On the Root of Trust Identification Problem

Ivan De Oliveira Nunes
UC Irvine

ABSTRACT

Trusted Execution Environments (TEEs) are becoming ubiquitous
and are currently used in many security applications: from personal
IoT gadgets to banking and databases. Prominent examples of such
architectures are Intel SGX, ARM TrustZone, and Trusted Platform
Modules (TPMs). A typical TEE relies on a dynamic Root of Trust
(ROT) to provide security services such as code/data confidentiality
and integrity, isolated secure software execution, remote attestation,
and sensor auditing. Despite their usefulness, there is currently no
secure means to determine whether a given security service or task
is being performed by the particular RoT within a specific physical
device. We refer to this as the Root of Trust Identification (RTI)
problem and discuss how it inhibits security for applications such
as sensing and actuation.

We formalize the RTI problem and argue that security of RTI
protocols is especially challenging due to local adversaries, cuckoo
adversaries, and the combination thereof. To cope with this problem
we propose a simple and effective protocol based on biometrics.
Unlike biometric-based user authentication, our approach is not
concerned with verifying user identity, and requires neither pre-
enrollment nor persistent storage for biometric templates. Instead,
it takes advantage of the difficulty of cloning a biometric in real-
time to securely identify the RoT of a given physical device, by using
the biometric as a challenge. Security of the proposed protocol is
analyzed in the combined Local and Cuckoo adversarial model. Also,
a prototype implementation is used to demonstrate the protocol’s
feasibility and practicality. We further propose a Proxy RTI protocol,
wherein a previously identified RoT assists a remote verifier in
identifying new RoTs.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

ACM Reference Format:

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik. 2021. On the Root
of Trust Identification Problem. In Information Processing in Sensor Networks
(IPSN’ 21), May 18-21, 2021, Nashville, TN, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3412382.3458274

1 INTRODUCTION

In recent years, there has been a growing demand, from both in-
dustrial and research communities, for Trusted Execution Envi-
ronments (TEEs) to aid security-critical applications. While TEEs

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8098-0/21/05.

https://doi.org/10.1145/3412382.3458274

Xuhua Ding

Singapore Management University

315

Gene Tsudik
UC Irvine

vary widely in terms of architecture, implementation, and func-
tionality, they provide (at least in the idealized model) an isolated
execution space offering both code and data integrity, without rely-
ing on any assumptions about applications or operating systems.
We refer to these functionalities as TEE services. Security of TEE
services (among other trusted services) rely on dynamic Roots
of Trust (RoTs) to prove their integrity. RoTs consist of minimal
trusted components (e.g., trusted hardware as in TPM and Intel
SGX, or trusted software as in hypervisors) used to bootstrap and
dynamically verify trust in the system as a whole.

Despite the popularity of such services, it is somewhat surprising
that there are no “off-the-shelf” means to securely bind a given
RoT to the specific physical device housing this RoT. In particular,
it is easy to verify that a service is indeed performed by some
RoT. However, it remains a challenge to determine if the service is
performed by the RoT residing inside a specific physical device. We
refer to this problem as Root of Trust Identification (RTI).

To further illustrate and motivate RTI, consider the following
sensor auditing scenario highlighted in [1]. A device (e.g., a smart-
phone) keeps a TEE-enabled secure log of its audio and video (cam-
era and microphone) activity in order to allow after-the-fact audit-
ing. For example, the host of a confidential meeting uses her trusted
verifier device to verify that microphones and cameras of attendees’
smartphones remain turned off. The technique proposed in [1] con-
sists of using each attendee device’s TEE to assure (e.g., via remote
attestation) the verifier of the integrity of sensor usage logs on that
device. We argue that — even with TEE-based integrity assurance
— the attendee can still use his device’s microphone/camera and
fool the verifier by supplying logs from a remote accomplice device
(also equipped with a TEE of same type) that indeed turns off the
sensor during the meeting. The response appears to be valid and
there is no means for the host to differentiate between replies from
the accomplice device and the one presently held by the malicious
attendee. Using a dedicated physical channel (e.g., a cable) between
the verifier and the attendee’s device does not solve the problem
as the device may use another channel to communicate with its
accomplice.

Another scenario relevant to RTl occurs whenever some malware
has been found on a device. A natural course of action is to force
one or more of: (i) re-set, (ii) update software, or (iii) erase the
device. However, none of these is trivial since the same adversarial
behavior can fool the user into believing that her device has been
re-set/updated/erased, while in fact it is some other device that has
performed those actions.

Due to lack of RTI solutions, attacks of this type are applicable to
any TEE-dependent application which assumes that the TEE indeed
resides on the device of interest. More genrally, it applies to any
service relying on physical presence of an RoT (either hardware-
based or software-based) within a particular device. A successful
RTI verification can bind the public-key used by the RoT for remote
attestation with its hosting device. However, the binding only has a

https://doi.org/10.1145/3412382.3458274
https://doi.org/10.1145/3412382.3458274

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik

Table 1: Notation summary

Notation

Description

Dev-A, Dev-B, Dev-C, ...
(ROTA, (ROTB, ROTc,
pki, ski «— Gen(RoT 4)

pk; was issued by RoT 4 or not.

RoT residing on physical devices A, B, C,

Physical devices (e.g., smart-phone, laptop) A, B, C, ...

RoT 4 issues i-th session public-key pk;, and corresponding secret key sk;. Anyone can verify that pk; was generated by
some RoT. However, RoT 4 signs pk; using its master secret key in a group signature scheme, thus one cannot tell whether

Pr[A|B] Probability of event A given that event B is true
Pr[A|-B] Probability of event A given that event B is not true
1 Security parameter

negl(.) a negligible function: negl(l) < 1/2!

BT « BT.Sample(U, Dev-A)
HD « FVGen(BT, Chal)
Chal” « FVopen (BT, HD)

o« signg (M)

verify, (o) =M

Sampling of biometric template BT from user U performed by biometric sensor on physical device Dev-A.
Generation of helper data HD from biometric template BT and randomness Chal.
Reconstruction of randomness Chal’ from helper data HD and biometric BT".

Signature result o of using sk to sign message M. Implicitly we assume sign ;. to be a confidentiality preserving signature
scheme, i.e., M cannot be extracted from o

Verification of signature o on message M for public key pk.

long-lasting effect for RoTs using a device-specific persistent public
key. For those privacy-friendly TEEs that use short-lived public keys
certified with a group signature (such as Intel SGX), the binding
is ephemeral. Hence, it is imperative to conduct RTI verification
on a per-session basis for TEEs with privacy and unlinkability
protection.

We observe that many TEE-enabled devices (e.g., laptops, tablets
and smartphones) are equipped with biometric sensors connected
to the TEE via secure physical channels. Because biometric tem-
plates are sensitive and hard to revoke, this secure channel is used to
secure the biometric template in case of a compromised application
and/or operating system, while still allowing biometric authentica-
tion as shown in FIDO [2]. In this paper, we propose a low-burden
user-aided approach to RTI. The basic idea is that the TEE vouches
for the biometric template securely obtained from the hard-wired
sensor. We do not use biometrics to authenticate the user. Instead,
a biometric is used as a challenge. Security of our approach is based
on the difficulty of cloning a human biometric (e.g., a fingerprint)
in real-time during RTI verification. However, prior enrollment of
a user’s biometric is not required. We also do not use the same
biometric in different sessions. Because it is used as a challenge, the
only properties the biometric needs are: sufficient entropy and (real-
time) unclonability, which biometrics used for user authentication
are assumed to have.

In the rest of this paper, after formalizing RTIl and describing the
attack models, we construct a biometric-based RTI scheme. We also
prototype and evaluate our scheme using an RoT based on a trusted
micro-hypervisor to demonstrate its practicality. We consider RTI
as a subtle and important issue, which has been mostly overlooked.

316

2 RTIPROTOCOLS

In this section we define RTI protocols and the adversarial model.
Our notations are summarized in Table 1. As noted in Section 1,
some types of TEEs use a device-specific persistent public key while
others use one-time public key with group signature based certi-
fication. Without loss of generality, our treatment in this section
focuses on the latter type since it subsumes the former.

