Sensing via Collisions: a Smart Cage for Quadrotors
with Applications to Self-Localization

Cheng Liu, Roberto Tron

Abstract— Applications of micro unmanned aerial vehicles
(UAVs) are gradually expanding into complex urban and
natural environments. Despite noticeable progress, flying robots
in obstacle-rich environments is still challenging. On-board
processing for detecting and avoiding obstacles is possible, but
at a significant computational expense, and with significant
limitations (e.g., for obstacles with small cross sections, such
as wires). A low-cost alternative is to mitigate physical contacts
through a cage or other similar protective devices. In this paper,
we propose to transform these passive protective devices into
functional sensors: we introduce a suspended rim combined
with a central base measuring the relative displacement of the
rim; we provide a full mechanical design, and derive solutions
to the inverse kinematics for recovering the collision direction
in real time. As a proof of concept, we show the benefits of
this novel form of sensing by embedding it in a traditional
particle filter for self-localization in a known environment; our
experiments show that localization is possible with a minimal
sacrifice in payload capacity.

I. INTRODUCTION

Development activities in multi-rotor aerial robots (and
quadrotors in particular) have accelerated dramatically over
the recent decades, with mounting research and commercial
interests in sensing, surveillance, search operations in dan-
gerous or complex environments, etc. While there has been
tremendous progress in developing basic autonomy functional-
ity (e.g., localization, mapping, path planning, robust control,
etc.), practical applications still incur significant risks of
collisions in cluttered environments. Strategies to counteract
this risk fall into two categories: /) obstacle detection and
avoidance [1]-[3], and 2) mechanical resilience [4]-[6].

State-of-the-art obstacles-avoidance systems are based on
either vision [7], [8], or distance-measuring devices [9]-[11].
Popular implementations rely on global or local maps built
via simultaneous localization and mapping or filtering based
on onboard sensors [12]-[16], which however have significant
limits in representing fine obstacles such as wires and foliage.
The second, complementary approach to deal with collisions
is to use mechanically resilient systems that attenuate the
effect of external forces on flight stability.

Rigid protective accessories such as individual propeller
guards are designed to physically separate fragile vehicle
components from the environment rather than mitigating
impact forces [17]-[19]. More advanced mechanical concepts
[20]-[25] absorb energy or isolate impacts through elastic
deformations. In both cases, these additional devices reduce

Both authors are with the Department of Mechanical Engineering,
Boston University, 110 Cummington Mall, MA 02215, United States
{cliu713, tron}@bu.edu

R. Tron was partially supported by NSF award DCSD-1728277

attaching point

routing hole

Fig. 1: Prototype of a UAV with the proposed smart cage

the available payload capacity, without directly contributing
to main mission objectives.

Our contributions are aligned with other work [26] that uses
additional structures to fundamentally increase the capabilities
of quadrotors.

Paper contributions. We introduce a novel mechanical
system that combines a protective outer rim with an inner
displacement sensor base (Fig. 1). The external rigid protec-
tive rim protects the vehicle from external contacts, while its
displacement is used to estimate the direction and magnitude
of the collision. The contributions of our work are

1) A detailed mechanical and electrical design of the novel
system, which translates the motion of the outer rim into
the motion of four rotary encoders in the sensor base;

2) The derivation and solution of the inverse kinematics
equations necessary to transform the rotary encoder
readings into estimates of the collision direction and
magnitude. Our solution is non-iterative and can be
implemented on a microcontroller (Arduino) in real time.

3) A proof-of-concept validation where we use our sensor
for localization in a standard particle filter.

These contribution are illustrated in the following sections.
Note that while our experiments show that the sensor alone
might be sufficient for localization in a simplified setting, its
intended use would be as additional or complementary to other
sensors (e.g., vision, inertial, GPS, etc.); e.g., “touch” sensing
can be used to integrate standard vision-based solutions in the
case of low-light conditions. Our work naturally complements
also the work from [27] which uses collision for mapping
but visual-inertial odometry for localization.

