
Better Regularization for Sequential Decision Spaces: Fast
Convergence Rates for Nash, Correlated, and Team
Equilibria

GABRIELE FARINA, Carnegie Mellon University, USA
CHRISTIAN KROER, Columbia Univesity, USA
TUOMAS SANDHOLM, Carnegie Mellon University, USA

We study the application of iterative first-order methods to the problem of computing equilibria of large-
scale two-player extensive-form games. First-order methods must typically be instantiated with a regularizer
that serves as a distance-generating function for the decision sets of the players. For the case of two-player
zero-sum games, the state-of-the-art theoretical convergence rate for Nash equilibrium is achieved by using
the dilated entropy function. In this paper, we introduce a new entropy-based distance-generating function
for two-player zero-sum games, and show that this function achieves significantly better strong convexity
properties than the dilated entropy, while maintaining the same easily-implemented closed-form proximal
mapping. Extensive numerical simulations show that these superior theoretical properties translate into better
numerical performance as well.

We then generalize our new entropy distance function, as well as general dilated distance functions, to the
scaled extension operator. The scaled extension operator is a way to recursively construct convex sets, which
generalizes the decision polytope of extensive-form games, as well as the convex polytopes corresponding to
correlated and team equilibria. By instantiating first-order methods with our regularizers, we develop the first
accelerated first-order methods for computing correlated equilibra and ex-ante coordinated team equilibria.
Our methods have a guaranteed 1/𝑇 rate of convergence, along with linear-time proximal updates.

Authors’ addresses: Gabriele Farina, gfarina@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
Pennsylvania, USA; Christian Kroer, christian.kroer@columbia.edu, Columbia Univesity, New York City, New York, USA;
Tuomas Sandholm, sandholm@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania,
USA.

ArXiv preprint

ar
X

iv
:2

10
5.

12
95

4v
1 

 [c
s.G

T]
  2

7 
M

ay
 2

02
1



Better Regularization for Sequential Decision Spaces 1

1 INTRODUCTION
Large-scale extensive-form game (EFG) models have been used in several recent AI milestones,
where equilibrium approximation was used as the approach for building AI agents [4, 5, 7, 27].
A crucial component for constructing these agents is a fast method for computing approximate
Nash equilibria in large and very-large game models. For the two-player zero-sum setting, an
EFG can be solved in polynomial time using a linear program (LP) whose size is linear in the
size of the game tree [36]. However, this LP-based approach was not used in any of these AI
milestones. Instead, fast iterative methods are preferred [6, 12, 20, 23, 35, 38] as well as sampling-
based variants [5, 7, 14, 19, 24, 26, 33]. The reason for this is that constructing the LP, and running
simplex or interior-point methods on it, is too expensive for these large-scale models. In contrast,
iterative methods only require oracle access to one or two gradient computations, or even estimates
thereof, in order to perform an iteration.
From a theoretical standpoint, the fastest iterative methods for solving two-player zero-sum

games are first-order methods (FOMs) such as the excessive gap technique [30] or mirror prox [29],
which converge at a rate of 1/𝑇 , where 𝑇 is the number of iterations. In order to apply these
methods to EFGs, they must be instantiated with a distance-generating function (DGF), which
yields an appropriate notion of how to measure distances between strategies in the game. In this
framework, the convex set of all strategies belonging to a player is referred to as the sequence-form
polytope, and alternatively as a treeplex [20], which is a tree-like structure of scaled simplexes.
Essentially the only sequence-form poltyope DGFs that are known are based on the dilated DGF
framework introduced by Hoda et al. [20] (apart from using the standard ℓ2 distance, which is
unsuitable due to projection requirements at each iteration). For example, the dilated entropy
distance yields the best current rate of convergence for 1/𝑇 methods [23]. One drawback of the
dilated entropy DGF, as well as other dilated DGFs, is that current analyses incur a dependence of
the form 2𝔇, where𝔇 is the depth of the decision space [20, 22, 23]. In some cases this is reasonable,
since the decision space itself may have exponential size in the depth of the game tree. However, in
other cases the decision space may have substantial structure, such that this exponential complexity
in depth makes the bounds exponential in the size of the game tree.

In this paper, we introduce the first DGF for sequence-form polytopes whose strong convexity is
not derived from its structure as a dilated distance function (again, the standard Euclidean distance
also satisfies this, but it requires difficult projections). In particular, we show that a weighted
version of the negative entropy for the nonnegative unit cube is a superior DGF for sequence-form
polytopes. First, we show that this DGF can achieve strong convexity modulus 1/𝑀𝑄 (where𝑀𝑄 is
the maximum value of the ℓ1 norm on 𝑄), with the largest weights at individual decision points
being on the order of𝑀𝑄 log𝑛 (where log𝑛 is the largest number of actions at any decision point),
which improves upon that of the dilated entropy DGF by a factor of 2𝔇. This also translates into an
improvement to the theoretical convergence rate of FOMs by a factor 2𝔇+2. A particularly appealing
part of this result is that our analysis depends only on the ℓ1 norm of the sequence-form polytope,
and has no exponential dependence on the depth. At the same time, we must also ensure that the
new DGF allows fast computation of the associated proximal steps required for, for example, mirror
prox or EGT. We show that this is indeed the case: the weights in our new DGF are chosen in a
way that allows us to show that this new DGF corresponds to a particular dilated entropy DGF
on the sequence-form polytope (while being different outside the sequence-form polytope). This
allows us to use existing results on fast proximal-step computation for dilated entropy. We call our
new DGF the dilatable global entropy (DGE).
After introducing DGE for sequence-form polytopes, we switch our focus to studying DGFs

for the more general scaled extension operator [17]. The scaled extension operator is a method for
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iteratively constructing a convex set as a sequence of convexity-preserving compositions of convex
sets. This operator can be used to construct the sequence-form polytope, but more importantly for
our purposes it can also be used to construct more general sets such as the polytope of correlation
plans needed for computing optimal extensive-form correlated equilibria and ex-ante coordinated
team strategies in certain classes of games where it is known that those solution concepts can be
computed in polynomial time. First, we show how to extend the class of dilated DGFs to polytopes
constructed via scaled extension, thereby generalizing the framework of Hoda et al. [20] beyond
sequence-form polytopes, while also giving a simpler proof of strong convexity. This enables DGFs
such as the dilated entropy or dilated Euclidean distance to be applied to a much broader class of
polytopes. Then, we show that our DGE construction can also be extended to scaled extension.
Taken together, we generalize the entire class of known “nice” DGFs for sequence-form polytopes
to the set of all polytopes which can be constructed via scaled extension. Applying these results
to the problems of computing optimal correlated solution concepts and ex-ante coordinated team
strategies yields the first method for iteratively solving these problems at a rate of 1/𝑇 , while
enjoying fast closed-form solutions at each iteration. In contrast, the only prior result of this form
required using the standard Euclidean distance, and thus had to perform expensive projections at
every iteration of the algorithm [16].
Extensive experiments validate the efficacy of our new DGFs. We find that these new DGFs

lead to much smaller amounts of smoothing, while still ensuring correctness of the algorithms.
Intuitively, this means that we can safely take much larger steps at each iteration.

Paper Outline. The paper is structured as follows. Section 3 presents background on first-order
methods, which includes the description of the DGFs needed for setting up these methods. That
section can be skimmed for notation, if the reader is already familiar with FOMs. Section 2 gives an
introduction to extensive-form games. That section can be skimmed for notation, if the reader is
already familiar with EFGs. Section 4 introduces the sequence-form polytope, and presents our
new DGF for that polytope, along with the convergence rate obtained when combined with a
FOM. Section 6 develops DGFs for the scaled extension operator, and shows how this leads to
efficient FOMs with a 1/𝑇 convergence rate for correlated and team equilibria. Section 7 provides
an extensive set of computational evaluations of our new DGFs for various games and types of
equilibrium.

2 PRELIMINARIES ON EXTENSIVE-FORM GAMES
An extensive form game (EFG) is a game played on a tree. Every node in the tree belongs to some
player, whose turn it is to act, and the set of branches at the node correspond to the set of actions
available to the player. In general, a strategy for a player may consist of choosing a probability
distribution over the actions at each node in the game. Additionally, there may be special nodes
called chance nodes, which have a fixed distribution over actions associated with them. These nodes
model stochastic outcomes, for example, the dealing out of cards in a card game or the valuation
signals sent to buyers in a sequential auction. At leaf nodes the game ends, and each leaf node is
associated with a vector of payoffs, one payoff per player. The goal of each player in the game is
to maximize the expected value of their leaf-node payoffs. Finally, an EFG can model imperfect
information: an information set is a group of nodes belonging to a player such that the player cannot
distinguish among those nodes, and is therefore required to have the same probability distribution
over actions at each node in the information set. An example of an information set would be in a
poker game, where the information set represents all the cards seen by the player, as well as all
bets (which are public). Each node in the information set would correspond to different possible
hands held by the other player(s).
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Fig. 1. Example poker game. The red “Card” node is a chance node. Only a subset of the possible cards dealt
out by chance are shown (“J,Q” and “K,Q”). Dotted lines denote nodes that belong to the same information
set.

Figure 1 illustrates a part of a poker game tree. At each node, either a card is dealt at random
to each player (for space reasons, we only show two branches of cards dealt, even though there
would be more in a real poker game) or some player acts. The payoffs are at the leaves. They are
zero sum in this example.
A solution concept provides a definition of rationality. For a given EFG, the application of a

solution concept yields a set of equilibria, where each equilibrium has one strategy per player. A
strategy describes how a player acts at every one of her information sets. For example, a Nash
equilibrium is a set of strategies such that each player cannot improve their expected utility by
switching to another strategy, when the strategies of other players are held fixed. We will introduce
various solution concepts in the sections where we give algorithms for them.

3 PRELIMINARIES ON FIRST-ORDER METHODS
The types of FOMs that we will consider rely on access to a function 𝑑 which is used to construct a
notion of distance between pairs of points in the decision space. The soundness of the algorithm
requires such a function to satisfy a number of properties. One of the conditions that we will
need is that 𝑑 be a Legendre function, which is defined as follows. (The definition is not entirely
standardized; the one we use here is the same one used by Cesa-Bianchi and Lugosi [9].)

Definition 3.1. Let 𝑑 : A → R be a convex function whose convex domain A has nonempty
interior int(A). The function 𝑑 is said to be a Legendre function if
(1) 𝑑 is differentiable on int(A) of A;
(2) for any sequence 𝒙1, 𝒙2, · · · ∈ int(A) that converges to a boundary point of A, the norms
∥∇𝑑 (𝒙𝑛)∥ → ∞;

(3) 𝑑 is strictly convex on int(A).