2.1 Definitions

Suppose Dev-A is a physical device (e.g., smartphone, personal
computer, server) equipped with an RoT denoted by RoT 4. Let:

pki,ski, i < Gen(RoT 4) (3)
denote the process whereby RoT 4 generates the i-th asymmetric
key pair (pk;, sk;) and a group signature o; upon pk;. Although
o; can be verified cryptographically, it does not prove that pk; is
for Dev-A, because the signature does not enclose any physically
identifiable property of Dev-A.

An RTI protocol is the interactions between a verifier (Vrf)
and a prover RoT (RoT p) which issues pk; and is alleged to reside
on Dev-A. Both parties are trusted and cooperate such that Vrf
can decide if RoTp resides in Dev-A, i.e., whether RoTp = RoT 4.
Interestingly, not even RoTp itself knows its own residency. This
goal is deceptively simple and, as we discuss in the remainder of
this paper, is hard to achieve even though both parties involved in
the protocol are trusted.

At the end of the RTI protocol, ‘Vrf learns pk; which is a public
key used by RoTp. Vrf’s assertion on RoTp = RoT 4 also implies
that pk; is indeed issued by RoT 4. Completeness and security of RTI
are defined in terms of Vrf’s ability to make a positive conclusion
if and only if pk; < Gen(RoT 4), with overwhelming probability.
We specify a generic RTI protocol in Definition 1. Completeness

On the Root of Trust Identification Problem

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

DEeFINITION 1 (RTI PROTOCOL).

RTI(A, pk;) is a 2-party interactive protocol executed between V'rf and RoTp.

Vrf selects a physical device Dev-A and RoT p issues pk;— a session public-key.

The protocol outputs 1 if V'rf concludes that pk; was issued by RoT 4; or 0 otherwise.

DEFINITION 2 (RTI COMPLETENESS).
RTI is complete iff:

where [is the security parameter and negl is a negligible function.

Pr[RTI(Dev-4, pki)|(pki — Gen(RoT4))] = 1 - negl(l)

DEFINITION 3 (RTI SECURITY).
RTI is secure iff:

where [is the security parameter and negl is a negligible function.

Pr[RTI(Dev-A, pk;)|—=(pk; «— Gen(RoT 4))] = negl(l)

@)

and security of RTI protocols are stated in Definitions 2 and 3,
respectively.

Definition 2 states that a complete RTI protocol against RoT 4, al-
ways outputs ‘1’ if the public-key pk; given as input to the protocol
is indeed generated by RoT 4. Definition 3 states that a secure RTI
protocol against RoT 4, always output ‘0’, if pk; given as input to the
protocol is not issued by RoT 4. Note that by Definition 1, RoTp is
defined as the RoT that issues pk;, thus the following equivalence:

©

We now present several possible attacks on RTI protocols to illus-
trate some subtleties in addressing the RTI problem.

[pki « Gen(RoT 4)] & [RoTp = RoT4].

2.2 Attack Vectors

In this section, we discuss several attack scenarios and argue that
addressing RTI is challenging. We start by describing a naive ap-
proach to solving RTI and show how it can be attacked trivially. We
then gradually increase adversarial capabilities.

2.2.1 Naive RTI Protocol. As shown in [1], a natural way to solve
RTI is to challenge whether RoTp knows sk;, assuming that Vrf
has the prior knowledge of RoT 4’s ownership of sk;. The proto-
col supposes the scenario in Figure 1(a) and proceeds as follows
(communication is assumed to take place over a wireless medium):
(1) Vrf requests RoTp public key;
(2) Vrf receives pk; and checks that it was issued by some
legitimate RoT by verifying the group signature on pk;;
(3) Vrf issues a random challenge c, encrypts ¢ under pk;, and
sends it to RoTp;
(4) RoTp issues signs c using its private key;
(5) Vrf verifies the signature from RoT p using pk;. If valid, it
concludes that RoTp is RoT 4 and pk; is indeed issued by
RoT As
The problem is that the assumption in the naive protocol barely
holds in reality because it is infeasible for Vrf to have the prior
knowledge of ownership of the key. Hence, V'rf cannot distinguish
between an interaction with Dev-A and some other Dev* of the
same class and equipped with the same RoT type. In particular,
an evil-twin adversary Adv can easily convince Vrf that pk; was

317

issued by RoT 4 while in fact pk; is issued by RoT*. As illustrated
in Figure 1(b), Adv performs as follows:

(1) Adv intercepts Vrf request and forwards it to Dev*;

(2) Adv replies to Vrf with pk; < Gen(RoT*), issued by RoT*;

(3) “Vrf believes that pk; was generated by RoT 4 and completes

the rest of the protocol with RoT*;

(4) Vrf incorrectly concludes that pk; was issued by RoT 4.
Remark: Although RoT* is honest (i.e., not subverted by Adv), it
cannot tell that it is being (ab)used by Adv to fool Vrf. From RoT*
perspective, this interaction is indistinguishable from a legitimate
execution of an RTI protocol between Vrf and itself.

2.2.2 Coping with Evil-twin Adversaries. One way to cope with
an evil-twin adversaries is for Vrf to require a physical channel
that cannot be tampered with, or accessed, by nearby devices. For
example, intercepting V'rf messages and replying in place of Dev-
A is significantly harder when Vrf uses a wired channel (e.g., a
USB cable) to communicate with Dev-A. This would prevent Adv
from using Dev* to interact with Vrf directly, since only Dev-A
is directly connected to Vrf. In this case, an honest execution of
the RTI protocol would proceed as above, except for the use of the
wired channel. However, even a wired channel is insufficient if we
consider a cuckoo adversary [3]. Such an adversary first installs
malware on Dev-A. This malware intercepts incoming messages
destined for RoT 4 and forwards them to Dev*. As illustrated by
Figure 1(c), the attack proceeds as follows:

(1) Malware on Dev-A forwards Vrf request (received on the
direct channel) to Dev*, which feeds to RoT*;

(2) RoT* replies to Vrf request. It issues a pk; and plays its part
in the challenge-response protocol with Vrf (inadvertently
assuming the role of of RoT 4);

(3) Response message from RoT* is relayed to Vrf by malware
on Dev-A, via the direct channel.

(4) Vrf incorrectly concludes that pk; is issued by RoT 4.

As in the evil-twin attack case, RoT* is an honest RoT. However, it
cannot tell that it is used by Adv to fool Vrf.

2.2.3 Cuckoo Adversaries. Cuckoo attacks show that defending
against evil-twin adversaries is not enough when malware is in full
control of Dev-A. Indeed, the threat of malware is the main reason

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

RoT

ﬂ

4—

Verifier

Verifier Dev-A Dev-Adv

(a) Expected setting in benign RTI

protocol execution. cation and play the role of Dev-A.

(b) An evil-twin Adv uses Dev* to hijack the communi-

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik

g

Adv
0
Dev-A

(c) A cuckoo Adv uses malware on Dev-A to relay Vrf
messages to/from accomplice Dev™.

ﬂ

.‘_

DNev-A Verifier

Dev-Adv

Figure 1: Possible scenarios during RTI protocol execution

for Dev-A to be equipped with an RoT. On the other hand, because
network I/O interfaces typically go through untrusted components
(i.e., drivers and OS), malware presence makes a secure physical
connection between V'rf and Dev-A insufficient for mitigating the
RTI problem. Capabilities of a cuckoo attacker are not restricted
to the wired interface (e.g., USB). Any I/O device that does not
communicate directly to the RoT must pass through an untrusted
component and can be used for cuckoo attacks.

As a matter of fact, an RoT could even be used to verify the
existence of a software direct secure path (e.g., implemented by
a hypervisor) between itself and the I/O interface inside a given
device. Then, as a part of the RTI protocol, RoT would only reply
to a challenge coming on that particular verified interface. In the
cuckoo attack, RoT* (which is an honest RoT) would refuse to reply
to the challenge relayed by Adyv, because it is not received from the
expected and verified wired I/O interface, since Dev-A and Dev*
are not directly connected.

Unfortunately, even this setting can be circumvented by a more
potent cuckoo Adv which uses an accomplice challenger that con-
nects to Dev* via a channel expected by the RoT. Malicious soft-
ware on Dev-A can forward Vrf messages to the accomplice chal-
lenger. The accomplice challenger then forwards to Dev* the same
messages sent by Vrf to Dev-A, over the expected I/O interface.
Since the view of RoT* is indistinguishable from that of an honest
execution of RTI, it produces a legitimate response that passes the
verification.