II. MECHANICAL DESIGN

Our system is divided in a sensor base and an outer rim.
The main design challenges are concentrated on the sensor
base, which needs to transfer the displacement of the outer
rim into the motion of four rotary encoders through cables,
springs, and gears. The sensor has four components:

1) An upper and lower base interconnected with struts
(Fig.2a): these provide gear housing and sensor support.
The two bases have similar layouts, each one with four
circular holes designed to house ball bearings for the
driving gears. The bottom base includes a large cut-
out for reducing weight, and the top base includes four
smaller holes through which the shafts of the encoders
form the electrical board can attach to the driven gears.

2) Four pairs of gears with torsional springs (Fig. 2b
and 2c): The outer rigid rim is attached to the torsional
springs through cables, which are routed through holes
in the main body of the host vehicle and around
coaxial extensions of the gears. The torsional springs
are embedded in the driving gears. A gear ratio of 2.0
is used to mechanically amplify the small displacements
of the rim (and the cables) during collision, while the
springs move the sensor back to rest after collisions.

3) A circuit board with rotary encoders (potentiometers),
which interface with the gears. The circuit schematic is
shown in Fig. 4. Components R1 through R2 refer to the
rotary encoders, which are used as voltage dividers. A
first connector JP1 is used for the power supply, while
a second connector JP2 connects the floating contacts
of the encoders to the analog inputs on the Arduino.

4) An Arduino board that measures the displacement along
the four cables and gear pairs as voltage changes in
the analog inputs interfaces, and run the equation solver
described in Sec. III to recover the actual 2-D relative
rotation and translation of the base with respect to the
rim. The power supply and wireless communication for
our sensor is derived from the host quadrotor.

The four components stacked in the assembled sensor base
are shown in Fig. 3. We take advantage of 3-D printing
for fabrication of the two bases and gears, using standard
miscellaneous hardware for the other parts. In addition, we
designed an outer protective rim (Fig. 2d), which is composed
of segments of carbon fiber tubing with 3-D printed joints.
Our design makes the rim lightweight but fairly rigid; this is
done on purpose, since our goal is to transmit (and dissipate)
the energy of the impacts to the springs in the main sensor,
not to deformations of the outer rim. The complete sensor is
assembled by stacking the components (Fig. 3) and mounting
them on the host (Fig. 1), and then running cables (made
of fishing line in our prototype) from the outer rim, through
the mounting holes, to the springs in the driving gears. The
cable is connected to the springs via hooks, and to the outer
rim by pressing it between two washers with a screw (this
method allows us to manually fix the tension of the cables
with just a screwdriver, while avoiding slippage even during
collisions). The contact between the fishing line and the 3-D

(a) Sensor bases

(c) Driven gears on potentiometers

(d) Protective rim

Fig. 2: Components of the system before assembly. Note that,
for illustration purposes, the driven gears in (c) are shown
mounted directly above the circuit board without the upper
base in the middle.

Fig. 3: Different views of the assembled sensor, alone and
mounted on the host vehicle.

I
Power ‘_ﬁ\ ZH

w‘ = p:f' Arduino

Rotary
encoders

Fig. 4: Electrical circuit schematic

printed routing holes is not a significant source of friction.

For proper operation, the cables need to be fairly taut, so
that the outer rim is almost level with the routing holes (as a
result, the springs will be in tension even at rest).

Remark 1: Although the current design represents a useful
proof of concept (see results of the experiments in Sec. V),
the system could be improved. For instance, in our prototype,
the potentiometer readings present some hysteresis (mainly
due to the use of a 3-D printed gear assembly and the springs)
that we filter out using simple signal processing.

IIT. MATHEMATICAL MODEL FOR
DISPLACEMENT ANALYSIS

As already mentioned, the Arduino reads changes in voltage
in response to displacements of the outer rim. In this section,
we derive the 2-D kinematic equations relating the voltages
to the relative rotation and translation between the rim and
the sensor, and an algorithm for solving them.

We first define two 2-D reference frames: B (body), rigidly
attached to the sensor and the host vehicle, and C (cage),
attached to the outer rim. The two reference frames are defined
so that they coincide when the system is at rest, i.e., when
there is no collision and no relative displacement between
rim and sensor. For modeling purposes, we assume planar
motion between the rim and sensor, although, in practice,
the rim can show noticeable out-of-plane inclination during
collisions and dynamic maneuvers. Despite this, our model
can still produce readings that are useful for localization, as
demonstrated in the experiments (Sec. V).