A proximal setup for a convex compact set X consists of:
• A norm ∥ · ∥ on the Euclidean space 𝐸 embedding X
• A distance-generating function (DGF) 𝑑 : A → R, whose convex domain A has nonempty
interior and is such that X ⊆ A ⊆ 𝐸.
When used as part of a proximal setup, we make the standard requirement that 𝑑 be a
Legendre function that is strongly convex with modulus one with respect to ∥ · ∥ on the
interior int(A) of its domain, specifically,

(∇𝑑 (𝒙) − ∇𝑑 (𝒙 ′))⊤ (𝒙 − 𝒙 ′) ≥ ∥𝒙 − 𝒙 ′∥2 ∀𝒙, 𝒙 ′ ∈ int(A).
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For twice-differentiable 𝑑 , the strong convexity condition (Condition 3 above) can be equiva-
lently characterized as

𝒉⊤∇2𝑑 (𝒙)𝒉 ≥ ∥𝒉∥2, ∀𝒙 ∈ A,𝒉 ∈ 𝐸. (1)

Furthermore, we make the common assumption that

min
𝒙∈X

𝑑 (𝒙) = 0.

This can always be assumed without loss of generality, as 𝑑 can always be shifted by a
constant amount without losing the other properties.
• The Bregman divergence 𝐷𝑑 : A× int(A) → R≥0 associated with 𝑑 yields a notion of distance
between points defined as1

𝐷𝑑 (𝒙 ∥ 𝒙 ′) B 𝑑 (𝒙) − 𝑑 (𝒙 ′) − ∇𝑑 (𝒙 ′)⊤ (𝒙 − 𝒙 ′)
• The 𝑑-diameter of X is

Ω𝑑,X B max
𝒙,𝒙′∈X

𝐷𝑑 (𝒙 ∥ 𝒙 ′) ≤ max
𝒙∈X

𝑑 (𝒙) −min
𝒙∈X

𝑑 (𝒙)

• Finally, we denote the largest possible value of the ℓ1 norm on a X with the symbol𝑀X B
max𝒙∈X ∥𝒙 ∥1.

3.1 “Nice” distance-generating functions
While not a part of the assumptions on the DGF 𝑑 , it is typically assumed that 𝑑 allows one to
efficiently compute the following two quantities, which come up at every iteration of most FOMS:
• the gradient ∇𝑑 (𝒙) of 𝑑 at any point 𝒙 ∈ int(X);
• the gradient of the convex conjugate 𝑑∗ of 𝑑 at any point 𝒈 ∈ 𝐸:

∇𝑑∗ (𝒈) = argmax
𝒙∈X

{
𝒈⊤𝒙 − 𝑑 (𝒙)

}
.

The gradient of the convex conjugate can be intuitively thought of as a linear maximization problem
over X (i.e., the support function of X, which is a non-smooth convex optimization problem),
smoothed by the regularizer 𝑑 . For that, in this paper we shall refer to ∇𝑑∗ (𝒈) either symbolically,
or occasionally as the smoothed support function.
Because the above two quantities arise so frequently in optimization methods, it is important

that the chosen distance-generating function allow for efficient computation of them. In particular,
in this paper we are concerned with “nice” DGFs that enable linear-time (in the dimension of 𝐸)
exact computation of those two quantities.

Definition 3.2. A distance-generating function 𝑑 is said to be “nice” if 𝑑 (𝒙), ∇𝑑 (𝒙) and ∇𝑑∗ (𝒈)
can be computed exactly in linear time in the dimension of the domain of 𝑑 .

Hoda et al. [20] also introduce a notion of a “nice” DGF. Their definition is similar to ours, but
only states that ∇𝑑∗ (𝒈) should be “easily computable”. In contrast, we choose a concrete meaning
to that statement: we take it to mean linear time in the dimension of the domain.

Finally, we mention a closely related operation that comes up often in optimization methods: the
proximal operator (or prox operator), defined as

prox𝒙̃ (𝒈) B argmin
𝒙∈X

{
𝒈⊤𝒙 − 𝐷𝑑 (𝒙 ∥ 𝒙̃)

}
= −∇𝑑∗ (−𝒈 + ∇𝑑 (𝒙̃)) (2)

1A Bregman divergence need not be symmetric and thus might not be a metric in the technical sense.
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for any 𝒙̃ ∈ int𝐴 and 𝒈 ∈ 𝐸. In light of (2), the prox operator can be implemented efficiently
provided that ∇𝑑 and ∇𝑑∗ can. So, prox operators can be computed exactly in linear time in the
dimension of 𝐸 for “nice” DGFs.

3.2 Bilinear saddle-point problems
We will be interested in solving bilinear saddle-point problems (BSPPs), whose general form is

min
𝒙∈X

max
𝒚∈Y

𝒙⊤𝑨𝒚, (3)

where 𝑨 ∈ R𝑛×𝑚 and X,Y are convex and compact sets. We will now present the EGT algorithm
for solving BSPPs (in the appendix we also present a similar algorithm called mirror prox). EGT
depends on two proximal setups: one for X and one for Y. We will denote the distance-generating
functions chosen forX andY as 𝑑𝑥 and 𝑑𝑦 , respectively. Let ∥ · ∥𝑥 and ∥ · ∥𝑦 be the norms associated
with the strong convexity of 𝑑𝑥 and 𝑑𝑦 in the given proximal setup. The convergence rate of EGT
then depends on the following operator norm of the payoff matrix 𝑨:

∥𝑨∥ B max{𝒙⊤𝑨𝒚 : ∥𝒙 ∥𝑥 ≤ 1, ∥𝒚∥𝑦 ≤ 1}.
We will primarily be concerned with DGFs that are strongly convex with respect to either the ℓ1 or
ℓ2 norms. The magnitude of ∥𝑨∥ is the primary way in which the norm matters: if both 𝑑𝑥 and 𝑑𝑦
are strongly convex with respect to the ℓ2 norm, then ∥𝑨∥ can be on the order of

√
𝑛𝑚, whereas if

both are with respect to the ℓ1 norm, then ∥𝑨∥ is simply equal to its largest entry.

3.3 The Excessive Gap Technique (EGT)
The excessive gap technique (EGT) is a first-order method introduced by Nesterov [31], and one of
the primary applications is to solve BSPPs such as Equation (3). EGT assumes access to a proximal
setup for X and Y, with one-strongly-convex DGFs 𝑑𝑥 , 𝑑𝑦 for X and Y, and constructs smoothed
approximations of the optimization problems faced by the 𝑥 and 𝑦 players. Based on this setup, we
formally state the EGT of [30] in Algorithm 1. EGT alternatingly takes steps focused on decreasing
one or the other smoothing parameter. These steps are called ShrinkX and ShrinkY in Algorithm 1.

ALGORITHM 1: Excessive Gap Technique (EGT) algorithm.

1 function Initialize()
2 𝑡 ← 0
3 𝜇0𝑥 ← ∥𝑨∥, 𝜇0𝑦 ← ∥𝑨∥
4 𝒙̃ ← argmin𝑥 ∈X 𝑑𝑥 (𝑥)
5 𝒚0 ← ∇𝑑∗𝑦 (𝑨⊤𝒙̃/𝜇0𝑦)
6 𝒙0 ← prox𝒙̃

(
𝑨𝒚0/𝜇0𝑥

)
7 function Iterate()
8 𝑡 ← 𝑡 + 1, 𝜏 ← 2/(𝑡 + 2)
9 if 𝑡 is even then ShrinkX()
10 else ShrinkY()

11 function ShrinkX()
12 𝒙 ← −∇𝑑∗𝑥 (−𝑨𝒚𝑡−1/𝜇𝑡−1𝑥 )
13 𝒙̂ ← (1 − 𝜏)𝒙𝑡−1 + 𝜏𝒙
14 𝒚 ← ∇𝑑∗𝑦 (𝑨⊤𝒙̂/𝜇𝑡−1𝑦 )
15 𝒙̃ ← prox𝒙̄

(
𝜏

(1−𝜏)𝜇𝑡−1𝑥
𝑨𝒚

)
16 𝒙𝑡 ← (1 − 𝜏)𝒙𝑡−1 + 𝜏 𝒙̃
17 𝒚𝑡 ← (1 − 𝜏)𝒚𝑡−1 + 𝜏𝒚
18 𝜇𝑡𝑥 ← (1 − 𝜏)𝜇𝑡−1𝑥

19 function ShrinkY()
20 𝒚 ← ∇𝑑∗𝑦 (𝑨⊤𝒙𝑡−1/𝜇𝑡−1𝑦 )
21 𝒚̂ ← (1 − 𝜏)𝒚𝑡−1 + 𝜏𝒚
22 𝒙 ← −∇𝑑∗𝑥 (−𝑨𝒚̂/𝜇𝑡−1𝑥 )

23 𝒚̃ ← prox𝒙̄
(

−𝜏
(1−𝜏)𝜇𝑡−1𝑦

𝑨⊤𝒙
)

24 𝒚𝑡 ← (1 − 𝜏)𝒚𝑡−1 + 𝜏𝒚̃
25 𝒙𝑡 ← (1 − 𝜏)𝒙𝑡−1 + 𝜏𝒙
26 𝜇𝑡𝑦 ← (1 − 𝜏)𝜇𝑡−1𝑦

Algorithm 1 shows how initial points are selected and the alternating steps and stepsizes are
computed. Nesterov [30] proves that the EGT algorithm converges at a rate of 𝑂 (1/𝑇 ):
Theorem 3.3 (Nesterov [30] Theorem 6.3). At every iteration 𝑡 ≥ 1 of the EGT algorithm, the

solution (𝒙𝑡 ,𝒚𝑡 ) satisfies 𝒙𝑡 ∈ X, 𝒚𝑡 ∈ Y, and

max
𝒚∈Y
(𝒙𝑡 )⊤𝑨𝒚 −min

𝒙∈X
𝒙⊤𝑨𝒚𝑡 ≤

4∥𝑨∥
√︁
Ω𝑑𝑥 ,XΩ𝑑𝑦 ,Y

𝑡 + 1 .
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4 THE SEQUENCE-FORM POLYTOPE
4.1 Preliminaries on Sequence-Form Polytopes and Nash Equilibria
We now describe how the set of Nash equilibria of a two-player zero-sum EFG can be represented
as a bilinear saddle-point problem. The sequential nature of the decision spaces is represented via
the sequence form, where each strategy space X and Y has the form of a convex polytope.
The sequence-form polytope for a given player is as follows: We assume that we have a set of

decision points J , and each decision point 𝑗 ∈ J has a set of actions 𝐴 𝑗 , with |𝐴 𝑗 | = 𝑛 𝑗 actions in
total. If the agent takes a given action 𝑎 ∈ 𝐴 𝑗 at decision point 𝑗 , then C𝑗𝑎 ⊂ J denotes the set of
next potential decision points that the agent may face (which may be empty if no more decisions
can occur after taking action 𝑎 at 𝑗 ). We assume that the decision points form a tree, meaning
that C𝑗𝑎 ∩ C𝑗 ′𝑎′ = ∅ for any two pairs 𝑗𝑎 and 𝑗 ′𝑎′ such that 𝑗 ≠ 𝑗 ′ or 𝑎 ≠ 𝑎′. This is equivalent to
assuming that the corresponding EFG has perfect recall, meaning that no agent ever forgets any
past information.

For an EFG, the decision points J for a given player correspond to the set of information sets in
the game belonging to that player, and a pair 𝑗𝑎 consisting of a decision point 𝑗 and action 𝑎 is
referred to as a sequence. Let Σ be the set of all sequences.