Although the channel expected by the RoT in our example is a
wire/cable, this attack applies to any I/O interface. Assuming that
the accomplice challenger has I/O capabilities equivalent to those
of Vrf, a challenge from “Vrf can be replayed by the accomplice
challenger using the same type of channel. Thus, we observe that
whenever the challenge is conveyed using a machine I/0 inter-
face, it can be replayed by another machine with the same 1/0
capabilities. This motivates our choice for a biometric-based RTI
scheme. The key rationale is that, if a human user becomes a part
of the I/O operation, this I/O operation cannot be easily replayed
since it requires physical participation by the same person.

2.3 RTI Adversarial Model

Considering the attack scenarios of Section 2.2, we define a strong
adversary Adv that can compromise the entire software stack of
Dev-A, excluding the software component of RoT 4 e.g., a trusted

318

hypervisor loaded and verified by the hardware component of RoT 4.
As such, Adv can compromise applications and the operating sys-
tem. It can intercept, eavesdrop, discard or inject messages on the
internal path between Dev-A’s I/O interfaces and RoT 4.

We assume that Adv has the same capabilities (intercept, eaves-
drop, discard or inject messages) on the network. Adv can sense
physical surroundings of Dev-A and Vrf and record, retransmit,
and replay any message, signal or action performed by Vrf or
Dev-A actuators. In particular, Adv can deploy its own sensors
and actuators with I/O capabilities equivalent to those of Vrf and
Dev-A, in the environment surrounding them. This model accounts
for evil-twin adversaries as per Section 2.2.

Adv can deploy an accomplice device Dev* equipped with RoT*.
The entire software state of Dev* is also under Adv control. These
devices might be located in a remote environment where Adv de-
ploys its own sensors and actuators with I/O capabilities equivalent
to those of Vrf and Dev-A. Malware on Dev-A (controlled by Adv)
might, for instance, intercept messages sent from Vrf to RoT 4,
relaying them to Dev*. RoT* might inadvertently reply to mal-
ware on Dev-A which then forwards replies to Vrf on behalf of
RoT 4. This model accounts for cuckoo adversaries, as discussed in
Section 2.2.

We consider hardware attacks to be out of scope of this paper.
Specifically, Adv cannot make hardware changes on Dev-A, any
hardware-based RoT, or the physically built-in circuit linking a
trusted I/O device and an RoT. Protection against physical attacks
is considered orthogonal and can be supported by tamper-resistant
hardware techniques [4].

2.4 Mitigating RTI| via Presence Attestation

The RTI problem is quite similar to that of convincing a human user
that her own device has an active RoT. The latter is referred to as
Presence Attestation (PA) in [5] which proposes several concrete
schemes. In addition to convincing the human user that she is
interacting with the RoT on her device, PA schemes can be extended
so that Vrf learns the RoT’s public key. Therefore, they are one
way to address RTI. Unsurprisingly, PA schemes also cope with
evil-twin and cuckoo attacks. We now overview three PA schemes
from [5] and discuss their security from the RTI perspective.

2.4.1 Location-based PA. The security premise of location-based
PA scheme is twofold: (i) RoT securely obtains genuine location
of its hosting device, as reported by GPS; and (ii) given sufficient

On the Root of Trust Identification Problem

knowledge about Dev-A’s location, the user can manually verify
location reported by RoT, perhaps aided by visualization on a map.
The essence of this approach is to use the geographic location
as the challenge to RoT. However, besides well-known attacks
on GPS signaling [6, 7], its main shortcoming is that it cannot
differentiate RoT 4 from RoT*, which is sufficiently close to Dev-A
so that they report the same readings. Moreover, manual verification
of a geographic location does not have high enough accuracy.

2.4.2 Scene-based PA. This scheme uses a (photo of a) scene ran-
domly chosen by the human user as the challenge and requires RoT
to report the challenge received over a secure camera interface. As
in the location-based scheme, the human user verifies correctness
of the RoT response. This scheme is vulnerable to the evil-twin
attack where the adversary takes the picture of the same scene
and asks RoT™ to sign it. Its security is therefore dependent on the
human user’s ability to differentiate among photos taken by two
different devices, which is obliviously not reliable. This scheme is
also vulnerable to analog cuckoo attacks, whereby Adv re-renders
the scene to an accomplice display such that Dev* can take a gen-
uine photo of it. Given today’s hardware technology, it is infeasible
for a normal user to distinguish between a photo of a physical
scene and a re-production thereof. In both location- and the scene-
based schemes, the human user decides on correctness of RoT4’s
response. From the perspective of RTI, it takes an extra step for the
user to notify Vrf about her conclusion.

2.4.3 Sight-based PA. Sight-based PA scheme does not require
any human input. Its security is based on the observation that any
message reply in the line-of-sight channel incurs measurable time
delay, because the attack includes analog operations which are
comparatively time-consuming. In this scheme, Vrf and Dev-A
run the standard challenge-response protocol using the line-of-
sight channel whereby a display “sends" messages to a camera.
Using cryptographic means, Vrf checks integrity of the response.
In addition, by measuring the time to complete the session, it verifies
whether RoT 4 is at the other end of the light-of-sight channel. Note
that this scheme requires RoT 4 to securely obtain the challenge
from the camera and securely display the response to the display.
Although it offers stronger security than location- and scene-
based schemes, sight-based PA is dependent on the current frame-
per-second (fps) rate of commodity cameras on modern smart-
phones. Moreover, sight-based PA requires the two participating
devices to be physically well positioned through multiple rounds
in order to form a high-quality light-of-sight channel.
Summary. Zhang et. al. [5] have shed light on challenges related to
RoT and cuckoo attacks, and made attempts to tackle them. We be-
lieve that RTI is both harder and more general than the PA problem,
since RTI does not assume that the average human user possesses
sufficient knowledge and expertise to discern ambient properties.
Our biometric-based approach relies on the unclonability of human
biometrics with high entropy, the same assumption propping up
security in biometric authentication schemes.

2.5 Mitigating RTI via Distance Bounding

Distance bounding protocols [8-11] allow a verifier to determine
whether its communication peer is within a certain distance (e.g., 30

319

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

cm). They are fundamentally different from a RTI protocol because
establishing an acceptable distance does not always identify the
device. Using distance to solve RTI assumes that there is only single
device in the range, which does not hold when the distance is large.

There are also implementation issues using a distance-bounding
protocol for RTL Parno et. al [3] have remarked that it is not suited
to deal with the cuckoo attack against TPM-based attestation given
the slow speed of TPM. Although today’s RoT has better perfor-
mance, the time variance of signature generation remains too large
for distance-bounding protocols which only tolerate time errors in
several nanoseconds. Moreover, distance-bounding protocols would
require all devices of Dev-A’s class to be equipped with distance
bounding hardware (ultra wide-band radios with high-precision
clocks needed for accurate timing measurements) securely wired to
the RoT [12]. This is currently not available in commodity devices.

Recently, Dhar et. al. [13] propose to use a trusted device (e.g., a
smart USB device) as a proxy attached to the proving device so that
a remote verifier detect the cuckoo attack during SGX attestation.
Besides the hassle of using a trusted device, this approach relies on a
strong assumption that the trusted device attached to an untrusted
environment remain intact.

3 BUILDING BLOCKS
3.1 Biometric Features & Template Matching

A Biometric Template (BT) is composed of features uniquely identi-
fying an individual. In a biometric application (e.g., user authenti-
cation) a reference BT is usually sampled and stored as part of the
enrollment procedure. During authentication, the feature extrac-
tion procedure is used to collect a real-time sample BT’ from the
purported user. If the similarity score between BT’ and BT exceeds
a pre-defined threshold, they are considered as a matching pair.
The method to evaluate the similarity score and the choice of the
threshold depend on the particular biometric. A BT corresponding
to user U is represented by a set:

BTy = {p1,...pM} > (5

where p1, ..., py are data points (features) representing unique de-
tails of U’s biometric. For instance, p; € BTy for a fingerprint rep-
resents the location and orientation of the fingerprint’s minutiae.
Minutiae are regions in the fingerprint image where fingerprint
lines start, end, merge and/or split. In turn, each minutiae p; is
represented as:

pi = (xi,yi,0i) (6)
where x; and y; are Cartesian coordinates for the minutiae location
in the fingerprint image and 6; is the angle of minutiae orientation.
In this paper, we focus on the fingerprint biometric modality, since
fingerprint sensors are commonly found on commodity devices,
such as laptops and smartphones. Nevertheless, similar encoding
techniques are applicable to other biometric templates, such as iris
scans [14].

