs, we can determine which graph ele-

ment of the line-graph lattice is on each of maximal Wyckoff

positions, given which root-graph graph element is on each

maximal Wyckoff position in the root graph. For example,

as seen in Fig. 1, the triangle lattice’s 1a maximal Wyckoff

position is occupied by a vertex; 2b is occupied by a triangular

face, which is bounded by a cycle of length 3; and 3c is occu-

pied by an edge. Upon taking the line graph (see Appendix A

of the Supplemental Material for details [59]), the root-graph

vertex at 1a gives rise to a complete subgraph at 1a in the

line graph, of six vertices that are pairwise fully connected by(
6

2

)
= 15 edges (property LG3 of line graphs). Similarly, the

root-graph triangular face at 2b gives rise to a triangular face

at 2b in the line graph (property LG4), and the root-graph edge

at 3c gives rise to a vertex at 3c in the line graph (by definition

of the line-graph construction).

III. FROM MAXIMAL WYCKOFF POSITION LOCATION

TYPE TO REAL-SPACE INVARIANT

Real-space invariants (RSIs) are quantum numbers as-

signed to maximal Wyckoff positions and can be used to

determine band topology. RSIs compute the local represen-

tation of an orbital at a Wyckoff position, which induces

a set of bands in the Brillouin zone [23]. For a maximal

Wyckoff position with point symmetry Cs, these eigenstates

can have (single group) eigenvalues ei2πk/s for integer k ∈

[0, 1, . . . s − 1]. Here we consider RSIs for two-dimensional

point-group symmetries without spin-orbit coupling and with

time-reversal symmetry (TRS). Due to TRS, there is a one-

to-one correspondence between eigenstates with eigenvalue

e±i2πk/s, and hence we only consider k � ⌊s/2⌋. The RSIs
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at maximal Wyckoff position w are then equal to the differ-

ence in multiplicities ms
w,k �=0 and ms

w,k=0 of these eigenstates:

δs
w,k′ ≡ ms

w,k′ − ms
w,0 for k′ ∈ [1, s/2]. We note that these RSIs

are can also be written using the point group irreducible repre-

sentation (orbital) notation from the Bilbao Crystallographic

Server [35], but avoid this notation here for simplicity.

A real-space approach to determine the RSIs of a Cs center

is to consider local energy eigenfunctions |φ〉 plus each of

their Cs images with a relative phase:

|φk〉 ≡ |φ〉 + ei2πk/sCs|φ〉 + · · · + (ei2πk/sCs)s−1|φ〉. (2)

Notice that each value of k ∈ [0, s/2] generates an eigen-

function of eigenvalue ei2πk/s. However, some of these

constructions may yield |φk〉 ∝ |φ〉 (with an overall phase),

which occurs when |φ〉 is a Cs eigenstate, or vanish identically.

If either of these is the case, then one or more of the RSIs will

nonzero valued. To evaluate the RSIs for our line graphs, we

choose a real-space flat-band eigenbasis containing so-called

“cycle” and “chain” compact localized states (CLSes), which

are defined in Appendix B of the Supplemental Material [59].

Figure 2 depicts the RSIs and associated CLS eigenstates

at each maximal Wyckoff position for our two examples. For

example 1, we define a flat-band eigenstate |φ〉 with nonzero

amplitude on four vertices in the line-graph lattice, enclos-

ing an even cycle around two of the triangle faces. At the

1a position, we consider the sum of |φ〉 with each of its

C6 images with a relative phase ei2πk/6 [see Fig. 2(a)]. Of

the integers k ∈ [0, 3], all yield nonzero functions except for

k = 0. In particular, notice that the Cs eigenstate constructions

can vanish identically for some k only if each vertex (of the

line-graph lattice) where |φ〉 has nonzero amplitude, also has

nonzero amplitude for at least one of the Cs images of |φ〉. All

other local flat-band symmetry eigenstates for the line graph

of the triangle lattice involve a local energy eigenfunction |φ′〉

that does not have this property; therefore, the constructions

|φ′
k〉 will construct the same number of eigenfunctions of each

eigenvalue. Then the eigenstates |φ′
k〉 do not contribute to the

RSIs of the origin 1a, and the RSIs are δ6
1a,1 = δ6

1a,2 = δ6
1a,3 =

1. The same procedure for the 2b and 3c positions yields RSIs

of δ6
2b,1 = 0 and δ6

3c,1 = −1.

In example 2, we define different local eigenstates |φ〉

at each of the four maximal Wyckoff positions; however,

each yield one more C2 eigenstate of eigenvalue +1 than

−1. Again, all other local eigenstates of the chosen Wyckoff

position create an equal number of eigenfunctions of each

± eigenvalue, so the RSIs are δ2
1a,1 = δ2

1b,1 = δ2
1c,1 = δ2

1d,1 =

−1.