For a two-player zero-sum EFG with perfect recall, the problem of computing a Nash equilibrium
can be cast as a BSPP in the form of Equation (3). In this formulation,X andY are the sequence-form
polytopes for each player. The payoff matrix 𝑨 is such that for a pair of sequence-form strategies
𝒙,𝒚, the objective 𝒙⊤𝑨𝒚 is equal to the expected value achieved by the second player under those
strategies. Thus, the second player wishes to maximize this objective, while the first player wishes
to minimize it. Each cell in 𝑨 ∈ R |Σ1 |× |Σ2 | corresponds to a pair of sequences, one for each player.
The matrix is often sparse: each non-zero entry corresponds to a pair of sequences such that they
are the last sequences on the path to some leaf node (and thus we have zeroes for all cells such that
the corresponding sequences are never the last pair of sequences before the game ends). The value
at a cell is the payoff to the second player at that leaf, times the product of all chance probabilities
on the path to the leaf.

4.2 Preliminaries on Dilated Distance-Generating Functions
Dilated distance-generating functions are a general framework for constructing “nice” DGFs (in the
sense of Section 3.1) for sequence-form polytopes [20]. Specifically, a dilated DGF for a sequence-
form polytope is constructed by taking a weighted sum over suitable local regularizers 𝑑∅ and 𝑑 𝑗

( 𝑗 ∈ J ), and is of the form

𝑑 : 𝒙 ↦→ 𝛼∅𝑑∅ (𝑥∅) +
∑︁
𝑗 ∈J

𝛼 𝑗𝑥𝑝 𝑗
𝑑 𝑗

( (𝑥 𝑗𝑎)𝑎∈𝐴 𝑗

𝑥𝑝 𝑗

)
(4)

Each local function 𝑑 𝑗 takes as input (𝑥 𝑗𝑎)𝑎∈𝐴 𝑗
/𝑥𝑝 𝑗

∈ Δ𝑛 𝑗 , and is assumed to be continuous,
strongly convex modulus one on the probability simplex Δ𝑛 𝑗 , and differentiable in the relative
interior of Δ𝑛 𝑗 . By dividing (𝑥 𝑗𝑎)𝑎∈𝐴 𝑗

by 𝑥𝑝 𝑗
, we renormalize (𝑥 𝑗𝑎)𝑎∈𝐴 𝑗

to the simplex, measure
the DGF there, and then scale that value by 𝑥𝑝 𝑗

to make it proportional to the “size” of 𝑥𝑝 𝑗
· Δ𝑛 𝑗 .

Finally, the weight 𝛼 𝑗 is a flexible weight term that can be chosen to ensure good properties. [20]
showed that if each local DGF 𝑑 𝑗 is strongly convex, then the dilated DGF 𝑑 is also strongly convex
(although they do not give an explicit modulus), and they show that the associated smoothed
support function can easily be computed, provided that the smoothed support function for each 𝑑 𝑗

can easily be computed.
The gradient of a dilated DGF and of its convex conjugate can be computed exactly in closed

form by combining the gradients of each 𝑑 𝑗 and their convex conjugates, as shown in Algorithm 2.
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ALGORITHM 2: Gradient and smoothed support function implementation for general dilated DGFs.

1 function Gradient(𝒙 ∈ int𝑄)
2 𝒈 ← 0 ∈ R |Σ |
3 for 𝑗 ∈ J in bottom-up order do

4 (𝑔 𝑗𝑎)𝑎∈𝐴 𝑗
← (𝑔 𝑗𝑎)𝑎∈𝐴 𝑗

+𝛼 𝑗 ∇𝑑 𝑗
(
(𝑥 𝑗𝑎)𝑎∈𝐴𝑗

𝑥𝑝𝑗

)
5 𝑔𝑝 𝑗

← 𝑔𝑝 𝑗
+ 𝛼 𝑗 𝑑 𝑗

(
(𝑥 𝑗𝑎)𝑎∈𝐴𝑗

𝑥𝑝𝑗

)
6 𝑔𝑝 𝑗

← 𝑔𝑝 𝑗
−𝛼 𝑗 ∇𝑑 𝑗

(
(𝑥 𝑗𝑎)𝑎∈𝐴𝑗

𝑥𝑝𝑗

)⊤ (
(𝑥 𝑗𝑎)𝑎∈𝐴𝑗

𝑥𝑝𝑗

)
7 𝑔∅ ← 𝑔∅ + 𝛼∅∇𝑑∅ (𝑥∅)
8 return 𝒈

1 function ConjugateGradient(𝒈 ∈ R |Σ |)
2 𝒛 ← 0 ∈ R |Σ |
3 𝑧∅ ← 1
4 for 𝑗 ∈ J in bottom-up order do
5 (𝑧 𝑗𝑎)𝑎∈𝐴 𝑗

← ∇𝑑∗
𝑗
((𝑔 𝑗𝑎)𝑎∈𝐴 𝑗

)
6 𝑔𝑝 𝑗

← 𝑔𝑝 𝑗
−𝑑 𝑗 ((𝑧 𝑗𝑎)𝑎∈𝐴 𝑗

) +∑𝑎∈𝐴 𝑗
𝑔 𝑗𝑎𝑧 𝑗𝑎

7 for 𝑗 ∈ J in top-down order do
8 for 𝑎 ∈ 𝐴 𝑗 do
9 𝑧 𝑗𝑎 ← 𝑧𝑝 𝑗

· 𝑧 𝑗𝑎
10 return 𝒛

The local DGFs must be chosen so that they are compatible with the simplex. For a given simplex
Δ𝑘 , these are usually chosen either as the entropy DGF 𝑑 (𝒚) = log𝑘 +∑

𝑖 𝑦𝑖 log𝑦𝑖 or Euclidean DGF
𝑑 (𝒚) = 1

2
∑

𝑖 (𝑦𝑖 − 1/𝑘)2. These are both 1-strongly convex on Δ𝑘 (for entropy wrt. the ℓ1 norm and
for Euclidean wrt. the ℓ2 norm), and their associated smoothed support functions can be computed
in 𝑂 (𝑘) and 𝑂 (𝑘 log𝑘) time, respectively.

One of the most important properties of dilated DGFs is that they lead to a “nice” DGF as long as
each local convex conjugate gradient ∇𝑑∗𝑗 can be computed in time linear in |𝐴 𝑗 |. In particular, this
makes the dilated entropy DGF a “nice” DGF. The dilated Euclidean DGF is “almost” “nice”, in the
sense that ∇𝑑∗𝑗 can be computed in |𝐴 𝑗 | log |𝐴 𝑗 | time, and |𝐴 𝑗 | is typically very small. In contrast,
the standard Euclidean DGF applied to the overall polytope 𝑄 is not “nice”: It requires |Σ| log |Σ|
time to resolve its convex conjugate gradient.

For the dilated DGFs, the strongest general result on the strong-convexity modulus comes from
Farina et al. [13], where the authors show that if each local DGF 𝑑 𝑗 is strongly convex modulus
one with respect to the ℓ2 norm, and we set 𝛼 𝑗 = 2 + 2max𝑎∈𝐴 𝑗

∑
𝑗 ′∈C𝑗𝑎 𝛼 𝑗 ′ for each 𝑗 ∈ J , then 𝑑

is strongly convex modulus one with respect to the ℓ2 norm on 𝑄 .

4.3 Preliminaries on the Dilated Entropy Distance-Generating Function
The dilated entropy DGF is the instantiation of the general dilated DGF framework of Section 4.2
with the particular choice of using the (negative) entropy function at each decision node. In
particular, it is any regularizer of the form2

[0, 1] |Σ | ∋ 𝒙 ↦→ 𝛼∅𝑥∅ log𝑥∅ +
∑︁
𝑗 ∈J

𝛼 𝑗
©­«𝑥𝑝 𝑗

log |𝐴 𝑗 | +
∑︁
𝑎∈𝐴 𝑗

𝑥 𝑗𝑎 log
(
𝑥 𝑗𝑎

𝑥𝑝 𝑗

)ª®¬. (5)

for some choice of the weights 𝛼∅, 𝛼 𝑗 > 0.
We will now briefly review existing results specific to the dilated entropy DGF, for which stronger

results are known than for the general class of dilated DGFs. A central result in the present paper
is to show that there exist DGFs for sequence-form polytopes which are better than the dilated
entropy DGF, but that these DGFs can be partially recast in a dilated form, in order to enable
efficient computation of the smoothed support function.

First, as a direct consequence of the more general discussion in Section 4.2 and Algorithm 2, the di-
lated entropy DGF is a “nice” DGF (in the precise sense of Section 3.1) nomatter the choice of weights
2In this paper, we let 0 log(0) = 0. Since 𝑑 is a Legendre function, it is guaranteed that all iterates and prox-steps will remain
the interior of the optimization domain at all times, thus avoiding the non-differentiability issue of the entropy function at
the boundary of [0, 1] |Σ| .
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8 Gabriele Farina, Christian Kroer, and Tuomas Sandholm

𝛼 . In particular, in the case of the negative entropy functions 𝑑 𝑗 (𝒙) = log |𝐴 𝑗 | +
∑

𝑎∈𝐴 𝑗
𝑥 𝑗𝑎 log𝑥 𝑗𝑎 ,

one has(
∇𝑑 𝑗 (𝒙)

)
𝑎
= 1 + log𝑥𝑎,

(
∇𝑑∗𝑗 (𝒈)

)
𝑎
=

𝑒𝑔𝑎∑
𝑎′∈𝐴 𝑗

𝑒𝑔𝑎′
∀𝑎 ∈ 𝐴 𝑗 , 𝒙 ∈ int(Δ |𝐴 𝑗 |),𝒈 ∈ R |𝐴 𝑗 | .

By plugging the above expression in the template of Algorithm 2 we obtain linear-time exact
algorithms to compute ∇𝜑 and ∇𝜑∗.
Kroer et al. [23] show that the dilated entropy DGF is Legendre and strongly convex modulus

1/max𝑥 ∈𝑄 ∥𝑥 ∥1 with respect to the ℓ1 norm, when the weights 𝛼 are chosen as in the following
definition.

Definition 4.1 (Kroer et al. dilated entropy DGF,𝜓 ). Define the DGF weights 𝛽 𝑗 recursively as

𝛽∅ B 2 + 2
∑︁
𝑗 ∈C∅

𝛽 𝑗 , 𝛽 𝑗 B 2 + 2max
𝑎∈𝐴 𝑗

∑︁
𝑗 ′∈C𝑗𝑎

𝛽 𝑗 ′ ∀𝑗 ∈ J .