3.2 Fuzzy Extractors & The Fuzzy Vault Scheme

A Fuzzy Extractor [15] (FE) is a cryptographic primitive commonly
used in biometric systems. FE can successfully extract the same
randomness from different noisy samples of the same biometric as

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

long as these samples are within a certain distance threshold. This
fuzziness in the matching allows, for instance, to match biometric
samples acquired using different sensors. One popular FE instantia-
tion is the Fuzzy Vault scheme (FV) [16] which is designed to work
with BTs represented by data point sets in Eq. 5. An FV scheme
consists of two algorithms: FVggN and FVopgN. Given a biomet-
ric template BTy the first algorithm generates the corresponding
helper data HD which hides a secret k. Given another biometric tem-
plate BT, and HD, the second algorithm can successfully recover
k from HD provided that BT}, matches BTy . The notion of FV is
captured in Definition 4. Security of FV relies on the infeasibility
of the polynomial reconstruction problem [17]. Definitions 5 and 6
formulate FV’s completeness and (information theoretic) security.

DEFINITION 4 (FV). A Fuzzy Vault is defined as FV =
(FVGEN> FVOPEN, ®), where @ is a set of parameters
® = (d, GF(27), MS, dist, w):
- d is the polynomial degree;
- GF(27) is a Galois Field of size 27 ;
-MS is a metric space;
- dist is distance function defined overMS;
-w is distance threshold;
FVGEN and FVopEN are algorithms defined as follows:
® FVGEN:
- Inputs: k and BTy, s.t., |k| =(d +1) X 7.
— Output: HD
® FVOPEN:
- Inputs:HD and BTy,
- Output: k/,s.t, |[K'|=(d+1)x 7.

DEFINITION 5 (FV-COMPLETENESS).

FV = (FVGEN. FVoPEN, @) is complete with w-fuzziness if for
every possible k € GF(27)?*! and every pair BTy, BTy, with
dist(BTy, BT),) < w:

FVopren(FVGeNn(k, BTy), BT) = k
with overwhelming probability.

™

DEFINITION 6 (FV-SECURITY).

FV = (FVGEN. FYoPEN, @) is p-information theoretically secure if
any computationally unbounded adversary with access to HD is able to
guess either, BT or k, with success probability of at most p.

FVGEN can be implemented by selecting a polynomial P of de-
gree d defined over a field GF(27) and encoding (or splitting) the
secret k into the d+1 coefficients (a;) of P. The resulting polynomial

is defined as:
d

Pr(x) = Z a;x!

i=0

®

where coefficients {ay, ..., a4} are generated from k and can be used
to reconstruct k. Since Py is defined over GF(27), each coeflicient
can encode 7 bits; this implies that size of a key that can be encoded
is a function of the field size and the degree of the polynomial given
by:

k|l = (d + 1) x 7 ©
After encoding k as a polynomial P, each of the M data points
(features) in BTy is evaluated in the polynomial Py generating a

320

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik

list of points in a two-dimensional space:

Lp = {(p1, Pr(p1)), ... (om> Pr(pm0))} (10)

Note that the field must also be large enough to encode a single
feature from BTy as a single field element. The resulting set Lp is
formed by only by points in the polynomial Py. In addition to Lp,
a set of chaff points Lg of size N >> M is generated by randomly
selecting pairs (rx, ry) «s GF(27)?, resulting in:

(11)

Ls = {(rx,1,7y,1) -+ (T, N> Ty, N)}

Finally, Lp and Lg are shuffled together using a random permutation
g and the result is published as the helper data HD:

HD = mg(Lp + Ls) (12)

Note that HD also includes the set of public parameters ® = {F, d, Ip, H(k)},

where F is the field over which Pg(x) is defined and d is its degree,
Ip is the size of BTy, i.e., the number of points in HD that belong to
Pi(x), and H(k) is a cryptographic hash of k allowing one to verify
if the correct secret is reconstructed using FVopgn'.

The key idea behind security of the FV scheme is that with d + 1
distinct points (p;, Pr(pi)) (namely points on Py (x)), one can inter-
polate Py (x), retrieve its coefficients and thus recover k. However,
to find the right d + 1 points out of the M + N points in the HD is
very unlikely. With appropriate choice of M, N, and d the success
probability can be made negligible with respect to a desired security
parameter.

To reconstruct k from HD using a new biometric template BT/,
the FVpopgnN algorithm applies a distance function (which must be
defined according to the biometric type) to select M points from
HD which have the shortest distance to the points in BTy,. If, out of
the M selected points, no less than d + 1 points are indeed on the
original the polynomial Py, they can be used to interpolate Py and
recover k. Otherwise, no interpolation with combinations of d + 1
points out of M correctly yields Py and therefore cannot recover
k. To determine whether the resulting k is correct, the algorithm
compares its hash to H(k) which is in the public help data. FVpopgN
rejects BTy, if not equal; or accepts it otherwise.

The distance threshold w can be used to tune the balance between
the false acceptance rate (revealing k to the wrong user) and the
false rejection rate (refusing to reveal k to the rightful user). FV
does not require ordered data points in the templates, and neither
requires all data points to be in both sets. Only d + 1 data points in
BT{, must be close enough to points in BTy. The polynomial degree
d acts as an accuracy parameter allowing calibration of the scheme
to reduce false acceptance by increasing the required number of
matching data points.

In this work we use FVs as a cryptographic building block to
realize biometric-based RTI protocols. As shown later in Section 4,
FV is used to cryptographically bind a random challenge chosen by
Vrf to the biometric input in RTI execution.

!Using a hash function simplifies the implementation, but makes FV’s security com-
putational in the size of the output of the hash. The scheme can be fully information
theoretically secure by using error correcting codes.

On the Root of Trust Identification Problem

3.3 Hardware Architecture for Biometric
Sensing with TEEs

An advantage of biometric-based RTl is that in several types of mod-
ern devices, such as smart-phones and laptops, biometric sensors
exist and are directly connected (“hard-wired”) to the RoT exclusive
memory itself, as depicted in Figure 2. it is usually the case that a
biometric sensor (e.g., a fingerprint sensor) is directly hardwired to
TEE exclusive memory. Therefore, the user’s biometric input is not
visible to untrusted (and potentially malicious) software on that
device, including the operating system. This means that an input
biometric, cannot be obtained by an Adv-controlled malware or
OS on Dev-A, obviating the need for a trusted software path to be
verified by the RoT upon receiving the challenge. Nonetheless, our
prototype implementation (see Section 5) also considers the case
where this hardware channel is not readily available. In such a case,
we show how to establish a secure channel between the biometric
sensor and RoT with the help of a small trusted hypervisor.

FP vendor library (TEE) —————

i Fingerprint

Hardware
Keymaster (TEE)

TRUSTED EXECUTION ENVIRONMENT (TEE)

Figure 2: TEE-Biometric hardware architecture of a typical
Android device (adapted from [18])

4 CONSTRUCTING AN RTI PROTOCOL

We now construct a biometric-based RTI protocol using FVs and
analyze its security. We also present a Proxy RTI protocol that can
be used to address RTI when Vrf is remote.

System Assumption: We assume an authentic (not confidential!)
channel between the biometric sensor and the RoT. In some types
of devices (e.g., branded smartphones) similar channels are imple-
mented in hardware in order to protect the user’s biometric data.
Those channels are often claimed by vendors to be both confiden-
tial and authentic. Unfortunately, it has been recently shown that
biometric data can still be leaked in clever ways?, which means
cuckoo attacks remain possible. In contrast, we believe that it is
much harder to compromise authenticity of the channel, since the
biometric sensor is hardwired to the RoT. Doing so would imply
wholesale RoT compromise. Our scheme is dependent on channel
authenticity and unclonability of fingerprints. For devices that do
not have this kind of channel, we emulate it in software, by using a
micro-hypervisor.