These RSI values at each maximal Wyckoff position can

be generalized to those in our other line-graph lattices based

upon the line-graph graph element sitting on the maximal

Wyckoff position and the point-group symmetry; we tabulate

these relationships in Table II and prove them in Appendix C

of the Supplemental Material [59].

IV. FROM RSIS TO REPRESENTATION

Once the RSIs have been determined, it is straightfor-

ward to solve for the representation. RSIs are linear invariant

FIG. 2. The point-group-symmetric eigenstates local to each

maximal Wyckoff position (red circles) depict the real-space invari-

ants (RSIs) for each position, as demonstrated by our two examples.

Here, the local flat-band eigenfunctions |φ〉 are based on compact

localized states (CLSes; see main text). They are real valued and

depicted by the colored circles, with blue (yellow) circles denoting

relative amplitude +1 (−1). (a) Cs flat-band eigenstate construction

from flat-band energy eigenstates, as described in the main text, for

each maximal Wyckoff position in example 1. The flat-band energy

eigenstate |φ〉 and its Cs images are represented graphically. (b) RSI

determination for examples 1 and 2 based on the multiplicities of

Cs flat-band eigenstates of each eigenvalue. Circles outlined in black

highlight vertices where at least one of the Cs images of |φ〉 have

nonzero amplitude. The representation follows directly from these

RSIs, and we find odd Wilson loop winding when the representation

involves a difference of EBRs as in example 1.

under induction, so they also describe the differences in

EBR multiplicities m̃w,k for EBRs induced from the orbitals

corresponding to Cs eigenvalue ei2πk/s at maximal Wyckoff

positions w. There is also an additional constraint on the total

number of flat bands D,
∑

w, k∈[0,s/2]

mw,km̃w,k = D, (3)

where mw,k is the dimension of the induced EBR at maximal

Wyckoff position w. The representations for various families

of line-graph lattices are derived in Appendix E of the Sup-

plemental Material [59]; we now explicitly consider our two

examples.

For C6-symmetric lattices, we have m1a,0 = 1, m2b,0 = 2,

and m3c,0 = 3. In example 1, with Eq. (3) we find m̃1a,0 =

−1, m̃3c,0 = 1, and hence the representation can be written
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TABLE II. For a maximal Wyckoff position w associated with a

given point-group symmetry, indicated in the header row, its RSIs can

be determined based on the line-graph graph element occupying w.

C2 C3 C6

Vertex δ2
w,1 = −1 δ3

w,1 = 0 δ6
1a,1 = δ6

1a,2 = δ6
1a,3 = 0

Complete δ2
w,1 = +1 δ3

w,1 = +1 δ6
1a,1 = δ6

1a,2 = δ6
1a,3 = +1

Subgraph

Face δ2
w,1 = 0 δ3

w,1 = 0 δ6
1a,1 = δ6

1a,2 = δ6
1a,3 = 0

as (A)3c ↑G ⊖ (A)1a ↑G, where now we use the irrep notation

from the Bilbao Crystallographic Server [35]. Although this

decomposition is not unique, all equivalent decompositions

have a negative coefficient. Because this representation can be

written as a difference of EBRs, the flat bands in example 1—

the line graph of the triangle lattice—exhibit fragile topology.

The Wilson loop for these bands exhibits winding, confirming

our result [see Fig. 2(b)].

For C2-symmetric lattices, we have m1a,0 = m1b,0 =

m1c,0 = m1d,0 = 1, so in example 2 we find m̃1a,0 = m̃1b,0 =

m̃1c,0 = m̃1d,0 = +1. This yields the representation (A)1a ↑

G ⊕ (A)1b ↑G ⊕ (A)1c ↑G ⊕ (A)1d ↑G and we cannot con-

clude that these fourfold-degenerate bands of example 2

exhibit fragile topology. Correspondingly, the Wilson loop

eigenvalues show no odd winding.

At this point, among our line-graph lattices we find

one D = 2 lattice with fragile topological flat bands—the

line graph of the triangle lattice—and one D = 2 lattice

which admits a Wannier representation—the line graph

of the nonagon-triangle lattice (see Appendix F of the

Supplemental Material [59]). We also find that all flat-

band representations for the D = 3 and D = 4 line-graph

lattices considered are a sum of EBRs, indicating that

each group of bands may be topologically trivial. How-

ever, we can split the flat-band band degeneracy for these

D > 2 line-graph lattices and characterize the resulting band

topology. We examine perturbations that leave twofold-

degenerate gapped flat bands at the original flat-band energy

−2. We refer to this process as “splitting the bands.”

V. SPLITTING THE BANDS

To begin, we note that on-site-energy perturbations can

successfully split the bands for D = 3 and D = 4 into flat

band(s) and dispersive bands, for example, as in the left of

Fig. 3. However, the remaining flat band(s) are still EBRs

or sums of EBRs. Because these perturbations are localized

on single vertices, they will not change the existing Wannier

representation for the flat-band eigenfunctions.