Our goal is to use the readings from the potentiometers
to solve for the three degrees of freedom of the relative
pose between the frames B and C: two for translation, Az,
Ay, and one for rotation, . In practice, we could ignore
the rotational component, since, in most practical situations,
0 ~ 0. However, we decided to adopt a more general approach
for three reasons: /) by construction, our equations for

Fig. 5: Tllustration of the reference frames for the cage C
(outer rim) and the body B (host vehicle), connected via
cables —//— between routing holes © and attaching points =.

obtaining the translation are still valid when 6 is known,
2) if a more precise sensor becomes available in the future,
our solver would still be valid, and 3) discuss a fundamental
symmetry ambiguity (between 6 and —#) that does not appear
when 6 = 0.

Given the notation above, the coordinate transformation
from the rim frame C to the vehicle frame B is given by the
following rigid body transformation:

B cosf —sinf] [z€ Az
[yB} - {sin@ cosf] [yc} + [Ay} M
where x and y are the coordinates of a given point.

We denote the constant distance between the origin of
B, and each routing hole by Lg, and the constant distance
between the origin of C, and the attachment point of the
cable as L¢, see Fig. 5 for a schematic illustration. We then

have that the coordinates of the four routing holes in the base
frame B are:

HE G
yP Lg| Yy (U

G -] B -]
3 —Lg| |y 0 ’

with similar expressions for the coordinates of the four
attachment points of the cable in the cage frame C:

T T
=l R[5
Ya1 Le| Yaz 0 ’

FA R AR R
Yas —Le| 7 |Yaa 0

Under collision, the length of the cable between the sensor
and the rim effectively changes (since it moves together with
the spring), while the cables also bend at the routing holes,
causing the outer rim to rotate and translate. We therefore
define four distances D;, ¢ € {1,...,4}, which represent
the distances between the points in B defined in (2) and the
corresponding points in C defined in (3). More precisely, we
can transform the points (3) to the B frame using (1), and then
computing the squared norm of the differences, obtaining:

)

D} = (Lesin® — Az)® + (Lg — Le cos§ — Ay)?, (4a)
D2 = (Lg — Lecos — Ax)? + (Le sin® + Ay)?, (4b)
D3 = (Lesing + Az)? + (L — Le cos§ + Ay)?, - (de)
D2 = (Lg — L cosf + Az)2 + (Lesin + Ay)®. (4d)

We assume that the distances {D;} can be determined by the
onboard sensor using the following lumped parameter model:

Di:LC—LB+ADi; ADZ':OK'Ui‘i‘B, (5)

fori € {1,...,4}, and where the { AD,} express the change
in length with respect to the length at rest (given by Lo — Lp),
v; are the analog readings from the Arduino, which depend
on the encoders’ rotations, and «, 3 subsume the effects of
the initial readings, and angular range of the potentiomenters,
the gear ratio, and the mechanical arm of where each cable

attaches to the corresponding spring and gear. The parameters
« and S are manually adjusted in a separate calibration.

Given the distances D; (obtained from the Arduino inputs
via (5)), our goal is to solve the over-determined system of
quadratic equations (4) to find Az, Ay and 6. To proceed,
we first notice by inspection that the linear combination
(4a) — (4b) + (4c) — (4d) gives a constant equation (i.e., all
the variable are eliminated), and represents an invariant of
the system. We therefore extract the following three linearly
independent equations: the sum of (4a) through (4b), and the
differences (4c) — (4a), (4d) — (4b), resulting in

4
> D? - L} + L — 2LpLe cosf + Az + Ay? =0, (6a)
=1

Di — D} — 4((Lg — Le cos) Ay + LAz sin) =0, (6b)
D? — D3 — 4((L3 + L¢cos@)Ax + LeAysin 6)) =0, (6¢)
cos?0 +sin?0=1, (6d)

where we added the last equation from a known trigonometric
identity. Considering cosf and sinf as two independent
variables constrained by (6d), equation (6) is a system of
polynomial (in fact, quadratic) equations in four variables.
Applying the method of [28], we can solve this new system
of equations with the following steps:

1) Use a Grobner basis to algebraically eliminate all the
variables except cos 6.