As discussed in Section 2, in a cuckoo attack on the challenge-
response RTI protocol, the adversary relays the challenge from V'rf.
In a conventional challenge-response protocol, a correct response is
formed based on two factors: the challenge and the prover’s secret.
Hence, to counter the challenge relay attack, we include the user in

2See: https://www.blackhat.com/docs/us- 15/materials/us- 15- Zhang-Fingerprints-On-
Mobile-Devices- Abusing- And-Leaking-wp.pdf

321

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

the loop as the third factor needed to produce a correct response. In
particular, Vrf blinds the cryptographic challenge with the user’s
biometric by using an FV scheme. RoTp uses its biometric sensor
to sample (presumably the same) biometric. The user only provides
her biometric to Dev-A’s sensor, which can only be read by RoT 4.
Therefore, the only RoT that can unblind the challenge is on Dev-A,
which means RoTp is RoT 4. Since the biometric given to both Vrf
and Dev-A is the same, if RoTp is not RoT 4, RTI for Dev-A fails.
We now discuss the protocol in more detail.

Remark: We assume that protocol messages are exchanged over
an encrypted and authenticated channel Vrf <>RoT p. Note that this
channel is established between Vrf and RoTp, i.e., Vrf and some
RoT. Even though RoTp has not been identified at this point, it is
always possible to check whether pk; was issued by some RoT. This is
necessary to preserve confidentiality of HD if a non-reusable FE is used
to implement the RTI protocol. (See Section 6 for further discussion
on FE reusability.) A secure channel to some (trusted) RoT suffices to
preserve confidentiality.

4.1 FV-based RTI

Figure 3 presents the RTI protocol based on the FV scheme described
in Section 3.2. It assumes that Vrf and Dev-A are physically ac-
cessible to U. U participates in the protocol by providing the same
biometric to the sensors of Vrf and Dev-A.

The protocol starts with RoTp issuing an asymmetric key-pair
and with Vrf sampling U’s biometric, thus resulting in the template
BTy (line 1). Vrf then generates a random [-bit challenge Chal,
where [is the security parameter (line 2). Next, Vrf uses the FV
generation algorithm to obtain HD where BTy is the biometric and
Chal is the secret. Vrf sends HD to RoTp (line 3). U also provides
the same biometric to Dev-A. As a result, RoT 4 obtains BT& -a
new sample of the same biometric (line 4).

Note that the step in line 4 is crucial. Under the assumption
of a secure channel between the fingerprint sensor in Dev-A and
RoT 4, BT;J can only be obtained by the RoT residing in that device,
i.e., RoT 4. If RoTp does not reside in Dev-A, Adv has to provide
another biometric to RoT p, i.e., from an accomplice person. In such
a case, due to FV security, the reconstruction would result in an
incorrect Chal” # Chal with overwhelming probability 1 — negl(l),
for appropriate choice of FV parameters as a function of I. Hence, it
would not pass Vrf’s signature verification (line 7). If verification
succeeds, Vrf becomes convinced that pk; is indeed issued by RoT 4
and RoTp = RoT 4.

Unlike PA schemes, security of our biometric-based RTI scheme
is based on Adv’s inability to forge BTy and mount a successful
cuckoo attack. Although Adv controls entire software state of Dev-
A (except for RoT 4 itself) and can access any memory outside of
that reserved by RoT 4, it cannot obtain BT{J due to the secure
channel between the fingerprint sensor and RoT 4.

Fingerprint Forgery: Fingerprints have been used as a biometric
for a very long time and remain the most common means of biomet-
ric authentication. There have been numerous successful attacks
that surreptitiously obtain a user’s fingerprints and then come up
with various contraptions to fool fingerprint sensors. Clearly, the

https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Fingerprints-On-Mobile-Devices-Abusing-And-Leaking-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Fingerprints-On-Mobile-Devices-Abusing-And-Leaking-wp.pdf

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik

Vrf
1: BTy « BT.Sample(U, Vrf)

2: Chal «s{0, 1}

HD

Rolp
pki, ski «— Gen(RoTp)

3: HD « FVgen(BTy, Chal)

o, pki

BT, « BT.Sample(U, Dev-A)
Chal” « FVopgn(HD, BT')

7: verify,, (o) = Chal

o « signg, (Chal’)

Figure 3: FV-based RTI protocol: Vrf decides whether RoTp resides in Dev-A and, if so, learns its session public-key pk;.

VerifY’RoTA-pk(i)(o-BTU) =BTy
5: Chal «s{0, 1}

HD « FVGen(BTy, Chal)

Vrf Identified RoT 4 Rolp
1: BTy « BT.Sample(U, Dev-A) pki, ski < Gen(RoTp)
2 BTy < SigNgeT,-sk(n)BTU)
BTy, asry,
3: P

HD

a,pki

BT}, < BT.Sample(U, Dev-B)
Chal” « FVopen(HD, BT7,)

verifypkl(o) = Chal

o « signgy. (Chal’)

Figure 4: Proxy RTI protocol: ‘Vrf is assisted by a previously identified RoT 4 (residing on Dev-A) to decide whether RoTp resides
on physical device Dev-B. Dev-A, Dev-B, and user U must be physically co-located. Vrf can be remote.

proposed protocol and its variations will fail if the biometric tem-
plate used in a RTI protocol execution is stolen and reproduced be-
fore hand. However, the protocol does not require a pre-determined
fingerprint or the user. Hence, the fingerprint forgery attack may
not always succeed.

As mentioned above, security of the protocol in Figure 3 de-
pends on that of the FV scheme. Completeness and security of this
protocol are stated in Theorems 1 and 2, respectively. In both com-
pleteness and security arguments, we assume that whenever two
samples are taken from the same biometric they are within a cer-
tain distance threshold. Conversely, we assume that two samples
of different biometrics are beyond that threshold. In other words,
dist(BTy,BTy;) <w & BTy and BT}, are samples of the same
biometric. In practice, validity of this assumption depends on the
accuracy of the biometric matching procedure, including the dis-
tance function dist, the distance threshold w and the degree of FV
polynomial. Our choice of parameters are based on previous work
on these issues and are discussed in Section 5. Accuracy results
obtained with such parameters are discussed in Section 6.

322

4.2 Proxy RTI Protocol

The protocol in Section 4.1 requires V'rf, and Dev-A to be physically
accessible to U, since U must provide her biometric sample to both
Vrf and Dev-A. To cope with scenarios where Vrf (e.g., a server)
is not easily approachable, we suggest to use a proxy Dev-A with
its RoT 4 previously identified, in order to assist “Vrf in identifying
RoTp.

Suppose that U now carries Dev-A to the location of Dev-B.
Figure 4 shows a protocol for using Dev-A to assist V'rf in remotely
identifying RoTp of Dev-B. The main idea is for RoT4 to act as
an interface of Vrf. It captures U’s biometric and forward it to
Vrf via an authenticated and secret network channel. The same
biometric is also used as a challenge to Dev-B, which runs the rest
of the protocol with Vrf.

The security of the FV-based RTI protocol in Section 4.1 implies
the security of the proxy RTI protocol. We note that Dev-A is not a
trusted device as used in [13]. Its software, including the OS, could
be compromised, while its RoT 4 is trusted, which is consistent with
the basic protocol. Hence, both protocols provide the same level of
security.

As discussed earlier, lack of RTI violates the assumption that RoT
resides on the physical device of interest, thus undermining security

On the Root of Trust Identification Problem

THEOREM 1. FV-based RTI protocol (Figure 3) is complete according
to Definition 2 as long as FV is complete according to Definition 5.

PROOF (SKETCH) 1. In an honest execution of the protocol RoT p resides
in Dev-A, i.e.: pk; <« Gen(RoT 4).
Since, RoT p resides in Dev-A, Vrf and RoTp (i.e., RoT 4) receive BTy
and BT}, such that dist(BTy, BT};) < w. It follows from Definition 5
that:

HD < FVGeNn(BTy, Chal) —

Pr[FVopen(HD, BT};) = Chal] > 1 - negl(l) —
Prlo = signg,(Chal)] > 1 - negl(l) —
Prlverifygy, (o) = Chal = 1] > 1 - negl(l)

(13)

THEOREM 2. FV-based RTI protocol (Figure 3) is secure according to
Definition 3, as long as FV is p-information theoretically secure as in
Definition 6 and FV parameters are chosen such that and p = negl(l).