The resulting instantiation of the dilated entropy DGF is called the Kroer et al. dilated entropy DGF
and denoted𝜓 :

𝜓 : [0, 1] |Σ | ∋ 𝒙 ↦→ 𝛽∅𝑥∅ log𝑥∅ +
∑︁
𝑗 ∈J

𝛽 𝑗
©­«𝑥𝑝 𝑗

log |𝐴 𝑗 | +
∑︁
𝑎∈𝐴 𝑗

𝑥 𝑗𝑎 log
(
𝑥 𝑗𝑎

𝑥𝑝 𝑗

)ª®¬.
Remark 1. On the surface, the strong convexity modulus of 1

𝑀𝑄
with respect to the ℓ1 norm might

appear less appealing than the modulus 1 obtained by using the ℓ2 norm. However, recall that the
norm that is used to measure strong convexity affects the value of the operator norm of 𝑨, which is
significantly smaller under the ℓ1 − ℓ∞ operator norm (where it is equal to max𝑖 𝑗 |𝐴𝑖 𝑗 |) than the ℓ2 − ℓ2
operator norm for strong convexity with respect to the ℓ2 norm.

One drawback of both the general and entropy-specific dilated DGFs developed in the past
is that they have an exponential dependence on the depth of the sequence-form polytope. In
particular, note that the factor of 2 in the recursive definition of the weights means that the factor
𝛽 𝑗 for some root decision point is growing at least on the order of 2𝔇𝑄 , where 𝔇𝑄 is the depth
of the sequence-form polytope 𝑄 . For many sequence-form polytopes this might be acceptable:
if the sequence-form polytope is reasonably balanced, then the number of decision points is also
exponential in depth. However, for other sequence-form polytopes this would be unacceptable:
the most extreme case would be a single line of decision points, where the number of decision
points is linear in𝔇𝑄 , but the 𝛽 𝑗 at the root is exponentially large. This exponential dependence
on depth also enters the convergence rate of the FOMs, since it effectively acts as a scalar on the
polytope diameter Ω induced by 𝔇𝑄 . This paper was motivated by the need to soundly resolve
that drawback, thus introducing the first “nice” DGF (in the sense of Section 3.1) with guaranteed
polynomially-small diameter for any decision point.

5 THE DILATABLE GLOBAL ENTROPY DISTANCE-GENERATING FUNCTION
We now develop our new DGF for sequence-form polytopes. The DGF will be based on a scaled
variant of the standard entropyDGF (whichwewill also refer to as the “global entropy” to distinguish
it from the dilated entropy), which is strongly convex modulus one on the hypercube [0, 1] |Σ | . We
start by giving a new set of weights for the dilated entropy DGF, and we will then later show
that this particular choice of weights can be directly related to the global entropy DGF over the
sequence-form polytope, when the global entropy DGF is scaled in a particular way.
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Better Regularization for Sequential Decision Spaces 9

First we define the weighting scheme that we will use for the dilated representation of our DGF.
Consider the scalars 𝛾 𝑗 ( 𝑗 ∈ J ) defined recursively as

𝛾∅ = 1 +
∑︁
𝑗 ∈C∅

𝛾 𝑗 , 𝛾 𝑗 B 1 +max
𝑎∈𝐴 𝑗


∑︁

𝑗 ′∈C𝑗𝑎
𝛾 𝑗 ′

 ∀ 𝑗 ∈ J . (6)

These weights are very similar to the ones given for the dilated DGFs in the previous section,
except that the whole expression is smaller by a factor of two. Avoiding this factor of two is crucial,
because it allows us to avoid the exponential dependence on depth. Here, it is easy to see that
𝛾 𝑗 is upper bounded by the number of decision points in the subtree rooted at 𝑗 , so 𝛾 𝑗 is at most
polynomial in the size of the sequential decision problem. In fact, it is not hard to show that if 𝑗 is
the sole root decision point, then 𝛾 𝑗 is equal to max𝒙∈𝑄 ∥𝒙 ∥1.
With the above weights, we now instantiate a dilated entropy DGF, which we denote as 𝜑 :

𝜑 : [0, 1] |Σ | ∋ 𝒙 ↦→ 𝛾∅𝑥∅ log𝑥∅ +
∑︁
𝑗 ∈J

𝛾 𝑗
©­«𝑥𝑝 𝑗

log |𝐴 𝑗 | +
∑︁
𝑎∈𝐴 𝑗

𝑥 𝑗𝑎 log
(
𝑥 𝑗𝑎

𝑥𝑝 𝑗

)ª®¬.
Next, we define the global entropy function that we will be using, which also depends on 𝛾 𝑗 .

Definition 5.1 (Dilatable global entropy). The dilatable global entropy distance generating function
𝜑̃ is the function 𝜑̃ : [0, 1] |Σ | → R≥0 defined as

𝜑̃ : 𝒙 ↦→ 𝑤∅𝑥∅ log(𝑥∅) +
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝑤 𝑗𝑎𝑥 𝑗𝑎 log𝑥 𝑗𝑎 +
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 |,

where each𝑤𝜎 (𝜎 ∈ Σ) is defined as

𝑤∅ B 𝛾∅ −
∑︁
𝑗 ∈C∅

𝛾 𝑗 ,

𝑤 𝑗𝑎 B 𝛾 𝑗 −
∑︁

𝑗 ′∈C𝑗𝑎
𝛾 𝑗 ′ = 1 + max

𝑎′∈𝐴 𝑗


∑︁

𝑗 ′∈C𝑗𝑎′
𝛾 𝑗 ′

 −
∑︁

𝑗 ′∈C𝑗𝑎
𝛾 𝑗 ′ ∀𝑗𝑎 ∈ Σ,

and is a scalar lower bounded by 1.

Dilatability. The adjective dilatable comes from the key property that the dilatable global entropy
is equal to the dilated entropy 𝜑 , on the sequence-from strategy space 𝑄 . That equality does not hold
outside the sequence-form polytope, and this means that the gradient of 𝜑̃ (𝒙), which is used in the
FOMs that we consider, may differ as well.

Theorem 5.2. The dilatable global entropy DGF and the dilated entropy DGF coincide on the
polytope of sequence-form strategies 𝑄 , that is, 𝜑̃ (𝒙) = 𝜑 (𝒙) for all 𝒙 ∈ 𝑄 .

Proof. We start by expanding the definition of 𝜑 (𝒙):

𝜑 (𝒙) B
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝛾 𝑗𝑥 𝑗𝑎 log
(
𝑥 𝑗𝑎

𝑥𝑝 𝑗

)
+

∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 |

=
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝛾 𝑗𝑥 𝑗𝑎 log𝑥 𝑗𝑎 −
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝛾 𝑗𝑥 𝑗𝑎 log𝑥𝑝 𝑗
+

∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 |. (7)
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10 Gabriele Farina, Christian Kroer, and Tuomas Sandholm

Given the assumption 𝒙 ∈ 𝑄 , it holds that
∑

𝑎∈𝐴 𝑗
𝑥 𝑗𝑎 = 𝑥𝑝 𝑗

for all 𝑗 ∈ J and so we can simplify the
middle summation in (7) and obtain

𝜑 (𝒙) =
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝛾 𝑗𝑥 𝑗𝑎 log𝑥 𝑗𝑎 −
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log𝑥𝑝 𝑗

+
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 |

=
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝛾 𝑗𝑥 𝑗𝑎 log𝑥 𝑗𝑎 −
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

∑︁
𝑗 ′∈C𝑗𝑎

𝛾 𝑗 ′𝑥 𝑗𝑎 log𝑥 𝑗𝑎 +
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 |

=
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝛾 𝑗𝑥 𝑗𝑎 log𝑥 𝑗𝑎 −
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

©­«
∑︁

𝑗 ′∈C𝑗𝑎
𝛾 𝑗 ′

ª®¬𝑥 𝑗𝑎 log𝑥 𝑗𝑎 +
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 |

=
∑︁
𝑗 ∈J

∑︁
𝑎∈𝐴 𝑗

𝑤 𝑗𝑎𝑥 𝑗𝑎 log𝑥 𝑗𝑎 +
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 | = 𝜑̃ (𝒙),

as we wanted to show. □

“Nice”ness. We now show that our dilatable global entropy regularizer is “nice” in the sense of
Section 3.1, that is, its gradient and the gradient of its convex conjugate can be computed exactly
in linear time in |Σ|.
• The gradient of 𝜑̃ can be trivially computed in closed form and linear time in |Σ| starting
from Definition 5.1 as

(∇𝜑̃ (𝒙))𝜎 = (1 + log𝑥𝜎 )𝑤𝜎 +
∑︁
𝑗 ∈C𝜎

𝛾 𝑗 log |𝐴 𝑗 | ∀𝜎 ∈ Σ, 𝒙 ∈ int(𝑄).

• Using the dilatability property, we have that the gradient of the convex conjugate satisfies

∇𝜑̃∗ (𝒈) = argmax
𝒙∈𝑄

{
𝒈⊤𝒙 − 𝜑̃ (𝒙)

}
= argmax

𝒙∈𝑄

{
𝒈⊤𝒙 − 𝜑 (𝒙)

}
= ∇𝜑∗ (𝒈),

where we used the dilatability property (Theorem 5.2) in the second equality. Therefore,
since 𝜑 is a dilated DGF and its smoothed support function can be computed in linear
time, the smoothed support function of 𝜑̃ can be computed in linear time in |Σ|. Similarly,
prox𝒄 (𝒈) = −∇𝜑∗ (−𝒈 + ∇𝜑̃ (𝒄)), where the internal gradient is with respect to 𝜑̃ , as opposed
to 𝜑 as in the general reduction in Equation (2).

Strong convexity. On the other hand, we now show that 𝜑̃ has the advantage of a better strong
convex modulus on (0, 1) |Σ | , compared to the class of dilated entropy DGFs.

Theorem 5.3. The dilatable global entropy function 𝜑̃ : [0, 1] |Σ | → R≥0 is a Legendre function,
and 1-strongly convex with respect to the ℓ2 norm on (0, 1) |Σ | .

Theorem 5.4. The dilatable global entropy function 𝜑̃ is strongly convex modulus 1/𝑀𝑄 with
respect to the ℓ1 norm on the sequence-form polytope 𝑄 .

Diameter. The properties above immediately imply that our dilatable global entropy DGF satisfies
all the requirements for a prox setup on the polytope of sequence-form strategies 𝑄 . Here we
complete the analysis by giving bounds on the diameter induced by 𝜑̃ .

Theorem 5.5. The 𝜑̃-diameter Ω𝜑̃,𝑄 of 𝑄 is at most𝑀2
𝑄
max𝑗 ′∈J log |𝐴 𝑗 ′ |.

Kroer et al. [23] show that the dilated entropy DGF with weights 𝛽 leads to a polytope diameter

2𝔇𝑄+2𝑀2
𝑄 max

𝑗 ′∈J
log |𝐴 𝑗 ′ |.
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Our DGF improves that polytope diameter by a factor of 2𝔇𝑄+2. Thus, we are the first to achieve a
polytope diameter with no exponential dependence on the depth𝔇𝑄 of the sequence-form polytope.