2) Express possible solutions for cosf as the eigenvalues
of the associated action matrix, whose characteristic
equation gives a quartic polynomial in cos 6.

3) If the equation is satisfied by the special case cosf =1
(6 = 0), skip to step 5).

4) Solve the quartic polynomial using Ferrari’s method [29].
Given the symmetries in the original system (6) and in
the action matrix, this quartic polynomial will have one
real solution (with double multiplicity) determining cos 6,
and thus two opposite values for 6.

5) Substitute € in (6b), (6¢), and solve for Ax, Ay (notice
that this is a linear system once 6 is known).

In general, we will obtain two solutions: this is expected, since
two mirrored configurations with § and —6, and, respectively,
Az and —Az will produce the same distances {D,}; this
ambiguity could be resolved using complementary inertial
measurements; in our experiments, we have 6 ~ 0, so we do
not consider this ambiguity. The important point about the
steps 1)-5) above is that they are non-iterative, and can be
mostly carried out with simple arithmetic operations; hence,
they can be easily implemented directly on the Arduino board,
and run in real time. Nonetheless, note that we used [28]
only for step /) above, with custom implementations for the
other steps, in order to avoid numerical routines that cannot
be efficiently implemented on a microcontroller. The Arduino
publishes the results in the Robotic Operating System (ROS)
using the rosserial package via the host vehicle.

IV. LOCALIZATION USING PARTICLE FILTERING

In this section, we follow a typical particle filtering
formulation [30], summarized in Fig. 6), focusing mostly

on the elements that are specialized to our setting; we assume
a simplified setting where the rotation between the vehicle’s
and the world’s reference frames are known (e.g., using
measurements from an onboard Inertial Measurement Unit
and magnetometer). Our goal is not to propose a new particle
filter, but simply show how our sensor could be incorporated.
First, we assume a first-order integrator dynamics as,

2 =20 + Uk1 + Uk, (7N
where refers to the motion command given to the vehicle,
and U is Gaussian noise; k denotes the discrete time.

We use collisions as our observations for the filter update.
Our observation model is based on two quantities derived by
the displacement components Ax, Ay (as already mentioned,
we make the practical approximation § = 0): the influence
distance D;,q, and the surface normal vector J_finﬂ at the point
of collision between the obstacle and the vehicle:

Ding = Do — v/ Ax? + Ay?, 3
0S Oyehicle — Sin Oyehicle | | Az
= sin Oyenicle €05 Oyehicle Ay

infl = A(E2 n Ay2)

where D is the rim radius, and 6,¢cni1 is the angle between
the vehicle’s and world’s reference frames.

We then define a weight function ¢ to model the relation
between the measured distance of influence D;,n, and the
distance between a particle and the nearest obstacle, Dops:

(©))

D
max [o, 1- ‘ Df’bs - 1” if collision,
@(Dobw Dinﬂ) = mﬂD
max {O,min (1, Obs)} otherwise.
Ding

(10)

The two cases are pictorially shown in Fig. 7. Intuitively,
if the sensor measures that the outer rim is not in collision
(Fig. 7a), the particles that are close to obstacles will be less

sampling particles |<—

YES

particle collision check? |
NOy

vehicle collision check? |
True 1 False

YES
weight update using
probability distributions
(collision/non-collision)
¥

| resampling |

| sampling time ¢ < 7,,,,.? l—
NO

Fig. 6: Particle filtering workflow

Obstacle .

0 Ding Digps
(@) @(Dobs, Dinnt), no collision
¥
1
)
3
s
[72]
o
o
0 D infl Dobs

(b) ©(Dops, Dinft), collision

Fig. 7: Probability distributions for particle weight given
collision observation

likely; conversely, if the sensor measures a collision (Fig. 7b),
particles that have a distance Dy closer to the expected Djyg
will be more likely, with zero probability at Dy, = 0 and
Dobs > 2Dinﬂ'

We also introduce an additional weight function ¢ modeling
the relation between the measured normal of influence Ny,
and the corresponding quantity for a particle, Nops:
NaslNont1 it hoth in collision,

— —

"/)(Nobh]\]inﬂ): (11)

1 otherwise.