PRrOOF (SKETCH) 2. In this case, RoTp does not reside in Dev-A i.e.:
—(pk; < Gen(RoT 4)).
Therefore, it must be the case that Vrf and RoTp receive BTy and
BTy, such that dist(BTy, BTy,) > w. Assuming that Adv is unable
to forge signgy (.) with more than negl(l) advantage, it follows from
Definition 6 that:

HD « FVGEN(BTU’ Chal) g

Pr[FVopeN(HD, BTy;) = Chal] = p = negl(l) —

Pr[o = signgy,(Chal)] = negl(l) —

Prlverifysk,(o) = Chal = 1] = negl(l)

(14)

of any application dependent on that assumption. The Proxy RTI
is itself a good example of such an application. It relies on the
assumption that biometric sampling is performed on Dev-A- the
device in possession of authorized user U. Therefore, identification
of RoT 4 is crucial to overall security of this application.

5 PROTOTYPE & EVALUATION
5.1 BT Extraction & FV Parameters

BT extraction generates a biometric template from a fingerprint
image. As discussed in Section 3, each data point p; € BT is the
position and orientation (x;, y;, §) of a fingerprint minutiae. To
extract the BT we use NIST Biometric Image Software (NBIS) [19].
NBIS returns a set of identified minutiae points with corresponding
confidence levels. From NBIS output, we select 20 points with the
highest confidence and encode them as data points in GF(2%4). In
our prototype, FV’s HD is composed of 20 fingerprint data points
mixed with 200 random chaff points. The FV polynomial degree is
set to 9. Finite field operations are implemented using the Number
Theory Library (NTL) [20].

In FVopgN, the candidate minutiae points are selected from
the HD based on their distance to minutiae points in the new tem-
plate BT” sampled from the user. Similar to [21], we use a distance
function between p; € HD and pj’. € BT’ defined as:

Dipip)) = i =) + (yi = yj> + fx A6:.6) (15

323

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

where p; = (xi,yi,0), pj’. = (x},y},0’), and A(Gi,ejf) = min(|0; —
9]’.|, 360 — |0; — 9}'|) Parameter §§ controls the degree of importance
given to minutiae orientation in computation, as compared to the
euclidean distance between the points. A data point p; is selected
if D(pi,p]’.) < w for some point in p]’. € BT’. As described in [21],
parameters f and w must be empirically calibrated to yield the
best accuracy results. Our parameters are empirically calibrated
to: f = 0.2 and w = 20. To improve accuracy results for noisy
fingerprint readings before extracting the template, during the
biometric sampling, we run the fingerprint pre-alignment algorithm
from [22]. Figure 5(a) illustrates the result of the template extraction
for two pre-aligned fingerprint images. White squares highlight
the minutiae points detected in these fingerprints. We discuss the
accuracy of this implementation in Section 6.5.

Remark: We implement our own BT extraction to have a fully
working prototype and report on its accuracy. We stress that accu-
racy of the underlying BT extraction technique is orthogonal and not
affected by the RTI setting considered in this work.

5.2 Prototype

Due to the close environment of hardware-based TEEs with finger-
print sensing (commonly found on mobile phones), we implement
the prototype of FV-based RTI on a development board connected
with an external fingerprint sensor. The sensor collects user finger-
prints and also provides an interface to export the data to a secure
storage inaccessible to applications and the operating system. We
build a hypervisor-based secure execution environment (software-
based RoT) to run RoTp steps in the FV-based RTI protocol.

5.2.1 Hardware Setting. Figure 5(b) shows the hardware setting of
our prototype. An FMP12 Optical Fingerprint sensor is connected
to the Raspberry Pi 2 development board with four Cortex-A7 CPU
cores at 800 MHz and 1 GB main memory. It runs Debian Linux
with kernel version 3.18.8. Software on the board can use a serial
port mapped at physical address 0x3F201000 to issue commands to
the fingerprint reader and read the collected data.

5.2.2 Virtualization Based RoT. We harness virtualization tech-
niques to build an RoT secure against attacks from the operating
system. Our secure environment shown in Figure 5(c) is imple-
mented by following the approach proposed in [23] which designs
a fully isolated minimal computing environment (FIMCE) on a
multicore x86 platform. We develop a bare-metal ARM hypervi-
sor running in the processor’s Exception Level 2 (EL2) which is
more privileged than the levels for the OS and applications. After
launched on the Raspberry Pi board, the hypervisor configures the
permission bits in the Stage-II translation table to block the OS and
applications from accessing the serial port used by the fingerprint
sensor. Hence, the adversary cannot access the fingerprint sensor
to issue commands or steal fingerprint images. When available, a
secure boot module can be used to assure that this configuration is
properly set at boot time.

Upon receiving a request, the hypervisor creates a fully isolated
computing environment consisting of a CPU core and a reserved
physical memory region for the sensitive function to run. The CPU
configuration ensures that maskable interrupts are not delivered the

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

(a) Fingerprint pre-processing.

(b) Hardware Setting

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik

Virtualization-Based TE

_____________ <~
~

" FIMCE \

FVOPEN
{

RoT |
>

AN .

0S

HypervisoH:

(c) Hypervisor Based RoT. Arrows illustrate execution
flow; shaded area denotes untrusted software.

Figure 5: Hardware and software components of our prototype.

core and non-maskable interrupts (NMIs) are trapped to the hyper-
visor. Thus, the untrusted OS cannot tamper with the environment
via memory accesses or interrupts.

Running in the isolated environment is the code implementing
RoTp logic in the RTI protocol. Its signing key sk is stored in the
hypervisor memory. To generate the response, it requests the hy-
pervisor to run FVopen and signg) in the FIMCE environment at
runtime. The code of these two functions are self-contained with-
out issuing system calls so that the executions do not depend on
any untrusted code and data outside of the isolated environment.
Considering that these two functions are for memory-resident com-
putations without involving I/O operations, system calls are avoided
by statically allocating the needed memory buffers. Note that an
ARM CPU does not allow a user privilege code to issue hypercalls.
Hence, we retrofit the OS with a special system call handler which
issues the hypercall on behalf of RoTp.

5.2.3 Evaluation. Code complexity is shown in Table 2. We mea-

6 PRACTICAL CONSIDERATIONS

We now discuss some practical issues relevant to the proposed RTI
protocol.

6.1 Biometric Sensor Availability

One limitation of our general approach is the requirement for a
biometric sensor hardwired to the RoT. Our prototype shows how
this requirement can be circumvented - the protocol can be se-
curely deployed on devices not equipped with embedded biomet-
ric sensors by using a stand-alone biometric sensor and a trusted
micro-hypervisor to emulate a hardware direct channel between
the sensor and RoT 4.

Nonetheless, we recognize that it might be beneficial to remove
this hardware dependence. In particular, it would be interesting to
develop new RTI protocols that use other types of physical chal-
lenges through other sensors that (similar to biometrics) are hard
to clone/replay. In particular, developing alternative RTI based on

sured CPU execution time for FVopgn and signgy within the virtualization-gther sensors that might be available on commodity devices and

based RoT and normal user space on the Raspberry PI board. Results
are reported in Table 3. We note that time differences are not large.

System Component LoC

ARM hypervisor 456 (C) and 906 (Assembly)
Self-contained FVopgN 701

Crypto library (incl. RSA and hash functions) 5,032

Table 2: Code Complexity (in LoC).

FVopen signsk
Native environment 848.7 79.2
Virtualization-based RoT | 1143.51 75.6

Table 3: CPU time comparison. Average of out of 1000 exe-
cutions (time in ms). Variance was negligible and omitted

In fact, the RSA signing operation has a slight performance advan-
tage when running in the RoT. The reason might be its exclusive
use of the CPU core since interrupts are blocked.

324

evaluating their usability trade-offs is an interesting future direc-
tion.

6.2 Biometric Confidentiality

One concern with the proposed protocol is confidentiality of the
biometric data used in the protocol. Even though Dev-A might be
compromised, the biometric sample is read directly by trusted RoT 4.
In other words, confidentiality of the user’s biometric vis-a-vis Dev-
A is guaranteed, assuming that RoT hardware tamper-resistance
is preserved. The same applies to Vrf, if it is also equipped with a
RoT. Otherwise, the owner of Vrf should be the same as the user
providing providing the biometric.

6.3 Fuzzy Extractor Issues

Statistical and reusability attacks are well-known issues of several
FE constructions, including fuzzy vaults used in our prototype. The
former is the biometric analog to dictionary attacks on passwords. It
analyses the distribution of minutiae in human biometrics and uses
this information to extract BT or Chal from HD. The latter applies to
non-reusable FEs. In such cases, obtaining two instances HD; and

On the Root of Trust Identification Problem

HD2, generated from the same biometric allows reconstruction of
BT in clear.