Therefore, we focus on symmetry-preserving perturbations

consisting of new hoppings. For D = 4 line-graph lattices

with C2 symmetry, such as example 2 (see Fig. 3), we find

that the bands can always be split into a set of two flat bands

and two dispersive ones. More specifically, every D = 4 line-

graph lattice has a root-graph unit cell with either two even-

and two odd-sided faces (the “2e2o” family) or four odd-

sided faces (the “4o” family). For 2e2o lattices, the flat-band

degeneracy can be split by introducing a hopping between

FIG. 3. By adding a perturbation (green) consisting of (left) on-

site energies or (right) additional hoppings, we can split the D = 4

degeneracy of example 2 to create twofold-degenerate gapped flat

bands. We predict the topology of these bands given the perturbation;

here the hopping perturbation leaves bands with fragile topology, as

seen in the representation and Wilson loop winding.

the two vertices that are each adjacent to both even-sided

faces, as shown in Fig. S12(a) [59]. For 4o lattices, it can

be split through two hoppings that (1) are C2 images of one

another and share a vertex at a maximal Wyckoff position,

(2) each extend across a single face, and (3) are between

vertices adjacent to all four faces. A construction is depicted in

Fig. S13(a) [59], with the result seen in the right of Fig. 3.

In both families, these prescribed hoppings always exist; of

course, there may also be alternate hopping perturbations for

these lattices that also split the bands successfully. These

claims are proved in Appendix D of the Supplemental Ma-

terial [59].

By contrast, for all other line-graph lattices considered we

find evidence, presented in Appendix D of the Supplemental

Material [59], that the bands cannot be split into twofold-

degenerate gapped flat bands. For example, in D = 3 lattices

with C2 symmetry, it seems that hopping perturbations can

at best split the three bands into one flat band, sharing a

band touch with one dispersive band, and one other, separate,

dispersive band.

For bands that can be split, their postperturbation represen-

tation can be predicted with the same formalism. Intuitively,

a perturbation splits the bands by inducing level repulsion

between identical atomic orbitals; indeed, this is the case for

example 2, as seen in the right of Fig. 3, where the perturbed

bands each have a representation induced from an orbital on

the same maximal Wyckoff positon, 1a. Level repulsion can

also occur between two orbitals on general (nonmaximal)

Wyckoff positions, which is equivalent to one s and one p

orbital for a maximal Wyckoff position w of multiplicity 1

(see Appendix E of the Supplemental Material and the last

two rows of Table S3 [59]). We also find that bands with

fragile topology can be realized through our constructed hop-

ping perturbations on the 4o lattices, but not on the 2e2o

lattices; proofs are in Appendix E of the Supplemental Mate-

rial [59]. There we also tabulate representations for perturbed

D = 3 C2-symmetric lattices, where if the perturbation is sym-

metry preserving and involves two vertices on a face that sits

on a maximal Wyckoff position, then the resulting band pair

exhibits fragile topology.
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VI. CONCLUSION

We have shown how to predict the representation of the

energy = −2 flat bands for line-graph lattices of planar regu-

lar root-graph lattices where these bands are gapped from the

rest of the spectrum. These predictions only require knowl-

edge of purely geometric qualities of the root-graph lattice

structure. We further demonstrate that in cases of flat bands

with fourfold flat-band degeneracy, perturbations to the line

graph always exist to partially break the degeneracy and leave

doubly degenerate gapped flat bands, whose representation

can also be predicted. Of the line-graph lattices considered in

this work, we find one D = 2 lattice with fragile topological

flat bands—the line graph of the triangle lattice—and a family

of D = 4 lattices with fragile topological flat bands after one

of a class of specific perturbations—the 4o family. We also

find that for our D = 3 lattices, there exists a perturbation that

yields a pair of fragile topological bands (one flat and one

dispersive).

Possible extensions of this work, some of which are briefly

discussed in Appendix G of the Supplemental Material [59],

include extending the formalism to higher degeneracies D >

4, which will also allow for the treatment of lattices with C4

symmetry, and the addition of p- and d-orbital hopping to

the tight-binding model. Other extensions include considering

irregular root-graph lattices where vertices can have differing

coordination number, nontoroidal root-graph lattices where

edges can cross each other without meeting at a vertex, or

proving the results of alternate hopping perturbation construc-

tions. Similar work has been done on the band topology of

ungapped flat bands in line graph and split graphs of bipartite

lattices, after the bands are gapped by introducing spin-orbit

coupling [60].

Our results dictate the course of quantum simulation of

fragile topology in line-graph lattices, a system particularly

suitable for the platform of microwave quantum circuits.

Coplanar waveguide resonators have been used to create

various line-graph lattice geometries in two dimensions;

in particular, the isotropic three-way capacitor is a well-

established and straightforward circuit element to realize such

lattices with d = 3 [61,62]. By creating artificial materials

with these crystalline structures using microwave resonators,

it may be possible to probe the physics of fragile topology in

flat electronic bands.
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