Intuitively, if the sensor reveals a collision, we give more
importance to particles that also imply a collision with a
normal vector similar to the direction measured by the sensor;
conversely, if there is no collision (either signaled by the
sensor, or implied by the particle) we do not have normals to
compute, so we set the weight to the maximum value. The
final weight for the particle is given by multiplying (10) with
(11), and is used for resampling as described in Fig. 6.

V. EXPERIMENTAL VALIDATION
A. Experimental Set Up

Our experimental setup is shown in Fig. 9. We created
vertical obstacles in Plexiglass with 80/20 aluminum supports,
and the tests have been carried out in the motion capture
(mocap) volume in the BU Robotics Lab. We use the mocap
system to ground-truth geometric information the obstacles
(vertices, normal vectors) and the actual UAV trajectory.

As the host, we use a custom quadrotor platform, using a
Pixhawk flight controller for low-level stabilization, and an
Odroid XU 4 running Ubuntu 16.04 LTS and ROS Kinetic
for high-level processing. The Odroid board communicates
with the Pixhawk and the Arduino through serial interfaces,
and with a base station using WiFi networking. We use a
custom message, published at a constant rate, containing the

most recent sensor measurement from the Arduino and the
most recent pose from the mocap system, for synchronization
purposes. This topic is recorded as a rosbag file.

The particle filtering algorithm of Sec. IV is implemented
in Matlab, and is run on the data from the rosbag file.
The orientation of the vehicle is assumed known (from the
mocap data), and the filtering algorithm estimates the position
alone, which is then compared against the mocap ground truth
(again, this is a proof of concept for verifying the sensor
design, not for achieving state-of-the-art localization).

Fig 9 shows snapshots of the flight path, and Fig. 10 shows
the map of the environment with the evolution of the particles
(starting from a uniform distribution) together with the ground
truth position. The flight path follows waypoints that lead the
vehicle to two collisions with two separate obstacle surfaces.

B. Results

We compare the average position of the particles, £y, with

the ground truth translation, Z;)", and for each time step k we

compute the 2-D Euclidean distance error e, = ||Z — Z)°|,
shown in Fig. 8. At the beginning, the position estimate is
near the center of the map due to the uniform initialization,
leading to high error. The error decreases rapidly after the
first collision (around k& = 120). Afterward, the error starts to
climb again, up to due to the dead-reckoning performed by the
filter until the next collision (around k& = 1380). The very low
absolute values for the error after each collision are somewhat
due also the fact that the obstacle surfaces have dimensions
comparable to the one of the outer rim of our sensor; larger
obstacles would leave more uncertainty longitudinally to
the edge. Fig. 10 shows the evolution of the filter in more
detail. Starting from a uniform distribution (Fig. 101), as the
vehicle gets closer to the obstacle, the particles around the
obstacle are gradually eliminated (Fig. 10b), because each
particle weight is updated using the no-collision cases in (10)
and (11), assigning low weight to particles whose distance
is less than the rim’s radius (i.e., that imply a collision),
which are then effectively rejected by the resampling. After
starting to sense the first impact with the obstacle (Figs.9b,
10c, and 10d) the particles rapidly coalescence; in particular,
notice that since our sensor can estimate the direction of the
impact normal, only the particles near obstacle surface with
the correct orientation are kept. As the vehicle moves away

2.5

27—-<\

Collisions

0 500 1000 1500 2000
Time step

Fig. 8: Vehicle position error (estimated versus ground truth)

(e) Waypoint 5 (f) Waypoint 6 (g) Waypoint 7 (h) Waypoint 8

Fig. 9: Experimental setup (plexiglass walls fixed on the ground using aluminium rails) and flight path of the host UAV

(c) k =123 (d) k = 142

»

(e) k =260) kE="717 (g) k=815 (h) k£ = 1040

(i) k = 1360 (G) k=1390 (k) k = 1661 1) k=1732

Fig. 10: Map of the environment (gray triangle), position of the vehicle and outer rim (blue point and circle), and evolution
of the particle swarm (red dots). The particles are initialized using a uniform distribution.