We note that these attacks are a serious concern for FE-based
biometric authentication where HD appears in clear. Whereas, in
our case, the problem is obviated by transmitting HD over a secure
channel to RoTp. In particular, we do not use FEs for biometric con-
fidentiality (since they are not necessary to achieve that purpose).
They are used such that Vrf can always embed a fresh challenge
Chal into the “biometric-based” challenge, preventing replays of
previous RTI executions with the same biometric on other RoT, e.g.,
RoT*.

6.4 Usability

As mentioned earlier, usability is a problem with sight-based pres-
ence attestation, along with its reliance on precise timing. Recall
that location- and scene-based presence attestation schemes incur
lower user burden. However, they also offer much lower security.
Meanwhile, user burden in our protocol amounts to performing
two biometric samplings: one with Vrf and one with Dev-A. (More-
over, the user can pre-enroll his fingerprints with Vrf well ahead
of time.)This type of user interaction is common for authentication
purposes and typically considered more convenient than other au-
thentication means, such as entering a PIN or password. Therefore,
we consider usability of biometric-based RTI protocol to be quite
reasonable.

6.5 Accuracy

Accuracy of the underlying biometric matching is not affected
by our use-case. Improving its accuracy is an orthogonal effort.
Nonetheless, for completeness, we report on the accuracy consid-
ering the implementation used in our prototype. Similar accuracy
analysis for biometric matching using fuzzy vaults (also considering
other biometrics modalities) can be found in [14, 21, 24]. We report
on our prototype’s accuracy considering metrics for:

- Genuine Acceptance Rate (GAR): Percentage of biometric sam-
ples correctly matched to other samples acquired from the same
biometric.

- False Acceptance Rate (FAR): Percentage of biometric samples
incorrectly matched to any sample not acquired from the same
biometric.

We conducted accuracy experiments using FVC2000 publicly avail-
able fingerprint database (database and further information avail-
able at: http://bias.csr.unibo.it/fvc2000/). FVC2000 includes multiple
fingerprint images (10 different noisy images of each fingerprint) ac-
quired using 4 types of low-cost biometric sensors. As discussed in
Section 3.2, the FV polynomial degree allows configuring the num-
ber of matching data points in two biometric samples necessary to
consider that the samples belong to the same user. Therefore, accu-
racy results are presented as a function of FV polynomial degree in
Figure 6. According to the results in Figure 6, for a security-critical
task such as RTI, an ideal choice would be degree 9 with nearly zero
false acceptances. The same degree results in GAR of 80%, meaning
that 1 out of 5 times a genuine RTI execution would fail and the
user would need to try one more time.

325

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

FVC2000-DB

il

o

100

- GAR
= FAR

[

Figure 6: Accuracy of biometric matching in our prototype

80
L

Biometric Matching Accuracy (%)
40
|

Fuzzy Vault Polynomial degree

7 RELATED WORK

In this section we summarize topics related to RTI, except PA [5]
which was already discussed in Section 2.4.

Cuckoo Attacks were thoroughly introduced and formally mod-
eled in [3]. Several potential solutions were analyzed under that
model and, among them, secure hardware channels between Dev-A
/O interfaces the RoT 4 were considered as the preferred method.
As discussed in Section 2, even direct channels can be circumvented
by a Cuckoo Adv that deploys its own accomplice challenger to re-
play Vrf messages through the appropriate channel. To tackle this
problem, our biometric-based approach explores the uniqueness of
biometrics as a physical unclonable challenge, in addition to the
existing secure channel between the biometric sensor and the RoT.

Distance Bounding (DB) is a promising approach for address-
ing the RTI problem. With recent advances [25-27], DB could allow
Vrf to precisely establish maximum distance (bound) to the un-
trusted RoT p. Basically, if each device is equipped with DB facilities
(a special radio and a high-precision clock) and RoTp has a secure
hardware channel to DB in its housing device, then the user can
simply make sure that no other device is within the reported bound,
e.g., 20-30 cm. However, several obstacles (discussed in Section 2)
must be overcome before DB can be used for RTI.

User Trust Bootstrapping allows the user to establish trust on
her device. TrustICE [28] uses a hardware approach and uses an
LED under exclusive control of RoT. The light signal emitted by
this LED is used to convince the user that the device has an active
RoT. Other approaches [29, 30] reserve a fraction of Dev screen to
communicate the state of the trusted component to the user. While
these approaches succeed to communicate the state of RoT in a
given device, they do not provide identification of corresponding
public keys.

Device Pairing is the problem of initializing a secure (usually
wireless) channel between two previously unfamiliar devices, with-
out any trusted third party. Many device pairing protocols have
been proposed, relying on various physical properties [31-33]. The
main difference between RTI and device pairing is that, in the for-
mer, one of the devices (Dev-A) is potentially compromised and
is therefore subject to cuckoo attacks. In contrast, device pairing
mainly considers evil twin attacks.

http://bias.csr.unibo.it/fvc2000/

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

Remote Attestation is an RoT-enabled security service that
allows Vrf to measure software state of applications running on
Dev. In recent years, several remote attestation techniques and
architectures [34-39] were proposed, targeting different platforms
and offering different types of guarantee. While remote attestation
enables malware detection on a remote Dev, it cannot be used as
a means to solve RTI by ensuring that Dev is in a malware-free
state. This is because remote attestation itself requires mitigating
the RTI problem, i.e., making sure that a remote attestation protocol
indeed executes on Dev before it can be used to ensure that Dev
is malware-free.

Biometrics are widely used in user authentication [2, 40-42]
and identification [43, 44] systems. Fuzzy extractors are typically
deployed to preserve biometric template confidentiality in the back-
end of these systems [45]. To the best of our knowledge, this paper
is the first proposal to use biometrics and fuzzy extractors to convey
an unclonable challenge and assist in the identification of an RoT.

8 CONCLUSION

This paper introduced and analyzed the RTI problem, which occurs
whenever an RoT is used to implement a security service that
depends on physical IO devices (sensors and actuators) and relies
on the assumption of RoT residing in a specific physical device. To
address this problem we proposed an RTI protocol based on the
difficulty of cloning biometrics in real time. It uses the biometric
as a challenge in the RTI protocol and relies on the existence of a
hardware channel between biometric sensors and TEEs — a feature
already available on some current devices. We also demonstrated a
prototype implementation of our approach.

ACKNOWLEDGMENTS

We thank IPSN’21 anonymous referees for their helpful comments.
This research was supported in part by funding from Army Research
Office (ARO) contract W911NF-16-1-0536, Semiconductor Research
Corporation (SRC) contract 2019-TS-2907, as well as NSF Awards
1956393 (SATC) and 1840197 (CICI). This article was also partially
supported by the Singapore National Research Foundation under
NCR Award Number NRF2018NCR-NSOE004-0001.

REFERENCES

[1] S. Mirzamohammadji, J. A. Chen, A. A. Sani, S. Mehrotra, and G. Tsudik, “Ditio:
Trustworthy auditing of sensor activities in mobile & iot devices,” in Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems, p. 28, ACM,
2017.

S. Srinivas, D. Balfanz, E. Tiffany, F. Alliance, and A. Czeskis, “Universal 2nd
factor (u2f) overview;” FIDO Alliance Proposed Standard, pp. 1-5, 2015.

B. Parno, J. M. McCune, and A. Perrig, Bootstrapping trust in modern computers.
Springer Science & Business Media, 2011.

S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mechanisms for
secure embedded systems,” in VLSI Design, 2004.

Z.Zhang, X. Ding, G. Tsudik,]J. Cui, and Z. Li, “Presence attestation: The missing
link in dynamic trust bootstrapping,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 89-102, ACM, 2017.
D.P. Shepard, T. E. Humphreys, and A. A. Fansler, “Evaluation of the vulnerability
of phasor measurement units to gps spoofing attacks,” International Journal of
Critical Infrastructure Protection, vol. 5, no. 3-4, pp. 146153, 2012.

M. L. Psiaki, T. E. Humphreys, and B. Stauffer, “Attackers can spoof navigation
signals without our knowledge. here’s how to fight back gps lies,” IEEE Spectrum,
vol. 53, no. 8, pp. 26-53, 2016.