Summing up our results on the dilatable global entropy, we have shown that it enjoys the same
fast smoothed support function computation as the dilated entropy DGF while having a better
way to achieve strong convexity modulus 1/𝑀𝑄 . In particular, the existing dilated entropy setup
requires the weight parameters 𝛽 to grow exponentially in the depth of the sequence-form polytope,
whereas we have only a linear growth in those weights. More concretely, this means that the largest
weights max𝑗 ∈J 𝛽 𝑗 in the dilated entropy DGF are larger than the largest weights max𝑗 ∈J 𝛾 𝑗 in
the dilatable global entropy DGF by a factor of more than 2𝔇𝑄 . This in turn allowed us to achieve a
better polytope diameter by a factor of 2𝔇𝑄+2 while retaining the same strong convexity modulus.

6 SCALED EXTENSION AND CORRELATED DECISION SPACES
In this section we extend and generalize both the framework of dilated DGFs and the dilatable
global entropy DGF to more complex combinatorial domains than sequence-form polytopes. In
particular, we show that dilated DGFs and the dilatable global entropy apply to sets that can be
constructed through composition of scaled extension, a convexity-preserving operation that was
recently proposed as a general way of constructing sequential decision spaces in the presence of
correlation between the strategies of two or more players [17].

Our generalization begets the first “nice” regularizers (in the sense of Section 3.1) for correlated
strategy spaces, which in turn enables us to construct the first FOMs that guarantee convergence
to optimal correlated equilibria and optimal ex-ante team coordinated equilibria with rate 1/𝑇 in
certain classes of games where these equilibria can be found in polynomial time.

We start by recalling the definition of scaled extension.

Definition 6.1 (Scaled extension [17]). LetU andV be nonempty compact convex sets, and let
ℎ : U → R≥0 be a nonnegative affine real function. The scaled extension of U with V via ℎ is
defined as the convex and compact setU ℎ

⊳ V B {(𝒖, 𝒗) : 𝒖 ∈ U, 𝒗 ∈ ℎ(𝒖)V}.

To simplify the proofs, in this paper we only consider scaled extensions that use linear functions
ℎ, instead of more general affine functions.

6.1 Preliminaries on Correlation and Triangle-Freeness
As reviewed earlier in the paper, Nash equilibria in two-player zero-sum EFGs can be expressed
as BSPPs. It turns out that several other solution concepts can also be formulated as BSPPs via
more intricate convex-polytope constructions. In this section we briefly describe two important
solution concepts that can be expressed as BSPPs: several variants of optimal correlated equilibria
and ex-ante team coordinated equilibria.
In correlated equilibria, the rationality assumption of Nash equilibrium is relaxed in order to

allow for coordination between the player. It is assumed that a mediator will recommend actions
to be taken. In correlated equilibria, each player sees the recommended action before deciding
whether to take it. In coarse correlated equilibria, the players must commit to acting according to
the recommended strategy before the recommendation is revealed. In all these solution concepts,
the recommended strategy is sampled by a mediator, from some correlated distribution which is
known to the players.

We will consider three types of correlated equilibria in two-player EFGs.
(1) Extensive-formcorrelated equilibrium (EFCE): Themediator incrementally recommends

individual moves to the players. Every time a player faces a decision point, the mediator pri-
vately reveals a recommendedmove for that decision point to that player. If a player chooses to
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disregard a recommendation, then the mediator immediately stops issuing recommendations
to that player forever [37].

(2) Extensive-form coarse correlated equilibrium (EFCCE): The mediator incrementally
recommends individual moves to the players, but at each decision point, the player must
decide whether to follow the recommendation before seeing the recommendation [18].

(3) Normal-form coarse correlated equilibrium (NFCCE): each playerwill be recommended
a strategy from the normal-form representation of the EFG, but they must decide whether to
commit to playing the recommended strategy before seeing the recommendation [28].

Farina and Sandholm [18] show that EFCE are a subset of EFCCE, and that EFCCE are a subset of
NFCCE. They also show that for triangle-free decision problems (or EFGs),3 the set Ξ of all possible
correlated plans between two players can be represented via recursive applications of the scaled
extension operator. Thus, we can write BSPPs of the form

argmin
𝒙∈Ξ

max
𝒚∈Y

𝒙⊤A𝒚, (8)

where the minimization over 𝒙 represents the choice of a correlated plan for the two players, and the
maximization over Y, intuitively, represents different ways of rejecting the mediator’s recommen-
dation. By carefully choosing Y, we can enforce different types of correlated equilibrium behavior.
Now, as long as we have a “nice” DGF for scaled extensions and a “nice” DGF for the polytope Y,
we can apply fast FOMs to the computation of the corresponding type of correlated equilibrium.
Appropriate polytopes for Y exist in the case of EFCE [16], EFCCE [10], and NFCCE [10]. In each
case, Y is itself a polytope that can be constructed via scaled extension (though simpler than Ξ).

Reviewing the details of the scaled-extension-based construction of the polytope of correlation
plans Ξ is beyond the scope of this paper. Here, we take the decomposition as a given, and we are
concerned with the task of constructing a suitable proximal setup for sets that, like Y and Ξ, can
be expressed through composition of scaled extension operations.

In addition to two-player correlated equilibrium problems discussed above, one can also capture
adversarial team games with the scaled extension DGFs that we will construct. In the adversarial
team game that we consider, two players on a team (meaning that they share the same payoffs)
are trying to correlate their strategies so as to maximize utility against an opponent whose utility
is exactly the opposite of theirs (i.e., it is a zero-sum game between the team and the opponent).
This solution concept is called team-maxmin equilibrium with coordination (TMECor) [8]. The set of
correlated plans for the two players on the team can again be expressed with Ξ if their two decision
spaces are triangle free [11]. Then, the strategies of the opponent are simply a sequence-form
polytope 𝑄 , so Y = 𝑄 . It follows that DGFs for both polytopes can be chosen as the DGE from our
paper.

For EFCE, EFCCE, NFCCE, and TMECor, it will follow from our results below that it is possible
to construct a “nice” DGF for the polytope of correlation plans when the game is triangle free. By
applying this DGF to a method such as EGT or mirror prox, we get the first 1/𝑇 iterative method
for converging to each of these solution concepts, with only a linear cost per iteration. In contrast,
prior iterative approaches converge at a rate of 1/

√
𝑇 , and sometimes still require significantly

more expensive projections at every iteration (e.g., Farina et al. [16, 17]).

3The triangle-free condition is rather technical, and so we omit its exact definition here as it is beyond the scope of the
paper. The most natural class of games that it captures is the set of EFGs where all chance moves are public, that is, observed
by all players.
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6.2 Dilated Distance-Generating Functions for Scaled Extension
In this section we show that the construction of dilated DGFs can be generalized to sets obtained
through scaled extension. LetZ B U ⊳ ℎV be a set constructed by scaled extension ofU withV ,
and assume that “nice” DGFs 𝑑𝑢, 𝑑𝑣 forU andV respectively have been chosen. In Proposition 1
we show that 𝑑𝑢 and 𝑑𝑣 can be combined to give a composite “nice” DGF forZ.

Proposition 1. Let
• Z B U ℎ

⊳ V , where ℎ is the linear function ℎ : 𝒖 ↦→ 𝒂⊤𝒖 ≥ 0;
• 𝑑𝑢 : A → R and 𝑑𝑣 : B → R, for some domainsA ⊇ U,B ⊇ V whose interiors are nonempty
and such that 𝒗/ℎ(𝒖) ∈ B for all 𝒖 ∈ A, 𝒗 ∈ B, be 1-strongly-convex Legendre functions;
• 𝛼𝑣 > 0 be a positive scalar.

Then, the composite DGF

𝑑𝑧 : A × B ∋ (𝒖, 𝒗) ↦→ 𝑑𝑢 (𝒖) + 𝛼𝑣 ℎ(𝒖)𝑑𝑣
(

𝒗

ℎ(𝒖)

)
is a Legendre function. Furthermore, if 𝑑𝑢 and 𝑑𝑣 are “nice” DGFs, so is 𝑑𝑧 .

In principle, the construction of Section 4.2 could be repeated inductively on the scaled-extension-
based decomposition of the polytope of correlation plans Ξ, giving rise to a “nice” DGF for that
polytope. However, before the DGF can be effectively used as part of a prox setup, its strong
convexity properties need to be assessed. Unfortunately, just like in sequence-form strategy spaces,
dilated DGFs constructed in this way might require weights 𝛼 that grow exponentially fast with
the dimension of the set.

Proposition 2. Consider the same setup as Proposition 1, and assume that:
• max𝒗∈V ∥𝒗∥ ≤ 1;
• max𝒖∈U ℎ(𝒖) ≤ 1;
• 𝑑𝑣 is 1-strongly convex in the interior ofV ;
• 𝑑𝑢 satisfies the property

(∇𝑑𝑢 (𝒖) − ∇𝑑𝑢 (𝒖 ′))⊤ (𝒖 − 𝒖 ′) ≥
1
2 (𝒖 − 𝒖

′)⊤𝑫𝑢 (𝒖 − 𝒖 ′) ∀𝒖, 𝒖 ′ ∈ U

for some real matrix 𝑫𝑢 .
Then, the composite DGF 𝑑𝑧 satisfies

(∇𝑑𝑧 (𝒖, 𝒗) − ∇𝑑𝑧 (𝒖 ′, 𝒗 ′))⊤
(
𝒖 − 𝒖 ′
𝒗 − 𝒗 ′

)
≥ 1

2

(
𝒖 − 𝒖 ′
𝒗 − 𝒗 ′

)⊤ ©­«
𝑫𝑢 − 2𝛼𝑣 ∥𝒂∥22𝑰 0

0 𝛼𝑣𝑰

ª®¬
(
𝒖 − 𝒖 ′
𝒗 − 𝒗 ′

)
Remark 2. The minimum eigenvalue of the matrix 𝐷𝑧 defined in Proposition 2 determines the strong
convexity modulus (with respect to the Euclidean norm) of 𝑑𝑧 . Note that we can use Proposition 2
inductively to pick weights 𝛼 in the dilated DGF that guarantee that it is 𝜇-strongly convex for any
𝜇. Indeed, consider a composition of scaled extensions X1 ⊳ ℎ1 X2 ⊳ ℎ2 · · · ⊳ ℎ𝑘−1 X𝑘 , where we assume
that each ℎ𝑖 is of the form ℎ𝑖 : 𝒙 ↦→ 𝒂⊤𝑖 𝒙 for all 𝑖 = 1, . . . , 𝑘 . Denote by 𝑑𝑖 , for 𝑖 = 1, . . . , 𝑘 the dilated
DGF obtained by composing the construction of Proposition 2 for sets X1, . . . ,X𝑖 , and let 𝑫𝑖 be the
corresponding matrix obtained by applying Proposition 2 recursively. Since from Proposition 2 we have
that

𝑫𝑘 =
©­«
𝑫𝑘−1 − 2𝛼𝑘 ∥𝒂𝑘 ∥22𝑰 0

0 𝛼𝑘 𝑰

ª®¬,
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in order to have that the final DGF 𝑑𝑘 be 1-strongly-convex, it is necessary that 𝛼𝑘 ≥ 𝜇𝑘 , or the
diagonal elements in the bottom-right matrix block would be lower than the desired 𝜇𝑘 bound. But
then 𝑑𝑘−1 must be (1 + 2∥𝒂𝑘 ∥22)-strongly convex to compensate for the subtraction in the top-right
block of the matrix. Recursively, this implies that 𝛼𝑘−1 ≥ 2(1 + 2∥𝒂𝑘 ∥22), and to compensate 𝑑𝑘−1 must
be (1 + 2(1 + 2∥𝒂𝑘 ∥22 + ∥𝒂𝑘−1∥22))-strongly convex, and so on. In summary, the weights required to
guarantee strong convexity need to grow exponentially fast, rendering the construction prone to the
same criticisms that apply to prior dilated DGFs for the sequence-form polytope. In the next section we
show that in some cases of interest this issue can be soundly circumvented, by generalizing some of the
ideas we presented in Section 5.