(Figs. 10e-10g), we return to a no-collision situation (Figs. 9c-
to 9e), which leads the cluster of particles to disperse (i.e.,
as one would expect, the variance of the estimate increases).
During the second collision (Figs. 9f-9h), the particles once
again become denser. Note also that, as expected the variance
captured by the particle density is reduced in the direction
normal to the obstacle during both collisions.

In summary, the experiment show that a particle filter can
use the impact magnitude and direction of collision measured
with the proposed sensor to perform localization, as long as
a sufficient number of collisions is maintained.

VI. CONCLUSION

We propose a collision protection system for multirotor ve-
hicles that works also as a form of touch sensor. We described
the mechanical, electrical, and algorithmic components of
our system. In particular, we derive a method to estimate
the relative translational and rotational displacement of the
outer rim with respect to the sensor base. We include a flight
experiment to show the feasibility of using our sensor for
localization via particle filtering. Going forward, the output
of the sensor (e.g., Ding, Ning) could be used not only for
localization, but also for more precise control. The precision
of the sensor could be improved by using load cells instead
of gears, springs, and potentiometers (in the current prototype
the sensitivity of the sensor decreases in the directions that
are not aligned with the axes). Finally, and we believe that
our approach could be extended to a 3-D cage for full 3-D
sensing.

REFERENCES

[1] X Wang, V Yadav, and S.N. Balakrishnan. Cooperative uav formation
flying with obstacle/collision avoidance. IEEE Transactions on Control
Systems Technology, 15(4):672-679, 2007.

[2] S. Temizer, M. T. Kochenderfer, L. P. Kaelbling, T. Lozano-Perez,
and J. K. Kuchar. Collision avoidance for unmanned aircraft using
markov decision processes. AIAA Guidance, Navigation, and Control
Conference, pages 1-21, 2010.

[3] Luis Mejias, S. McNamara, J. Lai, and Jason Ford. Vision-based
detection and tracking of aerial targets for uav collision avoidance.
Proceedings of the ... IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 87 — 92, 11 2010.

[4] Adrien Briod, Adam Klaptocz, Jean-Christophe Zufferey, and Dario
Floreano. The airburr: A flying robot that can exploit collisions. 2012
ICME International Conference on Complex Medical Engineering,
CME 2012 Proceedings, pages 569-574, 07 2012.

[5] Mirko Kovac. Learning from nature how to land aerial robots. Science,
352(6288):895-896, 2016.

[6] Carl Salaan, Yoshito Okada, Shoma Mizutani, Takuma Ishii, Keishi
Koura, Kazunori Ohno, and Satoshi Tadokoro. Close visual bridge
inspection using a uav with a passive rotating spherical shell. Journal
of Field Robotics, 35, 02 2018.

[7] William Green and Paul Oh. Optic-flow-based collision avoidance.
IEEE Robotics and Automation Magazine, 15:96 — 103, 04 2008.

[8] Paul Merrell, Lee Dah-Jye, and Randal Beard. Obstacle avoidance for
unmanned air vehicles using optical flow probability distributions. Pro-
ceedings of SPIE - The International Society for Optical Engineering,
12 2004.

[9]1 Young Kwag and Chul Chung. Uav based collision avoidance radar

sensor. IEEE International Geoscience and Remote Sensing Symposium,

pages 639-642, 01 2007.

Sachin Modi, Pravin Chandak, Vidya Murty, and Ernest Hall. Com-

parison of three obstacle-avoidance methods for a mobile robot. Pro-

ceedings of SPIE - The International Society for Optical Engineering,

4572, 10 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]
[29]
[30]

[31]

Nils Gageik, Paul Benz, and Sergio Montenegro. Obstacle detection
and collision avoidance for a uav with complementary low-cost sensors.
IEEE, 3:1-1, 01 2015.

Shaojie Shen, Nathan Michael, and Vijay Kumar. Autonomous multi-
floor indoor navigation with a computationally constrained mav. /[EEE
International Conference on Robotics and Automation, pages 20 — 25,
06 2011.