S. Brands and D. Chaum, “Distance-bounding protocols,” in Workshop on the
Theory and Application of of Cryptographic Techniques, pp. 344-359, Springer,
1993.

326

[9]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32

(33]

(35]

[36

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik

G. P. Hancke and M. G. Kuhn, “An rfid distance bounding protocol,” in First Inter-
national Conference on Security and Privacy for Emerging Areas in Communications
Networks (SECURECOMM 05), pp. 67-73, IEEE, 2005.

C. H. Kim and G. Avoine, “Rfid distance bounding protocol with mixed challenges
to prevent relay attacks,” in International Conference on Cryptology And Network
Security, pp. 119-133, Springer, 2009.

S. Capkun, K. El Defrawy, and G. Tsudik, “Group distance bounding protocols,”
pp. 302-312, 2011.

K. B. Rasmussen and S. Capkun, “Realization of rf distance bounding.,” in USENIX
Security Symposium, pp. 389-402, 2010.

A. Dhar, E. Puddu, K. Kostiainen, and S. Capkun, “Proximitee: Hardened sgx at-
testation by proximity verification.” Cryptology ePrint Archive, Report 2018/902,
2018. https://eprint.iacr.org/2018/902.

L D. O. Nunes, K. Eldefrawy, and T. Lepoint, “Snuse: A secure computation
approach for large-scale user re-enrollment in biometric authentication systems,”
Future Generation Computer Systems, 2019.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data,” in International conference on the
theory and applications of cryptographic techniques, pp. 523-540, Springer, 2004.
A. Juels and M. Sudan, “A fuzzy vault scheme,” Des. Codes Cryptography, vol. 38,
pp. 237-257, Feb. 2006.

A. Kiayias and M. Yung, “Cryptographic hardness based on the decoding of
reed-solomon codes,” in International Colloquium on Automata, Languages, and
Programming, pp. 232-243, Springer, 2002.

“Android fingerprint hardware interface” https://source.android.com/security/
authentication/fingerprint-hal (accessed 2019-09-07).

K. Ko, “User’s guide to nist biometric image software (nbis),” NIST Interagency/In-
ternal Report (NISTIR)-7392, 2007.

V. Shoup, “Ntl: A library for doing number theory,” www.shoup.net/ntl/, 2001.
K. Nandakumar, A. K. Jain, and S. Pankanti, “Fingerprint-based fuzzy vault:
Implementation and performance,” IEEE transactions on information forensics and
security, vol. 2, no. 4, pp- 744-757, 2007.

B. Tams, “Absolute fingerprint pre-alignment in minutiae-based cryptosystems,”
in 2013 International Conference of the BIOSIG Special Interest Group (BIOSIG),
pp. 1-12, Sept 2013.

S. Zhao and X. Ding, “On the effectiveness of virtualization based memory
isolation on multicore platforms,” in Proceedings of IEEE European Symposium on
Security and Privacy (EuroS&P), (Washington, DC, USA), IEEE Computer Society,
2017.

Y.]. Lee, K. Bae, S. J. Lee, K. R. Park, and J. Kim, “Biometric key binding: Fuzzy
vault based on iris images,” in International Conference on Biometrics, pp. 800-808,
Springer, 2007.

P. Leu, M. Singh, and S. Capkun, “Message time of arrival codes: A fundamental
primitive for secure distance measurement,” 2020.

M. Singh, P. Leu, and S. Capkun, “UWB with pulse reordering: Securing ranging
against relay and physical-layer attacks,” in 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019, 2019.

M. Singh, P. Leu, A. Abdou, and S. Capkun, “Uwb-ed: Distance enlargement
attack detection in ultra-wideband,” in 28th USENIX Security Symposium (USENIX
Security 19), (Santa Clara, CA), pp. 73-88, USENIX Association, Aug. 2019.

H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-assisted iso-
lated computing environments on mobile devices,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 367-378, IEEE,
2015.

J. Danisevskis, M. Peter, J. Nordholz, M. Petschick, and J. Vetter, “Graphical user
interface for virtualized mobile handsets,” IEEE S&P MoST, 2015.

M. Lange and S. Liebergeld, “Crossover: secure and usable user interface for
mobile devices with multiple isolated os personalities,” in Proceedings of the 29th
Annual Computer Security Applications Conference, pp. 249-257, ACM, 2013.

N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Secure device pairing
based on a visual channel,” in 2006 IEEE Symposium on Security and Privacy
(S&P’06), pp. 6-pp, IEEE, 2006.

C. Soriente, G. Tsudik, and E. Uzun, “Hapadep: human-assisted pure audio device
pairing,” in International Conference on Information Security, pp. 385-400, Springer,
2008.

E. K. Jung, M. A. Malamud, A. J. Cohen, R. W. Lord, R. A. Levien, and J. D.
Rinaldo Jr, “Device pairing via device to device contact,” Apr. 12 2011. US Patent
7,925,022,

V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation: a virtual
machine directed approach to trusted computing,” in USENIX Virtual Machine
Research and Technology Symposium, vol. 2004, 2004.

M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Foundations of hardware-
based attested computation and application to sgx,” in 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 245-260, IEEE, 2016.

K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure and minimal
architecture for (establishing dynamic) root of trust,” in NDSS, vol. 12, pp. 1-15,
2012.

https://eprint.iacr.org/2018/902
https://source.android.com/security/authentication/fingerprint-hal
https://source.android.com/security/authentication/fingerprint-hal

On the Root of Trust Identification Problem

[37]

[38]

[39]

[40]

K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra: hybrid design for remote
attestation (using a formally verified microkernel),” in Proceedings of the 10th ACM
Conference on Security and Privacy in wireless and Mobile Networks, pp. 99-110,
ACM, 2017.

I D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik,
“VRASED: A verified hardware/software co-design for remote attestation,” in 28th
{USENIX} Security Symposium ({USENIX} Security 19), pp. 1429-1446, 2019.
M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation approach for
resource-constrained iot devices,” in 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pp. 247-258, IEEE, 2020.

R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, “Large-scale evaluation
of multimodal biometric authentication using state-of-the-art systems,” IEEE
transactions on pattern analysis and machine intelligence, vol. 27, no. 3, pp. 450—
455, 2005.

327

[41]
[42]

[43]

[44

[45]

IPSN’ 21, May 18-21, 2021, Nashville, TN, USA

P. M. Burger, “Biometric authentication system,” 2001. US Patent 6,219,439.

R. Bhagavatula, B. Ur, K. Iacovino, S. M. Kywe, L. F. Cranor, and M. Savvides,
“Biometric authentication on iphone and android: Usability, perceptions, and
influences on adoption,” 2015.

M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Cloudid: Trustworthy cloud-
based and cross-enterprise biometric identification,” Expert Systems with Applica-
tions, vol. 42, no. 21, pp- 7905-7916, 2015.

J. Yuan and S. Yu, “Efficient privacy-preserving biometric identification in cloud
computing,” in 2013 Proceedings IEEE INFOCOM, pp. 2652-2660, IEEE, 2013.

L D. O. Nunes, K. Eldefrawy, and T. Lepoint, “Secure non-interactive user re-
enrollment in biometrics-based identification and authentication systems,” in
International Symposium on Cyber Security Cryptography and Machine Learning,
pp. 162-180, Springer, 2018.

	Abstract
	1 Introduction
	2 RTI Protocols
	2.1 Definitions
	2.2 Attack Vectors
	2.3 RTI Adversarial Model
	2.4 Mitigating RTI via Presence Attestation
	2.5 Mitigating RTI via Distance Bounding

	3 Building Blocks
	3.1 Biometric Features & Template Matching
	3.2 Fuzzy Extractors & The Fuzzy Vault Scheme
	3.3 Hardware Architecture for Biometric Sensing with TEEs

	4 Constructing an RTI Protocol
	4.1 FV-based RTI
	4.2 Proxy RTI Protocol

	5 Prototype & Evaluation
	5.1 BT Extraction & FV Parameters
	5.2 Prototype

	6 Practical Considerations
	6.1 Biometric Sensor Availability
	6.2 Biometric Confidentiality
	6.3 Fuzzy Extractor Issues
	6.4 Usability
	6.5 Accuracy

	7 Related Work
	8 Conclusion
	References