6.3 Dilatable Global Entropy for Scaled Extension
In this section we instantiate the generic framework of dilated DGFs, as defined in the previ-
ous section, to the chains of scaled extensions with simplex domains, that is, sets of the form
Δ𝑠1 ℎ1

⊳ Δ𝑠2 ℎ2
⊳ Δ𝑠3

ℎ3
⊳ · · · ℎ𝑛⊳ Δ𝑠𝑛+1 , where we assume that ℎ𝑘 (𝒙) = 𝒂⊤

𝑘
𝒙 with 𝒂𝑘 ∈ [0, 1]𝑠1+···+𝑠𝑘−1 for all

𝑘 = 1, . . . , 𝑛. This setup encompasses both sequence-form strategy spaces and the polytope of
correlation plans.

The dilated entropy DGF for one such set is the dilated DGF obtained by recursively applying the
general construction of Proposition 1 with the (negative) entropy function at each Δ𝑠𝑖 . Specifically,
if𝜓𝑘 is the dilated entropy DGF constructed for the first 𝑘 scaled extensions, we define𝜓𝑘+1 as

𝜓𝑘+1 : [0, 1]𝑠1+...𝑠𝑘 × [0, 1]𝑠𝑘+1 ∋ (𝒖, 𝒗) ↦→ 𝜓𝑘 (𝒖) + 𝛼𝑘+1

(
ℎ𝑘 (𝒖) log 𝑠𝑘+1 +

𝑠𝑘+1∑︁
𝑖=1

𝑣𝑖 log
(

𝑣𝑖

ℎ𝑘 (𝒖)

))
.

By using the samemanipulations of the logarithms that we used in Theorem 5.2, it is immediate to
show by induction that𝜓𝑘+1 coincides, on Δ𝑠1 ⊳ ℎ1 Δ𝑠2 ⊳ ℎ2 Δ ⊳ ℎ3 · · · ⊳ ℎ𝑘 Δ𝑠𝑘+1 and for all 𝑘 = 1, 2, . . . ,
with the function

𝜑̃𝑘+1 : [0, 1]𝑠1+···+𝑠𝑘 × [0, 1]𝑠𝑘+1 ∋ (𝒖, 𝒗) ↦→ 𝜑̃𝑘 (𝒖) + 𝛼𝑘+1

(
ℎ𝑘 (𝒖) (1 − logℎ𝑘 (𝒖)) +

𝑠𝑘+1∑︁
𝑖=1

𝑣𝑖 log 𝑣𝑖

)
. (9)

For this reason, similarly to what we did for extensive-form strategy spaces, we coin 𝜑̃𝑘 the
dilatable global entropy DGF. It is immediate to see by induction that ∇𝜓 can be computed exactly
in linear time. furthermore, because𝜓𝑘 is a “nice” DGF by virtue of Proposition 1, and𝜓𝑘 = 𝜑̃𝑘 on
Δ𝑠1 ⊳ ℎ1 Δ𝑠2 ⊳ ℎ2 Δ𝑠3 ⊳ ℎ3 · · · ⊳ ℎ𝑛 Δ𝑠𝑛 , we immediately obtain that 𝜑̃ is a “nice” DGF.
We conclude this section by showing that it does not suffer from the issue we pointed out in

Remark 2. We start by providing a refined version of Proposition 2, which follows immediately
from taking a Hessian in (9).

Lemma 6.2. At any 𝒖 ∈ (0, 1)𝑠1+···+𝑠𝑘 , 𝒗 ∈ (0, 1)𝑠𝑘+1 , the Hessian matrix of the dilatable global
entropy DGF satisfies

∇2𝜑̃𝑘+1(𝒖, 𝒗) ⪰

©­­­­­«
∇2𝜑̃𝑘 (𝒖) − diag

({
𝛼𝑘+1𝑎𝑘
𝑢𝑖

}𝑚
𝑖=1

)
0

0 diag
({

𝛼𝑘+1
𝑣𝑖

}𝑛
𝑖=1

) ª®®®®®¬
.

Unlike the bound in Proposition 2, the term subtracted in the top left matrix block is not multiplied
by a factor of 2. Hence, the approach described in Remark 2 to set the DGF weights 𝛼𝑖 (𝑖 = 1, . . . , 𝑘)
yields a DGF that is guaranteed to be 1-strongly convex that only requires polynomially small (in
the dimension of the space)
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7 EXPERIMENTS
In this section we study the numerical performance of our DGFs. First we study the performance
of the dilatable global entropy for computing Nash equilibria in zero-sum EFGs, and second we
study the performance for computing correlated equilibria and team equilibria.
Our experiments will be shown on nine different games, which span a variety of poker games,

other recreational games, as well as a pursuit-evasion game played on a graph. All games are
standard benchmarks in the computational game theory literature, and a full description of the
games is given in the Appendix. In Table 1(a) we summarize some key dimensions of the game
instances we use: the number of decision points |J1 |, |J2 | for Player 1 and 2, respectively, the
number of sequences |Σ1 |, |Σ2 |, and the number of terminal nodes (leaves).

Our experiments will show performance on three algorithms. First, we will plot the performance
for both the EGT and mirror prox algorithms, with stepsizes and smoothing chosen according to the
theoretical values dictated by Theorems 3.3 and B.1. Second, we will also show results on a tweaked
variant of EGT called EGT/AS, which implements several heuristics that typically lead to better
performance in practice, as seen in [20, 22, 23]. These heuristic are: 𝜇 balancing: At each iteration,
we take a step on the player 𝑖 whose smoothing parameter 𝜇𝑖 is larger. Aggressive Stepsizing: The
original stepsize of EGT at iteration 𝑡 is 𝜏 = 2/(3 + 𝑡), which is typically too conservative in
practice. Instead, EGT/AS maintains some current value 𝜏 , initially set at 𝜏 = 0.5. EGT/AS then
repeatedly attempts to take steps with the current 𝜏 , and after every step checks whether the
invariant condition of EGT still holds. If not, then we undo the step, decrease 𝜏 , and repeat the
process. Initial 𝜇 fitting: The initial EGT values for 𝜇𝑥 , 𝜇𝑦 are much too conservative. Instead, At the
beginning of the algorithm we perform a search over initial values for 𝜇𝑥 = 𝜇𝑦 . The search starts at
the candidate value 𝜇 = 10−6 and stops as soon as the choice of 𝜇𝑥 = 𝜇𝑦 = 𝜇 yields an excessive gap
value above 0.1. If the current choice does not, 𝜇 is incremented by 20% and the fitting continues.
For all parameters above, we use the same values as in Kroer et al. [22], even though those values
were tuned for the dilated entropy DGF, rather than dilatable global entropy.

In the presentation of the numerical performance, we will generally plot the number of iterations
of the FOM on the x axis, rather than plot wall-clock time. Since we hold the algorithmic setup
fixed in each plot, apart from the DGF, this gives a fair representation of performance, since they all
use the same set of operations (in particular the same number of gradient computations, which is
typically the most expensive operation). For EGT/AS, we will instead plot the number of gradient
computations on the x axis, since the number of gradient computations can vary for each DGF,
depending on the amount of backtracking incurred.

7.1 Nash Equilibrium Computation
We will focus on comparing our new dilatable global entropy for the sequence-form polytope (Def-
inition 5.1) to the prior state-of-the-art dilated entropy DGF (Definition 4.1) from [23].

Before we study the numerical performance, we look at the size of the DGF weights 𝛽 and 𝛾 for
each of the games. Table 1 column (b) shows the average and maximum size of the dilated entropy,
and Table 1 column (c) shows the corresponding values for the DGE. We see that the DGE requires
vastly less weight, especially in terms of the maximal weights near the root of each decision space.

First, we study the theoretically-correct way to use the DGFs. In particular, we instantiate both
EGT and mirror prox with the stepsizes and DGFs as specified in Theorems 3.3 and B.1, for the
dilatable global entropy and dilated entropy. The results for EGT are shown in Figures 2 and 3.
Across both algorithms and all nine games, we see that our new dilatable global entropy DGF
performs better, sometimes by over an order of magnitude (e.g. in Liar’s dice and pursuit evasion
(6 turns)). This is in line with the fact that our new DGF has a better strong convexity modulus,
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Fig. 2. Performance of the EGT algorithm instantiated with the two entropy DGFs across nine games. The x
axis shows the number of EGT iterations, and the y axis shows the distance to Nash equilibrium.

Game instance Decision Points Sequences Leaves Weights 𝛽 Weights 𝛾
|J1 | |J2 | |Σ1 | |Σ2 | |𝑍 | Avg Max Avg Max

Kuhn poker 6 6 13 13 30 8.86 38 2.29 7
Leduc poker (3 ranks) 144 144 337 337 1116 11.77 686 2.12 43
Leduc poker (13 ranks) 2574 2574 6007 6007 98 956 12.06 12 326 2.13 703
Goofspiel 17 476 17 476 21 329 21 329 13 824 6.91 23 442 1.70 917
Battleship (3 turns) 18 152 62 875 73 130 253 940 552 132 3.29 2894 1.24 99
Battleship (4 turns) 316 520 734 203 968 234 2 267 924 3 487 428 3.75 27 470 1.33 483
Liar’s dice 12 288 12 288 24 571 24 571 147 420 15.56 65 546 2.04 1399
Pursuit-evasion (4 turns) 34 348 52 2029 15 898 8.29 62 1.94 5
Pursuit-evasion (6 turns) 58 11 830 78 68 951 118 514 19.42 254 2.51 7

(a) — Game instances and sizes (b) (c)
Table 1. Column (a): various measures of the size of each of the games that we test algorithms on. Columns
(b) and (c): the magnitude of the dilated entropy DGF and DGE weights.

which allows for a much smaller amount of smoothing, while still guaranteeing correctness. This
in turns allows the algorithms to safely take larger steps, thereby progressing faster.
Secondly, we investigate the numerical performance of the two entropy DGFs in the EGT/AS

algorithm in Figure 4. Here we see a smaller performance improvement. For most of the games,
we get a small factor of improvement for the first 100 or so iterations, but then the performance
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Fig. 3. Performance of the MP algorithm instantiated with the two entropy DGFs across nine games.

is similar thereafter. For Liar’s Dice there is a persistent improvement to using dilatable global
entropy across all iterations.