Daniel Magree, John G. Mooney, and Eric N. Johnson. Monocular
visual mapping for obstacle avoidance on uavs. Journal of Intelligent
& Robotic Systems, 74(1):17-26, Apr 2014.

Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Monocular-
slam-based navigation for autonomous micro helicopters in gps-denied
environments. J. Field Robotics, 28:854-874, 11 2011.

Markus Achtelik, Simon Lynen, Stephan Weiss, Laurent Kneip,
Margarita Chli, and Roland Siegwart. Visual-inertial slam for a small
helicopter in large outdoor environments. 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2651-2652, 2012.
Girish Chowdhary, Eric Johnson, Daniel Magree, Allen Wu, and
Andy Shein. Gps-denied indoor and outdoor monocular vision aided
navigation and control of unmanned aircraft. Journal of Field Robotics,
30, 05 2013.

Kenjiro Tadakuma, Riichiro Tadakuma, and Jose Berengeres. Develop-
ment of holonomic omnidirectional vehicle with “omni-ball”: spherical
wheels. pages 33 — 39, 12 2007.

Arash Kalantari and Matthew Spenko. Modeling and performance
assessment of the hytaq, a hybrid terrestrial/aerial quadrotor. Robotics,
IEEE Transactions on, 30:1278-1285, 10 2014.

Gabriella Caroti, Andrea Piemonte, Isabel Martinez-Espejo Zaragoza,
and Giacomo Brambilla. Indoor photogrammetry using uavs with
protective structures: Issues and precision tests. 2018.

Adrien Briod, Przemyslaw Mariusz Kornatowski, Jean-Christophe
Zufferey, and Dario Floreano. A collision-resilient flying robot. J.
Field Robotics, 31:496-509, 2014.

C.D. Onal, Michael Tolley, Robert Wood, and Daniela Rus. Origami-
inspired printed robots. IEEE/ASME Transactions on Mechatronics,
20:1-8, 12 2014.

Shoma Mizutani, Yoshito Okada, Carl Salaan, Takuma Ishii, Kazunori
Ohno, and Satoshi Tadokoro. Proposal and experimental validation
of a design strategy for a uav with a passive rotating spherical shell.
pages 1271-1278, 09 2015.

Carl Salaan, Kenjiro Tadakuma, Yoshito Okada, Eri Takane, Kazunori
Ohno, and Satoshi Tadokoro. Uav with two passive rotating hemispher-
ical shells for physical interaction and power tethering in a complex
environment. pages 3305-3312, 05 2017.

Pooya Sareh, Pisak Chermprayong, Marc Emmanuelli, Haris Nadeem,
and Mirko Kovac. Rotorigami: A rotary origami protective system for
robotic rotorcraft. Science Robotics, 3:eaah5228, 09 2018.

Yash Mulgaonkar, Gareth Cross, and Vijay Kumar. Design of small,
safe and robust quadrotor swarms. pages 2208-2215, 2015.

Bruno Gabrich, Guanrui Li, and Mark Yim. ModQuad-DoF: A novel
yaw actuation for modular quadrotors. pages 8267-8273, 2020.

Yash Mulgaonkar, Wenxin Liu, Dinesh Thakur, Kostas Daniilidis,
Camillo J Taylor, and Vijay Kumar. The Tiercel: A novel autonomous
micro aerial vehicle that can map the environment by flying into
obstacles. pages 7448-7454, 2020.

Zuzana Kukelova, Martin Bujnak, and Tomds Pajdla.
generator of minimal problem solvers. 2008.

Gerolamo Cardano. The rules of algebra: (ars magna).
Publications, 2007.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
robotics. The MIT Press, 2005.

Justin Thomas, Giuseppe Loianno, Koushil Sreenath, and Vijay
Kumar. Toward image based visual servoing for aerial grasping and
perching. Proceedings - IEEE International Conference on Robotics
and Automation, pages 2113-2118, 05 2014.

Automatic

Dover

	Introduction
	MECHANICAL DESIGN
	MATHEMATICAL MODEL FOR DISPLACEMENT ANALYSIS
	LOCALIZATION USING PARTICLE FILTERING
	EXPERIMENTAL VALIDATION
	Experimental Set Up
	Results

	Conclusion
	References