7.2 Correlated and Team Equilibrium Computation
Next we investigate the computational performance of our extension of both the dilated entropy
DGF and the DGE DGF to the scaled extension operator. In particular, we will consider the problem
of computing an NFCCE, which we saw in Section 6.1 can be formulated as a BSPP via the scaled
extension operator. Since the constructed polytope is the same for ex-ante team correlated equilibria,
extensive form correlated, and extensive form coarse correlated, we restrict our attention to NFCCE
and leave the numerical investigation on the other solution concepts for future work. We expect
the takeaways to be similar.
Figure 5 shows the results for instantiating the mirror prox algorithm with our two DGFs. We

see that, similar to the case of zero-sum Nash equilibrium, the DGE DGF performs much better
than the dilated entropy DGF, again likely due to the smaller weights needed in order to make the
DGF strongly convex on the correlation-plan polytope.

8 CONCLUSIONS AND FUTURE RESEARCH
We introduced the dilatable global entropy as a distance-generating function for sequential decision-
making polytopes such as those encountered in sequential games. We showed that the DGE function
leads to better strong-convexity properties than prior DGFs for the sequence-form polytope, and it
improves the associated polytope diameter, as well as the convergence rate of FOMs, by a factor
of 2𝔇𝑄 . Experiments confirmed that this leads to a superior notion of distance. We then extended
the DGE, as well as the general dilation framework, to the scaled extension operation. We thereby
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Fig. 4. Performance of the EGT/AS algorithm instantiated with the two entropy DGFs, as well as aggressive
stepsizing, 𝜇 balancing, and initial 𝜇 fitting.
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Fig. 5. Performance of the MP algorithm for finding normal-form coarse-correlated equilibria in three
general-sum games.

showed how to construct suitable DGFs for the convex polytopes encounted when computing
certain correlated equilibria, as well as team equilibria. Based on these extensions, we showed the
first algorithm that achieves a 1/𝑇 convergence rate to the set of of various correlated equilibria
and ex-ante team coordinated equilibria, while requiring only linear time (in the polytope size) for
each iteration.

In future research, it would be interesting to investigate whether our new DGFs can be used to
achieve numerical performance comparable to that of the currently practically-fastest algorithms,
that is, new CFR variants [6, 15, 35], which have worse theoretical convergence rate. In particular,
we think that stochastic methods could be a promising line of research for this, because it is harder
to tune the stepsize in those methods, in order to account for the weights previously used in the
dilated entropy DGF.
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A PROOFS MISSING FROM THE MAIN BODY
A.1 Proof of Theorem 5.3

Proof. The interior of domain is (0, 1) |Σ | , a nonempty set, and 𝜑̃ is clearly twice-differentiable
on it. Furthermore, 𝜑̃ is easily seen to be 1-strongly convex, as the Hessian is

∇2𝜑̃ (𝒙) = diag
({
𝑤 𝑗𝑎

𝑥 𝑗𝑎

}
𝑗𝑎∈Σ

)
⪰ 𝐼 ,

since 0 ≤ 𝑥 𝑗𝑎 ≤ 1 and 𝑤 𝑗𝑎 ≥ 1. As strong convexity implies strict convexity, 𝜑̃ satisfies all the
properties listed in the statement. □

A.2 Proof of Theorem 5.4
Proof. Using the second-order definition of strong convexity, wewish to show that the inequality

𝒉⊤∇2𝜑̃ (𝒙)𝒉 ≥ 1
𝑀𝑄
∥𝒉∥21 holds for any 𝒉 ∈ R |Σ | . Expanding the Hessian matrix gives

𝒉⊤∇2𝜑̃ (𝒙)𝒉 = 𝒉⊤ diag
({
𝑤 𝑗𝑎

𝑥 𝑗𝑎

}
𝑗𝑎∈Σ

)
𝒉 ≥

∑︁
𝑗𝑎∈Σ

ℎ2𝑗𝑎

𝑥 𝑗𝑎
. (10)

On the other hand, by expanding the definition of ∥𝒉∥21 and applying the Cauchy-Schwarz inequality,
we have

∥ℎ∥21 =
(∑︁

𝑗𝑎

|ℎ 𝑗𝑎 |
)2

=

(∑︁
𝑗𝑎

|ℎ 𝑗𝑎 |√
𝑥 𝑗𝑎

√
𝑥 𝑗𝑎

)2
≤

(∑︁
𝑗𝑎

ℎ2𝑗𝑎

𝑥 𝑗𝑎

) (∑︁
𝑗𝑎

𝑥 𝑗𝑎

)
≤

(∑︁
𝑗𝑎

ℎ2𝑗𝑎

𝑥 𝑗𝑎

)
𝑀𝑄 .

Substituting (10) into the last inequality yields a proof of the desired strong convexity modulus
1/𝑀𝑄 . □

A.3 Proof of Theorem 5.5
Proof. By the definition of the polytope diameter and the fact that we chose our DGFs such

that min𝒙∈A 𝜑̃ (𝒙) = 0, we have

Ω𝜑̃,𝑄 ≤ max
𝒙∈𝑄

𝜑̃ (𝒙) ≤
∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗
log |𝐴 𝑗 | ≤ max

𝑗 ′∈J
log |𝐴 𝑗 ′ |

∑︁
𝑗 ∈J

𝛾 𝑗𝑥𝑝 𝑗

≤ 𝑀𝑄 max
𝑗 ′∈J

log |𝐴 𝑗 ′ |
∑︁
𝑗 ∈J

𝑥𝑝 𝑗
≤ 𝑀2

𝑄 max
𝑗 ′∈J

log |𝐴 𝑗 ′ |.

The first inequality is by noting that log𝑥 𝑗𝑎 ≤ 0 since 𝑥 𝑗𝑎 ≤ 1 for all 𝑗, 𝑎 ∈ Σ. The second inequality
is by taking the maximum. The third inequality is by noting that 𝛾 𝑗 is largest at root decision points,
where it is at most𝑀𝑄 . The fourth inequality upper bounds

∑
𝑗 ∈J 𝑥𝑝 𝑗

by𝑀𝑄 . □

A.4 Proof of Proposition 1
Proof. Since int(A × B) = int(A) × int(B), the domain of 𝑑𝑧 has nonempty interior. Showing

differentiability in the interior is easy, and in particular at any (𝒖, 𝒗) ∈ int(A) × int(B) it holds
that

∇𝑑𝑧 (𝒖, 𝒗) =
©­­«
∇𝑑𝑢 (𝒖) + 𝛼𝑣

(
𝑑𝑣

(
𝒗

ℎ (𝒖)

)
− ∇𝑑𝑣

(
𝒗

ℎ (𝒖)

)⊤
𝒗

ℎ (𝒖)

)
𝒂

𝛼𝑣∇𝑑𝑣
(

𝒗
ℎ (𝒖)

) ª®®¬ .
Hence, the only task missing to complete the verification that 𝑑𝑧 is Legendre is to show that 𝑑𝑧 is
strictly convex on int(A) × int(B). The proof is standard and we omit it.
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We now turn to the second part of the statement, and assume that 𝑑𝑢 and 𝑑𝑣 are “nice” DGFs. It
is clear that the gradient (A.4) can be computed in linear time: we only need to take inner products
which takes time linear in the dimension ofV , compute the value of ℎ(𝒖) which is linear in the
dimension of U, and compute corresponding values of 𝑑𝑢 and 𝑑𝑣 , which takes linear time by
assumption. As for the gradient of the convex conjugate, we start by noting that

max
𝒖∈U,𝒗∈V

{
𝒈⊤𝑢 𝒖 + ℎ(𝒖)𝒈⊤𝑣 𝒗 − 𝑑𝑢 (𝒖) − 𝛼𝑣ℎ(𝒖)𝑑𝑣 (𝒗)

}
= max

𝒖∈U,𝒗∈V

{
𝒈⊤𝑢 𝒖 − 𝑑𝑢 (𝒖) + 𝛼𝑣 ℎ(𝒖)

[(
𝒈𝑣
𝛼𝑣

)⊤
𝒗 − 𝑑𝑣 (𝒗)

]}
= max

𝒖∈U,𝒗∈V

{
𝒈⊤𝑢 𝒖 − 𝑑𝑢 (𝒖) + 𝛼𝑣 ℎ(𝒖)

[(
𝒈𝑣
𝛼𝑣

)⊤
𝒗 − 𝑑𝑣 (𝒗)

]}
= max

𝒖∈U

{
𝒈⊤𝑢 𝒖 − 𝑑𝑢 (𝒖) + 𝛼𝑣 ℎ(𝒖)max

𝒗∈V

{(
𝒈𝑣
𝛼𝑣

)⊤
𝒗 − 𝑑𝑣 (𝒗)

}}
= max

𝒖∈U

{(
𝒈𝑢 + 𝛼𝑣 𝑑∗𝑣

(
𝒈𝑣
𝛼𝑣

)
𝒂

)⊤
𝒖 − 𝑑𝑢 (𝒖)

}
,

where the third equality follows since 𝛼𝑣 > 0 and ℎ(𝒖) ≥ 0 by hypothesis, and the fourth equality
follows from the definition of ℎ(𝒖) = 𝒂⊤𝒖 for all 𝒖. From that observation, it follows that

∇𝑑∗𝑧 (𝒈𝑢,𝒈𝑣) =
©­«
∇𝑑∗𝑢

(
𝒈𝑢 + 𝛼𝑣 𝑑∗𝑣

(
𝒈𝑣
𝛼𝑣

)
𝒂
)

∇𝑑∗𝑣
(
𝒈𝑣
𝛼𝑣

)
.

ª®¬ (11)

Since

𝑑∗𝑣

(
𝒈𝑣
𝛼𝑣

)
= max

𝒗∈V

{(
𝒈𝑣
𝛼𝑣

)⊤
𝒗 − 𝑑𝑣 (𝒗)

}
can be computed in linear time starting from ∇𝑑∗𝑣 (𝒈𝑣/𝛼𝑣), the gradient of the conjugate of 𝑑𝑧 ,
given in (11), can be evaluated in linear time provided that ∇𝑑∗𝑢 and ∇𝑑∗𝑣 can, which is assumed by
hypothesis since 𝑑𝑢 and 𝑑𝑣 are “nice”. □

A.5 Proof of Proposition 2
Proof. By using algebraic manipulations, it is easy to show that, for all (𝒖, 𝒗) ∈ Z,

(∇𝑑𝑧 (𝒖, 𝒗) − ∇𝑑𝑧 (𝒖, 𝒗))⊤
(
𝒖 − 𝒖 ′
𝒗 − 𝒗 ′

)
≥ 1

2 (𝒖 − 𝒖
′)⊤𝑫𝑢 (𝒖 − 𝒖 ′) + 𝛼𝑣ℎ

(
𝒖 + 𝒖 ′
2

)



 𝒗

ℎ(𝒖) −
𝒗 ′

ℎ(𝒖)





2. (12)

Now, we note that

∥𝒗 − 𝒗 ′∥ =




ℎ(𝒖) 𝒗

ℎ(𝒖) − ℎ(𝒖
′) 𝒗 ′

ℎ(𝒖 ′)






=





ℎ (
𝒖 + 𝒖 ′
2

) (
𝒗

ℎ(𝒖) −
𝒗 ′

ℎ(𝒖 ′)

)
+ (ℎ(𝒖) − ℎ(𝒖 ′))

[
1
2

(
𝒗

ℎ(𝒖) +
𝒗 ′

ℎ(𝒖 ′)

)]




≤ ℎ

(
𝒖 + 𝒖 ′
2

)



 𝒗

ℎ(𝒖) −
𝒗 ′

ℎ(𝒖 ′)





 + (ℎ(𝒖) − ℎ(𝒖 ′)),
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where we used the first assumption to bound the norm of 1
2

(
𝒗

ℎ (𝒖) +
𝒗′

ℎ (𝒖′)

)
, which belongs toV by

definition ofZ. Hence, by rearranging and taking squares we have

ℎ

(
𝒖 + 𝒖 ′
2

)



 𝒗

ℎ(𝒖) −
𝒗 ′

ℎ(𝒖 ′)





 ≥ ℎ

(
𝒖 + 𝒖 ′
2

)2



 𝒗

ℎ(𝒖) −
𝒗 ′

ℎ(𝒖 ′)





2
≥ 1

2 ∥𝒗 − 𝒗
′∥2 − (ℎ(𝒖) − ℎ(𝒖 ′))2

=
1
2 ∥𝒗 − 𝒗

′∥2 − (𝒂⊤ (𝒖 − 𝒖))2.

Plugging the last expression into (12) and using the fact that 𝒂𝒂⊤ ⪯ ∥𝑎∥22𝑰 we obtain the statement.
□

B DETAILED DESCRIPTION OF GAME INSTANCES USED IN NUMERICAL
EXPERIMENTS

Here we describe each of the games that we consider in the experimental section of the paper.
Kuhn poker is a standard benchmark in the EFG-solving community [25]. In Kuhn poker, each

player puts an ante worth 1 into the pot. Each player is then privately dealt one card from a
deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then
occurs, with the following dynamics. First, Player 1 decides to either check or bet 1. Then,
• If Player 1 checks Player 2 can check or raise 1.
– If Player 2 checks a showdown occurs; if Player 2 raises Player 1 can fold or call.
∗ If Player 1 folds Player 2 takes the pot; if Player 1 calls a showdown occurs.

• If Player 1 raises Player 2 can fold or call.
– If Player 2 folds Player 1 takes the pot; if Player 2 calls a showdown occurs.

When a showdown occurs, the player with the higher card wins the pot and the game
immediately ends.

Leduc poker is another standard benchmark in the EFG-solving community [34]. The game is
played with a deck of 𝑅 unique cards, each of which appears exactly twice in the deck. The
game is composed of two rounds. In the first round, each player places an ante of 1 in the
pot and is dealt a single private card. A round of betting then takes place, with Player 1
acting first. At most two bets are allowed per player. Then, a card is is revealed face up and
another round of betting takes place, with the same dynamics described above. After the two
betting round, if one of the players has a pair with the public card, that player wins the pot.
Otherwise, the player with the higher card wins the pot. All bets in the first round are worth
1, while all bets in the second round are 2.

Goofspiel is another popular benchmark game, originally proposed by Ross [32]. It is a two-player
card game, employing three identical decks of 𝑘 cards each whose values range from 1 to
𝑘 . At the beginning of the game, each player gets dealt a full deck as their hand, and the
third deck (the “prize” deck) is shuffled and put face down on the board. In each turn, the
topmost card from the prize deck is revealed. Then, each player privately picks a card from
their hand. This card acts as a bid to win the card that was just revealed from the prize deck.
The selected cards are simultaneously revealed, and the highest one wins the prize card.
In the zero-sum version of the game, if the players’ played cards are equal, the prize card is
split. In the general-sum version of the game, denoted “General-sum Goofspiel” and used
in the experiments on NFCCE, the prize card is thrown out on tie. Either way, the players’
scores are computed as the sum of the values of the prize cards they have won.
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Pursuit-evasion is a security-inspired pursuit-evasion game played on the graph shown in Fig-
ure 6. It is a zero-sum variant of the one used by Kroer et al. [21], and a similar search game
has been considered by Bošanskỳ et al. [3] and Bošanskỳ and Čermák [2].

𝑃1 𝑃2

𝑆

5

10

3

Fig. 6. The graph on which the search game is played.

In each turn, the attacker and the defender act simultaneously. The defender controls two
patrols, one per each respective patrol areas labeled 𝑃1 and 𝑃2. Each patrol can move by
one step along the grey dashed lines, or stay in place. The attacker starts from the leftmost
node (labeled 𝑆) and at each turn can move to any node adjacent to its current position by
following the black directed edges. The attacker can also choose to wait in place for a time
step in order to hide all their traces. If a patrol visits a node that was previously visited by
the attacker, and the attacker did not wait to clean up their traces, they will see that the
attacker was there. The goal of the attacker is to reach any of the rightmost nodes, whose
corresponding payoffs are 5, 10, or 3, respectively, as indicated in Figure 6. If at any time
the attacker and any patrol meet at the same node, the attacker is loses the game, which
leads to a payoff of −1 for the attacker and of 1 for the defender. The game times out after𝑚
simultaneous moves, in which case both players defender receive payoffs 0.

Battleship is a parametric version of a classic board game, where two competing fleets take turns
shooting at each other [16]. At the beginning of the game, the players take turns at secretly
placing a set of ships on separate grids (one for each player) of size 3 × 2. Each ship has size
2 (measured in terms of contiguous grid cells) and a value of 4, and must be placed so that
all the cells that make up the ship are fully contained within each player’s grids and do not
overlap with any other ship that the player has already positioned on the grid. After all ships
have been placed. the players take turns at firing at their opponent. Ships that have been hit
at all their cells are considered sunk. The game continues until either one player has sunk all
of the opponent’s ships, or each player has completed 𝑅 shots. At the end of the game, each
player’s payoff is calculated as the sum of the values of the opponent’s ships that were sunk,
minus the sum of the values of ships which that player has lost.
In the general-sum variant we consider in the NFCCE experiments, we set 𝑅 = 3, and
furthermore we set each player’s payoff is calculated as the sum of the values of the opponent’s
ships that were sunk, minus the sum of the values of ships which that player has lost times
two. This modification makes the game general-sum, and makes the players more risk-averse.
Because of that, it was observed by Farina et al. [16] that the introduction of a mediator in
the game (through the correlated solution concept) enables to players to reach equilibrium
states with significantly larger social welfare.

Liar’s dice is another standard benchmark in the EFG-solving community [? ]. In our instantiation,
each of the two players initially privately rolls an unbiased 6-face die. The first player begins
bidding, announcing any face value up to 6 and the minimum number of dice that the player
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believes are showing that value among the dice of both players. Then, each player has two
choices during their turn: to make a higher bid, or to challenge the previous bid by declaring
the previous bidder a “liar”. A bid is higher than the previous one if either the face value is
higher, or the number of dice is higher. If the current player challenges the previous bid, all
dice are revealed. If the bid is valid, the last bidder wins and obtains a reward of +1 while the
challenger obtains a negative payoff of −1. Otherwise, the challenger wins and gets reward
+1, and the last bidder obtains reward of −1.

Sheriff The Sheriff game is inspired by the Sheriff of Nottingham board game and was introduced
by Farina et al. [16] as a benchmark game for correlated solution concepts in extensive-form
game. Player 1 (the "smuggler") selects the number of illegal items to be placed in the cargo
(in our case, between 0 and 3). The selected number is unknown to Player 2 (the "sheriff").
Then, the game proceeds for 3 bargaining rounds. In each round, the following happens:
• The smuggler selects an integer bribe amount, in the range 0 to 3 (inclusive). The selected
amount is public information. However, the smuggler does not actually give money to the
sheriff, unless this is the final round.
• Then, the sheriff tells the smuggler whether he is planning to inspect the cargo. However,
no cargo is actually inspected other than in the final round. The sheriff can change his
mind in later rounds, except for the final round.

B.1 Mirror Prox (MP)
Next we consider the Mirror Prox (MP) algorithm [29]. As for EGT, we will assume that we have
proximal setups for both X and Y, with one-strongly-convex DGFs 𝑑𝑥 , 𝑑𝑦 . Rather than construct
smoothed approximations, mirror prox directly uses the DGFs to take first-order steps. Algorithm 3
shows the sequence of steps. Compared to EGT, mirror prox has a somewhat simpler structure: it
simply takes repeated extrapolated proximal steps. First, a proximal step in the descent direction
is taken for both 𝑥 and 𝑦. Then, the gradient at those new points is used to take a proximal step
starting from the previous iterate (this is the extrapolation part: a step is taken starting from the
previous iterate, but with the extrapolated gradient). Finally, the average strategy is output.

ALGORITHM 3: Mirror Prox (MP) algorithm.

11 function Initialize()
12 𝑡 ← 0
13 𝒛0𝑥 ← argmin𝒙̂∈X 𝑑𝑥 (𝒙̂)
14 𝒛0𝑦 ← argmin𝒚̂∈Y 𝑑𝑦 (𝒚̂)

15 function Iterate()
16 𝑡 ← 𝑡 + 1
17 𝒘𝑡

𝑥 ← prox𝒛𝑡𝑥
(
𝜂𝑡𝑨𝒛𝑡−1𝑦

)
18 𝒘𝑡

𝑦 ← prox𝒛𝑡𝑦
(
−𝜂𝑡𝑨⊤𝒛𝑡−1𝑥

)
19 𝒛𝑡+1𝑥 ← prox𝒛𝑡𝑥

(
𝜂𝑡𝑨𝒘𝑡

𝑦

)
20 𝒛𝑡+1𝑦 ← prox𝒛𝑡𝑦

(
−𝜂𝑡𝑨⊤𝒘𝑡

𝑥

)
21 𝒙𝑡 ← [∑𝑡

𝜏=1 𝜂
𝜏 ]−1 ∑𝑡

𝜏=1 𝜂
𝜏𝒘𝜏

𝑥

22 𝒚𝑡 ← [∑𝑡
𝜏=1 𝜂

𝜏 ]−1 ∑𝑡
𝜏=1 𝜂

𝜏𝒘𝜏
𝑦

Note: {𝜂𝑡 } is a sequence of step-
size parameters. A well-known and
theoretically-sound choice for 𝜂𝑡 is
𝜂𝑡 B 1

∥𝐴 ∥ for all 𝑡 = 0, 1, . . . (see
also Theorem B.1).

The mirror prox algorithm also converges at rate 𝑂 (1/𝑇 ):

Theorem B.1 (Ben-Tal and Nemirovski [1] Theorem 5.5.1). Suppose the stepsize in Algorithm 3
is set as 𝜂𝑡 = 1/∥𝐴∥. Then we have

max
𝒚∈Y
(𝒙𝑡 )⊤𝑨𝒚 −min

𝒙∈X
𝒙⊤𝑨𝒚𝑡 ≤

∥𝑨∥(Ω𝑑𝑥 ,X + Ω𝑑𝑦 ,Y)
2𝑡 .
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